
B.TECH. PROJECT REPORT
On

OPTIMIZATION OF MAJORITY-INVERTER GATE LOGIC OVER
AND-OR-INVERTER GATE LOGIC

BY
AKASH KUMAR 140001004

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, INDORE

2017

OPTIMIZATION OF MAJORITY-INVERTER
GATE LOGIC OVER AND-OR-INVERTER

GATE LOGIC

A PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degree

of
BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by

AKASH KUMAR 140001004

Guided by
Dr. Bodhisatva Mazumdar

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, INDORE

2017

Candidate’s Declaration

I hereby declare that the project entitled “Optimization of Majority-Inverter
Gate Logic over And-Or-Inverter Gate Logic” submitted in partial fulfillment for
the award of the degree of Bachelor of Technology in ‘Computer Science and Engi-
neering’ completed under the supervision of Dr. Bodhisatwa Mazudar, Assistant
Professor, Computer Science and Engineering, IIT Indore is an authentic work.

Further, I declare that I have not submitted this work for the award of any other
degree elsewhere.

Akash Kumar

Certificate

It is certified that the above statement made by the student is correct to the best of
my knowledge.

Dr. Bodhisatwa Mazumdar
Assistant Professor

Department of Computer Science and Engineering
IIT Indore

Preface

This report on Optimization of Majority-Inverter Gate Logic over And-Or-
Inverter Gate Logic is prepared under the guidance of Dr. Bodhisatwa Mazum-
dar.

Through this report, I have tried to analyze the benefits of Majority-Inverter Gate
Logic Representation over the And-Or-Inverter Gate Logic Representation. I have
implemented the axioms included in the boolean algebra, and the optimization algo-
rithms utilizing the given axioms. I compared the two representations on the basis
of their size and depth.

I have tried to the best of my abilities and knowledge to explain the content in a
lucid manner. I have also added figures to make it more illustrative.

Akash Kumar
B.Tech. IV Year
Discipline of Computer Science and Engineering
IIT Indore

Acknowledgements

I am profoundly grateful to Dr. BODHISATWA MAZUMDAR for his expert
guidance and continuous encouragement throughout to see that this project rights its
target since its commencement to its completion.

I would like to express deepest appreciation towards Dr. SURYA PRAKASH,
Head of Department of Computer Engineering whose invaluable guidance supported
me in completing this project.

At last, I must express my sincere heartfelt gratitude to my partner, Mr. AMAN
SINGH, for supporting and assisting me throughout the journey, as well as all the
staff members of Computer Engineering Department who helped me directly or in-
directly during this course of work.

Akash Kumar

Abstract

The performance of today’s digital integrated circuits largely depends on the ca-
pabilities of logic synthesis tools. In this context, efficient representation and opti-
mization of Boolean functions are key features. Some data structures and algorithms
have been proposed for these tasks. Most of them consider, as basis operations, in-
version (INV), conjunction (AND), disjunction (OR) and if-then-else (MUX). Other
Boolean operations are derived by composition.

Even though existing design automation tools, based on original optimization
techniques produce good results and handle large circuits, the possibility to push fur-
ther the efficacy of logic synthesis continues to be of paramount interest to the Elec-
tronic Design Automation (EDA) community. With this aim in mind this present the
implemenation using Majority-Inverter Graph(MIG), a novel logic representation
structure for efficient optimization of Boolean functions.

A MIG is a directed acyclic graph (DAG) consisting of three-input majority nodes
and regular/complemented edges. We show that MIGs include any AND/OR/In-
verter Graphs (AOIGs), containing also the wellknown AIGs. In order to support
the natural manipulation of MIGs, we introduce a new Boolean algebra, based ex-
clusively on majority and inverter operations, with a complete axiomatic system.
Theoretical results show that it is possible to explore the entire MIG representation
space by using only five primitive transformation rules. Such feature opens up a
great opportunity for logic optimization and synthesis. We showcase the MIG po-
tential by proposing a delay-oriented optimization technique.

The study of majority-inverter logic synthesis is also motivated by the design of
circuits in emerging technologies. In the quest for increasing computational per-
formance per unit area, majority/ minority gates are natively implemented in differ-
ent nanotechnologies and also extend the functionality of traditional NAND/ NOR
gates. In this scenario, MIGs and their algebra represent the natural methodology to
synthesize majority logic circuits in emerging technologies.

Contents

1 Introduction 2
1.1 Predominance of AOIG Synthesis 2
1.2 Why Majority (MIG) Logic? . 2

2 Implementation 4
2.1 MIG Boolean Algebra . 4
2.2 Representation of logic circuits in Python 5

2.2.1 Pyverilog . 5
2.2.2 Class : Gate . 5
2.2.3 Class : Terminal . 6
2.2.4 Graphical Representation of Circuits 6

2.3 Implementation of Axioms . 6
2.3.1 Majority - Ω.M . 6
2.3.2 Associativity - Ω.A . 7
2.3.3 Distributivity - Ω.D . 7
2.3.4 Relevance - Ψ.R . 8
2.3.5 Complementary Associativity - Ψ.C 8
2.3.6 Substitution - Ψ.S . 8

3 Optimization 10
3.1 Algebraic Size Optimization . 11

3.1.1 Elimination Phase . 11
3.1.2 Reshape Phase . 12
3.1.3 Order of execution . 14

3.2 Algebraic Depth Optimization . 15
3.2.1 Push-Up Phase . 15
3.2.2 Reshape Phase . 17
3.2.3 Order of execution . 17

3.3 Boolean Depth Optimization . 18

3.3.1 Identifying Advantageous Errors in MIGs 18
3.3.2 Depth Oriented MIG Boolean Optimization 19

4 Analysis 22

5 Screenshots of Project 24

6 Contribution 26

7 Conclusion and Future Scope 28
7.1 Conclusion . 28
7.2 Future Scope . 28

References 30

List of Figures

1.1 MIG representation for Formula f = x3(x2+(x1′+ x0)′). Com-
plementation is represented by bubbles on the edges. 2

2.1 MIG Boolean Algebra: Primitive transformation rules 4
2.2 MIG Boolean Algebra: Powerful transformation rules 5

3.1 Majority Transformation in elimination phase 12
3.2 Distributivity Transformation in elimination phase 12
3.3 Associativity Transformation in reshape phase 13
3.4 Complementary Associativity Transformation in reshape phase 13
3.5 Relevance Transformation in reshape phase 14
3.6 Substitution Transformation in reshape phase 14
3.7 Majority Transformation in push-up phase 16
3.8 Distributivity Transformation in push-up phase 16
3.9 Associativity Transformation in push-up phase 17

5.1 Command to execute the program 24
5.2 Verilog file parsing using pyverilog 24
5.3 Circuit tree representation . 25
5.4 Expression for the current tree representation 25

Optimization through Majority Logic

Chapter 1

Introduction

1.1 Predominance of AOIG Synthesis

Efficient representation and optimization of Boolean functions are key features
in the performance of today’s digital integrated circuits. Some data structures and
algorithms have been proposed for these tasks. Most of them consider AOIG logic
presently. Even though existing design automation tools, based on aforementioned
optimization techniques produce good results and handle large circuits, the possi-
bility to push further the efficiency of logic synthesis continues to be of paramount
interest to the Electronic Design Automation (EDA) community.

1.2 Why Majority (MIG) Logic?

Figure 1.1: MIG representation for Formula f = x3(x2+(x1′+ x0)′). Complementation is represented
by bubbles on the edges.

In this project, we propose a paradigm shift in implementing and optimizing logic
by using only majority (MAJ) and inversion (INV) functions as basic operations. We
represent logic functions by majority-inverter graph (MIG): a directed acyclic graph

Department of Computer Science and Engineering, IIT Indore 2

Optimization through Majority Logic

consisting of three-input majority nodes and regular/complemented edges. We opti-
mize MIGs via a new Boolean algebra, based exclusively on majority and inversion
operations. As a complement to MIG algebraic optimization, we are making an at-
tempt to develop powerful Boolean methods exploiting global properties of MIGs,
such as bit-error masking. MIG algebraic and Boolean methods together attain very
high optimization quality.

Department of Computer Science and Engineering, IIT Indore 3

Optimization through Majority Logic

Chapter 2

Implementation

MIG is a homogeneous logic network with an indegree equal to 3 and each node
representing the majority function. In an MIG, edges are marked by a regular or
complemented attribute.The majority operator M(a,b,c) behaves as the conjunction
operator AND(a,b) when c = 0 and as the disjunction operator OR(a,b) when c = 1.
Therefore, majority can be seen as a generalization of conjunction and disjunction.

2.1 MIG Boolean Algebra

For implementation purposes we follow a set of rules of MIG Boolean algebra.
The following five primitive transformation rules form an axiomatic system ,referred
to as Ω for manipulating the given circuit , so as to ultimately attain a better effi-
ciency.

Figure 2.1: MIG Boolean Algebra: Primitive transformation rules

Department of Computer Science and Engineering, IIT Indore 4

Optimization through Majority Logic

It is possible to traverse the entire MIG representation space just by using Ω. From
a logic optimization perspective, it means that we can always reach a desired MIG
starting from any other equivalent MIG. However, the length of the exact transforma-
tion sequence might be impractical for modern computers. To alleviate this problem,
we derive from Ω three powerful transformations, referred to as Ψ, shown below.

Figure 2.2: MIG Boolean Algebra: Powerful transformation rules

2.2 Representation of logic circuits in Python

We have implemented these above mentioned axioms (both Ω and Ψ) success-
fully. We used Python for programming along with pyverilog for parsing the input
verilog files.

2.2.1 Pyverilog

Pyverilog is an open-source hardware design processing toolkit for Verilog HDL.
All source codes are written in Python. Pyverilog includes code parser,dataflow
analyzer,control-flow analyzer and code generator.

For the representation of logic networks in form of a tree graph, we use two
classes, namely Gate class and Terminal class. The network can be imagined as
the alternating sequence of Gate and Terminal levels.

2.2.2 Class : Gate

The Gate class comprises of three attributes : operator, destTerm and children.
The operator attribute is a string describing the logic of the represented Gate ,for
instance, and represents an AND logic gate. The destTerm attribute contains the
index for output terminal in the terminals list. Finally , the children attribute is the
list of indices for the input terminals in the ‘terminals’ list. The size of the list varies
w.r.t. the represented logic gate.

Department of Computer Science and Engineering, IIT Indore 5

Optimization through Majority Logic

2.2.3 Class : Terminal

The Terminal class comprises of four attributes : name, typ, pg list and cg list.
The name attribute contains the defined name of the terminal in the input verilog
file. The typ attribute defines the type of the terminal, namely input , signal or wire.
The pg and cg lists contain the indices of the parent(output) gates and child (input)
gates respectively in the gates list .

2.2.4 Graphical Representation of Circuits

To represent the circuits in suitable data structure in Python we basically used
two lists, namely gates and terminals. The connections in the circuits are stored
using the indices of the various elements. Moreover, the gates are only connected to
terminals and the terminals are only connected to gates, ensuring alternating levels
of gates and terminals in the circuit graph.

Various types of terminals are used for different purposes mentioned as follows :
wire to connect two gates , input to connect a particular input terminal to the gate
and signal to send a particular signal (high/low) to a particular terminal of a gate.

Traversal : For traversing the circuit graph , we first search for an output terminal
from the terminals list and trace its child gate from gate list using index present in the
cg attribute of the terminal class. Now, from the children attribute of the gate class of
the current gate we trace its children terminals. Similarly , we find the children gates
of the corresponding children terminals and continually process the circuit graph in
the same manner.

2.3 Implementation of Axioms

2.3.1 Majority - Ω.M

i f (x = y) : M(x,y,z) = x = y

i f (x = y′) : M(x,y,z) = z

For a particular gate we define a function named checkMa j which returns a list of
all possible combinations of input terminals to the specified gate where two of the
terminals are equivalent i.e. give same output value for same inputs. The result list
will also contain the third terminal when the other two terminals are complementary.

Department of Computer Science and Engineering, IIT Indore 6

Optimization through Majority Logic

We also define another function called opMa j which implements the Ω.M ax-
iom by replacing the specified gate with any one of the terminals obtained from
checkMa j function. Thus, implementing the Ω.M axiom.

2.3.2 Associativity - Ω.A

M(x,u,M(y,u,z)) = M(z,u,M(y,u,x))

For a particular gate we define a function named checkAssoc which looks for a
majority gate from input terminals of the given gate having at least one input terminal
equivalent to the any one of the remaining input terminals of the given gate. This
function returns all such possible combinations in form of a list.

Now, we define another function called opAssoc which implements the Ω.A axiom
by swapping the x and z terminals present in the two majority gates defined by the
resolve obtained from the checkAssoc function. Thus, implementing the Ω.A axiom.

2.3.3 Distributivity - Ω.D

M(x,y,M(u,v,z)) = M(M(x,y,u),M(x,y,v),z)

The current implementation for Ω.D axiom operates in a right to left manner mak-
ing it suitable for size optimization. For a particular gate we define a function named
checkDistr which looks for a pair of majority gates among the input terminals of the
given gate having at least two terminals equivalent. This function returns all such
possible combinations in form of a list.

The result from the above mentioned function is utilized in another function
named opDistr. This function takes the pair of equivalent terminals from the se-
lected two majority gates and connects them to the give majority gate input termi-
nals. Also , a new gate is created comprising of the remaining input terminals as
its input terminal, which is then connectted as the third input terminal of the given
majority gate.

Department of Computer Science and Engineering, IIT Indore 7

Optimization through Majority Logic

2.3.4 Relevance - Ψ.R

M(x,y,z) = M(x,y,zx/y′)

We define a function named opRel which takes the indices of x and y as input.
The function traverses through the third input terminal z and replaces all occurrences
of terminals equivalent to x with the compliment of y. Thus implementing the Ψ.R
axiom.

2.3.5 Complementary Associativity - Ψ.C

M(x,u,M(y,u′,z)) = M(x,u,M(y,x,z))

We define a function named checkCompAssoc which looks for a majority gate in
the input terminal list having a terminal complementary to any one of the remaining
terminals in given gate. It returns all such combinations of the selected majority gate
x terminal and u terminal in the form of a list.

We also define a function opCompAssoc which takes the result list from the afore-
mentioned checkCompAssoc function and replaces the u′ int the selected gate with
the x terminal from the initial gate. Thus implementing the Ψ.C axiom.

2.3.6 Substitution - Ψ.S

M(x,y,z) = M(v,M(v′,Mv/u(x,y,z),u),M(v′,Mv/u′(x,y,z),u
′))

We define a function named opSubs which takes an input of two terminal indices
of v and u respectively as well as the gate index of the given gate. Then , this function
creates two duplicate subtrees of the given gate and replaces the terminals equivalent
to v in the first duplicate subtree with given u terminal and in the second duplicate
subtree with u′. We connect the first duplicate subtree to a new majority gate with its
other input terminals as v′ and u. Similarly, we connect the other duplicate subtree
to a new majority gate with its other terminals as v′ and u′. Finally, we modify the
initial defined gate’s input terminals to be v terminal and two majority gates created
before. Thus implementing the Ψ.S axiom.

Department of Computer Science and Engineering, IIT Indore 8

Optimization through Majority Logic

Hence, we have implemented the required axioms for size optimization using
pyverilog. Morevover, we have tried to remove the redundant gates by deleting them
after each tranformation in accordance with the axioms.

Department of Computer Science and Engineering, IIT Indore 9

Optimization through Majority Logic

Chapter 3

Optimization

Logic optimization consists of manipulating a logic representation structure in
order to minimize some target metric. Usual optimization targets are size (number
of nodes/elements), depth (maximum number of levels), inter- connections (number
of edges/nets), etc.

In this project, we present a new representation form, based on majority and inver-
sion, with its native Boolean algebra. We show algebraic and Boolean optimization
techniques for this data structure unlocking new points in the design space.

Under the multilevel logic representation, optimization aims at reducing graph
size and depth or other accepted complexity metrics. There, multilevel logic op-
timization methods are divided into two groups: 1) Algebraic methods, which are
fast and 2) Boolean methods, which are slower but may achieve better results. Ad-
vanced multilevel logic optimization methodologies, and associated tools, use both
algebraic and Boolean methods.

Note that early attempts to majority logic have already been reported in the 60s,
but, due to their inherent complexity, failed to gain momentum later on in automated
synthesis. We address, in this project, the unique opportunity led by majority logic
in a contemporary synthesis flow.

Department of Computer Science and Engineering, IIT Indore 10

Optimization through Majority Logic

3.1 Algebraic Size Optimization

To optimize the size of an MIG, we aim at reducing the number of its nodes.
The optimization algorithm basically consists of two phases; elimination phase and
reshape phase.

Algorithm: MIG Algebraic Size-Optimization Psuedocode
INPUT: MIG α OUTPUT: Optimized MIG α

for (cycles=0; cycles<effort; cycles++) do
Ω.ML→R(α); Ω.DR→L(α);
Ω.A(α); Ψ.C(α);
Ψ.R(α); Ψ.S(α);
Ω.ML→R(α); Ω.DR→L(α);

end for

3.1.1 Elimination Phase

The elimination phase basically consists of two boolean algebraic axioms: Major-
ity and Distributivity.

1. Majority - Ω.M:

i f (x = y) : M(x,y,z) = x = y

i f (x = y′) : M(x,y,z) = z

In the MIG Boolean algebra domain, the evaluation of the majority axiom (Ω.M)
from left to right (L → R) reduces the size of the MIG, as M(x, x, z) = x, which is
evident in the figure below.

Department of Computer Science and Engineering, IIT Indore 11

Optimization through Majority Logic

Figure 3.1: Majority Transformation in elimination phase

2. Distributivity - Ω.D:

M(x,y,M(u,v,z)) = M(M(x,y,u),M(x,y,v),z)

In the MIG Boolean algebra domain, the evaluation of the distributivity axiom
(Ω.D) from right to left (R → L) reduces the size of the MIG, which is evident in
the figure below.

Figure 3.2: Distributivity Transformation in elimination phase

3.1.2 Reshape Phase

The reshape phase is responsible for generating new elimination opportunities
in a local minimum MIG. This phase consists of four boolean algebraic axioms:
Associativity, Complementary Associativity, Relevance and Substitution.

1. Associativity - Ω.A:

M(x,u,M(y,u,z)) = M(z,u,M(y,u,x))

Department of Computer Science and Engineering, IIT Indore 12

Optimization through Majority Logic

In the MIG Boolean algebra domain, the evaluation of the associativity axiom
(Ω.M) from left to right (L → R) generates new elimination opportunities, which is
evident in the figure below.

Figure 3.3: Associativity Transformation in reshape phase

2. Complementary Associativity - Ψ.C:

M(x,u,M(y,u′,z)) = M(x,u,M(y,x,z))

In the MIG Boolean algebra domain, the evaluation of the complementary asso-
ciativity axiom (Ψ.C) from left to right (L → R) generates new elimination oppor-
tunities, which is evident in the figure below.

Figure 3.4: Complementary Associativity Transformation in reshape phase

3. Relevance - Ψ.R:

M(x,y,z) = M(x,y,zx/y′)

Department of Computer Science and Engineering, IIT Indore 13

Optimization through Majority Logic

In the MIG Boolean algebra domain, the evaluation of the relevance axiom (Ψ.R)
from left to right (L → R) generates new elimination opportunities, which is evident
in the figure below.

Figure 3.5: Relevance Transformation in reshape phase

4. Substitution - Ψ.S:

M(x,y,z) = M(v,M(v′,Mv/u(x,y,z),u),M(v′,Mv/u′(x,y,z),u
′))

In the MIG Boolean algebra domain, the evaluation of the substitution axiom
(Ψ.S) from left to right (L → R) generates new elimination opportunities, which is
evident in the figure below.

Figure 3.6: Substitution Transformation in reshape phase

3.1.3 Order of execution

An iteration of the size optimization algorithm includes the elimination phase,
followed by the reshape phase, and then another elimination phase. These iteration
are repeated "effort" times, which is set to 10 in the project.

Department of Computer Science and Engineering, IIT Indore 14

Optimization through Majority Logic

3.2 Algebraic Depth Optimization

To optimize the depth of an MIG, we aim at reducing the length of its critical path.
A valid strategy for this purpose is to move late arrival (critical) variables close to
the outputs. This optimization algorithm consists of two phases; push-up phase and
reshape phase.

Algorithm: MIG Algebraic Depth-Optimization Psuedocode
INPUT: MIG α OUTPUT: Optimized MIG α

for (cycles=0; cycles < effort; cycles++) do
Ω.ML→R(α); Ω.DL→R(α); Ω.A(α);
Ω.A(α); Ψ.C(α);
Ψ.R(α); Ψ.S(α);
Ω.ML→R(α); Ω.DL→R(α); Ω.A(α);

endfor

3.2.1 Push-Up Phase

The push-up phase basically consists of three boolean algebraic axioms: Majority,
Distributivity and Associativity.

1. Majority - Ω.M:

i f (x = y) : M(x,y,z) = x = y

i f (x = y′) : M(x,y,z) = z

In the MIG Boolean algebra domain, the evaluation of the majority axiom (Ω.M)
from left to right (L → R) reduces the depth of the MIG, as M(x, x, z) = x, which is
evident in the figure below.

Department of Computer Science and Engineering, IIT Indore 15

Optimization through Majority Logic

Figure 3.7: Majority Transformation in push-up phase

2. Distributivity - Ω.D:

M(x,y,M(u,v,z)) = M(M(x,y,u),M(x,y,v),z)

In the MIG Boolean algebra domain, the evaluation of the distributivity axiom
(Ω.D) from left to right (L → R) reduces the depth of the MIG in case the z terminal
is the critical terminal for the node, which is evident in the figure below.

Figure 3.8: Distributivity Transformation in push-up phase

3. Associativity - Ω.A:

M(x,u,M(y,u,z)) = M(z,u,M(y,u,x))

In the MIG Boolean algebra domain, the evaluation of the associativity axiom
(Ω.M) from left to right (L → R) can be used to reduce depth, which is evident in
the figure below.

Department of Computer Science and Engineering, IIT Indore 16

Optimization through Majority Logic

Figure 3.9: Associativity Transformation in push-up phase

3.2.2 Reshape Phase

The reshape phase in the algebraic depth optimization is the same as the one in
the algebraic size optimization [3.1.2].

3.2.3 Order of execution

Similar to the algebraic size optimization, an iteration of the depth optimization
algorithm includes the push-up phase, followed by the reshape phase, and then an-
other push-up phase. These iteration are repeated "effort" times, which is set to 10
in the project.

Department of Computer Science and Engineering, IIT Indore 17

Optimization through Majority Logic

3.3 Boolean Depth Optimization

Algorithm: MIG Boolean Depth-Optimization Pseudocode
INPUT: MIG α OUTPUT: Optimized MIG α

for (cycles=0; cycles < effort; cycles++) do
{a,b} = search_critical_voters(α);
c = size_bounded_root(α, a, b);
xn

1 = common_parents(α, a, b);
cA = cb/a′;
cB = cxn

1/a;
cC = cxn

1/b;
MIG−depth_Alg_Opt(cA);
MIG−depth_Alg_Opt(cB);
MIG−depth_Alg_Opt(cC);
c = M(cA, cB, cC);
MIG−depth_Alg_Opt(c);
if depth(c) is not reduced then

reduce to previous MIG state
endif

endfor

Inserting Safe Errors in MIG: MIGs are hierarchical majority voting systems. One
notable property of majority voting is the ability to correct different types of bit-
errors. This feature is inherited by MIGs, where the error masking property can be
exploited for logic optimization. The idea is to purposely introduce logic errors that
are successively masked by the voting resilience in MIG nodes. If such errors are
advantageous, in terms of logic simplifications, better MIG representations can be
generated.

3.3.1 Identifying Advantageous Errors in MIGs

Boolean optimization methods exploit the error insertion schemes presented above.
First, we identify advantageous orthogonal errors in MIGs using Critical Voters
Method.

Department of Computer Science and Engineering, IIT Indore 18

Optimization through Majority Logic

Critical Voters Method: To discover advantageous triplets of orthogonal errors we
analyze an MIG structure.We want to identify critical portions of an MIG to be sim-
plified thanks to these errors. To do so, we focus on nodes that have the highest
impact on the final voting decision, i.e., influencing a Boolean function most. We
call such nodes critical voters of an MIG. Critical voters can also be primary in-
put themselves. To determine the critical voters, we rank MIG nodes based on a
criticality metric.

Criticality Computation: Consider an MIG node m. We label all MIG nodes whose
computation depends on m. For all such nodes, we calculate the impact of m by
propagating a unit weight value from m outputs up to the root with an attenuation
factor of 1/3 each time a majority node is encountered. We finally sum up all the
values obtained and call this result criticality of m. Intuitively, MIG nodes with the
highest criticality are critical voters.

We first determine two critical voters a and b and a set of MIG nodes fed directly
by both a and b, say c1, c2, . . . , cn. In this context, an advantageous triplet of
orthogonal errors is: A: a = b‘, B: c1 = a, c2 = a, . . . , cn = a, and C: c1 = b, c2 = b, .
. . , cn = b. C. There, the critical voters are a = m2 and b = x1, while c1 =m3. Thus,
the pairwise orthogonal errors are m2 = x1‘ (A), m3 = x1 (B) and m3 = m2 (C)

3.3.2 Depth Oriented MIG Boolean Optimization

The most intuitive way to exploit safe error insertion in MIGs is to reduce the
number of levels. This is because the initial overhead in w = M(wA,wB,wC), where
w is the initial MIG and wA,wB,wC are the three erroneous versions, is just one ad-
ditional level. This extra level is usually amply recovered during simplification and
optimization of MIG erroneous branches. For depth-optimization purposes, the crit-
ical voters method enables very good results.The reason is the following. Critical
voters appear along the critical path more than once. Thus, the possibility to insert
simplifying errors on critical voters directly enables a strong reduction in the max-
imum number of levels. Sometimes, using an actual MIG root for error insertion
requires an unpractical size overhead. In these cases, we bound the critical voters
search to sub-MIGs partitioned on a depth criticality basis. Once the critical voters
and a proper error insertion root have been identified, three erroneous sub-MIG ver-
sions are generated as explained above. On these sub-MIGs, we want to reduce the
logic height. We do so by running algebraic MIG optimization on them. Note that,

Department of Computer Science and Engineering, IIT Indore 19

Optimization through Majority Logic

in principle, also MIG Boolean methods can be reused. This would correspond to a
recursive Boolean optimization. However, it turned out during experimentation that
algebraic optimizations already produce satisfactory results at the local level. Thus,
it makes more sense to apply Boolean techniques iteratively on the whole MIG struc-
ture rather than recursively on the same logic portion. At the end of the optimization
of erroneous branches, the new MIG-roots must be given in input to a top majority
voting node. This re-establishes the functional correctness. A last gasp of MIG al-
gebraic optimization is applied at this point, to take advantage of the simplification
opportunities arose from the integration of erroneous branches.

Each erroneous branch is handled by fast algebraic optimization to reduce its
depth. The most common operation is Ω.M that directly simplifies the introduced
errors. The optimized erroneous branches are then linked together by a top fault-
masking majority node. A last gasp of algebraic optimization on the final MIG
structure further optimizes its depth. In summary, our MIG Boolean optimization
techniques attains a depth reduction of 60 percent.

Department of Computer Science and Engineering, IIT Indore 20

Optimization through Majority Logic

Chapter 4

Analysis

In this project, we presented a Boolean logic optimization framework based on
Majority-Inverter Graph (MIG). The top-order of the optimization algorithms is
listed as follows:

• Algebraic Depth Optimization

• Algebraic Size Optimization

• Boolean Depth Optimization

• Algebraic Size Optimization

We processed a few Verilog files and compared the output with the AIG optimiza-
tion, which are presented in the following table.

Logic AIG MIG
File Size Depth Size Depth

Test1 4 3 1 1
Test2 15 6 7 3
C432 152 12 160 11

C1355 392 18 502 18
C1908 363 25 459 23

The current implementation favours reduction of depth at the expense of size,
which can be reversed by changing the top-order of the optimization algorithms.

Department of Computer Science and Engineering, IIT Indore 22

Optimization through Majority Logic

Chapter 5

Screenshots of Project

Figure 5.1: Command to execute the program

The first argument after python is the project file name. The one after -t is the mod-
ule name and next one is the input verilog file.

Figure 5.2: Verilog file parsing using pyverilog

Department of Computer Science and Engineering, IIT Indore 24

Optimization through Majority Logic

Figure 5.3: Circuit tree representation

The above figure depicts the two lists, namely terminal and gate lists. For each
terminal element, we have the name, type, parent gate list and child gate list for
the terminal. In case of gates, we have operator, destination terminal and the input
terminal list of the respective gate.

Figure 5.4: Expression for the current tree representation

Department of Computer Science and Engineering, IIT Indore 25

Optimization through Majority Logic

Chapter 6

Contribution

My contributions to the project are listed as follows:

• Implemented and tested the Distributivity - Ω.D (Both Left to Right and Right
to Left) axiom.

• Implemented and tested the Relevance - Ψ.R axiom.

• Implemented and tested the Substitution - Ψ.S axiom.

• Implemented the Boolean Depth Optimization, and analyzed the effect.

Department of Computer Science and Engineering, IIT Indore 26

Optimization through Majority Logic

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

In this project, we analyzed a new method of representing and optimizing logic
circuits, by using only MAJ and INV as basic operations. We utilized the MIGs:
a DAG consisting of three-input majority nodes and regular/complemented edges.
We implemented algebraic and boolean optimization techniques for MIGs in order
to increase the efficiency of the digital integrated circuits, and we compared the
optimized MIG representations with the AIG representions.

7.2 Future Scope

In this project, we implemented the boolean algebraic transformations and the
optimization algorithms, but we look forward to extensively testing the program
on increasingly large circuit files. We aim to optimize our code to facilitate faster
processing of the verilog files.

Department of Computer Science and Engineering, IIT Indore 28

Optimization through Majority Logic

References

[1] Majority-Inverter Graph: A Novel Data-Structure and Algorithms for Efficient
Logic Optimization; Luca AmarÂt’u, Pierre-Emmanuel Gaillardon, Giovanni
De Micheli

[2] Synthesis and Optimization of Digital Circuits; G. De Micheli

[3] Multiple-valued minimization for PLA optimization; R.L. Rudell, A.
Sangiovanni-Vincentelli

[4] MIS: A Multiple-Level Logic Optimization System; R.K. Brayton

[5] A System for Sequential Circuit Synthesis; E. Sentovich

[6] ABC: An Academic Industrial-Strength Verification Tool; R. Brayton, A.
Mishchenko

[7] Graph-based algorithms for Boolean function manipulation; R.E. Bryant

[8] BDS: A BDD-Based Logic Optimization System; C. Yang and M. Ciesielski

[9] Device and Architecture Outlook for Beyond CMOS Switches; K. Bernstein

[10] InP-based high-performance logic elements using resonant-tunneling devices;
K. J. Chen

[11] Logical devices implemented using quantum cellular automata; P. D. Tougaw,
C. S. Lent

[12] Polarity control in Double-Gate, Gate-All-Around Vertically Stacked Silicon
Nanowire; M. De Marchi

[13] Median algebra; John R. Isbell

[14] The Art of Computer Programming; D. Knuth

[15] Switching Theory for Logic Synthesis; T. Sasao

Department of Computer Science and Engineering, IIT Indore 30

Optimization through Majority Logic

[16] Lattice Theory; G. Birkhoff

[17] A ternary operation in distributive lattices; G. Birkhoff

[18] The Theory of Representations of Boolean Algebras; M. Stone

[19] Domain theory in logical form; S. Abramsky

Department of Computer Science and Engineering, IIT Indore 31

	Introduction
	Predominance of AOIG Synthesis
	Why Majority (MIG) Logic?

	Implementation
	MIG Boolean Algebra
	Representation of logic circuits in Python
	Pyverilog
	Class : Gate
	Class : Terminal
	Graphical Representation of Circuits

	Implementation of Axioms
	Majority - .M
	Associativity - .A
	Distributivity - .D
	Relevance - .R
	Complementary Associativity - .C
	Substitution - .S

	Optimization
	Algebraic Size Optimization
	Elimination Phase
	Reshape Phase
	Order of execution

	Algebraic Depth Optimization
	Push-Up Phase
	Reshape Phase
	Order of execution

	Boolean Depth Optimization
	Identifying Advantageous Errors in MIGs
	Depth Oriented MIG Boolean Optimization

	Analysis
	Screenshots of Project
	Contribution
	Conclusion and Future Scope
	Conclusion
	Future Scope

	References

