
B. TECH. PROJECT REPORT

On

Hotel Data Gathering for a

Simple RMS

By

Shubham Burewar

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2017

1

Hotel Data Gathering for a

Simple RMS

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE & ENGINEERING

Submitted by:

Shubham Burewar

Guided by:

Dr. Somnath Dey,

Assistant Professor,

Discipline of Computer Science & Engineering,

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2017

2

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Hotel Data Gathering for a simple RMS”

submitted in partial fulfillment for the award of the degree of Bachelor of

Technology in ‘Computer Science & Engineering’ completed under the supervision

of Dr. Somnath Dey, Assistant Professor, Discipline of Computer Science &

Engineering, IIT Indore and Mr. Ashish Parkhi, Senior Manager at IDeaS – A

SAS Company is an authentic work.

 Further, I declare that I have not submitted this work for the award of any

other degree elsewhere.

Shubham Burewar

CERTIFICATE by BTP Guide

 It is certified that the above statement made by the students is correct to the

best of my/our knowledge.

Dr. Somnath Dey,

Assistant Professor,

Discipline of Computer Science & Engineering,

IIT Indore

3

Preface

This report on “Hotel Data Gathering for a simple RMS" is prepared under the

guidance of Dr. Somnath Dey, Assistant Professor, Discipline of Computer Science

& Engineering, IIT Indore and Mr. Ashish Parkhi, Senior Manager at IDeaS.

Through this report I have tried to give a detailed design of the web application that

was developed during my internship period at IDeaS to test the feasibility of a

simpler Revenue Management System.

I have tried to the best of my abilities and knowledge to explain the content in a lucid

manner. I have also added screens and figures to make it more illustrative.

Shubham Burewar

B.Tech. IV Year

Discipline of Computer Science & Engineering

IIT Indore

4

Acknowledgement

I would like to express my deepest appreciation to all those who provided me the

opportunity to complete this project. I would like to give special gratitude to my

BTP project supervisor, Dr. Somnath Dey, Assistant Professor, Discipline of

Computer Science & Engineering, IIT Indore.

Furthermore, I would also like to acknowledge with much appreciation the crucial

role of IDeaS, who gave me the opportunity to work for the company. Special thanks

goes to my team mate, Surendra Chouhan, who worked with me on this project. Last

but not the least, many thanks to the manager of the project, Mr. Ashish Parkhi, and

my guide, Mr. Chaitanya Deshmukh who invested his full effort in guiding the team

in achieving this goal. I appreciate the guidance given by other supervisors as well

as the comments and advice given by the panel during our presentation.

Shubham Burewar

B.Tech. IV Year

Discipline of Computer Science & Engineering

IIT Indore

5

My Contributions

In this project, I created the basic skeleton of the Spring Web application using Spring

Boot and Gradle. I also created the complete UI for the main landing screens as well as

the UI for the Dashboard and the Properties screen. I was also responsible for the switch

from simple CSS to LESS preprocessor to get rid of duplication. The dynamic refresh on

radius change for the Dashboard was also added by me. I created the Material Design

style cards UI for the Properties page.

I also implemented the Spring Security module and added the registration feature along

with the login feature using the BCrypt encoding for passwords which exploits the full

128-bit salt space. I implemented the REST controllers for all the request mappings

within the application.

I, then added the hotel occupancy data feature on the Properties page. I also implemented

Google Maps API for the Dashboard page and the integration of the competitor list with

the map. In the end, I also created a dump file from the database so that application can

be easily deployed and hosted on a server such as Jenkins.

6

List of figures

1.1 Usage of RMS in the hotel industry today……………………………… 13

3.1 Basic flow of the application……………………………………………. 21

5.1 Screenshot of the home page……………………………………………. 28

5.2 Screenshot of the login page……………………………………………. 29

5.3 Screenshot of the register page…………………………………………. 30

5.4 Screenshot of the user properties page………………………………….. 31

5.5 Screenshot of the dashboard page………………………………………. 32

5.6 Screenshot of the table view in the dashboard………………………….. 33

5.7 Screenshot of the IDE showing all test cases passed…………………… 34

7

Contents

Candidate’s Declaration..………………………….…………………………………...... 2

Supervisor’s Certificate..………………………..……………………………………….. 2

Preface…………………………………………………………………………………… 3

Acknowledgement……………………………………………………………………...... 4

My Contributions………………………………………………………………………… 5

List of figures…..……………………………………………………………………….. 6

1. Introduction

1.1 Overview……………………………………………………………………… 9

1.2 About the Company…………………………………………………………... 10

1.3 Problem Explanation………………………………………………………….. 11

1.4 Current State-of-the-art……………………………………………………….. 12

1.5 Objective……………………………………………………………………… 12

1.6 Motivation for this project……………………………………………………. 13

2. Development Approach

2.1 Agile Model…………………………………………………………………… 15

2.2 Test-driven development……………………………………………………… 17

3. Application Design

3.1 Basic flow of the application………………………………………………….. 20

4. Technology Stack

4.1 Back End……………………………………………………………………… 24

4.2 Front End……………………………………………………………………… 25

4.3 Sources………………………………………………………………………... 25

4.4 Competitors…………………………………………………………………… 26

8

4.5 Room Rates for the competitors………………………………………………. 27

4.6 Analytics/Algorithms…………………………………………………………. 27

5. Results……………………………………………………………………………. 28

6. Conclusions & Future Scope………....…………………………………………. 35

References……………………………………...………………………………………… 37

9

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Today, small and medium sized hotel businesses do not use any form of Revenue

Management System for two main reasons –

Either they do not have the resources required for an RMS to give meaningful output, or

they simply cannot afford one. So, if we were to offer IDeaS solution to said hotel

businesses, we will need the client hotel’s information such as geographic location, star

rating, reputation etc. We can then use this to get appropriate competitor hotels in close

vicinity of the client hotel. Now, given that we know hotel's geographical location, we

should be able to get top n (configurable) competitors and their room rates for next 60 days.

Hence, we had to explore the probable sources of information described above which can

provide us with the hotel’s master data and the hotel’s daily room rate data. This application

can then enable small and medium sized hotels businesses to start getting pricing decisions

by analyzing the data described above.

Our objective was to develop a web application which can gather client hotels’ data from

different sources, these sources can be online websites/ APIs/ local database. And the

gathered data will be in the form of hotels’ master data (hotels’ basic information), its

competitors in a given range and their daily room rates which can be used for determining

the room rates for clients’ hotel.

10

1.2 ABOUT THE COMPANY

IDeaS – A SAS Company

Integrated Decisions and Systems, Inc. (IDeaS) is a private company founded in 1989,

headquartered in Minneapolis, MN. IDeaS Pune is a major development centre for the

company.

With more than one million rooms priced daily on its advanced systems, IDeaS Revenue

Solutions leads the industry with the latest revenue management software solutions and

advisory services.

Powered by SAS® and more than 25 years of experience, IDeaS supports more than 9,000

clients in 94 countries and is relentless about providing hoteliers more insightful ways to

manage the data behind hotel pricing. IDeaS empower its clients to build and maintain

revenue management cultures by focusing on a simple promise: Driving Better Revenue.

IDeaS has the knowledge, expertise and maturity to build upon proven revenue

management principles with next-generation analytics for more user-friendly, insightful

and profitable revenue opportunities—not just for rooms, but across the entire hotel

enterprise.

Specialties:

• Revenue Management

• Hospitality Pricing

• Forecasting & Revenue Optimization

• Car Park

• Travel

• Hospitality

• SaaS Applications

• Lodging

• Hotels

• Smart Spaces

11

1.3 PROBLEM EXPLANATION

There are considerably many hotels in the world categorized by star ratings or reputations.

A hotel and its competitors can be found using geographical details of the client hotel and

then, for these competitors, we can find the room rates for the present day or the next n

days.

This data can then be used by analysing the prices of the competitor hotels for a particular

day using which, we should be able to provide optimal pricing rate for the client hotel. So

that it can generate better revenue.

To do so, I have to explore how to get the data for these hotels. This basic data of the hotels

is referred to as the ‘master data’ for that hotel. This master data includes the name of the

hotel, location of the hotel, star rating of the hotel, reputation/review of the hotel, address

of the hotel, its coordinates etc. Along with the master data I also have to find a way to get

the room rates of the hotels for next 60 days at least.

To get the hotels’ master data I need to explore the possible sources and the type of data

that will be used in the application. The same is true for the daily room rates.

Star rating:

Star ratings are often used to classify hotels according to their quality. There is a wide

variety of rating schemes used by different organizations around the world. Many have a

system involving stars, with a greater number of stars indicating greater luxury in

accordingly, greater price.

Reputation:

The review given by the customers indicates the reputation of the hotel. It shows how the

hotel stands in terms of its public image.

12

1.4 CURRENT STATE-OF-THE-ART

The current products provided by the company are used by hotel chains like Hilton and

Marriott, which is an extensive Revenue Management System that provides a whole array

of facilities like occupancy predictions, room rates predictions, demand predictions etc.

These results are provided by extensive analytics on the historical data provided by the

client [1]. A major reason for this RMS not used by smaller scale hotels is that they do

not have this historical data that must be provided for the system to work. The expensive

nature of these systems is another reason why very few hotels currently use an RMS.

Small and Medium sized hotels make up a large part of the hospitality business. In order

to introduce a Revenue Management System culture to these businesses, a new product

needs to be devised, which is affordable, and does not require historical data in order to

work. On top of this, it needs to be simpler to use than present RMS, which are quite

complicated and require a few weeks to adapt.

Let’s take an example. Consider a client hotel in Chicago. It can be located geographically

which will enable us to find its competitors in a given radius and collect their data along

with the client’s. Once we locate the competitors then we should be able to collect their

room rates for future 60 days. Using these rates we should be able to determine what the

client should charge for today. And this will help them to get better revenue.

This should work for all hotels in the world which have some star rating and geographical

location. To do so, We need to explore how we can get the master data for the hotel and

how we can get the daily room rates for the hotels for next 60 days.

1.5 OBJECTIVE

The aim of developing this application is to evaluate the feasibility of a simpler Revenue

Management System that will work for hotels that do not have historical data which is

necessary for a current state-of-the-art RMS. To develop this application, we’ll first need

to find a source from which we can gather client hotels’ data. These sources can be online

13

websites/APIs/ local database. The gathered data will be in the form of the hotels’ master

data (basic information), their competitors in a given range and their daily room rates for

up to the next 60 days which can then be used for determining the room rates for client’s

hotel.

1.6 MOTIVATION FOR THIS PROJECT

As we can see in Figure 1.1 given below which shows present-day RMS usage stats, less

than 10% of the hotels in the world use any form of Revenue Management System (RMS)

[2]. The other 90% do not have an RMS due to various reasons:

● They cannot afford an RMS.

● They do not have the necessary data for such RMS (at least one year of booking

history of the hotel is required for some systems).

● They are not aware of the RMS culture and the impact it can have on their revenue.

Hotels using RMS

Hotels not using RMS

90%

10%

Figure 1.1 Usage of RMS in the hotel industry today

14

If we were to provide a solution to these hotels, then we need to come up with a product

which has the following features that are crucial for an RMS for the aforementioned:

● It must be affordable.

● It should without the need of any historical data.

● It should be convenient and straightforward.

● It should have a complicated interface.

The most challenging factor here is to get rid of the need of data from the client hotel. In

this case, we’ll need to look at the hotels in close vicinity to the client, i.e. their

competitors. By analyzing the pricing of the competitor hotels, the client hotel can be

provided with better decisive prices to make better revenue, and introduce RMS culture

to small and medium sized hotels across the globe.

15

CHAPTER 2

DEVELOPMENT APPROACH

To develop this application, I have used the ‘Agile Methodology’, which comprises of

small incremental additions and refactoring, with each refactoring building on previous

functionalities. To support this agile development model, I have used the ‘Test Driven

Development’ (TDD) practice.

2.1 AGILE MODEL

Agile is a software development life cycle model and is a combination of iterative and

incremental process models with focus on process adaptability and customer satisfaction

by rapid delivery of working software product. Agile Methods break the product into small

incremental builds. These builds are completed in iterations. Each iteration typically lasts

from about one to three weeks. Every iteration involves cross functional teams working

simultaneously on various areas like –

• Planning

• Requirements Analysis

• Design

• Coding

• Unit Testing

• Acceptance Testing

At the end of the iteration, a working product is displayed to the customer and important

stakeholders.

16

2.1.1 What is Agile?

Agile model believes that every project needs to be handled differently and the existing

methods need to be tailored to best suit the project requirements. In Agile, the tasks are

divided to time boxes (small time frames) to deliver specific features for a release.

Iterative approach is taken and working software build is delivered after each iteration.

Each build is incremental in terms of features; the final build holds all the features required

by the customer.

The Agile thought process had begun early in the software development and became

popular as time passed due to its flexibility and adaptability.

The principles of Agile Manifesto given below were followed and practiced throughout

this project –

• Individuals and interactions − In Agile development, self-organization and

motivation are important, as are interactions like co-location and pair programming.

• Working software − Demo working software is considered the best means of

communication with the customers to understand their requirements, instead of just

depending on documentation.

• Customer collaboration − As the requirements cannot be gathered completely in

the beginning of the project due to various factors, continuous customer interaction

is very important to get proper product requirements. Since, this project was

developed with an aim to release to the audience described in section 1.5, the

managers in charge were asked to collaborate.

• Responding to change − Agile Development is focused on quick responses to

change and continuous development.

Agile methods are being widely accepted in the software world recently. However, this

method may not always be suitable for all products. Still it has become the top choice as a

17

development model for newer businesses. The advantages of the Agile Model are as

follows –

• Is a very realistic approach to software development.

• Promotes teamwork and cross training

• Functionality can be developed rapidly and demonstrated.

• Resource requirements are minimum.

• Suitable for fixed or changing requirements

• Delivers early partial working solutions

• Good model for environments that change steadily.

• Minimal rules, documentation easily employed.

• Enables concurrent development and delivery within an overall planned context.

• Little or no planning required.

• Easy to manage.

• Gives flexibility to developers.

2.2 TEST DRIVEN DEVELOPMENT

Test-driven development (TDD) is a software development process that relies on the

repetition of a very short development cycle: Requirements are turned into very specific

test cases, and then the software is improved to pass the new tests, only. This is opposed

to software development that allows software to be added that is not proven to meet

requirements. Test-driven development is related to the test-first programming concepts

of extreme programming, begun in 1999 [3], but more recently has created more general

interest in its own right. The cycle followed in Test Driven Development is described in

detail on the following page –

18

Test Driven Development Cycle:

i. Add a test

In test-driven development, each new feature begins with writing a test. We write a

test that defines a function or improvements of a function, which should be very

succinct. To write a test, the developer must clearly understand the feature's

specification and requirements. The developer can accomplish this through use cases

and user stories to cover the requirements and exception conditions, and can write the

test in whatever testing framework is appropriate to the software environment. It

could be a modified version of an existing test. This is a differentiating feature of test-

driven development versus writing unit tests after the code is written: it makes the

developer focus on the requirements before writing the code, a subtle but important

difference.

ii. Run all tests and see if the new test fails

This validates that the test harness is working correctly, shows that the new test does

not pass without requiring new code because the required behavior already exists, and

it rules out the possibility that the new test is flawed and will always pass. The new

test should fail for the expected reason. This step increases the developer's confidence

in the new test.

iii. Write the code

The next step is to write some code required for the test to pass. The new code written

at this stage is not perfect and may, for example, pass the test in an inelegant way.

That is acceptable because it will be improved and honed in Step 5. At this point, the

only purpose of the written code is to pass the test. The programmer must not write

code that is beyond the functionality that the test checks.

19

iv. Run tests

If all test cases now pass, the programmer can be confident that the new code meets

the test requirements, and does not break or degrade any existing features. If they do

not, the new code must be adjusted until they do (see step 5).

v. Refractor code

The growing code base must be cleaned up regularly during test-driven development.

New code can be moved from where it was convenient for passing a test to where it

more logically belongs. Duplication must be removed. Object, class, module, variable

and method names should clearly represent their current purpose and use, as extra

functionality is added. As features are added, method bodies can get longer and other

objects larger. They benefit from being split and their parts carefully named to

improve readability and maintainability, which will be increasingly valuable later in

the software lifecycle. Inheritance hierarchies may be rearranged to be more logical

and helpful, and perhaps to benefit from recognized design patterns. By continually

re-running the test cases throughout each refactoring phase, the developer can be

confident that process is not altering any existing functionality.

vi. Repeat

Starting with another new test, the cycle (steps i. to v.) is then repeated to push

forward the functionality. The size of the steps should always be small, with as

few as 1 to 10 edits between each test run. If new code does not rapidly satisfy a

new test, or other tests fail unexpectedly, the programmer should undo or revert in

preference to excessive debugging. Continuous integration helps by providing

revertible checkpoints. When using external libraries, it is important not to make

increments that are so small as to be effectively merely testing the library itself,

unless there is some reason to believe that the library is buggy or is not sufficiently

feature complete to serve all the needs of the software under development.

20

CHAPTER 3

APPLICATION DESIGN

In the following sections, I have explained the design of the application and the overall

flow of the application starting from the hotel search at the beginning to the predicted price

at the end of the flow. The flow described below comprises of all stages of the application,

some of which were not a part of this project. Also, the said flow of the application is

elaborately illustrated in Figure 3.1 and described below.

3.1 FLOW OF THE APPLICATION

The complete flow of the application shown in Figure 3.1 is described in the following

subsections –

3.1.1 Search Client Hotel

The first step in the application flow is to find out the hotel of the client from the database.

In the first few iterations, we implemented 3 sources for this search –

i. Google Places API

ii. Expedia Static Data

iii. Travel Payouts Static Data

3.1.2 Master Data for Client Hotel

In the final iteration of the application, we used the Expedia Static Data stored in the

MySQL database, which gives us the complete name of the client’s hotel, its address,

coordinates, rating etc. The database also has other data like City, Country, IATA codes

etc. which might be useful in the future.

21

v

v

v

v

v

v

v

Search Client

Hotel

Master Data for

Client Hotel

Competitors

List

Configuration

Daily Room

Rate

Database

Update

Analytics/

Algorithm

Predictions for

Client

This search is form sources available.

Ex: Local Database, APIs etc.

Master data includes: Hotel Name,

address, coordinates, city, star rating,

reputation, competitors

List of competitor hotels in a certain

radius from it.

Configuration of list by providing top

competitors. And that can be based on

star rating or distance

Daily Room Rate for the Competitors in

the list. And this data is of next n days.

The entire Configuration with Rate data

should be saved in the database for

analysis of the rates.

Analysis algorithm for prediction

of rate for client hotel. It analyzes

the competitors daily room rate.

Prediction of the best optimal

price for client hotel. That client

should charge.

These two steps are

not included in the

internship project

term.

My project includes

only up to Database

Update.

Figure 3.1 Basic flow of the application

22

3.1.3 Competitors List

Using the details of the client hotel accessed from the database, we obtain a list of

competitor hotels in a given radius of the client hotel (default value is 1 km). These

competitors are displayed as a list as well as marked on a Google Map.

3.1.4 Configuration

When the user has obtained a list of competitor hotels around the client hotel, the client can

then configure the obtained list to get a more precise data set. For example, the user can

constrain the list to a range of hotel rating such as hotels with rating between 3-5, or change

the search radius such as hotel within 0.5 km only (The search radius can have a minimum

value of 0.1 km). The user can select any number of hotels form this list to be configured

for getting the rates.

3.1.5 Daily Room Rates

The rates for the hotels configured by user in the above step are then collected. We had

planned to use a Rate-Shopping Vendor for getting the rates of the hotels but unfortunately,

we weren’t able to get a confirmation from the vendor, so we have implemented this step

using dummy data stored in the local database.

3.1.6 Database Update

The configuration created by the user in step 4 can be saved to the database, in order to

avoid configuring the list every time the user logs in. This saved configuration will be used

directly to give the room rates, without having to go through step 4 again and again.

3.1.7 Analytics/Algorithm and Predictions

This part of the application was not a part of the project assigned to us during our internship.

It will be added later on by the Analytics team. We were instructed to complete the

application up to step 6 only, which is why the final iteration of the application is only up

to here.

23

CHAPTER 4

TECHNOLOGY STACK

The different technologies and resources that we have used in this project have been

categorically listed below followed by brief descriptions of each of them. The back end

here consists of the database (which is a MySQL database in this case), the APIs used as

well as the Spring controllers, whereas the front end consists of the client side source that

mainly comprises of the HTML pages and JavaScript script files.

• Database

o MySQL

• APIs

o Google Geocode API

o Google Places API

o OpenWeatherAPI

• Java

o Spring Web

o Spring Security

o Spring JPA

o JDBC

• Front End

o HTML

o jQuery (JavaScript)

o LESS preprocessor (for CSS)

24

• Testing

o Junit

o Mockito

• Build Automation

o Gradle

The project has been developed using Spring framework for Java EE applications and

Gradle as the build automation system to simplify the development of the web application.

4.1 BACK END

The backend of the application is written in Java using Spring Boot module [4] for Java

EE. The MySQL database which store all the user and hotel data is accessed using Spring

JDBC (Java DataBase Connectivity) module. The user authentication is done using the

Spring Security module using JDBC authentication and BCrypt encoding in order to

provide practicable safety from exploitation with minimum code. Passwords have been

encrypted using the BCrypt which is one of the more secure hashing functions used today

(There are vulnerabilities found in the MD5 and SHA hashing functions which why they

are deprecated).

4.1.1 APIs

Using APIs provided by OTAs (Online Travel Agencies) for hotel and competitor data was

the initial goal of the project. Unfortunately, we were not able to get required permissions

for this since the OTAs require details of the application such as expected revenue

generation which is why we had to look at alternate sources like Static Data stored in a

database. Regardless, we have used a number of APIs in the application nonetheless, such

as the Google Maps API for a graphical representation of the competitor list, the Google

Geocode API for marking the hotels on the map, OpenWeatherAPI for showing the current

weather data of the hotel vicinity, and the jQuery UI API to effectively use jQuery to

execute features such as search autocomplete.

25

4.2 FRONT END

The frontend of the application consists of the code that runs on the client side and mainly

consists of code written in HTML and jQuery (JavaScript), the Bootstrap framework, and

the LESS pre-processor for CSS.

4.3 SOURCES

We have tried and tested three sources to gather the master data for the client hotels

(which will be reduced to only one source in the end).

i. Google Places API: It is an API that provides access to information about

more than 100 million places around the World. It provides details about a

place such as:

● Name

● Address

● Latitude

● Longitude

● Rating

● Type

● Unique Id

Upon entering the coordinates of the client which are found using the Google Geocode

API. This allows us to locate the nearby places of similar type in a given range. This helps

in locating the competitor hotels for the client hotel and provides the details for all the

competitor hotels.

ii. Expedia Static Data: This Online Travel Agency (OTA), helps aids in booking

hotel reservations worldwide. It has database for the hotels across the globe,

which is regularly updated. The hotel data obtained from here is elaborate and

26

abundant. Some of the more important and useful details that are available here

are:

● Hotel name

● Address

● Star Rating

● Latitude

● Longitude

We also get other details which are not relevant to this project. This database has

2,33,224 hotels record and this helped in gathering master data for the client hotel.

This is the source that we decided to use in the final iteration of the

application.

iii. Travel Payouts Static Data: This is also an Online Travel Agency just like

Expedia and it has similar database. It has 16,74,389 hotels records.

Since Expedia and Travel Payouts data is static, so these two databases are stored locally

on the machine using MongoDB (non-relational database) (This was changed to MySQL

to facilitate relational schema). The search can be done using either of these sources.

4.4 COMPETITORS

List of the competitor hotels in a given radius can be generated from the source which

was used to gather the master data for client hotel. The list will contain up to 20 hotels

around the client hotel. The client can then configure his/her competitors list by selecting

the hotels from the list. Google Places API provides the ‘nearby search’ facility which

helps in locating the competitor hotels. For Expedia and Travel Payouts database, we

calculated a circle with the coordinates of the hotel as the center and the radius as given

by the user (1 km is the default value).

27

This query gives a list of hotels that are within a given radius in meters from the given

latitude and longitude.

4.5 ROOM RATES FOR COMPETITORS

For getting the room rates of the competitors, we were hoping to get a Rate Shopping

Vendor to provide a reliable source of rates which is collected city wise. Unfortunately,

we weren’t able to get an answer in time so we decided to run the application with dummy

data stored on our MySQL database for the time being. A Rate Shopping Vendor can be

added in the future to the application.

4.6 ANALYTICS/ALGORITHMS

The analytics/algorithms involved in this application are not a part of this project, mainly

because the company has an analytics team that works that domain.

In a nutshell, once the room rates for competitor hotels are gathered then these can be run

through an algorithm which will give some meaningful pricing prediction that can be

used by client hotel to make better revenue [5]. In other words, these are the minimum

rates that client hotel should charge.

28

CHAPTER 5

RESULTS

5.1 HOME SCREEN

The home page for the application is as shown in Figure 5.1. It consists of the search option

with the auto completion feature. And these auto complete results are from local database

that is created using Expedia Static Data. Home page also consist the options for the

registration and login for the users. Only registered users are allowed to visit the

application. We have tried to keep the home page as simple and as minimalistic as possible.

Figure 5.1 Screenshot of the home page

29

5.2 LOGIN AND REGISTRATION PAGE

The login and registration pages seen below in Figure 5.2 and Figure 5.3 respectively, are

also created similar to the home page, i.e. as simple as possible. In case, of any loss of

connection or unintentional timeout, the Spring Security module will redirect the user to

this login screen. The Login screen and the registration screen also contain links to each

other for easier navigation.

These pages use the features of Spring Security module of the Spring Boot framework.

Spring Boot has predefined security settings for the web application. It also includes

authentication, registration, login, logout and sessions.

Figure 5.2 Screenshot of the login page

30

5.3 USER PROPERTIES SCREEN

The user properties page, as seen in Figure 5.4, is where a user can configure his/her

properties. One user can have multiple properties and each property will have different

configurations so this page is all about organizing these properties. In this page user can

add or remove properties, user can set the occupancy % for a particular property (this factor

is not used in this project but later it will be used by the analytical algorithm). The add

option provides the hotel search function with the auto complete feature similar to the one

on the home page. It will be helpful for the user to identify his/her property. From each

property card user can navigate to the Dashboard or can remove the property from list or

can set the occupancy.

Figure 5.3 Screenshot of the register page

31

Here, each hotel is shown as a Material Design style cards, with a table for entering

occupancy data, and three buttons which are for going to the hotel dashboard, saving the

entered occupancy values, or deleting the hotel from the user page. We have also added a

search bar for the user to search for a hotel among the cards in case if the number of hotels

for one user is very large in which case, it could become difficult to find a particular hotel

in that card stack.

Figure 5.4 Screenshot of the user properties page

32

5.4 DASHBOARD SCREEN

Figure 5.5 shows the dashboard for a particular property. It consists of a map in which the

property is highlighted with an information window and a red marker. Sidebar contains the

list of the possible competitor hotels in given radius i.e.5 km (in this screenshot). The list

can be filtered by using the rating filters and text search which can only show the filtered

hotels only. List is sorted on the basis of the distance from the client hotel. User can change

the search radius according to his/her needs. And map consists of the markers of the hotels

present in the list. There is weather data information is also available on the map, which is

gathered using the OpenWeatherMap API. On the header bar there is information about

the logged in user and a dropdown list of properties from there user can switch to the

dashboard of the other property. User can select the desired competitor hotel from the list

by checking the checkbox against each hotel in the list. Selected hotel information will be

highlighted and the information about the rate will be shown on the marker of the respective

hotel on the map.

 Figure 5.5 Screenshot of the dashboard page

33

5.5 TABLE VIEW REPRESENTATION ON DASHBOARD

As seen in Figure 5.6, We have added table view which shows the rate of the client hotel

along with the competitor hotels selected in the list. In this screen the selected hotels from

the list also get added in the table and this table will show the seven days rate for a particular

hotel. These seven days count start from the present day. User can switch between map

view and table view by using toggle buttons on the top.

Figure 5.6 Screenshot of the table view on the dashboard

34

5.6 CODE COVERAGE RESULTS FOR TEST CASES

Figure 5.7, shown below is a screenshot of the IDE showing that all the test cases that were

run had all passed. It also shows the result for the code coverage. Code coverage shows

how much of the total code is tested using the test cases that have been created. We can see

in the screenshot that there are total of 33 test cases. There are no test cases for User

Interface Testing. These 33 test cases have covered 100% classes, 80% of the methods

and 80% of the code lines.

Figure 5.7 Screenshot of the IDE showing all test cases passed

35

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

We have developed a simpler Revenue Management system that works without historical

data using Spring Web framework for Java Enterprise development. It is a multi-tenant

system which means one user/client can have multiple properties in this system. The

project was developed using agile methodology, wherein we participated in scrums, where

we concluded what we did the previous day and planned on future work. In other words,

this project was an excellent aid in understanding and acclimate ourselves with software

development as it is practiced in the software industry today.

The entire application was developed using the Agile methodology of software

development to aid in faster development and refactoring cycles and using the Test-Driven

Development cycle to ensure maximum code coverage and minimum code duplication.

The results for code coverage are as follows:

• Classes: 100% tested

• Methods: 80% tested

• Lines: 80% tested

These results show that the all the classes present in the project backend are well tested.

80% of the methods in the project are tested. Remaining other methods consists of UI for

which, testing has not been done. The number of lines tested in the project is a significant

number here and as we can see above 80% of the lines are tested, the exceptions being the

UI and Integration code. Hence, Test-Driven Development was a successful approach for

this project.

36

This project was regarding the development of a part of application. So, after our work is

done, this project will be integrated with the appropriate analytical algorithm which will

help the application to give accurate predictions based on the data that we have gathered.

The elimination of the need of historical data will enable small and medium scale hotel

businesses to have an affordable option to embrace the Revenue Management culture,

which is becoming increasingly common in the hotel industry.

Since, this application is meant for a large market, we need to make sure that the application

can handle a lot of traffic. Hence, performance needs to be optimized in order to smoothly

run the application on a great number of users simultaneously.

This web application requires a Rate Shopping Vendor to provide authentic rates for the

application to run in production. Also, the registration procedure has not been implemented

in the application, because we were not yet sure which form of Spring registration needs

to be implemented here that will work with JDBC authentication used in the application.

37

References

[1] A. Sulistio, K. Kim and R. Buyya, "Using Revenue Management to Determine Pricing

of Reservations - IEEE Conference Publication", Ieeexplore.ieee.org, 2017.

[2] Kimes, S. E. (2010). The future of hotel revenue management

[http://scholarship.sha.cornell.edu/cgi/viewcontent.cgi?article=1068&context=chrpubs].

Cornell Hospitality Report, 10(14), 6-15.

[3] Experiment about Test-first programming, Matthias M. Muller and Oliver Hagner,

University of Karlsruhe, Germany

[4] Spring Boot Documentation: https://docs.spring.io/spring-boot/docs/current-

SNAPSHOT/reference/htmlsingle/#getting-started-introducing-spring-boot

 [5] M. Lee, Y. Fu and K. Lai, "A Study on Revenue Management of a Service Industry -

IEEE Conference Publication", Ieeexplore.ieee.org, 2017.

