
Scalable Kernel Graph PCA for
handling Big Data and its application to

Clustering

Submitted by: Vishal Nemade

Supervisor: Dr. Kapil Ahuja

Department of Computer Science & Engineering
Indian Institute of Technology Indore

Submitted in partial fulfillment of requirements for the award of the degree
BACHELOR OF TECHNOLOGY

IIT Indore December 2017

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Submitted by: Vishal Nemade
December 2017

iv

Certificate by BTP Guide

It is certified that the declaration made by the student is correct to the best of my knowl-
edge and belief.

Dr. Kapil Ahuja
Associate Professor
Discipline of Computer Science & Engineering
Indian Institute of Technology Indore
(Project Guide)

Acknowledgements

I would like to thank my B.Tech Project supervisor Dr.Kapil Ahuja for his constant support
in structuring the project and his valuable feedback throughout the course of this project. He
gave me an opportunity to discover and work in such an interesting domain. His guidance
proved really valuable in all the difficulties I faced in the course of this project.

I am really grateful to Mr.Aditya Anand Shastri who also provided valuable guidance
and helped with the problems while working with Big Data and Apache Spark framework.
He provided the initial pathway for stating the project in right manner and provided useful
directions to proceed along whenever necessary.

I am also thankful to my family members,friends and colleagues who were a constant
source of motivation. I am really grateful to Dept. of Computer Science & Engineering, IIT
Indore for providing with the necessary hardware utilities to complete the project. I offer
sincere thanks to everyone who else who knowingly or unknowingly helped me complete
this project.

Vishal Nemade
140001039
Discipline of Computer Science & Engineering
Indian Institute of Technology Indore

Abstract

Kernel Principal Component Analysis (KPCA) is a dimension reduction method that is
closely related to Principal Component Analysis (PCA). This report gives an overview of
kernel PCA and presents an implementation of the method in MATLAB as well as Apache
Spark. Also I propose an extension of KPCA i.e Kernel Graph PCA . The proposed algorithm
is tested exhaustively on various data sets of different domain.The proposed algorithm is
compared with Spectral Clustering.

’Big Data’ is gaining momentum in every field under the sun. Large volumes of data
are created in short periods of time. Clustering Big Data possess a huge problem when
complexity of algorithm is high. In our algorithm the complexity is high as cube of n.

This report presents how the original Kernel based algorithms have been modified to
make it scalable for handling Big Data. Apache Spark, which performs several times faster
than conventional Big Data frameworks, has been used to implement the Scalable Algorithm.
Further included is the discussion on various Big Data sampling methods namely K-Means
Cluster Sampling and Bisecting K-Means Cluster Sampling which have been used in order to
remove redundant samples thereby reducing clustering time. In the end, the results obtained
on testing the scalable algorithm on various Big Datasets and the computational speedup
obtained are presented.

viii

Preface

This report on "Scalable Kernel Graph PCA Clustering Algorithm for handling Big
Data using Apache Spark" is prepared under the supervision of Dr.Kapil Ahuja,Associate
Professor,Computer Science & Engineering, IIT Indore.

Throughout this report, detailed description of the theoretical concepts used to develop
and implement the Scalable Clustering Algorithm is provided.The novel clustering algo-
rithm is the modification of Kernel PCA.It works better than Kernel PCA and Spectral
Clustering.The Clustering algorithm is also implemented in Matlab and tested on various
datasets from UCI repository. The implemented scalable algorithm is tested against two Big
Datasets of varying sizes and the results are presented in a clear and concise manner. Further,
detailed description of the cluster setup used to implement the classifier and instructions for
implementing the same on Apache Spark framework are also provided in Appendix.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2

2 Literature Review 3
2.1 Kernel PCA . 3

2.1.1 A comparison of Kernel Kmeans and Kmeans 4
2.1.2 Applications of Kernel Kmeans 4

2.2 Spectral Clustering Algorithm . 4
2.2.1 Algorithm . 5

2.3 Kernel Methods . 5
2.3.1 Gaussian Kernel . 6

2.4 Sampling Big Data . 7
2.5 Big Data Handling Framework - Apache Spark 9

2.5.1 Features of Apache Spark . 9
2.5.2 Apache Spark Architecture . 9
2.5.3 Resilient Distributed Dataset (RDD) 11

3 Design of Scalable Kernel Graph PCA for Clustering 15
3.1 Design of Scalable Gaussian Kernel Algorithm 15

3.1.1 Eigen Value Decomposition using BLAS & LAPACK libraries . . . 16
3.2 Implementation of Sampling Methods . 16

3.2.1 K Means Clustering . 16
3.2.2 Bisecting K-Means . 17

3.3 Proposed Scalable Kernel Laplacian PCA based Algorithm 18

x Table of contents

4 Setup & Implementation 19
4.1 Apache Spark Cluster setup . 19
4.2 Hardware Setup for Cluster Deployment 20

5 Experimental Analysis & Results 21
5.1 Clustering Accuracy on various datasets 21
5.2 Evaluation Criteria for Clustering . 21
5.3 Computational Speedups and Experimental Results for Big Data 24
5.4 Experimental Results for Small DataSets 26

6 Conclusion and Future Scope 31

References 33

Appendix A Datasets used for Clustering 35

Appendix B Apache Spark and Hadoop - Setup Guidelines 37
B.1 Setting up Environment . 37

B.1.1 Installing Java & Scala . 37
B.1.2 Setting up password-less SSH . 37

B.2 Setting up Hadoop on Ubuntu . 38
B.3 Setting up Apache Spark . 38
B.4 Running Spark Jobs on Cluster . 38

List of figures

2.2 K-Means Clustering . 8
2.3 Spark Architecture . 10
2.4 Spark Deployment Methods . 10
2.5 Apache Spark RDDs . 12
2.6 Iterative Operations on Spark RDD . 13
2.7 Interactive Operations on Spark RDD . 13

4.1 Apache Spark Cluster Overview . 19

5.1 Gaussian Kernel for size 8K . 24
5.2 Gaussian Kernel for size 49K . 26
5.3 Results based on PURITY measure . 27
5.4 Results for Kernel Graph PCA on various evaluation measures 28
5.5 Results . 29
5.6 Extended results . 30

List of tables

5.1 Dataset: Replicated IRIS(150K) for Kmeans 25
5.2 Dataset: Replicated IRIS(150K) for Spectral Clustering 25
5.3 Dataset: Replicated IRIS(150K) for Kernel PCA 25
5.4 Dataset: Replicated IRIS(150K) for Kernel Graph PCA 25
5.5 Dataset: Replicated MUSK(150K) . 25
5.6 Dataset: Replicated MUSK(150K) for Spectral Clustering 25
5.7 Dataset: Replicated MUSK(150K) for Kernel PCA 25
5.8 Dataset: Replicated MUSK(150K) for Kernel Graph PCA 25

Chapter 1

Introduction

This chapter highlights the background and motivation for the project. The problem statement
of the project has been described and the importance of the results is also clearly portrayed.
Towards the end of the chapter the objectives and expectation from this project are also
outlined.

1.1 Background

Cluster analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of exploratory data
mining, and a common technique for statistical data analysis, used in many fields, including
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics.

In this report we would like to discuss the family of Kernel based clustering algorithms.
Compared to the “traditional algorithms” such as k-means or single linkage, Kernel based
clustering algorithms has many fundamental advantages. Results obtained by Kernel based
clustering algorithms very often outperform the traditional approaches, Kernel based cluster-
ing algorithms is very simple to implement and can be solved efficiently by standard linear
algebra methods.

The motivation behind this project is to develop a novel scalable Kernel based clustering
algorithms for Clustering in Big Data Environment.

In the past decades, a group of methods known as dimension reduction methods have
gained wide-spread attention. As the name implies, dimension reduction methods seek to
solve this problem by reducing the number of dimensions of the data, while retaining most
of the information in the data set. By removing redundant dimensions, it becomes easier

2 Introduction

to recognize patterns or tendencies in the remaining data. Some examples of dimension
reduction methods are Support Vector Machines and Random Projections (e.g. [11] and
[2, 3]). In this report, one particular dimension reduction method is considered, namely
Kernel Principal Component Analysis (KPCA) and other Kernel Graph Principal Component
Analysis (KGPCA). The method is implemented in MATLAB and applied to data sets. In
addition, different ways of modifying kernel PCA in order to improve the results for these
particular data sets will be considered.

As regards Big Data, one of its signature traits is that large volumes are created in short
periods of time. This data often comes from connected devices, such as mobile phones,
vehicle fleets or industrial machinery. The reasons for generating and observing this data
are many, yet a common problem is the clustering of Big Data[1]. ’Big Data’ is gaining
momentum in every field under the sun. Hence, it is essential to introduce such algorithms
that work aptly for big data. For processing such tremendous volume of data, there is a
need of big data frameworks such as Hadoop Map-Reduce, Apache Spark etc. Among these,
Apache Spark performs upto 100 times faster than conventional frameworks like Hadoop
Map-Reduce. For the effective analysis and interpretation of this data, scalable machine
learning methods are required to overcome the space and time bottlenecks. This forms the
basis of our motivation for the project.

Earlier work done in Kernel Algorithm for Big Data include application of Support
Vector Data Description(SVDD)[8], Kernel Principal Component Analysis(KPCA)[13] and
One-Class SVM (OCSVM). Kernel based approaches have shown promising results when
used for Clustering as well as Classification.

1.2 Objective

As per the above discussion, the objective thus is the Development of a Scalable Kernel based
Algorithm& its implementation on Apache Spark. The above objective has been divided into
following goals:

• To design/enhance Kernel based algorithm to make it scalable for handling Big Data.

• To propose and develop Scalable algorithm for computing Gaussian Kernel and eigen
value decomposition of large kernel matrix in distributed manner.

• To propose a modified Kernel based algorithm based on KPCA.

• To test the developed algorithm on various Big Datasets and Small Datasets.

Chapter 2

Literature Review

This chapter discusses the various concepts used during the course of this project. The
chapter starts with discussion on Kernel based clustering algorithm and description of various
methods of sampling used during this project. The end of the chapter comprises of discussion
on Apache Spark, its features and advantages.

2.1 Kernel PCA

Kernel PCA uses the same basic idea as the statistical method Principal Com- ponent Analysis
(PCA), namely that it seeks to project the set of data onto a low-dimensional subspace that
captures the highest possible amount of variance in the data[3]. However, while PCA
performs a linear separation of the data in the original space (referred to as Rd), kernel PCA
embeds the data into a high dimensional space, called the feature space (referred to as F), by
a mapping function Φ and performs a linear separation in that space instead. In this way also
nonlinear separations of data are made possible. Thus, while kernel PCA looks for linear
features in feature space, these features correspond to nonlinear features in the original lower
dimensional space Rd , as shown in Figure 1. The data in the feature space is projected onto
a low-dimensional subspace, spanned by the eigenvectors that capture most of the variance.
One important fact is that it is not necessary to know the mapping Φ nor the feature space F
explicitly in order to perform kernel PCA. Instead computations are performed on the inner
product of pairs of points which are stored in a kernel matrix. The procedure of working with
the data in feature space without knowing the mapping Φ nor F is known as ”the kernel trick”
and is a central part of the kernel PCA method

4 Literature Review

(a) Kernel Kmeans (b) Kernel Kmeans

2.1.1 A comparison of Kernel Kmeans and Kmeans

Despite its popularity, linear k-means clustering is not a universal solution to all clustering
problems. In particular, linear k-means clustering strongly biases the recovered clusters
towards isotropy and sphericity.

Kernel k-means clustering can correctly identify and extract a far more varied collection
of cluster structures than the linear k-means clustering algorithm. However, kernel k- means
clustering is computationally expensive when the non-linear feature map is high- dimensional
and there are many input points.

2.1.2 Applications of Kernel Kmeans

Kernel Kmeans find wide use in the following areas:

• In dimensionality reduction of high dimension dataset.

• Datasets which are not linearly separable.

• For Protein , lung cancer and other biological datasets.

• Widely used in Image Processing Techniques

2.2 Spectral Clustering Algorithm

Spectral clustering[7] uses information obtained from the eig envalues and eigenvectors of
their adjacency matrices for partitioning of graphs . It has many applications, such as in
image segmentation (e.g. (Shi & Malik, 20 00)) and social network analysis (e.g. (Newman,
Watts,& Strogatz, 2002)). The methods are called spectral, because they make use of the
spectrum of the adjacency matrix of the data to cluster the points. Spectral clustering

2.3 Kernel Methods 5

algorithms have found an increasing following, especially after (Shi & Malik, 2000) and
(Ng, Jordan, & Weiss, 2002). As opposed to k-means clustering, which results in convex
sets, spectral clustering can solve problems, such as intertwined spirals, because it does
not make assumptions on the form of the cluster. Given a sparse similarity graph, spectral
clustering can be implemented efficiently even for large data sets (cf. (Verma & Meila,
2003)). Further advantages of learning about spectral clustering algorithms were noted as
follows [12]:solution of clustering problems by standard linear algebra methods often more
efficient than traditional algorithms (e.g. k-means, single linkage) A concise introduction
into the field of spectral clustering can be found in (Luxburg, 2006), which this report relies
on heavily. The comparison of algorithms herein after summarizes (Verma & Meila, 2003),
a systematic comparison of spectral clustering algorithms, which demonstrate d that these
complement and or compete with existing methods with convincing results. Most of the
presented algorithms work in combination with clustering algorithms, such as k-means (the
knowledge of which this report presupposes, refer to (MacKay, 2003) for an overview about
clustering). Due to the subtle nature of the relationship between spectral parameters and the
properties of datasets this report tries to outline the functioning of the algorithms in question
rather than arguing for one of them as the best. Nevertheless comparison shows that some
algorithms are more stable, have desirable properties, and have superior clustering results

2.2.1 Algorithm

2.3 Kernel Methods

In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best
known member is the support vector machine (SVM) [4]. The general task of pattern analysis
is to find and study general types of relations (for example clusters, rankings, principal
components, correlations, classifications) in datasets. For many algorithms that solve these
tasks, the data in raw representation have to be explicitly transformed into feature vector
representations via a user-specified feature map: in contrast, kernel methods require only a
user-specified kernel, i.e., a similarity function over pairs of data points in raw representation.

Kernel methods[2] owe their name to the use of kernel functions, which enable them to
operate in a high-dimensional, implicit feature space without ever computing the coordinates
of the data in that space, but rather by simply computing the inner products between the
images of all pairs of data in the feature space. This operation is often computationally
cheaper than the explicit computation of the coordinates. This approach is called the "kernel

6 Literature Review

trick". Kernel functions have been introduced for sequence data, graphs, text, images, as well
as vectors.

Reason for using Kernel

Kernels, are opposed to feature vectors. One big reason is that in many cases, computing
the kernel is easy, but computing the feature vector corresponding to the kernel is really
really hard. The feature vector for even simple kernels can blow up in size, and for kernels
like the RBF kernel k(x,y) = exp(−||x− y||2) the corresponding feature vector is infinite
dimensional. Yet, computing the kernel is almost trivial.

Many machine learning algorithms can be written to only use dot products, and then we
can replace the dot products with kernels. By doing so, we don’t have to use the feature
vector at all. This means that we can work with highly complex, efficient-to-compute, and yet
high performing kernels without ever having to write down the huge and potentially infinite
dimensional feature vector. Thus if not for the ability to use kernel functions directly, we
would be stuck with relatively low dimensional, low-performance feature vectors.

2.3.1 Gaussian Kernel

For the purpose of this thesis, Gaussian Kernel is being used. In machine learning, the
(Gaussian) radial basis function kernel, or Gaussian kernel, is a popular kernel function used
in various kernelized learning algorithms. In particular, it is commonly used in support vector
machine classification.

The Gaussian kernel on two samples x and x’, represented as feature vectors in some
input space, is defined as [11]:

K(x,x′) = exp(−||x− x′||2

2σ2)

||x− x′||2 may be recognized as the squared Euclidean distance between the two feature
vectors. σ is a free parameter. An equivalent, but simpler, definition involves a parameter
γ = 1

2σ2

K(x,x′) = exp(−γ||x− x′||2)

Since the value of the Gaussian kernel decreases with distance and ranges between zero (in
the limit) and one (when x = x’), it has a ready interpretation as a similarity measure.

2.4 Sampling Big Data 7

2.4 Sampling Big Data

Data sampling is a statistical analysis technique used to select, manipulate and analyze a
representative subset of data points in order to identify patterns and trends in the larger data
set being examined.

Sampling allows data scientists, predictive modelers and other data analysts to work with
a small, manageable amount of data in order to build and run analytical models more quickly,
while still producing accurate findings[5]. Sampling can be particularly useful with data sets
that are too large to efficiently analyze in full – for example, in big data analytics applications.
An important consideration, though, is the size of the required data sample. In some cases, a
very small sample can tell all of the most important information about a data set. In others,
using a larger sample can increase the likelihood of accurately representing the data as a
whole, even though the increased size of the sample may impede ease of manipulation and
interpretation. Either way, samples are best drawn from data sets that are as large and close
to complete as possible.

Sampling Methods can be classified into one of two categories:

• Probability Sampling: Sample has a known probability of being selected

• Non-probability Sampling: Sample does not have known probability of being se-
lected as in convenience or voluntary response surveys

Probability Sampling

In probability sampling it is possible to both determine which sampling[14] units belong to
which sample and the probability that each sample will be selected. The following sampling
methods are examples of probability sampling:

• Simple Random Sampling (SRS)

• Stratified Sampling

• Cluster Sampling

• Systematic Sampling

• Multistage Sampling (in which some of the methods above are combined in stages)

For the purpose of this thesis Cluster Sampling methods have been employed. Brief
description of how both have been used is below.

8 Literature Review

Cluster Sampling

In this, the input samples are divided into groups called clusters and one representative from
each group is taken as input sample.The clusters are mutually exclusive and collectively ex-
haustive.For the purpose of this thesis, K-Means & Bisecting K-Means clustering techniques
are used to obtain cluster centers which are treated as input samples.

K Means Clustering

k-means clustering is a method of vector quantization [10], originally from signal processing,
that is popular for cluster analysis in data mining. k-means clustering aims to partition n
observations into k clusters in which each observation belongs to the cluster with the nearest
mean, serving as a prototype of the cluster. This results in a partitioning of the data space
into Voronoi cells.

Fig. 2.2 K-Means Clustering

Bisecting K-Means Clustering

Bisecting K-means can often be much faster than regular K-means, but it will generally
produce a different clustering[9].Bisecting k-means is a kind of hierarchical clustering.
Hierarchical clustering is one of the most commonly used method of cluster analysis which
seeks to build a hierarchy of clusters.

As Bisecting k-means is based on k-means, it keeps the merits of k-means and also
has some advantages over k-means. First, bisecting k-means is more efficient when ‘k’ is
large. For the k-means algorithm, the computation involves every data point of the data

2.5 Big Data Handling Framework - Apache Spark 9

set and k centroids. On the other hand, in each Bisecting step of Bisecting k-means, only
the data points of one cluster and two centroids are involved in the computation. Thus, the
computation time is reduced. Secondly, Bisecting k-means produce clusters of similar sizes,
while k-means is known to produce clusters of widely different sizes

2.5 Big Data Handling Framework - Apache Spark

Apache Spark is an open-source cluster-computing framework. Originally developed at the
University of California, Berkeley’s AMPLab, the Spark codebase was later donated to the
Apache Software Foundation, which has maintained it since. Spark provides an interface for
programming entire clusters with implicit data parallelism and fault tolerance. Apache Spark
is a lightning-fast cluster computing technology, designed for fast computation. It is based
on Hadoop MapReduce and it extends the MapReduce model to efficiently use it for more
types of computations, which includes interactive queries and stream processing [6]. The
main feature of Spark is its in-memory cluster computing that increases the processing speed
of an application.

2.5.1 Features of Apache Spark

Apache Spark has following features.

• Speed - Spark helps to run an application in Hadoop cluster, up to 100 times faster
in memory, and 10 times faster when running on disk. This is possible by reducing
number of read/write operations to disk. It stores the intermediate processing data in
memory.

• Supports multiple languages - Spark provides built-in APIs in Java, Scala, or Python.
Therefore, you can write applications in different languages. Spark comes up with 80
high-level operators for interactive querying.

• Advanced Analytics - Spark not only supports ‘Map’ and ‘reduce’.It also supports
SQL queries, Streaming data, Machine learning (ML), and Graph algorithms.

2.5.2 Apache Spark Architecture

The Spark project stack currently is comprised of Spark Core and four libraries that are
optimized to address the requirements of four different use cases. Individual applications
will typically require Spark Core and at least one of these libraries. Spark’s flexibility and

10 Literature Review

Fig. 2.3 Spark Architecture

power become most apparent in applications that require the combination of two or more of
these libraries on top of Spark Core.These libraries are :

• Spark SQL

• Spark Streaming

• MLlib

• GraphX

• Spark R

Spark Built on Hadoop

Fig. 2.4 Spark Deployment Methods

2.5 Big Data Handling Framework - Apache Spark 11

There are three ways of Spark deployment as explained below.

• Standalone - Spark Standalone deployment means Spark occupies the place on top of
HDFS(Hadoop Distributed File System) and space is allocated for HDFS, explicitly.
Here, Spark and MapReduce will run side by side to cover all spark jobs on cluster.

• Hadoop Yarn - Hadoop Yarn deployment means, simply, spark runs on Yarn without
any pre-installation or root access required. It helps to integrate Spark into Hadoop
ecosystem or Hadoop stack. It allows other components to run on top of stack.

• Spark in MapReduce (SIMR) - Spark in MapReduce is used to launch spark job in
addition to standalone deployment. With SIMR, user can start Spark and uses its shell
without any administrative access.

2.5.3 Resilient Distributed Dataset (RDD)

The Resilient Distributed Dataset is a concept at the heart of Spark. It is designed to support
in-memory data storage, distributed across a cluster in a manner that is demonstrably both
fault-tolerant and efficient. Fault-tolerance is achieved, in part, by tracking the lineage
of transformations applied to coarse-grained sets of data. Efficiency is achieved through
parallelization of processing across multiple nodes in the cluster, and minimization of data
replication between those nodes. Once data is loaded into an RDD, two basic types of
operation can be carried out:

• Transformations which create a new RDD by changing the original through processes
such as mapping, filtering, and more;

• Actions such as counts, which measure but do not change the original data. The
original RDD remains unchanged throughout. The chain of transformations from
RDD1 to RDDs are logged, and can be repeated in the event of data loss or the failure
of a cluster node.

Transformations are said to be lazily evaluated, meaning that they are not executed until a
subsequent action has a need for the result. This will normally improve performance, as it can
avoid the need to process data unnecessarily. It can also, in certain circumstances, introduce
processing bottlenecks that cause applications to stall while waiting for a processing action
to conclude.

Where possible, these RDDs remain in memory, greatly increasing the performance of
the cluster, particularly in use cases with a requirement for iterative queries or processes.

12 Literature Review

Fig. 2.5 Apache Spark RDDs

There are two ways to create RDDs - parallelizing an existing collection in your driver
program, or referencing a dataset in an external storage system, such as a shared file system,
HDFS, HBase, or any data source offering a Hadoop Input Format.

Spark makes use of the concept of RDD to achieve faster and efficient MapReduce
operations

Data Sharing using Spark RDD

Data sharing is slow in MapReduce due to replication, serialization, and disk IO. Most of
the Hadoop applications, they spend more than 90% of the time doing HDFS read-write
operations.

Recognizing this problem, researchers developed a specialized framework called Apache
Spark. The key idea of spark is Resilient Distributed Datasets (RDD); it supports in-memory
processing computation. This means, it stores the state of memory as an object across the
jobs and the object is sharable between those jobs. Data sharing in memory is 10 to 100
times faster than network and Disk.

The section below discusses how the iterative and interactive operations take place in
Spark RDD.

2.5 Big Data Handling Framework - Apache Spark 13

Iterative Operations on Spark RDD

The illustration given below shows the iterative operations on Spark RDD. It will store
intermediate results in a distributed memory instead of Stable storage (Disk) and make the
system faster.

If the Distributed memory (RAM) is not sufficient to store intermediate results (State of
the JOB), then it will store those results on the disk.

Fig. 2.6 Iterative Operations on Spark RDD

Interactive Operations on Spark RDD

This illustration shows interactive operations on Spark RDD. If different queries are run
on the same set of data repeatedly, this particular data can be kept in memory for better
execution times.

Fig. 2.7 Interactive Operations on Spark RDD

By default, each transformed RDD may be recomputed each time you run an action on
it. However, you may also persist an RDD in memory, in which case Spark will keep the
elements around on the cluster for much faster access, the next time you query it. There is
also support for persisting RDDs on disk, or replicated across multiple nodes.

Chapter 3

Design of Scalable Kernel Graph PCA
for Clustering

In this chapter, we will see the design and implementation of the Scalable Kernel Graph
PCA which is based on Kernel PCA[14]. This includes discussion on modifications to kernel
& computation algorithms and hence the overall modified algorithm. This chapter also
discusses the implementation of the sampling methods on Apache Spark

3.1 Design of Scalable Gaussian Kernel Algorithm

The first step in Kernel based Clustering algorithm is the computation of Kernel Matrix.The
RBF Kernel Matrix is similar to the Gaussian Kernel Matrix . The only difference is inclusion
of sigma in Gaussian Kernel Matrix. The RBF Kernel matrix K for a set of N samples is
a N ×N symmetric matrix where the matrix entry Ki j represents the similarity measure
between the ith and jth sample. The algorithm to compute the kernel matrix is discussed
below:-
Input :

Samples[] → List of Samples
RDD[Samples[]] → RDD of Samples

Output :
KernelMatrix → Distributed Kernel Matrix

function : ComputeKernelMatrix(Samples[],RDD[Samples])
rowsRDD = emptyRDD()
foreach X in Samples[] do:

row = ComputeKernelMatrixRow(X,RDD[Samples[]])

16 Design of Scalable Kernel Graph PCA for Clustering

rowsRDD.union(row)
KernelMatrix = RddToDistributedMatrix(rowsRDD)
return KernelMatrix

end function

The function ComputeKernelMatrixRow() is as follows:
function : ComputeKernelMatrixRow(Sample X,RDD[Samples] rdd)

rowRDD = rdd.map(Y => exp(-sqdist(X,Y))
return rowRDD

end function

3.1.1 Eigen Value Decomposition using BLAS & LAPACK libraries

The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building
blocks for performing basic vector and matrix operations. Because the BLAS are efficient,
portable, and widely available, they are commonly used in the development of high quality
linear algebra software, LAPACK for example, which provide significant performance
improvements.

LAPACK is written in Fortran 90 and provides routines for solving systems of simulta-
neous linear equations, least-squares solutions of linear systems of equations, eigenvalue
problems, and singular value problems.

Pre-built version of Apache Spark doesn’t include BLAS and LAPACK. Hence, Spark
was recompiled on all system of the cluster to include these libraries. The SVD along with
LAPACK provides significant performance improvements.

3.2 Implementation of Sampling Methods

As per the discussion in the previous chapter, to reduce the size of Big Dataset, two sampling
techniques, namely K-Means clustering and Bisecting K-Means clustering have been applied.
The implementation procedures of each are discussed below.

3.2.1 K Means Clustering

K-means is one of the most commonly used clustering algorithms that clusters the data points
into a predefined number of clusters. The spark.mllib implementation includes a parallelized

3.2 Implementation of Sampling Methods 17

variant of the k-means++ method called kmeans||. The implementation in spark.mllib has the
following parameters:

• k is the number of desired clusters. Note that it is possible for fewer than k clusters to
be returned, for example, if there are fewer than k distinct points to cluster.

• maxIterations is the maximum number of iterations to run.

• initializationMode specifies either random initialization or initialization via k-means||.

• initializationSteps determines the number of steps in the k-means|| algorithm.

• epsilon determines the distance threshold within which we consider k-means to have
converged.

• initialModel is an optional set of cluster centers used for initialization. If this parameter
is supplied, only one run is performed.

The KMeans method upon computation returns an array of samples which are to be
treated as input samples during training the classifier.

3.2.2 Bisecting K-Means

Bisecting k-means algorithm is a kind of divisive algorithms i.e- it is a “top down” approach:
all observations start in one cluster, and splits are performed recursively as one moves down
the hierarchy.

The implementation in Spark MLlib has the following parameters:

• k: the desired number of leaf clusters (default: 4). The actual number could be smaller
if there are no divisible leaf clusters.

• maxIterations: the max number of k-means iterations to split clusters (default: 20)

• minDivisibleClusterSize: the minimum number of points (if >= 1.0) or the minimum
proportion of points (if < 1.0) of a divisible cluster (default: 1)

• seed: a random seed (default: hash value of the class name)

This method too upon completion returns an array of samples which are to be treated as
input samples during training the classifier.

18 Design of Scalable Kernel Graph PCA for Clustering

3.3 Proposed Scalable Kernel Laplacian PCA based Algo-
rithm

Steps of the modified Algorithm: :

1. Read the input Dataset from HDFS

2. Reduce the dataset using above discussed sampling methods

3. Compute kernel matrix from the reduced sample set

4. Convert the matrix to normalized Laplacian

5. Compute the EVD of Laplacian Matrix

6. Take the projection of the Laplacian on eigen vectors

7. Cluster the data using K means

During the clustering, the Big Data Sampler reduces the number of input samples to a
number N such that the kernel matrix of order N can be decomposed using Eigen Value
Decomposition. The sampler implementation is such that it works in scalable distributed
manner handling Big Data, thereby producing a smaller sample set yet representing the
original dataset without losing much of accuracy. The overall training algorithm is designed
in a way that it leverages the compute power of cluster through effective use of Spark MLlib
APIs.

The proposed algorithm is also implemented in Matlab2017A and exhausitively tested on
various cluster validity index.

Chapter 4

Setup & Implementation

This chapter discusses about the hardware & software setup utilized to implement training &
testing algorithms on the Apache Spark framework. MATLAB 2017A was used to calculate
results for Small Datasets.

4.1 Apache Spark Cluster setup

As discussed in chapter 2, Apache Spark cluster can be deployed in any of the three modes:

1. Standalone

2. Hadoop Yarn

3. Spark in Map Reduce

Fig. 4.1 Apache Spark Cluster Overview

For implementing the previously discussed algorithms, the Standalone mode of deploy-
ment is used as it is simple to implement and meets all the requirements of this project.

20 Setup & Implementation

Hadoop Filesystem(HDFS) was installed on all the nodes in the cluster which serves as
source to read input dataset and destination for writing the intermediate output.

Spark v2.1 built for Hadoop 2.7 and later was used in the course of this project. The
prebuilt version is available to download from the official Apache Spark website. For detailed
explanation to get HDFS & Apache Spark up and running on a local cluster, refer the
Appendix section.

4.2 Hardware Setup for Cluster Deployment

The standalone cluster was setup using 3 High Performance Computing System. One of the
systems doubled up as the Master Node as well as Worker Node while the rest were simply
Worker Nodes. All systems run Ubuntu 16.04LTS operating system. The specifications of
Master Node and Worker nodes are given below:

Master Node

• 4 cores

• 64GB RAM

• Intel Xeon Processor

Worker Node - 2 Nodes

• 4 cores

• 32GB RAM

• Intel Xeon Processor

Chapter 5

Experimental Analysis & Results

This chapter presents the results obtained by implementing the algorithms discussed in
Chapter 3. Both the sampling techniques were applied on all the datasets mentioned in
Appendix A. This chapter also discusses the performance gains obtained on scaling up the
cluster.

5.1 Clustering Accuracy on various datasets

This section discusses the clustering accuracy achieved by the Kernel Graph PCA application
of different sampling methods to reduce the Big dataset.
In all the sampling methods, the Big Dataset was sampled down by reduction ratio 100.

The proposed algorithm is also compared with another variant of graph laplacian which
forms a different optimization problem.The experimental result shows that the proposed
graph laplacian works better than the variant of Graph Laplacian[5].

5.2 Evaluation Criteria for Clustering

Here we discuss various cluster validity indexes which include NMI,ARI,PURITY and
ACCURACY.

Normalized Mutual Index(NMI)

NMI is used to compute the clustering results, which measure the agreement of the clustering
results produced.by an algorithm and the ground truth. If we refer to class as the ground truth
and to cluster as the results of a clustering algorithm, the NMI is calculated as follows:
Where, n is the total number of data points, nc and np are the numbers of data-points in the c

22 Experimental Analysis & Results

th cluster and the p th class, respectively, and np
c is the number of common data-points in

class p and cluster c

Adjusted Random Index(ARI)

The adjusted Rand index is the corrected for chance version of the Rand index, which is a
measure of the similarity between two data clustering. To compute the ARI, we first harden
the fuzzy partitions by setting the maximum element in each column of U to 1, and all else to
0. We use ARI to compare the clustering solutions with ground-truth labels (when available),
as well as to compare other algorithms with the Spectral Clustering. The formulation of ARI
is defined as follows::

PURITY

All the datasets we used have labels. We view the labels of the datasets as the objective
knowledge on the structure of the datasets. We use purity as the clustering performance
measure. purity discovers the one-to-one relationship between clusters and classes and
measures the extent to which each cluster contains data points from the corresponding class
and it has been used as performance measures for clustering analysis. Purity can be described
as:

where n is the number of data points, Ck denotes the k -th cluster, and Lm is the m -th
class. T (Ck , Lm) is the number of data points that belong to class m are assigned to clus-

5.2 Evaluation Criteria for Clustering 23

ter k . Purity is then computed as the maximum sum of T (Ck , Lm) for all pairs of clusters
and classes, and these pairs have no overlaps.

ACCURACY

The ACCURACY(AC) is defined as follows:

where n is the total number of samples and
delta(x, y) is the delta function that equals one if x = y and equals zero otherwise, and

map(ri) is the permutation mapping function that maps each cluster label ri to the best label
from the data set. The best mapping can be found by us ing the Kuhn-Munkres algorithm

24 Experimental Analysis & Results

The results depict that even with large reduction ratios in case of Replicated IRIS and
Replicated Musk, the clustering accuracy is pretty reasonable. Due to limit on matrix size
order for eigenvalue computation, large sample sizes couldn’t be tested. Theoretically,
increased number of samples should improve the clustering accuracy.But this is not always
true. This depends on vector quantization based sampling i.e the representative data points of
large sets.

5.3 Computational Speedups and Experimental Results for
Big Data

This section presents the performance gains obtained on scaling the cluster in terms of
number of compute units. The results represented are for varying core counts for datasets of
varying sizes.

Fig. 5.1 Gaussian Kernel for size 8K

5.3 Computational Speedups and Experimental Results for Big Data 25

Table 5.1 Dataset: Replicated IRIS(150K) for Kmeans

Clustering Method NMI TIME
K-Means 0.7586 0.08333
Bisecting K-Means 0.7841 0.05327

Table 5.2 Dataset: Replicated IRIS(150K) for Spectral Clustering

Sampling Method NMI TIME
K-Means 0.8642 18.998
Bisecting K-Means 0.8981 8.8447

Table 5.3 Dataset: Replicated IRIS(150K) for Kernel PCA

Sampling Method NMI TIME
K-Means 0.00104 62.66
Bisecting K-Means 0.0456 78.7

Table 5.4 Dataset: Replicated IRIS(150K) for Kernel Graph PCA

Sampling Method NMI TIME
K-Means 0.8642 18.998
Bisecting K-Means 0.8981 8.8447

Table 5.5 Dataset: Replicated MUSK(150K)

Clustering Method NMI TIME
K-Means 0.0542 10.837
Bisecting K-Means 0.0613 8.324

Table 5.6 Dataset: Replicated MUSK(150K) for Spectral Clustering

Sampling Method NMI TIME
K-Means 0.0384 104.34
Bisecting K-Means 0.0395 118.23

Table 5.7 Dataset: Replicated MUSK(150K) for Kernel PCA

Sampling Method NMI TIME
K-Means 0.0473 98.543
Bisecting K-Means 0.0453 100.07

Table 5.8 Dataset: Replicated MUSK(150K) for Kernel Graph PCA

Sampling Method NMI TIME
K-Means 0.0626 106.567
Bisecting K-Means 0.0733 120.674

26 Experimental Analysis & Results

Fig. 5.2 Gaussian Kernel for size 49K

The above graphs clearly depict the scalability of the algorithms. Increased core counts
is reflected in reduced compute times. The algorithm leverages the ability of Apache Spark
framework to increase performance with upscaling of cluster.

5.4 Experimental Results for Small DataSets

In the experiments, we compare the performance of Kernel PCA ,Kmeans+PCA, Kernel
Graph PCA , LDA-KM and Graph Laplacian using various measures.All the approaches are
implemented on an Apache Spark Cluster

5.4 Experimental Results for Small DataSets 27

Fig. 5.3 Results based on PURITY measure

28 Experimental Analysis & Results

Fig. 5.4 Results for Kernel Graph PCA on various evaluation measures
Average accuracy has been reported by increasing the multiplicity of k where k is number of
clusters and running the algorithm for 50 times. The best accuracy is reported corresponding
to the highest average accuracy of the multiple of k by taking the best results when run for

50 times

5.4 Experimental Results for Small DataSets 29

Fig. 5.5 Results
The average accuracy is the average of results over 50 runs. The best accuracy is the best of

results over 50 runs.

30 Experimental Analysis & Results

Fig. 5.6 Extended results

Chapter 6

Conclusion and Future Scope

Kernel Based Algorithm is a promising straightforward algorithm which can achieve a
relatively high Overall Accuracy on Clustering. However, massive data or Big Data is a
big challenge for the practical use of Kernel Clustering in terms of both space complexity
and computational time complexity. Through this project we implemented a novel Kernel
Graph PCA and obtained significant levels of computational speedup when scaling up the
cluster having more accuracy then KPCA and Spectral Clustering. Through this project, we
realized the advantages, capabilities and limitations of Apache Spark framework and gained
significant insights in the fields of Machine Learning and Big Data Handling.

While implementing the algorithm,we hit a roadblock where we got restricted on the
size of the Kernel matrix. For future research, perhaps a better distributed way to compute
kernel matrix Eigen Value Decomposition can be developed and implemented which would
improve the overall accuracy of clustering.Also Sampling techniques can be further enhanced
to handle big data. Nystrom sampling technique can be used.

References

[1] Bharill, N., Tiwari, A., and Malviya, A. (2016). Fuzzy based scalable clustering al-
gorithms for handling big data using apache spark. IEEE Transactions on Big Data,
2(4):339–352.

[2] Dhillon, I. S., Guan, Y., and Kulis, B. (2004). Kernel k-means: spectral clustering and
normalized cuts. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 551–556. ACM.

[3] Ding, C. and Li, T. (2007). Adaptive dimension reduction using discriminant analysis
and k-means clustering. In Proceedings of the 24th international conference on Machine
learning, pages 521–528. ACM.

[4] Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel methods in machine
learning. The annals of statistics, pages 1171–1220.

[5] Jiang, B., Ding, C., and Tang, J. (2013). Graph-laplacian pca: Closed-form solution
and robustness. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3492–3498.

[6] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J.,
Tsai, D., Amde, M., Owen, S., et al. (2016). Mllib: Machine learning in apache spark.
The Journal of Machine Learning Research, 17(1):1235–1241.

[7] Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems, pages 849–856.

[8] Rekha, A. (2015). A fast support vector data description system for anomaly detection
using big data. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
pages 931–932. ACM.

[9] Spark, A. Bisecting k-means clustering.

[10] Spark, A. K-means clustering.

[11] Vert, J.-P., Tsuda, K., and Schölkopf, B. (2004). A primer on kernel methods. Kernel
Methods in Computational Biology, pages 35–70.

[12] Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing,
17(4):395–416.

[13] Wang, H., Hu, Z., and Zhao, Y. (2006). Kernel principal component analysis for large
scale data set. Lecture Notes in Computer Science, 4113:745.

34 References

[14] Wang, S., Gittens, A., and Mahoney, M. W. (2017). Scalable kernel k-means clustering
with nystrom approximation: Relative-error bounds. CoRR, abs/1706.02803.

Appendix A

Datasets used for Clustering

A description of the datasets used for clustering purposes.

Shuttle Dataset

The original Statlog (Shuttle) dataset from UCI machine learning repository is a multi-class
classification dataset with dimensionality 9.

Mnist Dataset

The original MNIST dataset of handwritten digits has a training set of 60,000 examples, and
a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits
have been size-normalized and centered in a fixed-size image.

ISOLET Dataset

This data set was generated as follows. 150 subjects spoke the name of each letter of the
alphabet twice. Hence, we have 52 training examples from each speaker. The speakers are
grouped into sets of 30 speakers each, and are referred to as isolet1, isolet2, isolet3, isolet4,
and isolet5. The data appears in isolet1+2+3+4.data in sequential order, first the speakers
from isolet1, then isolet2, and so on. The test set, isolet5, is a separate file.We used isolet1
for the algorithm.

MultiFeatures Dataset

This dataset consists of features of handwritten numerals (‘0’–‘9’) extracted from a collection
of Dutch utility maps. 200 patterns per class (for a total of 2,000 patterns) have been digitized

36 Datasets used for Clustering

in binary images.These digits are represented in terms of the six feature sets (files): We used
Multi Features Fac dataset.

COIL 20 Dataset

Columbia Object Image Library (COIL-20)is a database of gray-scale images of 20 ob-
jects.The objects were placed on a motorized turntable against a black background.The
turntable was rotated through 360degrees to vary object pose with respect to a xed cam-
era.Images of the objects were taken at pose intervals of 5degrees.This corresponds to
72images per object.The database has two sets of images.The rest set contains 720 un-
processed images of 10 objects.The second contains 1,440 size normalized images of 20
objects.

Other Datasets from UCI

IRIS , Pen digits, Libras , Ionosphere , Glass and Soyabean were also used.

Appendix B

Apache Spark and Hadoop - Setup
Guidelines

B.1 Setting up Environment

B.1.1 Installing Java & Scala

In order to get Hadoop and Apache Spark running on your systems, Java(Java 8) and
Scala(2.12 and above) are required. This section provided instruction to install the same.

Installing Java

1. Open terminal
2. sudo apt-get update
3. sudo apt-get install openjdk-8-jdk

Installing Scala

1. Open terminal
2. sudo apt-get update
3. sudo apt-get install scala

B.1.2 Setting up password-less SSH

All the systems in the cluster need to communicate with each other seamlessly in order to
start and stop processes and services.Hence setting up of password-less SSH is essential. The
link provided below explains all the steps to do the same.

38 Apache Spark and Hadoop - Setup Guidelines

http://www.linuxproblem.org/art_9.html

B.2 Setting up Hadoop on Ubuntu

With Java installed on your system, the below linked URL provides detailed guidelines to
install Hadoop(Hadoop 2.7.3) on each system of your cluster Since Java is already installed
on the system, proceed directly to Step 2 in the tutorial.

Link:- https://www.digitalocean.com/community/tutorials/how-to-install-hadoop-in-stand-
alone-mode-on-ubuntu-16-04

Once Hadoop is installed on each system of the cluster, follow the steps in the URL given
below to setup of Hadoop cluster.

Link:- http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-
node-cluster/

B.3 Setting up Apache Spark

The prebuilt version of Apache Spark is available on the offical Apache Spark website.The
link for the same is given below. This prebuilt version needs to be downloaded and extracted
on each system which is part of the cluster.

Link:- https://archive.apache.org/dist/spark/spark-2.1.0/spark-2.1.0-bin-hadoop2.7.tgz

Once Apache Spark spark has been downloaded and installed on each system, follow the
steps in tutorial on the link below to setup Spark Standalone Cluster:

Link:- http://paxcel.net/blog/how-to-setup-apache-spark-standalone-cluster-on-multiple-
machine/

B.4 Running Spark Jobs on Cluster

In order to run spark jobs written in scala follow the steps given below:

1.On master system,open terminal
2.cd <path-to-prebuilt-spark>
3. ./bin/spark-shell --master spark://<master IP>:7077 --total-executor-cores <no. of cores> --executor-memory <memory in GBs>
4. To compile the code -> :load <name of file>.scala
5. To run the code -> <name of object>.main(Array(<arguments>))

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.2 Objective

	2 Literature Review
	2.1 Kernel PCA
	2.1.1 A comparison of Kernel Kmeans and Kmeans
	2.1.2 Applications of Kernel Kmeans

	2.2 Spectral Clustering Algorithm
	2.2.1 Algorithm

	2.3 Kernel Methods
	2.3.1 Gaussian Kernel

	2.4 Sampling Big Data
	2.5 Big Data Handling Framework - Apache Spark
	2.5.1 Features of Apache Spark
	2.5.2 Apache Spark Architecture
	2.5.3 Resilient Distributed Dataset (RDD)

	3 Design of Scalable Kernel Graph PCA for Clustering
	3.1 Design of Scalable Gaussian Kernel Algorithm
	3.1.1 Eigen Value Decomposition using BLAS & LAPACK libraries

	3.2 Implementation of Sampling Methods
	3.2.1 K Means Clustering
	3.2.2 Bisecting K-Means

	3.3 Proposed Scalable Kernel Laplacian PCA based Algorithm

	4 Setup & Implementation
	4.1 Apache Spark Cluster setup
	4.2 Hardware Setup for Cluster Deployment

	5 Experimental Analysis & Results
	5.1 Clustering Accuracy on various datasets
	5.2 Evaluation Criteria for Clustering
	5.3 Computational Speedups and Experimental Results for Big Data
	5.4 Experimental Results for Small DataSets

	6 Conclusion and Future Scope
	References
	Appendix A Datasets used for Clustering
	Appendix B Apache Spark and Hadoop - Setup Guidelines
	B.1 Setting up Environment
	B.1.1 Installing Java & Scala
	B.1.2 Setting up password-less SSH

	B.2 Setting up Hadoop on Ubuntu
	B.3 Setting up Apache Spark
	B.4 Running Spark Jobs on Cluster

