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PREFACE

This report on Formal verification of Autonomous systems is pre-
pared under the supervision of Dr. Gourinath Banda, Associate Professor,
Computer Science and Engineering, IIT Indore.

Through this report, I have tried to provide a detailed description of the
technologies that have been used to design the proposed protocol and to pro-
duce an efficient novel algorithm to implement the same.

I have also tried to explain the proposed approach in detail and the results
with each approach is also discussed.
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ABSTRACT

An autonomous system is a system that performs behaviours or tasks
with a high degree of autonomy. These systems are used in robotics, human-
robot teamwork, pervasive systems, autonomous road vehicles and in many
more areas. Formal Verification is a powerful technique for finding soft-
ware/hardware errors. It provides mathematical proof of absence of errors
in implementations with respect to its specifications.

Model Checking is a verification technique that explores all possible sys-
tem states. In software and hardware design of complex systems, more time
and effort are spent on verification than on construction. Techniques are
sought to reduce and ease the verification efforts while increasing their cov-
erage. Formal methods offer a large potential to obtain an early integration
of verification in the design process, to provide more effective verification
techniques, and to reduce the verification time. Model-based verification
techniques are based on models describing the possible system behaviour in
a mathematically precise and unambiguous manner.

In our project, we explained the importance of scheduling in autonomous
systems and how formal verification can be applied to analyse resource schedul-
ing protocols. For case study, we considered the Stack-based priority ceil-
ing (SBPC) protocol. This protocol involves integrated task and resource
scheduling. We have modelled and implemented this protocol and verified it
against multiple properties.
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Chapter 1

Introduction

1.1 Autonomous Systems

An autonomous system is a system that performs behaviours or tasks
with a high degree of autonomy, which is particularly desirable in fields such
as spaceflight, household maintenance (such as cleaning), waste water treat-
ment, delivering goods and services, etc.

Some modern factory systems are “autonomous”within the strict confines
of their direct environment. It may not be that every degree of freedom
exists in their surrounding environment, but the factory system’s workplace
is challenging and can often contain chaotic, unpredicted variables. The
exact orientation and position of the next object of work and (in the more
advanced factories) even the type of object and the required task must be
determined. This can vary unpredictably.

1.2 Significance of Autonomous Systems in

modern times

Autonomous Systems is used in a lot of areas. Some of them are listed below:

• Robotics and Robot Swarms: As we move from the re-
stricted manufacturing robots seen in factories towards robots in the
home and robot helpers for the elderly, so the level of autonomy re-
quired increases.
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• Human-Robot Teamwork: Once we move beyond just di-
recting robots to undertake tasks, they become robotic companions.
In the not too distant future, we can foresee teams of humans and
robots working together but making their decisions individually and
autonomously.

• Pervasive Systems, Intelligent Monitoring, etc: As
sensors and communications are deployed throughout our physical en-
vironment and in many buildings, so the opportunity to bring together
a multiplicity of sensor inputs has led to autonomous decision-making
components that can, for instance, raise alarms and even take decisive
action.

• Autonomous Road Vehicles: Also known as “driver-less cars”,
autonomous road vehicles have progressed beyond initial technology
assessments (e.g. DARPA Grand Challenges) to the first government-
licensed autonomous cars [3].

1.3 Challenges faced by Autonomous Systems

in modern times

An autonomous system gains information about the environment. It must
be deployed in remote environments where direct human control is infeasible
or should be involved in activities that is too lengthy and/or repetitive to
be conducted successfully by humans. It must be deployed in hostile envi-
ronments where it is dangerous for humans to be nearby, and so difficult for
humans to assess the possibilities. Also, it needs to react much more quickly
than humans can. Last but most important, such autonomous systems need
to be proved for their correctness before deployment.

1.4 Testing and Formal Verification

Testing
It can only detect presence of errors but it cannot find all errors, i.e.; error

needs to be specified to check whether it exists. It is much cheaper than
verification.
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Formal Verification
It is a powerful method for finding software errors. It provides mathemat-

ical proof of absence of errors in implementations relative to specifications.
Formal specification and analysis are often very expensive and requires highly
qualified engineers. Automated techniques for formal verification are rather
limited.

Formal Verification vs Testing
Verification is often used in early stages of development and testing in

later stages but test cases can be developed during the specification phase.
Verification presupposes formal program semantics whereas testing does not.
Verification is often based on abstraction, thus it is also only a necessary
correctness criterion.

System tests go beyond verification, since real environment is involved.
Testing is strongly used in software engineering: up to 40% of software de-
velopment efforts go into it. Formal verification is rarely used in practice.
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Chapter 2

Modelling Formalisms for
Autonomous Systems

2.1 Layered Architecture of Autonomous Sys-

tems

Figure 2.1: Layered Architecture of Hybrid Autonomous Systems

Many autonomous systems, ranging over unmanned aircraft, robotics,
satellites and even purely software applications, have a similar internal struc-
ture, namely layered architectures as summarised in Figure 2.1. Although
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purely connectionist/sub-symbolic architectures remain prevalent in some
areas, such as robotics, there is a broad realisation that separating out the
important/difficult choices into an identifiable entity can be very useful for
development, debugging, and analysis. While such layered architectures have
been investigated for many years they appear increasingly common in au-
tonomous systems.

The system in Figure 1 is split into real-world interactions, continuous
control systems, and discontinuous control. For example, a typical unmanned
air system might incorporate an aircraft, a set of control systems encapsu-
lated within an autopilot, and a high-level decision-maker that makes the
key ‘choices’. Once a destination has been decided, the continuous dynamic
control, in the form of the autopilot, will be able to fly there. The ‘intelli-
gence’ only becomes involved if either an alternative destination is chosen,
or if some fault or unexpected situation occurs [3].

2.2 Importance of scheduling and resource al-

location in autonomous systems

Scheduling and resource allocation is used in almost every autonomous sys-
tem. In a critical operation the task must be processed in the time specified
by the deadline.

A task in an autonomous system must be completed on time. A system
is said to be not schedulable when tasks can not meet the specified deadlines.

2.3 Automatic Verification Techniques

Listed below are the most commonly used automatic verification techniques.

• Temporal Logics

• ω - Automata

• Model Checking

• Petri Nets

• Milner Calculus of Communicating Systems

• Hoare’s Theory of communicating sequential processes

6



2.4 Model Checking

Model checking is a verification technique that explores all possible system
states. Similar to a computer chess program that checks possible moves, a
model checker, the software tool that performs the model checking, examines
all possible system scenarios in a systematic manner. In this way, it can be
shown that a given system model truly satisfies a certain property [2].

Model checking has been successfully applied to several ICT systems and
their applications. For instance, deadlocks have been detected in online air-
line reservation systems, modern e-commerce protocols have been verified,
and several studies of international IEEE standards for in-house communi-
cation of domestic appliances have led to significant improvements of the
system specifications.

2.5 Timed Automata

Timed automata models the behaviour of time-critical systems. A timed
automaton is in fact a program graph that is equipped with a finite set of
real-valued clock variables.

During a run of a timed automaton, all clock values increase with the
same speed. Along the transitions of the automaton, clock values can be
compared to integers. These comparisons form guards that may enable or
disable transitions and by doing so constrain the possible behaviours of the
automaton. Further, clocks can be reset. Timed automata are a sub-class of
a type hybrid automata.

Formal Definition
Formally, a timed automaton is a tuple A = (Q, Σ, C, E, q0) that consists

of the following components:

• Q is a finite set. The elements of Q are called the states of A.

• Σ is a finite set called the alphabet or actions of A.

• C is a finite set called the clocks of A.

• E ⊆ Q×Σ×B(C)×P(C)×Q is a set of edges, called transitions of A,
where
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– B(C) is the set of boolean clock constraints involving clocks from
C

– P(C) is the powerset of C.

• q0 is an element of Q, called the initial state.

An edge (q,a,g,r,q’) from E is a transition from state q to q’ with action
a, guard g and clock resets r [4].

2.6 Property Specification Languages

Property Specification Language (PSL) is a temporal logic extending Lin-
ear temporal logic with a range of operators for both ease of expression and
enhancement of expressive power. PSL makes an extensive use of regular
expressions and syntactic sugaring.

It is widely used in the hardware design and verification industry, where
formal verification tools (such as model checking) and/or logic simulation
tools are used to prove or refute that a given PSL formula holds on a given
design. Examples for such languages are CTL, LTL, CTL*, etc.

2.7 Temporal Logics

In logic, temporal logic is any system of rules and symbolism for repre-
senting, and reasoning about, propositions qualified in terms of time. In a
temporal logic we can then express statements like “I am always hungry”,
“I will eventually be hungry”, or “I will be hungry until I eat something”.
Temporal logic is sometimes also used to refer to tense logic, a particular
modal logic-based system of temporal logic.

Temporal logic has found an important application in formal verification,
where it is used to state requirements of hardware or software systems. For
instance, one may wish to say that whenever a request is made, access to a
resource is eventually granted, but it is never granted to two requesters si-
multaneously. Such a statement can conveniently be expressed in a temporal
logic.
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2.8 Linear Temporal Logic (LTL)

In logic, linear temporal logic or linear-time temporal logic (LTL) is a
modal temporal logic with modalities referring to time. In LTL, one can
encode k-formulas about the future of paths, e.g., a condition will eventually
be true, a condition will be true until another fact becomes true, etc.

It is a fragment of the more complex CTL*, which additionally allows
branching time and quantifiers. Subsequently LTL is sometimes called propo-
sitional temporal logic.

LTL is built up from a finite set of propositional variables AP, the logical
operators ¬ and ∨, and the temporal modal operators X (some literature
uses O or N) and U. Formally, the set of LTL formulas over AP is inductively
defined as follows:

• if p ∈ AP then p is an LTL formula

• if Ψ and ϕ are LTL formulas then ¬Ψ, ϕ∨Ψ, XΨ, and ϕ∪Ψ are LTL
formulas.

• X is read as next and U is read as until. Other than these fundamental
operators, there are additional logical and temporal operators defined
in terms of the fundamental operators to write LTL formulas succinctly.
The additional logical operators are ∧,→,↔, true and false. Following
are the additional temporal operators.

– G for always (globally)

– F for eventually (in the future)

– R for release

– W for weakly until

Semantics
An LTL formula can be satisfied by an infinite sequence of truth evaluations

of variables in AP. These sequences can be viewed as a word on a path of a
Kripke structure (an ω - word over alphabet 2AP ). Let w = a0, a1, a2,... be
such an ω - word. Let w(i) = ai. Let wi = ai, ai+1,..., which is a suffix of w.
Formally, the satisfaction relation � between a word and an LTL formula is
defined as follows:

9



• w � p if p ∈ w(0)

• w � ¬Ψ if w 2 Ψ

• w � ϕ ∨Ψ if w � ϕ or w � Ψ

• w � XΨ if w1 � Ψ (in the next time step Ψ must be true)

• w � ϕ ∪Ψ if there exists i ≥ 0 such that wi � Ψ and for all 0 ≤ k < i,
wk � ϕ (ϕ must remain true until Ψ becomes true)

2.9 CTL (Computation Tree Logic)

Computation tree logic (CTL) is a branching-time logic, meaning that its
model of time is a tree-like structure in which the future is not determined;
there are different paths in the future, any one of which might be an actual
path that is realised. It is used in formal verification of software or hardware
artefacts, typically by software applications known as model checkers which
determine if a given artefact possesses safety or liveness properties.

For example, CTL can specify that when some initial condition is satisfied
(e.g., all program variables are positive or no cars on a highway straddle
two lanes), then all possible executions of a program avoid some undesirable
condition (e.g., dividing a number by zero or two cars colliding on a highway).
In this example, the safety property could be verified by a model checker that
explores all possible transitions out of program states satisfying the initial
condition and ensures that all such executions satisfy the property.

The language of well formed formulas for CTL is generated by the fol-
lowing grammar:

where p ranges over a set of atomic formulas. It is not necessary to use all
connectives - for example

comprises a complete set of connectives, and the others can be defined using
them.

• A means ’along All paths’ (Inevitably)
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• E means ’along at least (there Exists) one path’ (possibly)

The logical operators are the usual ones: Along with these operators CTL
formulas can also make use of the boolean constants true and false.

• Quantifiers over paths: Ψ

– A Φ - All: Φ has to hold on all paths starting from the current
state.

– E Φ - Exists: there exists at least one path starting from the
current state where Φ holds.

• Path - specific quantifiers:

– X Φ - Next: Φ has to hold at the next state (this operator is
sometimes noted N instead of X).

– G Φ - Globally: Φ has to hold on the entire subsequent path.

– F Φ - Finally: Φ eventually has to hold (somewhere on the subse-
quent path).

– Φ U Ψ - Until: Φ has to hold at least until at some position Ψ
holds. This implies that Ψ will be verified in the future.

– Φ W Ψ - Weak until: Φ has to hold until Ψ holds. The difference
with U is that there is no guarantee that Ψ will ever be verified.
The W operator is sometimes called “unless”.

2.10 Model Checking: CTL vs LTL

Computation tree logic (CTL) and Linear temporal logic (LTL) are both a
subset of CTL*. CTL and LTL are not equivalent and they have a common
subset, which is a proper subset of both CTL and LTL. Properties specified
in CTL are verified in UPPAAL and properties specified in LTL are verified
in SAL.
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UPPAAL vs SAL:

Property UPPAAL SAL
Type of model Real-time Symbolic, bounded

checker and infinite

Modelling language Timed Automata, SAL
C subset

Properties TCTL LTL

Language
Counter Example Yes Yes

Generation
GUI Yes No

Graphical Yes No

Specification
Counter Example Yes No

Visualisation
Programming language C++, Java Scheme

used

Table 2.1: CTL(UPPAAL) vs LTL(SAL)

2.11 Popular Model Checking Tools

• UPPAAL

• SAL

• SATABS

• RED

• SPIN

• APMC

12



• ARC

• DIVINE

• JAVA Pathfinder

• LLBMC

• Open MP C Analysis

13





Chapter 3

Stack-Based Priority Ceiling
(SBPC) Protocol

3.1 Priority Ceiling Protocol

Considering a uniprocessor system, a real-time application is modelled as a
finite set of tasks that run concurrently on a single processor. A task consists
of a succession of jobs, each requiring a finite amount of computation. In
other words, the computation associated with each job should terminate.
Each task is characterised by its priority, period, and by the amount of
processing it requires.

Other resources than the processor are shared by different jobs. For
instance, the jobs may share common I/O channels or communicate with
each other via shared variables. Access to these shared resources is controlled
by binary semaphores which ensure mutual exclusion. The operations for
requesting and releasing the lock on a semaphore S are denoted by lock(S)
and unlock(S), respectively.

Each task has fixed priority, the priority of a job is the priority of the
task to which it belongs. Jobs are executed in priority order: if two jobs
of different priorities are ready to run at the same time, then the one with
higher priority is allocated to the processor. It is wise to note that different
tasks may have the same priority, although priority assignment techniques
such as the rate monotonic or the deadline monotonic approaches avoid this
situation by giving different priorities to different tasks.

When synchronisation primitives, such as semaphores, are used, there is
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a problem called priority inversion which causes low priority jobs to prevent
higher priority jobs from running. For instance, a job j can be blocked when
trying to lock a semaphore S if a job k of lower priority has locked S before j
was dispatched. As a result, a job j of top priority can be unable to execute
and a job k of lower priority than j can become active. This phenomenon
may block j for long periods of time, since other jobs, with priority greater
than k, may prevent k to execute and consequently to unlock S. So, the
high-priority job j can then be delayed by the low-priority job k that locks
S but also by any job of intermediate priority that might preempt k. Since
high-priority jobs are usually the most urgent and may have tight deadlines,
such unrestricted priority inversion can be disastrous.

In the Priority Ceiling Protocol, the following approach is used to cope
with this problem:

• Each semaphore S is assigned a fixed ceiling which is equal to the
highest priority among the jobs that need access to S.

• A job j executing lock(S) is granted access to S if the priority of j is
strictly higher than the ceiling of any semaphore locked by a job other
than j. Otherwise, j becomes blocked and S is not allocated to j.

3.2 Definition of SBPC

Suppose all jobs share a single stack. When a job J is preempted by a job
J’, J continues to hold its stack space and J1 is allocated space immediately
above it on the stack. The only special requirement is that if J is preempted
it cannot resume execution until all the jobs that occupy stack space above it
have completed. Since these jobs must have higher priority, this requirement
is consistent with priority scheduling [5].

3.2.1 Rules of SBPC

Update of the Current Ceiling: Whenever all the resources are free,
the ceiling of the system is Ω. The ceiling π(t) is updated each time a resource
is allocated or freed.
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Scheduling Rule: After a job is released, it is blocked from starting
execution until its assigned priority is higher than the current ceiling π(t)
of the system. At all times, jobs that are not blocked are scheduled on the
processor in a priority-driven, preemptive manner according to their assigned
priorities.

Allocation Rule: Whenever a job requests a resource, it is allocated the
resource.

3.2.2 Properties of SBPC

P1: When a job begins to execute, all the resources it will ever need during
its execution are free. Otherwise, if one of the resources it will need is not
free, the ceiling of the system is equal to or higher than its priority.

P2: No job is ever blocked once its execution begins.

P3: Deadlock Freedom: Deadlock is a state in which each member of
a group is waiting for some other member to take action. SBPC protocol
ensures no deadlock occurs.

3.3 Specification of SBPC Properties in CTL

P1: AG Pi.begin⇒ QPi
.free, where Pi denotes process ’i’ and QPi

denotes
that all resources used by Pi.

P2: AG Pi.begin ⇒ (not Pi.blocked U Pi.end)

P3: AG not deadlock

17





Chapter 4

Modelling SBPC Protocol in
UPPAAL

4.1 UPPAAL

UPPAAL is an integrated tool environment for modelling, validation and
verification of real-time systems modelled as networks of timed automata,
extended with data types (bounded integers, arrays etc.).

The tool has been developed in collaboration between the Design and
Analysis of Real-Time Systems group at Uppsala University, Sweden and
Basic Research in Computer Science at Aalborg University, Denmark.

It is appropriate for systems that can be modelled as a collection of non-
deterministic processes with finite control structure and real-valued clocks,
communicating through channels or shared variables.

Uppaal consists of three main parts: a description language, a simulator
and a model-checker.

• The description language is a non-deterministic guarded command
language with data types (e.g. bounded integers, arrays, etc.). It
serves as a modelling or design language to describe system behaviour
as networks of automata extended with clock and data variables.

• The simulator is a validation tool which enables examination of possi-
ble dynamic executions of a system during early design (or modelling)
stages and thus provides an inexpensive mean of fault detection prior to
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verification by the model-checker which covers the exhaustive dynamic
behaviour of the system.

• The model-checker can check invariant and reachability properties
by exploring the state-space of a system, i.e. reachability analysis in
terms of symbolic states represented by constraints.

4.2 Modelling SBPCP in UPPAAL

4.2.1 Deterministic Model:

Assumptions

• Uniprocessor system is used.

• Each task has a fixed priority, known before its execution.

• Each resource can be used by only one processor at a time.

• Scheduler has knowledge of which tasks will arrive beforehand, as well
as the various resources used by them.

• The deadlines of resource lock/unlock event by each task is known
beforehand.

Model Description
The model consists of three automata namely Task, Scheduler and Re-

source. Every Task and Resource is represented by its own system whereas
there is only one scheduler system.

The model requires the following inputs:

• Number of tasks

• Number of resources

• For each task:

– Arrival time

– Computation time
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– Priority

– Resource lock time for each resource it uses(relative to execution
start time)

– Resource unlock time for each resource it uses(relative to execution
start time)

• Initial value of system ceiling = -1 (i.e. System ceiling when all re-
sources are free).

In the model, two Priority Queues are used, one for tasks which are
blocked and other for non-blocked tasks. Both queues are ordered using task
priorities.

Every time a task arrives it is either added to blocked queue if it is blocked
(i.e. its priority is less than system ceiling) or to the non-blocked queue if its
not blocked.

Task Automaton
Each task requires finite amount of computation and has a fixed priority

known beforehand by the scheduler. For each task, resource locking and
unlocking are events, performed at specific time of its execution, i.e. the
program counter is used for resource locking and unlocking.

A task is modelled to have 5 states namely:

• Idle: Task is not ready to execute.

• Ready: Task is ready to execute i.e. it has arrived.

• Running: The scheduler has scheduled the task to run. During this
state the program counter increases and whenever it equals the times-
tamp of an event it transitions to a committed state where the type of
event is evaluated i.e. resource locking, resource unlocking or task end.
Upon resource locking or unlocking it transitions to another committed
state locking or unlocking the resource synchronising with the resource
system via allocate or release channel respectively, then returns back
to the Running state.

• Preempted: The task has been preempted. The program counter is
frozen in this state.
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Figure 4.1: Task automaton (deterministic) in UPPAAL

• End: Task has finished execution.

Resource Semaphore Automaton
Resources are modelled as Binary semaphore. Each resource has the fol-

lowing states:

• Free: The resource is free, whenever a task locks a resource this transi-
tions to ‘Used’ state while updating the system ceiling ‘pi’ and ‘pi stack’
if necessary.

• Used: The resource is locked. When a task unlocks a resource this
system transitions to a committed state, updates the system ceiling
‘pi’ and ‘pi stack’ if necessary. If the system ceiling is updated the
blocked-tasks and non-blocked-tasks queue are also updated, then the
system transitions to ‘Free’ state synchronising with the scheduler via
the ‘resource release’ channel.
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Figure 4.2: Resource semaphore automaton (deterministic) in UPPAAL

Scheduler Automaton
The scheduler initialises all the resource ceilings then transitions to ‘Free’

state.

• Free: The system has no tasks scheduled to run currently. If there
are no ready to execute tasks, it transitions to ‘Waiting’ state otherwise
it transitions to ‘Select’ state.

• Waiting: The system is idle and is waiting for a task to arrive.
When a task is ready to be executed it (i.e. Task.Idle to Task.Ready)
synchronises with the scheduler via ‘ready’ channel and the Scheduler
transitions from ‘Waiting’ to ‘Select’ state.

• Select: The non-blocked-tasks queue is non empty, the scheduler
selects the highest priority task from the non-blocked-task queue for
running. The system transitions to ‘Occupied’ state synchronising with
the selected task via the ‘run’ channel.

• Occupied: The system is occupied and a task is running. Three
transitions are possible here:
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Figure 4.3: Scheduler automaton (deterministic) in UPPAAL

– If running task finishes execution the scheduler transitions to ‘Free’
state.

– When a resource is released the system ceiling may be updated so
the scheduler preempts the current running task and transitions
to ‘Select’ state.

– On arrival of a new task the scheduler preempts the current task
and transitions to ‘Select’ state.
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4.2.2 Non - deterministic Model:

Assumptions

• Uniprocessor system is used.

• Each task has a fixed priority, known before its execution.

• Tasks are modelled as periodic jobs.

• Each resource can be used by only one processor at a time.

• Scheduler has knowledge of which tasks will arrive beforehand, as well
as the various resources used by them.

• Resource locking/unlocking event occurs randomly during the task’s
execution, scheduler has no prior knowledge of these events.

Model Description
The model consists of three automata namely Task, Scheduler and Re-

source. Every Task and Resource is represented by its own system whereas
there is only one scheduler system.

The model requires the following inputs:

• Number of tasks

• Number of resources

• For each task:

– Arrival time

– Computation time

– Priority

– Resources used

• Initial value of system ceiling = -1 (i.e. System ceiling when all re-
sources are free).

Two Priority Queues are used, one for tasks which are blocked and other
for non-blocked tasks. Both queues are ordered using task priorities.

Every time a task arrives it is either added to blocked queue if it is blocked
(i.e. its priority is less than system ceiling) or to the non-blocked queue if its
not blocked.
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Task Automaton
Each task requires finite amount of computation and has a fixed priority

known beforehand by the scheduler. For each task with every integral incre-
ment of the program counter, following events randomly occur. When the
task finishes execution, all resources locked by it are freed.

Figure 4.4: Task automaton (non - deterministic) in UPPAAL

• Locking of one or more resources used by the task.

• Unlocking of one or more resources already locked.

A task is modelled to have 6 states namely:

• Idle: Task is not ready to execute.

• Ready: Task is ready to execute i.e. it has arrived.

• Running: The scheduler has scheduled the task to run. During this
state the program counter increases and after every integral increment
the system transitions to ‘Event’ state. If the task is preempted the
system transitions to ‘Preempted’ state.

• Event: If the task finishes execution, all resources it has locked are
freed and the system transitions to ‘End’ state. In case the task hasn’t
finished execution, one of the following events randomly occur for every
resource used by the task:
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– Lock if not locked

– Unlock if locked

– Do nothing

Then the system transitions back to ‘Running’ state.

• Preempted: The task has been preempted. The program counter is
frozen in this state. When the scheduler signals execution of this task
the system transitions back to ‘Running’ state.

• End: Task has finished execution. From here, the system transitions
to the ‘Idle’ state from where it executes again after its period.

Figure 4.5: Resource Semaphore automaton (non - deterministic) in
UPPAAL

Resource Semaphore Automaton
Resources are modelled as Binary semaphore. Each resource has the fol-

lowing states:
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• Free: The resource is free, whenever a task locks a resource this transi-
tions to ‘Used’ state while updating the system ceiling ‘pi’ and ‘pi stack’
if necessary.

• Used: The resource is locked. When a task unlocks a resource this
system transitions to a committed state, updates the system ceiling
‘pi’ and ‘pi stack’ if necessary. If the system ceiling is updated the
blocked-tasks and non-blocked-tasks queue are also updated, then the
system transitions to ‘Free’ state.

Scheduler Automaton
The scheduler initialises all the resource ceilings then transitions to ‘Free’

state.

• Free: The system has no tasks scheduled to run currently If there are
no ready to execute tasks it transitions to ‘Waiting’ state otherwise it
transitions to ‘Select’ state.

• Waiting: The system is idle and is waiting for a task to arrive. When a
task is ready to be executed it (i.e. Task.Idle to Task.Ready) synchro-
nises with the scheduler via ‘ready’ channel and the Scheduler transi-
tions from ‘Waiting’ to ‘Select’ state.

• Select: The non-blocked-tasks queue is non empty, the scheduler selects
the highest priority task from the non-blocked-task queue for running.
The system transitions to ‘Occupied’ state synchronising with the se-
lected task via the ‘run’ channel.

• Occupied: The system is occupied and a task is running. Four transi-
tions are possible here:

– If runnning task finishes execution, the scheduler transitions to
‘Free’ state.

– When a task transitions to the ‘Event’ state, the scheduler freezes
by transitioning to a state where it waits for the resource lock-
ing/unlocking events to be randomly decided and then transitions
back to ‘Occupied’ state.
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Figure 4.6: Scheduler automaton (non - deterministic) in UPPAAL

– After a task has finished resource locking or unlocking, the system
ceiling may be updated. So the scheduler preempts the current
task, and transitions to ‘Select’ state.

– On arrival of a new task the scheduler preempts the current task
and transitions to ‘Select’ state.
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4.3 Verification and Sanity Checks

For verifying properties in UPPAAL, we specify properties in CTL. The
following properties were verified in SBPCP model:

• Task finishes its event queue before terminating:
A[] forall (i: pid t) (Task(i).End imply (Task(i).r == Task(i).t len))

• Deadlock condition:
A[] deadlock imply (forall (i: pid t) Task(i).End)

• Only one task is running at one instance:
A[] forall (i: pid t)(forall (j: pid t)(Task(i).Running && Task(j).Running
imply i == j))

• No job is ever blocked once its execution begins:
A[] forall (i: pid t)(Task(i).Event1 && Task(i).ts[Task(i).r] == 0 imply
Resource(Task(i).t res[Task(i).r]).Free)

• All tasks finish execution:
A〈〉 forall(i: pid t) Task(i).End

• Resources are free when no process is Running:
A[] Scheduler.Waiting imply forall (j: sid t) Resource(j).Free
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Chapter 5

Experimental Analysis and
Results

The model for SBPC protocol in UPPAAL was compiled and run in a com-
puter with specification as follows:

• Operating System: Arch Linux

• OS Version: 4.13.12

• RAM: 8GB DDR3 1.6 GHz

• CPU: Core i7 4710 HQ @ 2.5 GHz

• Number of cores: 4 / 8 (Physical / Virtual)

The results were recorded and are reported below:
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5.1 Results for deterministic model

The model was run with 4 tasks and 3 resources. Each property specified
was verified multiple times and the average of the results was taken and are
recorded as follows:

Property Time used Memory usage
(in s) peaks(in kB)

Verification Kernel Elapsed Resident Virtual
Deadlock freedom
A[] deadlock imply

(forall (i: pid t) 0 0.01 0.008 8832 43980
Task(i).End)

All tasks finish execution
A〈〉 forall(i: pid t) 0.01 0 0.007 8244 76200

Task(i).End
Each task finishes its event
queue before terminating

A[] forall (i: pid t) 0 0 0.008 7264 42420
(Task(i).End imply (

Task(i).r == Task(i).t len))
All resources are freed when all

processes finish execution
A[] (forall(i: pid t) 0 0 0.009 6740 41840

Task(i).End) imply (forall
(j: sid t) Resource(j).Free)

Resources are free when no
process is Running

A[] Scheduler.Waiting imply 0.01 0 0.009 11412 45776
forall (j: sid t) Resource(j).Free

Only one task is running at a time
A[] forall (i: pid t)(forall

(j: pid t) Task(i).Running && 0.01 0.01 0.01 7816 42972
Task(j).Running imply i==j)

Table 5.1: Complexity of verification properties of deterministic properties
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5.2 Results for non - deterministic model

The model was run with 4 tasks and 3 resources. Each property specified
was verified multiple times and the average of the results was taken and are
recorded as follows:

Property Time used Memory usage
(in s) peaks(in kB)

Verification Kernel Elapsed Resident Virtual
Deadlock freedom
A[] deadlock imply

(forall (i: pid t) 1.16 0.6 1.78 30000 58648
Task(i).End)

When all resources are free
system ceiling equals -1

A[] (forall (i: sid t) 0.25 0.01 0.245 26984 55708
(Resource(i).Free)) imply pi == -1
A task is preempted only by

a higher priority task
A[] forall (i: pid t)(forall (j: pid t) 0.29 0 0.284 30804 59728

Task(i).Running && Task(j).Preempted
imply P[i] 〉 P[j])

All resources used by a task are freed
when it finishes its execution

A[] forall (i: pid t) (Task(i).End imply 0.8 0.68 1.496 29952 55576
(forall(j: sid t) (uses sema[i][j] == 1

imply Resource(j).Free)))
Resources are free when no

process is Running
A[] Scheduler.Waiting imply 0.24 0 0.245 28264 56896

forall (j: sid t) Resource(j).Free
Only one task is running at a time

A[] forall (i: pid t)(forall
(j: pid t) Task(i).Running && 0.28 0 0.287 29548 58216
Task(j).Running imply i==j)

Table 5.2: Complexity of verification properties of non - deterministic prop-
erties
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Chapter 6

Future Work

Until now, SBPCP has been implemented in UPPAAL, a CTL model
checker. Some properties can not be expressed in CTL but can be expressed
in LTL. UPPAAL can only verify properties specified in CTL. SAL can ver-
ify both CTL and LTL properties and give counterexamples for properties
specified in LTL.

The future work involves implementing SBPCP in SAL to verify those
properties specified in LTL and to record complexity of verifying the prop-
erties.
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