
1

B. TECH. PROJECT

On

Pattern Identification and

Compression of data for Fast and

Uniform Polygon Fracture

BY

Nitesh Kumar Singh

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2017

2

Pattern Identification and Compression

of data for Fast and Uniform Polygon

Fracture

A PROJECT REPORT

Submitted in partial fulfilment of the

requirements for the award of the degrees of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

 Submitted by:

Nitesh Kumar Singh, 140001020,

Discipline of Computer Science and Engineering

Guided by:

Dr. Abhishek Srivastava

Associate Professor

Computer Science and Engineering,

IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2017

3

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Pattern Identification and Compression of data for Fast

and Uniform Polygon Fracture” submitted in partial fulfilment for the award of the degree of

Bachelor of Technology in ‘Computer Science and Engineering’ completed under the supervision of

Dr. Abhishek Srivastava, Associate Professor, Computer Science and Engineering, IIT Indore is

an authentic work. Further, I declare that I have not submitted this work for the award of any other

degree elsewhere.

Nitesh Kumar Singh

 (140001020)

CERTIFICATE by BTP Guide

It is certified that the above statement made by the student is correct to the best of our knowledge.

Dr. Abhishek Srivastava

Associate Professor,

Discipline of Computer Science and Engineering

IIT Indore

4

Preface

This report on “Pattern Identification and Compression of data for Fast and Uniform Polygon

Fracture” is prepared under the guidance of Dr. Abhishek Srivastava, Associate Professor, Computer

Science and Engineering, IIT Indore.

Through this report I have tried to give a detailed description of our approach to identify the repeating

pattern in polygon layout by compressing the data and I have also tried to explore the possibility of

which mapping method is better to use for mapping the rectangles in unique characters. The algorithm

used is verified for unit test as well as for large input cases.

I have tried to the best of my abilities and knowledge to explain the content in a lucid manner. I have

also added Tables, figures,screenshots and histograms to make it more illustrative and enable the

readers to understand the solution easily.

Nitesh Kumar Singh

B.Tech. IV Year

Discipline of Computer Science and

Engineering IIT Indore

5

Acknowledgements

I wish to thank Dr. Abhishek Srivastava for their kind support throughout the duration of the project,

giving me an opportunity to work at my own pace along my own lines, while providing me with very

useful directions whenever necessary.

I would also like to thank all the faculty members of Discipline of Computer Science and Engineering

for their invaluable support and constructive feedback during the presentations. It is their help and

support, due to which I was able to complete the design and technical report.

Finally, I offer my sincere thanks to everyone else who knowingly or unknowingly helped me

complete this project.

Nitesh Kumar Singh

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

6

Abstract

 In Electronic Design Automation industry, mask pattern is first fractured into basic rectangles, and

then fabricated by the variable shaped beam mask writing machine. Ideally, mask fracture tools

(EDA tools) aim at suppressing the rectangle count in order to speed up the writing time, minimizing

the fracture time by compressing the data .If we will able to identify the repeating pattern of

rectangles/polygon we can store the data of its fracture so that we don’t have to fracture it again and

again hence it reduces the rectangle count for fracturing the data.

This Project was divided in three part. First Part is Converting Non Monotone Polygons to Monotone

Polygons then mapping of the rectangle in unique characters and generation of substring of unique

character divided by separator. In last part the substring of unique characters are passed through a

compression algorithm where data is compressed, which is stored in a result string, this string can be

decompressed to get the original string and a dictionary is formed which give the result of data

repetition of substring.

The main aim of the project was to check whether it is possible to convert a Non-Monotone Polygon to

monotone polygon or not and know how much value for bit mapping is good enough to map the

rectangle in unique character and in result of project we can see that by doubling the mapping size we

can map approx. (105 times) more rectangles and this is what we needed. Although the time taken by

increasing the mapping size is bit more but in comparison to the rectangle covered by increasing the

mapping size too much in comparison to time increase.

7

Table of Contents

Preface

Acknowledgement

Abstract

1. Introduction…………………………………………………………………………….9

1.1 Motivation

1.2 Objectives

2. Rectilinear Polygon Fracturing……………………………………………………..…13

 2.1 Overview

 2.2 Mask Data Preparation

3. Fracturing Methods……………………………………………………………………17

 3.1 Previous Work

4. Algorithms Used………………………………………………………………………..18

 4.1 Scan-line Algorithm

 4.2 LZ Compression Algorithm

 4.3 LZ Decompression Algorithm

5. Experimental Walkthrough…………………………………………………………....25

 5.1 Hardware Specifications

 5.2 Data Description

 5.3 Approach Explained

 5.4 Experimental Milestones

6. Results & Discussion…………………………………………………………………...37

7. Conclusion & Future Scope……………………………………………………………47

 References

8

List of Figures

Fig 1.1: VLSI Design Flow

Fig 1.2: Simple example of Repeating Pattern in Polygon Layout

Fig 1.3: Millions of rectangles forming Input Layout

Fig 1.4: Types of Repeating Polygon in Input Layout

Fig 2.1: MDP Flow

Fig 2.2: Conventional VSB writer

Fig 4.1: Components of an edge-based Scan-line Algorithm

Fig 4.2: Status of the Scan-Line at event-point

Fig 4.3: Dictionary formation during Compression

Fig 4.4: Dictionary formation during Decompression

Fig 5.1: Simple Non-Monotone and Non-Monotone Polygon

Fig 5.2: Example of Non-Monotone Polygon

Fig 5.3: Repeating Pattern Marked

Fig 5.4: Example of Monotone Polygon Layout

Fig 5.5: Example of Monotone Polygon divided in form of rectangles

Fig 5.6: Shows two different types of repeating pattern in polygon layout.

Fig 5.7(a): Shows one repeating monotone pattern which represents one substring

Fig 5.7(b): Shows how a substring will be divided in rectangle one rectangle

Fig 6.1: Input Layout of Polygon Data

Fig 6.2: Monotone Output after using Scan-Line Approach

Fig 6.3(a): Shows the comparison of size of Input

Fig 6.3(b): Shows the comparison for test-file 1.

Fig 6.3(c): Shows the comparison for test-file 2.

9

Chapter 1

Introduction

1.1 Motivation

Electronic Design Automation (EDA) is concerned with the design and production of VLSI systems.

EDA systems support description of hardware at various levels of abstraction. Fig 1.1 shows various

steps of the VLSI design process. Today, EDA tools have enabled the designers to complete the

Design to Silicon cycle of chip manufacturing very efficiently. It enables them to work progressively

down from an abstract level of design to the layout level. A layout is a complete geometric

representation (i.e. a set of Polygons) of the masks which define how the individual layers of the

circuit are to be produced. In optical lithography, light emitted from the illumination system is

transmitted through the mask, and replicates the mask pattern on the wafer. During Mask Data

Preparation (MDP) process, the Polygon pattern is initially fractured into numerous rectangles.

Subsequently, these rectangles are exposed by the Variable Shaped Beam (VSB) mask writing

machine. We work at the Physical Design Verification step of the VLSI design cycle, where layouts

are checked for Design Rule violations set by the user.

When we Fracture a whole Polygon layout into rectangles we observe that so many rectangles are

repeating similarly in different polygons which we Fracture again and again which takes time so by

using Pattern detection technique we can fracture a similar kind of repeating rectangle and store its

data and instead of fracturing the same repeating again we can just use the previous data to speed up

the fracturing technique and instead of using whole data gain we can use compressed data because if

there is redundancy of data we can compress it.

The reasons for using this Pattern Identification is two-fold. First, pattern matching’s ability to easily

describe very complex relationships between geometries across multiple layers simultaneously allows

it to efficiently compress the design.

Second, pattern matching’s true power is on display when it is integrated with other physical

verification analysis or design tools. Why? Combining pattern matching with traditional design and

10

verification tools enables design and verification engineers to use an automated process to find areas

of interest, then make design modifications and strengthen the layout against manufacturing defects,

etc. This integration and automation has enabled the industry to create a breadth of new pattern

detection applications that are achieving results that simply weren’t possible previously.

Verification based on pattern Identification not only makes it easier to express the design rules, but the

whole physical verification definition process also gets simpler and moves faster.

Fig 1.1 VLSI Design Flow

11

1.2 Objective

Given an input of millions of polygons which have to be fractured in different types of rectangle and in

these pattern there is pattern of polygon which repeat to form different types of design. In order to

compress the input data we have to detect these repeating pattern and store their fracture data so that

they can be used if we see the same pattern again. So that we don’t have to fracture same pattern again

and again which will reduce execution time and faster fracture of the Polygon Layout.

Fig 1.2 will show how the Pattern will repeat in polygon layout.

Fig 1.2 Simple example of Repeating Pattern in Layout

12

Fig 1.3 Millions of rectangles forming Input Layout

Fig 1.4 Types of Repeating Polygon in Input Layout

13

Chapter 2

 Rectilinear Polygon Fracturing

2.1 Overview

After the physical mask layout is created for a circuit for a specific design process, the layout is

measured by a set of geometric constraints, or rules, for that process. The main objective of design rule

checking (DRC) is to achieve a high overall yield and reliability for the design. Once the mask data

layout has been created and modified to accommodate various Resolution Enhancement Techniques

(RET) algorithms, the final photo-mask still needs to be written. Usually, the data must be flattened to

some degree, and the polygons must be reduced to a simple set of structures (typically rectangles and

trapezoids) that the machine can use to write the patterns directly. This process of data conversion is

called fracturing. Polygon fracturing (partitioning) converts the complex polygons generated by the

layout process, into non-overlapping trapezoids suitable for mask writing.

• Layout Data: It is the representation of an IC in terms of geometrical shapes spread across one

or more layers. Stored in file formats Oasis.

• Mask Data: The layout data is fractured into rectangles/trapezoids, required to synthesize photo-

masks (stencil). It contains only rectangles and/or trapezoids.

Traditionally, after an IC design has been converted into a physical layout, the timing verified, and

the polygons certified to be DRC-clean, the IC was ready for fabrication. The data files

representing the various layers were shipped to a mask shop, which used mask-writing equipment

to convert each data layer into a corresponding mask, and the masks were shipped to the fab where

they were used to repeatedly manufacture the designs in silicon.

2.2 Mask data preparation (MDP)

It is the procedure of translating a file containing the intended set of polygons from an integrated

circuit layout into set of instructions that a photo-mask writer can use to generate a physical mask. It

usually involves mask fracturing where complex polygons are translated into simpler shapes, often

rectangles and trapezoids that can be handled by the mask writing hardware. The partitioning run time

and quality directly impacts the cost, integrity, and quality of the written mask. Factors determining

quality of mask data may be multiple:

14

• Rectangle Count

• Figure Count & Shot Count

• Critical Dimension

• High Temperature

Fig 2.1 MDP Flow Fig 2.2 Conventional VSB writer

15

 2.2.1 Design Rule Checking (DRC)

It is the area of Electronic Design Automation that determines whether the physical

layout of a particular chip layout satisfies a series of recommended parameters called

Design Rules. Design rule checking is a major step during Physical verification

signoff on the design, which also involves LVS (Layout versus schematic) Check,

XOR Checks, ERC (Electrical Rule Check) and Antenna Checks. Sometimes known

as geometric verification, this involves verifying if the design can be reliably

manufactured given current photolithography limitations. A design rule set specifies

certain geometric and connectivity restrictions to ensure sufficient margins to account

for variability in semiconductor manufacturing processes, so as to ensure that most of

the parts work correctly. Typical design rule checks involve reporting the following

stats and checking for violations:

• Small figure count.

• Split CD count.

• Total Figure count.

• Total Shot count.

• XOR check.

The main objective of design rule checking (DRC) is to achieve a high overall yield

and reliability for the design. If design rules are violated the design may not be

functional. To meet this goal of improving die yields, DRC has evolved from simple

measurement and Boolean checks, to more involved rules that modify existing

features, insert new features, and check the entire design for process limitations such

as layer density. A completed layout consists not only of the geometric representation

of the design, but also data that provides support for the manufacture of the design.

While design rule checks do not validate that the design will operate correctly, they

are constructed to verify that the structure meets the process constraints for a given

design type and process technology. DRC software usually takes as input a layout in

the GDSII standard format and a list of rules specific to the semiconductor process

chosen for fabrication. From these it produces a report of design rule violations that

the designer may or may not choose to correct.

The physical mask layout consists of shapes on drawn layers that are grouped into one

or more cells. A cell may contain a placement of another cell. If the entire design is

represented in one cell, it is a flat design; otherwise it is a hierarchical design.

DRC is a very computationally intense task. Usually DRC checks will be run on each

sub-section of the Application Specific Integrated Chip (ASIC) to minimize the

number of errors that are detected at the top level. If run on a single CPU, customers

may have to wait up to a week to get the result of a Design Rule check for modern

16

designs. Most design companies require DRC to run in less than a day to achieve

reasonable cycle times since the DRC will likely be run several times prior to design

completion.

2.2.2 Standard Verification Rule Format (SVRF)

 Language based DRC products define rules in a language to describe the operations

needed to be performed in DRC. For example, Machine uses Standard Verification

Rule Format (SVRF) language in their DRC rules files and Magma Design

Automation is using Tcl-based language. A set of rules for a particular process is

referred to as a run-set, rule deck, or just a deck.

The C MDP product line completes the integrated flow from IC design to IC mask

manufacturing. The flow concludes with the output of the most important mask writer

formats for advanced mask-making in the sub wavelength era, Variable-Shaped-

Beam (VSB) formats and OASIS. As feature sizes continue to shrink while IC

density increases, the volume of data required to describe an IC will continue to grow

exponentially. To mitigate this, a new data format called Open Artwork System

Interchange Standard (OASIS) was approved by SEMI recently.

17

Chapter 3

Fracturing Methods

3.1 Previous Work

Fracture of a polygon into basic shapes rectangles is a well-studied problem. The

standard formulation is to minimize the number of shots subject to certain constraints.

Ohtzuki (1982) has given an exact O (n5/2) algorithm for polygon fracture into

rectangles where n is the number of vertices of a polygon. The algorithm is based on

finding a maximum independent set in a bipartite graph where vertices correspond to

certain lines slicing the given polygon.

Imai and Asano (1986) have further sped up this algorithm to O(n3/2 logn) and also

generalized it to the optimal partition into rectangles. Unfortunately, these

theoretically nice algorithms but pattern Identification will speed-up this algorithm.

Nakao et al(2000) have developed a fairly complicated ad hoc heuristic based on the

generalization of the same bipartite graph which takes in account all other constraints

except the constraint. In fact, they have introduced a different objective – minimize

the weighted length of slivers and slices cutting through critical fea-tures while

minimizing shot number over all obtained solutions that are (sub)optimal with respect

to the new objective. Their heuristic does not guarantee optimum fracture.

B. Yu, J.-R. Gao and D. Z. Pan (2013) proposed a L-Shape Based Layout Fracturing

for E-Beam Li-thography. They proposed two novel algorithms. The first one,

rectangular merging (RM), starts from a set of rectangular fractures and merges them

optimally to form L-shape fracturing. The second algorithm, direct L-shape fracturing

(DLF), directly and effectively fractures the input layouts into L-shapes with sliver

minimization. The experimental results show that their algorithms are very effective

18

Chapter 4

Algorithms Used

4.1 Scan-Line Algorithm

Fig 4.1 Components of an edge-based Scan-line Algorithm. The layout extent is swept

from left to right, stopping at every event point.

19

Scan-line based sweep algorithms have become the predominant form of low-level

geometric analysis. A scan-line sweep analyses relationships between objects that

intersect a virtual line, either vertical or horizontal, as that line is swept across the

layout extent

Scan Object: The rectangles (present in the layout extent) are provided as input to the

scan line and are ordered first in order of increasing X (of their left edges) and then in

order of increasing Y (of their bottom edges).

Event Point: An event point (as defined here) is every distinct X at which either a

scan object is leaving the scan-line or is entering into it. The scan-line must stop at

every event point and appropriately iterate over all its objects, constantly updating

itself.

Fig 4.2 Status of the Scan-Line at event point

20

4.1 LZ Compression Algorithm

The LZ algorithm works by constructing a dictionary of substrings, which we will call

“phrases,” that have appeared in the text. The LZ algorithm constructs its dictionary

on the fly, only going through the data once. This means that you don’t have to

receive the entire layout data before starting to encode it. The algorithm parses the

sequence into distinct phrases. We do this greedily.

Example-1Encode (i.e. compress) the string ABBCBCABABCAABCAAB using the

LZ78 algorithm.

Fig 4.3 Dictionary formation during Compression

The compressed message is: (0,A)(0,B)(2,C)(3,A)(2,A)(4,A)(6,B)

21

Advantage of compression Algorithm:-

Example: Uncompressed String: ABBCBCABABCAABCAAB

 Number of bits = Total number of characters * 8

 = 18 * 8

 = 144 bits

Suppose the code-words are indexed starting from 1:

 Compressed string (code-words): (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)

 Code-word index 1 2 3 4 5 6 7

Each code word consists of an integer and a character:

The character is represented by 8 bits. The number of bits n required to represent the

integer part of the code-word with index i is given by:

Alternatively number of bits required to represent the integer part of the code-word

with index i is the number of significant bits required to represent the integer i – 1 .

Code-word (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)

index 1 2 3 4 5 6 7

Bits: (1 + 8) + (1 + 8) + (2 + 8) + (2 + 8) + (3 + 8) + (3 + 8) + (3 + 8) = 71bits

The actual compressed message is: 0A0B10C11A010A100A110B

22

Pseudo Algorithm

START

Dictionary empty ; Prefix empty ; DictionaryIndex 1;

while(characterStream is not empty){

 Char next character in characterStream;

 if(Prefix + Char exists in the Dictionary)

 Prefix Prefix + Char ;

 else {

 if(Prefix is empty)

 CodeWordForPrefix 0 ;

 else

 CodeWordForPrefix DictionaryIndex for Prefix ;

 Output: (CodeWordForPrefix, Char) ;

 insertInDictionary((DictionaryIndex , Prefix + Char));

 DictionaryIndex++ ;

 Prefix empty ;

 }

}

if(Prefix is not empty){

 CodeWordForPrefix DictionaryIndex for Prefix;

 Output: (CodeWordForPrefix,) ;

}

END

23

4.2 LZ Decompression Algorithm

The Decompression process for LZ is also very simple. In addition, it has an edge

over static compression methods because no dictionary or other pre-existing

information is necessary for the decoding algorithm–a dictionary identical to the one

created during compression is re-built during the process. Both encoding and decoding

programs must start with same initial dictionary. Here’s how it works The LZ decoder

first reads in an index, looks up the index in the dictionary, and returns the substring

associated with the index. The first character of this substring is appended to the

current working string. This new concatenation is added to the dictionary .The

decoded string then becomes the current working string (the current index, i.e. the

substring, is remembered), and the process repeats.

Example 1

Decompress the sequence (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)

Fig 4.4 Dictionary formation during Decompression

The decompressed String is: ABBCBCABABCAABCAAB

24

Pseudo Algorithm

START

Dictionary empty ; DictionaryIndex 1 ;

while(there are more (CodeWord, Char) pairs in codestream){

 CodeWord next CodeWord in codestream ;

 Char character corresponding to CodeWord ;

 if(CodeWord = = 0)

 String empty ;

 else

 String string at index CodeWord in Dictionary ;

 Output: String + Char ;

 insertInDictionary((DictionaryIndex , String + Char)) ;

 DictionaryIndex++;

}

END

25

Chapter 5

Experimental Walkthrough

5.1 Hardware Specifications

Major test runs of the algorithm were done on a x86 architecture 64 bit-Linux Virtual

Machine having processor specification as: Intel(R) Core(TM) i7 CPU E5-2680 v3

@ 2.50 GHz, 16 GB RAM. For slightly bigger test cases special VMs’ with at-least

256 GB RAM support, allotted on Calibre Grid infrastructure were employed. The

algorithm is implemented as an independent module in C++ and is compiled along

with Calibre MDP flow. While running, the function API is called from Calibre Flow,

which returns the appropriate output to the flow after processing.

5.2 Data Description

The input OASIS files were ASIC layouts containing only Manhattan polygons, and

were as large as 100 mm layouts. Input of polygon will be given by the horizontal

edges with its direction and end point of edges with its polygon number.

5.3 Approach Explained

Approach is divided in three part and output of one part will become the output of

next part-

A1. First Part is Converting Non Monotone Polygons to Monotone Polygons (using

Scan-Line approach)

26

Starting Approach –

In 1st Iteration divide the Polygons into rectangles and give same Polygon number to

the rectangles which are overlapping. Then in 2nd Iteration merge the rectangles

which have same polygon number.

Final Approach/ Implemented Algorithm –

Instead of breaking the polygons in rectangle and then merging the rectangles, Divide

the edge of polygon in two edges and assign different polygon number to both edges if

the rectangles are not overlapping(i.e. Break the edges only if rectangles are not

overlapping).

 Advantage of second approach is we don’t have to iterate through input data twice.

Time complexity will be reduced to half of previous approach.

Monotonicity of polygon

Xmin, Xmax is dividing polygon in two

chains.

If both the chains are increasing or

decreasing then it is monotone else it is

non-monotone polygon

If not monotone divide polygon in

rectangles and merge the rectangles

which are overlapping to make it

monotone

27

Fig 5.1 Simple Non-Monotone Polygon and Monotone Polygon

Fig 5.2 Non-Monotone Polygon

28

Fig 5.3 Repeating Pattern Marked

Fig 5.2 shows the Input layout of polygon which are not monotone. Fig 5.3 shows the

repeating pattern in the Input Layout.

Fig 5.4 Monotone Polygon Layout

29

A2. Mapping of rectangles and generation of string

(When using 16 bit):-

[For 16 bit mapping, 8 bit will be used for representing length and other 8 bit will be

used for representing breadth]

For mapping the length/ breadth of rectangle to 8 bit (decimal to binary). I am using

Bit-Masking technique (bitwise "&" operator).

INPUT - Length or breadth of rectangle in decimal

1. Initialize ‘mask’ variable with 128 [10000000] (for 16 bit only, mask value change

according to mapping)

2. Perform AND of two number’s (i.e. length/breadth and Mask)

3. Check whether the Result of AND is 0 or not, if Yes output bit is 0 otherwise 1

4. Right shift mask variable by 1 [0100 0000]

5. Now check for Second bit, whether it is 0 or 1

6. Go to step 3 until ‘mask’ becomes Zero [00000000].

OUTPUT- Length or breadth of rectangle in 8 bit

Fig 5.5 Monotone polygon divided in rectangle for mapping

30

For mapping 32 bit and 8 bit we will use same algorithm, we just have to change the

mask value.

(When using 32 bit mapping) Mask value will be 32768 [1000 0000 0000 0000]

16 bit will be used for representing length and 16 bit will be used for representing

breadth].

(When using 8 bit mapping) Mask value will be 15 [1000].

4 bit will be used for representing length and 4 bit will be used for representing

breadth].

Advantage of using Bit masking is we don't have to change the whole algorithm for

different mapping (i.e. for 32, 16 and 8) we just have to change the mask value.

Difficulties while mapping:-

First difficulty while mapping the rectangle in unique character is, can’t Map all the

rectangles because some rectangles are very big whose dimension exceed 255*255.

1 byte is very small (i.e. dimension till 255*255 rectangle only). So idea is to use

more byte 2 byte or 4 byte i.e. (16 bit or 32 bit). If rectangle dimension is still bigger

than leave that rectangle.

For 8 bit Mapping:-

 1 rectangle is mapped to 8 bit unique char, can map from (0 X 0) to (15 X 15)

 Length X Breadth = 8 bit Unique Char

 (4 bit) (4bit) = 8 bit

For 16 bit Mapping:-

 1 rectangle is mapped to 16 bit unique char, can map from (0 X 0) to (255 X 255)

 Length X Breadth = 16 bit Unique Char

 (8 bit) (8bit) = 16 bit

For 32 bit Mapping:-

 1 rectangle is mapped to 32 bit unique char, can map from till (65535 X 65535)

 Length X Breadth = 32 bit Unique Char

 (16 bit) (16bit) = 32 bit

31

 Fig 5.6(a) Fig 5.6(b)

Fig 5.6(a) and 5.6(b) shows two different types of repeating pattern in polygon layout.

These repeating pattern is Monotone polygon where one monotone represents on

substring two monotone polygons which are same in shape but different orientation

will have different unique character,

32

Fig 5.7(a)

Fig 5.7(a) shows one repeating monotone pattern which represents one substring and

these type of substring will be divided by a separator “#”. Fig 5.7(b) shows how a

substring will be divided in rectangle one rectangle here is converted in either 16 bit, 8

bit or 32 bit and sequence of this forms a substring.

Length and breadth for 8 bit mapping will be divided in 4-4 bit. Similarly, for 16 and

32 bit length and breadth will be divided in 8-8 and 16-16 bit respectively. So by

using 32 bit we can map more rectangle in comparison to 16 bit and 8 bit.

33

Fig 5.7(b)

A3. Third and last part gives the data for Number of repetition of particular substring-

pattern)

Input - Substring of 16 bit characters separated by “# ”.

Using LZ Compression this part is done in three step.

Step 1- Iterate through input data and store the repeating pattern in dictionary using

compression algorithm. This give output of partially compressed string

Step 2- Iterate through dictionary and remove the substring which is not matching the

minimum repetition criteria.(Important – This step removes the pattern which is not

repeating certain no. of time .Not to get confused with removal of pattern which have

less number of element/characters) because removal of minimum number of element

was not giving the output we needed.

Step 3- Iterating through partially compressed string so that we can compress it

properly and this time also we are using LZ compression but we are not adding

anything new to dictionary.

Final Output – Substring pattern with its number of repetition.

34

5.4 Experimental Milestones

Given an input of Manhattan Polygon Layout Data.

M1.Conversion of Non- Monotone Polygon to Monotone Polygon using Scan-Line

approach

M2. First we will break the Polygon in Rectangle of size (255*255) because we want

to represent every rectangle with unique 16 bit so that we can convert rectangle (2D)

to 16 bit char (1D) so that we can give input to LZ Compressor.

M3. After breaking the rectangle we get rectangle of max size (255*255) which is to

be mapped in 16 bit unique char.

Example- 0 * 1 is mapped to 00000000+00000001

 24 * 2 is mapped to 00011000+00000010

 2 * 24 is mapped to 00000010+00011000

 .

 .

 100 * 100 is mapped to 01100100 + 01100100

 .

 .

 254 * 254 is mapped to 11111110 +11111110

 255 * 255 is mapped to 11111111 +11111111

Similarly till 255* 255 just add the first 8 bit of length with 8 bit of breadth and we

will get 16 bit unique char.

M4. So after this for making substring of these char we will use Scan-line approach

and convert the polygon to monotone polygon. So making polygon monotone will

give us a string and we insert “#” character as a separator in between polygon.

35

In geometry, a polygon P in the plane is

called monotone with respect to a straight

line L, if every line orthogonal to L

intersects P at most twice.

Similarly, a polygonal chain C is

called monotone with respect to a

straight line L, if every line orthogonal

to L intersects C at most once.

So our input String for LZ compressor will look like this-

10001000,01010101,00000001,11111011,00100100,00001000#010100001,

01010101,00000001,11111011#00100100,00001000,00000001,11111011,00100100#

10001000,01010101,01010101,00000001,11111011,00100100,00001000,00001000#

010100001#00000001,11111011,00100100#00100100,00001000,00000001,1111101

1,00100100#10001000,01010101,01010101,00000001,11111011,00100100,0000100

0,00001000#010100001#00000001,11111011,00100100#00100100,00001000,00000

001,11111011,00100100#10001000,01010101,01010101,00000001,11111011,00100

100,00001000,00001000#010100001#00000001,11111011,00100100#00100100,000

01000,00000001,11111011,00100100#10001000,01010101,01010101,00000001,111

11011,00100100,00001000,00001000#010100001#00000001,11111011,00100100#0

0100100,00001000,00000001,11111011,00100100#10001000,01010101,01010101,0

0000001,11111011,00100100,00001000,00001000#010100001#00000001,11111011,

00100100#00100100,00001000,00000001,11111011,00100100#10001000,01010101,

01010101,00000001,11111011,00100100,00001000,00001000#010100001#0000000

1,11111011,00100100#00100100,00001000,00000001,11111011,00100100#1000100

0,01010101,01010101,00000001,11111011,00100100,00001000,00001000#

Where 16 bit is one character (i.e. one rectangle) and “#” is separator between

different polygons.

36

M5. By making polygon monotone we are making polygon uniform as we will see

there is either increasing or decreasing line when we move toward particular axis.

In left polygon is not monotone

but if we divide same polygon in

two part 1 and 2 we will get both

the polygon monotone.

M6. So when String we got at step 4 when given to compression algorithm it

compress the string the string by changing the whole repeating pattern with the index

of matching pattern in dictionary. So the output of compression algorithm we get a

compressed string of uniform Manhattan polygon.

M7. Now after the fracture of given string we decompress the output string to get the

original string which can be mapped back to rectangles and we will get the output

layout.

37

Chapter 6

Results & Discussions

In this chapter, we will discuss about the results we get after running each algorithm

and output obtained from each part of approach applied. Fig 6.1 shows the input

layout of polygon (Not-Monotone).

Fig 6.1 Input Layout of Polygon Data

After running the first algorithm on Input data we will get the monotone polygon

which we is shown in fig 6.2. Repeating Monotone polygons are marked and they

form a whole substring which is divided in rectangles and mapped in unique character

and a string is formed which is separated by “#”.

38

Fig 6.2 Monotone Output after using Scan-Line Approach

Now, we evaluate the performance of our mapping algorithms using the 3 different

types of mapping bit.

Compared the Final output for file Uniformity-large while using 3 different types of

mapping 32 bit, 16 bit and 8 bit.

Results are as expected - for 8 bit we are able to map less rectangle and as the

mapping size increases we can map more and more no. of rectangles.

When we are using 8 bit mapping, number of rectangles mapped is very less

compared to what we are getting in 16 bit mapping so it is better to neglect 8 bit

mapping because it will not identify the repeating pattern. (8 bit Neglected)

Comparison between 16 bit and 32 bit is what need to be observed because result from

either 16 bit or from 32 bit are going to be used depending on the result data obtained.

It would be better if we can map more number of rectangle while increasing the time

complexity bit more rather than mapping less rectangles for decreasing the time taken

during compression of dictionary formation.

39

Comparison between 32 bit, 16 bit and 8 bit:-

Table 6.1 Comparison of test-file Uniformity_large

When we use 32 bit mapping we can map 4.3*109 different rectangles in unique 32 bit

characters.

When we use 16 bit mapping we can map 6.5*104 different rectangles in unique 16 bit

characters.

As we can see by doubling the mapping size we can map approx. (10^5 times) more

rectangles and this is what we need.

In Comparison_1 we can see for 32 bit mapping time taken is not much when we

compare this to time taken for 16 bit mapping (only 6 sec increment).

But it is interesting to note that the number of rectangles in 32 bit is not much

different from what we are getting in 16 bit mapping (only 900 more rectangles). (The

reason of getting very less increment in number of rectangles is may be because the

dimension of rectangles in file Uniformity-large is mostly under 255 *255 so we are

covering most of rectangles in 16 bit only and nothing much left to map for 32 bit).

40

Table 6.2 Comparison of test-file Uniformity_large_M2

Comparison for test-file Uniformity-large-M2 .Layout and shape of rectangles of this

test file is similar to previous test file uniformity-large but this is magnified by 2.

When running compression algorithm on Uniformity-large-M2, the number of

rectangles in this case is less than Uniformity-large as the size of rectangles are

magnified and still the 8 bit mapping is not going to work because substring formed is

very less.

For 16 and 32 bit, although the input size is decreased in Uniformity-large-M2.oas

time taken by compression algorithm is bit more because number of substring formed

in Uniformity-large-M2.oas is more than the substring formed in Uniformity-large.

41

Table 6.3 Comparison between test-file Uniformity_large and Uniformity_large_M2

We can say that Time complexity of Compression algorithm is directly proportional to

the no. of substring formed (i.e. Size of dictionary) as no. of pattern comparison in

dictionary increases.

We can see the results of Comparison in Comparison_3.

Comparison between 16 bit and 32 bit for Unifromity_large_m2:-

Time taken for 32 bit mapping is 1.5 times the time taken by 16 bit mapping. As the

dimension size is magnified, total no. of rectangle in 32 bit mapping is (15,000 more)

than the total number of rectangle in 16 bit mapping.

32 bit mapping is taking more time than 16 bit mapping because no. of substring

formed in 32 bit mapping is 1.35 times more than in 16 bit mapping.

Time taken by 16 bit and 32 bit for Uniformity-large was approximately same because

in Uniformity-large the number of substring formed was also approximately same.

42

Fig 6.3(a)

Fig 6.3(b)

0

10,00,000

20,00,000

30,00,000

40,00,000

50,00,000

60,00,000

70,00,000

80,00,000

Uniformity_Large M2 Uniformity_Large

Size of Input

32 Bit 16 Bit 8bit

0

500

1000

1500

2000

2500

Time Taken Total Number of Substring Substring less than 50

Uniformity_Large_M2

32 bit 16 bit 8 bit

43

Fig 6.3(c)

Fig 6.3(a) shows the comparison of size of input we get after the second part (i.e. size

of unique character and separator).

Fig 6.3(b), (c) shows the comparison of time taken, total number of substring formed

and substring which are repeating less than 50 for 32 bit, 16 bit and 8 bit for two large

input test file Uniformity_large and Uniformity_large_M2.

If the redundancy of data is more than using 32 bit mapping is preferable because due

to redundancy substring formed by 32 bit and 16 bit will be same, so the time

complexity will be approximately same but we can cover more rectangles if we use 32

bit mapping.

0

200

400

600

800

1000

1200

1400

Time Taken Total Number of Substring Substring less than 50

Uniformity_Large

32 bit 16 bit 8 bit

44

Repetition of data Comparison

In this repetition, data is of two types-

First, when substring identified is less than 10 characters/rectangle. Second, when

substring identified is of between 10 to 20 characters/rectangles.

Comparison of data repetition between 16bit and 32bit for Uniformity_large.

Table 6.4 Data of Repetition Comparison for Uniformity_large

45

Table 6.4 Data of Repetition Comparison for Uniformity_large

Comparison of data repetition between 16bit and 32bit for Unifromity_large_M2

As the dimensions are magnified the probability of a substring repeating less than 100

times has increased while probability of substring repeating more than 500 times has

decreased.

Increased in probability of a substring repeating less than 100 times is approx. 2 times

while decreased in probability of substring repeating more than is decreased by 0.6

times only. Comparison Results for uniformity_large_M2 is in Comparison_5.

46

Chapter 7

Conclusion & Future Scope

Our proposed algorithm for Part 1 effectively reduces the number of iteration through

the data for converting the non-monotone polygon to monotone polygon. Hence,

reducing the time complexity be half.

For Part 2 we can see that 8 bit mapping is not useful as it is not able to map enough

number of rectangle for mapping and while observing between 32 bit mapping and 16

bit mapping we can deduce that if the redundancy of data is more than using 32 bit

mapping is preferable because due to redundancy substring formed by 32 bit and 16

bit will be same, so the time complexity will be approximately same but we can cover

more rectangles if we use 32 bit mapping.

In Part 3 we concluded that the time complexity of compression algorithm depend

mainly on the number of substring formed so it does not make much difference

whether we are using 16 bit mapping or 32 bit mapping if the increase in substring

formation is approx. same.

In the future, we may try to test our algorithm by increasing the value of bit mapping

to see what is increase in time complexity and whether the number of substring

formation is increasing or decreasing but if we have rectangle of maximum dimension

65535 X 65535 then it is better if we use 32 bit mapping only because increasing the

mapping value will not identify any new repeating pattern so it will be of no use.

Other area where we can work on is the substring match algorithm which check

whether two substring formed are same or not because time complexity of third part

mainly depend on the substring formed and its comparison so optimising that will

reduce the time complexity.

47

References

[1] Sahni, San-Yuan Wu1and Sartaj. "Fast Algorithms to Partition Simple Rectilinear

Polygons”.

[2] https://en.wikipedia.org/wiki/Monotone_polygon.

[3] Preparata, Franco P.; Supowit, Kenneth J. (1981), "Testing a simple polygon for

monotonicity", Information Processing Letters.

[4]K. D. Gourley and D. M. Green, "A Polygon-to-Rectangle Conversion Algorithm",

IEEE Computer Graphics, Vol 3, No. 1, Jan/Feb 1983, pp. 31-36.

[5] De Berg, van Kreveld, Overmars, Schwarzkopf. Computational Geometry

Algorithms and Applications. 2nd edition, Springer-Verlag. ."

[6] K. Abrahamson, on the modality of convex polygons. Discrete & Computational

Geometry, vol. 5, pp. 409-419, 1990.

[7] Arkin, E., Chew, P., Huttenlocher, D., Kedem, K., Mitchell, J. An efficiently

computable metric for comparing polygonal shapes. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 13(3):209-216. March 1991.

[8] https://en.wikipedia.org/wiki/Bit_manipulation.

[9] "Arithmetic operators - cppreference.com". en.cppreference.com.

[10] Cohoon, James, John Kairo, and Jens Lienig. "Evolutionary algorithms for the

physical design of VLSI circuits." Advances in evolutionary computing. Springer

Berlin Heidelberg, 2003. 683-711.

[11] https://en.wikipedia.org/wiki/Data_compression.

[12] B. S. Baker. A theory of parameterized pattern matching: algorithms and

applications. In STOC, pages 71–80, 1993.

[13] https://en.wikipedia.org/wiki/LZ77_and_LZ78.

[14] B. Commentz-Walter. A string matching algorithm fast on the average. In

ICALP, pages 118–132, 1979.

[15] Text Compression Algorithms - A Comparative Study, S. Senthil and L. Robert,

ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, December

2011, Volume: 02, Issue: 04.

https://en.wikipedia.org/wiki/Franco_P._Preparata
https://en.wikipedia.org/wiki/Information_Processing_Letters
https://en.wikipedia.org/wiki/Bit_manipulation
http://en.cppreference.com/w/cpp/language/operator_arithmetic#Bitwise_shift_operators
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/LZ77_and_LZ78

48

[16] D. Breslauer. Dictionary-matching on unbounded alphabets: Uniform length

dictionaries. Combinatorial Pattern Matching. 184, 1995.

[17] A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two-

dimensional pattern matching. SICOMP: SICOMP: SIAM Journal on Computing,

23, 1994

[18] https://en.wikipedia.org/wiki/Pattern_matching

[19] "A Universal Algorithm for Sequential Data Compression". IEEE Transactions

on Information Theory.

[20] Ming-Bo Lin, Jang-Feng Lee, G. E. Jan, (2006) “A Lossless Data Compression

and Decompression Algorithm and Its Hardware Architecture” VLSI IEEE

Transactions,Vol.14, pp925-936.

https://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory
https://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory

