
B. TECH. PROJECT REPORT
On

Creating Regression Webpage

and

Storing Historical Regressions

BY

Rishabh Raj

140001026

DISCIPLINE OF COMPUTER SCIENCE and ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2017

Creating Regression Webpage

and

Storing Historical Regressions

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE and ENGINEERING

Submitted by:

Rishabh Raj

140001026

Guided by:

Dr. Surya Prakash

Asst. Professor, IIT Indore

RohitJeevnani

Lead Member Technical Staff,

Mentor Graphics India Pvt. Ltd.

DISCIPLINE OF COMPUTER SCIENCE and ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2017

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Creating Regression Webpage and Storing

Historical Regressions” submitted in partial fulfillment for the award of the degree of

Bachelor of Technology in “Computer Science and Engineering”, completed under the

supervision of Mr. Rohit Jeevnani, Lead Member Technical Staff, Mentor Graphics and

Dr. Surya Prakash, Asst. Professor, IIT Indore, is an authentic work.

Further, I declare that I have not submitted this work for the award of any other degree

elsewhere.

Date: _______________

Signature: ____________________

Rishabh Raj

140001026

CERTIFICATE by BTP Guide(s)

It is certified that the statement made by the student in the previous page (under

CANDIDATE’S DECLARATION) is correct to the best of our knowledge.

Rohit Jeevnani

Lead Member,

Technical Staff,

Mentor Graphics India Pvt. Ltd

Dr. Surya Prakash

Asst. Professor,

IIT Indore

Preface

This report on “Creating Regression Webpage and Storing Historical Regressions" is

prepared under the guidance of my mentor at Mentor Graphics, Mr. Rohit Jeevnani and BTP

supervisor at IIT Indore, Dr. Surya Prakash.

Through this report I have tried to give a detailed description of how the project was

completed in the course of 6 months in the company and the various technologies used for

the purpose.

I have tried to the best of my abilities and knowledge to explain the content in a lucid

manner. I have also added figures to make it more illustrative.

Rishabh Raj

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

Acknowledgements

I wish to thank my mentor in the company, Mr. Rohit Jeevnani and Dr. Surya Prakash for

their kind support and valuable guidance.

It is their help and support, due to which I became able to complete the design and

implementation of the project. Without their support this work would not have been possible.

Rishabh Raj

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

Table of Content

Candidate’s Declaration

Certificate by BTP Guide

Preface

Acknowledgements

Table of Content

Introduction

Technologies Used

Related Work and Motivation

3

4

5

6

7

8

9

10

Work Done

1) Developed a Regression monitoring web application11

2) Storing historical regressions in a MongoDB database19

Conclusion 22

Bibliography 23

INTRODUCTION

Developed a web application for the company which shows real time data functions or

regressions.

Regressions are running of suites under a product against different testcases which results in

Pass or Fail status along with various attributes of the testcases like runtime, memory

consumed etc.

The regressions are run on a daily basis. Suites of the product ‘Powerpro’ are run in India

whereas those of ‘Slec’ are run in the US.

The application basically shows the status of testcases of various suites under the two

products, Powerpro (INDIA) and Slec (US).

Also designed a database in MongoDB to store the company’s data items for their products

mainly emphasizing on fast queries and also considerable data insertion rate.

TECHNOLOGIES USED

1) Python - For server sided scripting, Python is used. It is a high-level programming

language. An interpreted language, Python has a design philosophy that emphasizes

code readability (notably using whitespace indentation to delimit code blocks rather

than curly brackets or keywords).

2) MySQL – The MySQL server is used as a database management system.It is an open-

source relational database management system (RDBMS). Which means data is stored

in the form of tables.

3) HTML – It is a standard markup language for creating webpages and web applications.

HTML describes the structure of a web page semantically and originally included cues

for the appearance of the document.

4) JavaScript - It is a high-level, dynamic, weakly typed, prototype-based, multi-paradigm,

and interpreted programming language. It is used to make webpages interactive and

provide online programs, including video games.

5) CSS - Cascading Style Sheets (CSS) is a style sheet language used for describing the

presentation of a document written in a markup language.[1] Although most often used

to set the visual style of web pages and user interfaces written in HTML and XHTML,

the language can be applied to any XML document, including plain XML, SVG and

XUL, and is applicable to rendering in speech, or on other media. Along with HTML

and JavaScript, CSS is a cornerstone technology used by most websites to create

visually engaging webpages, user interfaces for web applications, and user interfaces

for many mobile applications.

6) MongoDB - MongoDB (from humongous) is a free and open-source cross-platform

document-oriented database program. Classified as a NoSQL database program,

MongoDB uses JSON-like documents with schemas.

RELATED WORK and MOTIVATION

The part to employ the OOP (Object oriented programming) approach was very much

required, the importance of which I realised in course of time.

If a change was required, I had to go through all the scripts and make the changes which was

very much troublesome and also was quite difficult to debug.

By writing the code in form of class and objects and keeping the same part of code in a

module made the task become easier.

Now, when a change needed to be made, I had to just change a small part in the

corresponding module.

Code modularity was motivating to follow the OOP approach.

WORK DONE

1) Developed a Regression monitoring web application

RHEL CentOS 6 environment was used for development.

First of all, the configuration part had to be completed for the server side. Apache server had

to be configured so that it can execute Python and JavaScript files when needed. To achieve

that, changes in “httpd.conf” file had to be made to make the python scripts executable by the

Apache server.

All the python scripts had to be given executable permissions and needed to be kept inside

‘/var/www/cgi-bin’ folder for the Apache server to recognize it.

Also, all the html files which would be created needed to be inside ‘/var/www/html’ folder.

I/O operation was quite needed in this project since ‘txt’ files acted as temporary storage of

information later from which the data was extracted whenever required. All the temporary

files were kept in ‘/tmp’ folder.

This was how the architecture was setup for the product:

 There were 2 products, POWERPRO and SLEC. Each product had various Suites

under them which in turn were run against a finite set of testcases written in ‘TCL’ language

on regular intervals, say once per day. Running of the Suites against different testcases were

called ‘Regressions’.

The summary of Regressions were dumped on a daily basis into a file called ‘qor’.

(Fig.1)‘Qor’ file text format

‘Qor’ files were ‘txt’ files populated with testcase names. Each line in the ‘qor’ file had the

testcase name followed by a colon (:) and then metric names along with their values

separated by semi-colon (;).

Eg:-Testcase : Metric1=value1 ; Metric2=value2 ….

Among the metrices there was a metric named ‘exit’ which only took binary values. ‘1’
indicating the corresponding testcase failed whereas ‘0’ denoted the passedtestcase.

Two MySQL servers were setup, one in India and other one in the US. Two python scripts

‘powerpro.py’ and ‘slec.py’ had to be run continuously to insert data into the MySQL

database.

‘powerpro.py’ is run in India whereas ‘slec.py’ is run in the US.

These two scripts are run continuously to check the appearance of new data and insert them

in the database accordingly.

The MySQL database consisted of two tables, one for the product ‘Powerpro’ and the other

for ‘Slec’.
Data were parsed from the ‘qor’ file and then dumped into the database.

Each table had 13 columns namely, 1) Suite name, 2) Total testcases, 3) Status, 4) All passed

testcases separated by commas, 5) All failed testcases separated by commas, 6) Pass count, 7)

Fail count, 8) Date, 9) Runtime pass testcases separated by commas, 10) Memory pass

testcases separated by commas, 11) Runtime fail testcases separated by commas, 12)

Memory fail testcases separated by commas and 13) ID.

Runtime pass testcases - Passed testcases runtime values (seconds)

Memory passtestcases - Passed testcases memory values (MB)

Runtime fail testcases - Failed testcases runtime values (seconds)

Memory fail testcases - Failed testcases memory values (MB)

Both the tables keeps data for two days i.e, today and yesterday.

An ID was assigned to the data’s representing today and yesterday. Today’s data had ID=1

and yesterday’s data had ID=2.

The python script used the module ‘PyMySQL’ for creating the database connection.

The script one by one checked the date of regression of every suite from the ‘summary’ file

and checked it with the date stored in the database having ID=1. When the date matched, the

script just continued from there without doing anything further because today’s data was

already there in the database. When the dates were different, data having ID=2 were deleted

from the database, all those data related to that particular suite having ID=1 now would have

ID=2 and the new data is inserted having ID=1.

This way, data insertion was optimal since the work was not being repeated again and again.

All the data were taken from the ‘qor’ file. The script parsed the file going through it line by

line. Testcase name and the metric ‘exit’ was extracted from each line and feeded into the

database .

Testcases with ‘exit’ metric value as ‘1’ went into the ‘Failed testcase’ column whereas with

value as ‘0’ went into the ‘Passed testcase’ column.

While inserting data, the pass count and fail count were also stored in the database so that in

the next iteration the ‘qor’ file reading will start from the line after until what was read in the

last iteration for a Suite.

The purpose of storing these two fields was to avoid the repetitive task and save time.

A technique called CGI (Common Gateway Interface) is used so that html forms can pass

the values of their respective tags (which maybe given as input from the user) to the

appropriate variables of the Python scripts via the Apache server. The Python script in turn

does computations with the passed values and embeds the correct values in modified forms

into the html page (HTML page are also generated by the python scripts so that it can be

viewed as a webpage).

Whenever a page is opened, the corresponding Python script is called which gets the

appropriate data from the MySQL database and writes the result into a new html file. The

generated html file is then displayed to the user as a webpage.

The first page which is the homepage shows the status of both the products, POWERPRO

and SLEC in brief. It just shows Total testcases, Passed testcases and Failedtestcases in the

form of tables.

(Fig.2)Application homepage

Suite names in the first pages are buttons which when clicked takes to the regression

webpage showing all the Suites status of the clicked product name.

In the backend, when the button was clicked, a form was submitted and a Python script was

called. The python script retrieved data from the MySQL database for all the Suites under the

product name which was clicked.

The returned data was in the form of list of tuples. A for loop was performed on the list items

and one by one all the data was written in a ‘html’ file in the form of tables.

The page of a specific product shows all the Suite names with their statuses and their dates in

tabular form.

The Suite names have links which when clicked upon takes to the webpage showing

Regression status of all the testcases which were run against that particular Suite.

(Fig.3)Suites and Status for the product ‘Powerpro’

Here also, in the backend when a Suite name was clicked, a form was submitted with the

passed value as the Suite name and a python script was called. The script here queried the

database and retrieved the data items of that particular Suite only. Again, a for loop was

performed and ony by one each data was written ina ‘html’ file in the form of tables.

Testcases names also are hyperlinks pointing to the actual code written in ‘TCL’ language.

(Fig.4)Testcases hyperlinks of a particular Suite

Also, a link for ‘Rerun’ was there. Rerun of testcases happened when the testcase had failed

and the number of testcases of a Suite that failed were< 100.

In generating Rerun regression page, database was not involved since the number of testcases

which were rerun were usually small in number. So the ‘qor’ file were read in runtime and

the data were embedded into the ‘html’ file at the same moment and then displayed to the

user.

Link for ‘Rerun’ only appeared for the Suite in which the testcases were rerun. To

accomplish this, while generating the Regression page, it was checked if there was a new

‘qor’ file inside a folder named ‘rerun’ in the filesystem. If the folder was found empty, no

‘Rerun’ link was given.

A hover was also generated whenever the mouse pointer was brought near the text part of the

testcase name. Hover showed the top 3 metrices corresponding to that testcase. Top 3

metrices were extracted from the file called ‘qordiff.out’.
In the file, all ‘metrices’ were included, so a script checked for only the top 3 fields and then

extracted the values accordingly.

The pages are in the form of tables which has features like Filter and Sorting. To achieve

these features free JavaScript API’s are used.

There are checkboxes against some fields in some particular columns. A send mail button is

added. So, when a user checks some of the items and clicks the ‘Send mail’ button, it sends

the mail (with text as what was checked by the user) to a particular recipient.

(Fig.5)Checkboxes against some testcases with a ‘Run blamefinder’ button

There is also a feature called ‘Changed’ which is basically the percentage difference between

a metric of a testcase of Suite under a product of today and yesterday.

This changed feature is displayed in graph form (lines) in a webpage of Today and

Yesterday. To achieve this, a JavaScript API is used which is available for free from the

internet.

When certain testcases are still running, the webpage automatically refreshes itself every 2

minutes.

Also, every generated webpage has a common navigation list with hovering feature at the

top. It contains lists of lists. One can also go to a particular Suite Regression webpage by

going to ‘Regressions’ -> Suite name.

The CSS part of navigation list was copied from a website. It also has links to various other

products of the company.

Since this part was common, when the first time the webpage was loaded, the code pertaining

to only the common part was saved to a ‘txt’ file. So, whenever a different webpage was to

be followed, the contents of the saved ‘txt’ file was copied to the ‘html’ file and rendered

accordingly.

JavaScript is used to make the pages more interactive and dynamic in nature.

CSS is used to give styling to the pages.

2) Storing historical regressions in a MongoDB database

Designed a database in NoSQL using MongoDB to store the historical regressions of all

testcases under all Suites of all the products.

First, experiments were done on a smaller data set to find out which was better suited for the

problem, MySQL or MongoDB?

Experiment showed that while MySQL insertion rate dropped drastically when number of

rows were increasing since the table had indexes. Insertion rate in MySQL was more quicker

than MongoDB when there were not enough records, but when the number of records started

increasing, insertion rate in MySQL dropped significantly whereas that of MongoDB almost

remained same with a slight change in insertion rate.

In terms of query, MongoDB had slower data retrieval rate than that of its MySQL

counterpart in the beginning. Here also like insertion, query started becoming quite slow with

increase in number of records in the case of MySQL. In MongoDB, the query rate did not

drop suddenly but uniformly.

Also, MySQL required more memory for its database storage whereas MongoDB required

almost one third of what was used by MySQL.

Thus it was concluded that MongoDB performs better than MySQL when data was quite

huge and hence, finally MongoDB was made as a suitable choice.

A record in MongoDB is a document, which is a data structure composed of field and value

pairs. MongoDB documents are similar to JSON objects. The values of fields may include

other documents, arrays, and arrays of documents.

The advantages of using documents are:

 Documents (i.e. objects) correspond to native data types in many programming

languages.

 Embedded documents and arrays reduce need for expensive joins.

 Dynamic schema supports fluent polymorphism.

MongoDB stores data records as BSON documents. BSON is a binary representation

of JSON documents, though it contains more data types than JSON.

The value of a field can be any of the BSON data types, including other documents, arrays,

and arrays of documents.

Following data items are required to be dumped into database:

1) Date

2) Suite

3) Testcase

4) Metric

Here, Metric is the attribute associated with each of the testcase which takes numerical/string

values as fields.

So, basically I designed the database such that data dumping and query both are balanced in

terms of optimizations.

Queries will focus on finding metric with following scenarios:

1) Date, Suite, Testcase given

2) Date,Suite given and Testcase not given

3) Date given and Suite,Testcase not given

4) Suite,Testcase given and Date not given

5) Suite given and Date,Testcase not given

6) Testcase given and Date,Suite not given

If metric is not given then it should display all the associated metrices.

Data in MongoDB is stored in JSON like format as a tree structure to make the queries faster.

MongoDB documents stored two fields, ‘path’ and ‘metric’ string.

Path is a string comprised of Date, Suite, Testcase separated by commas(,)

Example – “Date,Suite,Testcase”

Metric is just a string consisting of metric values.

Indexing is done on the ‘path’ field.

Indexes support the efficient execution of queries in MongoDB.

Without indexes, MongoDB must perform a collection scan, i.e. scan every document in a

collection, to select those documents that match the query statement. If an appropriate index

exists for a query, MongoDB can use the index to limit the number of documents it must

inspect.

Indexes are special data structures that store a small portion of the collection’s data set in an

easy to traverse form. The index stores the value of a specific field or set of fields, ordered by

the value of the field. The ordering of the index entries supports efficient equality matches

and range-based query operations. In addition, MongoDB can return sorted results by using

the ordering in the index.

Indexing makes the queries fast though making the data insertion, updation and deletion rate

slow.

This happens because the index also needs to be updated following those operations which is

an overhead.

Regex matching is done with the stored data in the MongoDB collection when a query is

given.

It makes use of indexing which makes the data retrieval quite fast otherwise MongoDB

would have to go through all the data items.

All these data insertion and query in MongoDB database is done via Python script.

A module called ‘PyMongo’ is used which is responsible for MongoDB database server

connection and then inserting and displaying the related data to the standard output.

Data items were taken from all the files inside a directory in the linux system.

This was the hierarchy of the files located:

 Suite/Date/Qor_files.

This means under the Suite directories, there were Dates folder and under the Dates

folder were located the ‘qor’ files of that Suite on that particular Date.

This project progressed in two parts :-

1) Entering all the data located in the above mentioned directory at once.

2) When part 1 was completed, only those Dates of the Suite were chosen which was

recently created and the same thing was done for the ‘qor’ files under the Date

folder.

Part 1 ran for only once while part 2 had to be run continuously.

This ensured that the data items were not redundant and also the process time of part 2 was

quite reduced.

CONCLUSION

It can be concluded that the application which was developed is working fine with no errors

so far. Large scale testing was done before the product release to ensure smooth working of

the product application.

The Regression Webpage which was developed by me from scratch is now being used by the

company employees day to day providing information visually and making their work easy.

Also, I got to learn many new technologies like Python, JavaScript, MongoDB etc. in the

process which I believe will surely prove beneficial to my technical areas.

Working in the Linux environment helped me get familiar with the Linux OS and its

filesystem.

BIBLIOGRAPHY

1) Learn Python the Hard Way - Zed Shaw

2) MySQL Cookbook -Paul Dubois

3) MongoDB in Action - Kyle Banker

4) MySQL -https://dev.mysql.com/doc

5) MongoDB -https://docs.mongodb.com

