
Hardware Realisation of Quantum-
inspired Fuzzy based Neural Network and
its application as Signature Verification!

!
Submitted in partial fulfilment of the

requirements for the award of the degree !
BACHELOR OF TECHNOLOGY!!

in!
 

COMPUTER SCIENCE AND ENGINEERING!
by

Rajveer Singh!

!
Under the guidance of

!
Dr. Aruna Tiwari!

&
Dr. Sanjay Singh!!

 ! !
INDIAN INSTITUTE OF TECHNOLOGY INDORE

CSIR-CENTRAL ELECTRONICS ENGINEERING RESEARCH INSTITUTE
November 2017 !!

!!!
!

CANDIDATE’S DECLARATION!
!
We hereby declare that the project entitled “Hardware Realisation of Quantum-inspired
Fuzzy based Neural Network and its application as Signature Verification” submitted in
partial fulfilment for the award of the degree of Bachelor of Technology in Computer
Science and Engineering, carried out under the supervision of Dr. Aruna Tiwari, Associate
Professor, Discipline of Computer Science and Engineering, IIT Indore and Dr. Sanjay
Singh, Sr. Scientist CSIR-CEERI pilani is an authentic work.
Further, we declare that we have not submitted this work for the award of any other
degree elsewhere.
!
!
!
!
!
!
!
!
!
!
!
!
!
Rajveer Singh
140001024
Discipline of Computer Science and Engineering
Indian Institute of Technology Indore

!
!
!
!
!

�3

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�4

CERTIFICATE BY BTP GUIDE!
It is certified that the declaration made by the students is correct to the best of my
knowledge and belief.

!
!
!
!
!
!
!
!
Dr. Aruna Tiwari, 
Associate Professor, 
Discipline of Computer Science and Engineering,
IIT Indore

!
!
!
!
!
!
!
!
!
!
!
!
!
!

�5

Contents!
List Of Figures . 8
List Of Tables . 8
Abstract . 9
1 Introduction . 10
 1.1 Motivation for Hardware Implementation 11
 1.2 Why Quantum Fuzzy Neural Network Algorithm 11
2 Literature Review 13
 2.1 Quantum Fuzzy Neural Network Algorithm 13
 2.1.1 The Quantum Concept 15
 2.1.2 Conversion of Quantum bits to real values 15
 2.1.3 Fuzzy Concept . 15
 2.1.4 Learning of hidden layer16
 2.1.5 Boundary Parameters Calculations 16
 2.2 Signature Processing and Feature Extraction 17
 2.2.1 Conversion of RGB to B/W 17
 2.2.2 Noise Removal . 17
 2.2.3 Decreasing Thickness18
 2.2.4 Feature Extraction 18
 2.3 Proposal for Hardware Implementation 20
 2.4 XST User Guide . 20
 2.4.1 XST HDL coding techniques 21
 2.4.2 XST Design constraints 22
 2.4.3 XST VHDL language support 23
 2.5 Vivado Design Suite(UG 902) 24

 2.6 Vivado HLS . 26

 2.6.1 Usefulness of Vivado HLS 28
 2.6.2 Vivado HLS being used by28
 2.6.3 Problems with Vivado HLS 28
3 Design and Analysis . 29
 3.1 Overview . 29
 3.2 VLSI Design Flow . . 30
 3.2.1 Design Entry . 31

�6

 3.2.2 Design Synthesis 32
 3.2.3 Design Implementation 32
 3.3 C-code Conversion . 32
 3.4 Testing code generation . 33
 3.5 Testing code to Vivado HLS 33
 3.6 Analysis of obtained results with results generated from VHDL code. . . 34
4 Results and Future Scopes . 35
5 Bibliography . 38
Appendix 1 . . 40
Appendix 2 . . 46
Appendix 353
Appendix 4 60
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�7

!
List of Figures!
!
Figure 2.1: Conversion into qubits and further into subspaces	

Figure 2.2: A Fuzzy Cluster	

Figure2.3: Number of Loops	

Figure 2.4: Dimensions or say Ration of dimensions	

Figure 2.5: Dense Square	

Figure 2.6: Slope of Signature	

Figure 2.7: Image is divided in four uniform patches	

Figure 3.1: Flow of Project work	

Figure 3.2: VLSI Design Flow	

Figure 3.3: Illustration 1: A. Cortes et. al.	

Figure 3.4: Illustration 2: A. Cortes et. al.	

!
List of Tables!
!
Table 2.1 : Arithmetic packages and types that operate on unsigned values
Table 2.2 : Arithmetic packages and types that operate on signed values
Table 4.1 : Resource utilisation by Vivado HLS
Table 4.2 : Resource utilisation by HDL Code

!
!
!
!

�8

!
!
!
!
!
!
!
!

Abstract:
In this project, enhanced quantum inspired fuzzy based neural network algorithm is used
for signature verification (E-QFNNS). Here, neural network architecture forms
constructively using the quantum computing concept. The quantum computing concept
is used to decide the connection weights and threshold of neurons with the help of the
boundary threshold parameter. To test the performance of the proposed algorithm, the Iris
and Thyroid dataset has been used. The hardware implementation is done following the
basic VLSI design flow i.e. divided in four sections; Design Entry, Design Synthesis,
Design Implementation and Xilinx Device Programming(specific to the Xilinx board). At
start the design synthesis and design implementation is being handled by the Vivado
HLS. The testing code is being generated for the algorithm and is implemented of Vivado
HLS, which gave a general idea of resource utilisation, latency and. time utilisation At the
later stage of project the performance is then compared to the hand coded VHDL
implementation of the algorithm testing code. The next step after hardware
implementation of the testing code in HLS and VHDL will be the hardware implementation
of the training code into first HLS software tool and then with the analysis of its resource
utilisation it will finally be coded in VHDL and then tested with the generated signature
dataset. Once the hardware implementation is tested with the dataset it will finally be
burned on the hardware board.
!
!
!
!
!

�9

!
!
Chapter 1!

!
Introduction!
!
 The signature has been an ancient biometric hallmark and has been used for
authenticating individuals and documents. For the last decades, scientists and
researchers had worked in the field of offline signature verification. Several methods and
technologies have been proposed in this area some of them include elastic matching
(Buryne and Forre, 1986), synthetic discriminant functions (Wilkinson et al., 1991) and
grid features (Qi and Hunt, 1994). Signature verification is a technique used by banks,
intelligence agencies and high-profile institutions to validate the identity of an individual. It
is often used to compare signatures in bank offices and other branch capture. An image
of a signature or a direct signature is fed into the signature verification software and
compared to the signature image on file. Signature verification can be done by software
that compares signatures and checks for authenticity. This saves time and energy and
helps to prevent human error during the signature process and lowers chances of fraud in
the process of authentication. The software generates a confidence score against the
signature to be verified. Too low of a confidence score means the signature is most likely
a forgery.

 Signature verification software has now become lightweight, fast, flexible and more
reliable with multiple options for storage, multiple signatures against one ID and a huge
database. It can automatically search for a signature within an image or file. !
 Server-aided verification (SAV) has potential applicability in lightweight devices for
improving signature verification, where the verifier possesses a computationally weak
hardware. We observe that lightweight devices run all algorithms through hardware
implementation with logic circuits. Existing SAV protocols indeed improve computational
efficiency for lightweight devices, however, few of them take the hardware cost into
consideration. The hardware implementation of SAV protocols could be still costly and
expensive for lightweight devices. In this project we propose implementation of Quantum

�10

inspired Fuzzy based Neural Network Algorithm for offline signature verification aimed
with small development cycle, lower cost and best suited for initial prototyping.
!
!
1.1 Motivation for Hardware Implementation!
!
! The main motivation to work on hardware implementation of the Quantum inspired
Fuzzy Neural Network (QFNN) algorithm was a targeted effort towards the automation of
signature verification/Offline signature verification in banking and trading industry. As the
market is moving towards digitalisation of money and its transaction. !
 It’ll be an effort for bridging the gap between people comfortable with the latest
technology and the people still trusting the pen-paper based system. It can also have
application directly in banks and also in cheque and draft deposit kiosk with some
supporting applications. The need for offline hardware verification dedicated hardware
was felt specially after the demonetisation of money was introduced in India, moving
transaction from offline to online modes hence creating a large gap between the old and
the latest technology.
!
1.2 Why Quantum Fuzzy Neural Network Algorithm!
!
 Researchers had presented many learning algorithms like perceptron, back
propagation and multilayer perceptron for solving two classes as well as multi-class
problems. It is also been studied that Fuzzy Logic algorithm is the best at computing cost
and predictive accuracy as compared to other algorithms. The performance of neural
network system mainly varies according to its architecture, hidden layers, the number of
neurons in the hidden layer, connection weights, and threshold. It also depends on
features of input dataset (Chan et al., 2009; Sarikaya et al., 2014). Here an enhanced
quantum inspired fuzzy based neural network learning application is used for signaure
verification. In this algorithm, the connection weights are decided using the quantum
computing concept. In the algorithm paper, a further improvement has been proposed,
which decides centres and fuzzification parameter using the quantum computing
concept. The neural network formed in this way is trained and tested on the signature
dataset, which is manually prepared under this project.
!
!
!
!
!
!

�11

!
!
!
!
Chapter 2!
!
Literature Review!
!
!
2.1 Quantum Fuzzy Neural Network Algorithm!

 In this project work, an enhanced quantum inspired fuzzy based neural network
learning algorithm is used which will be trained and tested on signature dataset. The
proposed algorithm is divided into two major sections: constructing a quantum neural
network and evaluating system performance by the signature database. Both the sections
require some necessary pre-requisites, which are described briefly. The necessary
preliminaries of quantum neural network and related basic of feature extraction from the
signature dataset are explained in details. !
 This method forms a neural network architecture, which consists of three layers,
input layer, one hidden layer and the output layer. The number of input nodes is equal to
the number of attributes(features extracted) of signature dataset. Let P1
=(X1;X2;X3;::::;Xc) denote the input samples, where c1 is the number of input samples
and Xi = (Xl; X2; X3; ::::; Xe) where e is the number of attributes in one instance of
input sample. Therefore, the number of input layer node is equal to e . The number of
neurons in the hidden layer is decided using the used constructive algorithm. For ith
hidden layer neuron, connection weights are denoted as follows:

!
 Wireal = (W1 ;W2 ;W3 ; ::::;We)

!!
 In the algorithm used, these connection weights are decided using the quantum
computing concept. Its representation in terms of quantum bits is defined as follows: !

Wi
quant = (Q1;Q2;Q3; ::::::;Qe) !

�12

!
Where, each Wij is denoted by Qij , thus Wireal can be represented as Wiquant. !!
2.1.1 The Quantum Concept!!
 For an appropriate selection of learning parameters, quantum computing concept
is utilised (Gandhi et al., 2013). The parameters are represented in terms of a quantum bit
(Qi) . These quantum bits (Qi) , are made up of several qubits qij (where j=1,2,….,k).
Here, the k number of qubits which represent quantum bit (Qi). A single qubit (qij) is
the smallest unit of representing information.

!!
Figure 2.1: Conversion into qubits and further into subspaces !

2.1.2 Conversion from quantum bits to real value!!
! In the proposed algorithm, quantum based weights and threshold are required to
convert into real coded value, so that it can be processed on classical computers. The
weight matrix in terms of quantum bits Wiquant , is converted into a real value weight
matrix Wireal. Similarly, the threshold value in terms of quantum bits, Thi is converted into
real value Thireal . This conversion process starts by taking random number matrices R ,
where Ri = [r1r2::::rk] , corresponding to a quantum bitQi = (qi1j qi2j ::::::qik). Then,
further mapping is done by using binary matrix Si where Si = [S1 S2 ::::Sk] and
Gaussian random number generator with mean value (mue) and variance (sigma), which
can be represented as N(mue,sigma) .The mapping between the binary value to the
Gaussian number generator is done with the help of formula binary to decimal
conversion. The value of matrix Si is passed into bin2dec(Si) formula to select a value
from a Gaussian random generator (Lu et al., 2013).

�13

!!
2.1.3 Fuzzy Concept!!
! A fuzzy neural network or neuro-fuzzy system is a learning machine that finds the
parameters of a fuzzy system (i.e., fuzzy sets, fuzzy rules) by exploiting approximation
techniques from neural networks. Both neural networks and fuzzy systems have some
things in common. They can be used for solving a problem (e.g. pattern recognition,
regression or density estimation) if there does not exist any mathematical model of the
given problem. They solely do have certain disadvantages and advantages which almost
completely disappear by combining both concepts. Neural networks can only come into
play if the problem is expressed by a sufficient amount of observed examples. These
observations are used to train the black box. On the one hand no prior knowledge about
the problem needs to be given. On the other hand, however, it is not straightforward to
extract comprehensible rules from the neural network's structure.

Figure 2.2: A Fuzzy Cluster
 On the contrary, a fuzzy system demands linguistic rules instead of learning
examples as prior knowledge. Furthermore the input and output variables have to be
described linguistically. If the knowledge is incomplete, wrong or contradictory, then the
fuzzy system must be tuned. Since there is not any formal approach for it, the tuning is
performed in a heuristic way. This is usually very time consuming and error-
prone(Scholarpedia). !!!
2.1.5 Boundary Parameters Calculations!!
! In the proposed algorithm, the threshold Thireal of neuron is evolved using
quantum concept and boundary parameters. Here, to select threshold, min _net and max
_net parameters are introduced. These parameters are initialised as infinity and -infinity
respectively. Now these parameters are finding minimum and maximum value from the
cartesian product of input sample of both classes and weights (W1real) . These values

�14

help to find out actual distribution of projection of input dataset with connection weights.
Thus, its gives more diversity to search appropriate value of threshold and avoid local
minima and maxima problem. This parameter finds out the boundary of the projection of
input sample with connection weights help to select a threshold within this range. Thus, it
helps to bind threshold in the defined range, which solve the problem of selecting a
random threshold value and also saves the time of the learning process !!
2.2 Signature Processing and Feature Extraction!!
! Before feeding the signature data for the generation of dataset and extraction of
features from it, some preprocessing is being done as signatures can be done by inks of
various colours with different kinds of pens or pencils. It is hence first converted into a
basis black and white uniform thickness signature and then the signatures are extracted
as will be explained further. Firstly, original and forged signatures of a few people are
collected in hard copy, then these hard copies are scanned to get a signature in the form
of images. To get the signature in the input form for the proposed quantum neural network
first, the signature images are pre-processed then feature extraction is done. In this
process, the signature images are first standardised so that the differences in signatures
due to the variation in pen, discrepancies, and background noise are removed. The
following steps are followed for the preprocessing and extracting the features from the
signature image. !!
2.2.1 Conversion from RGB to B/W!!
 To preprocess signature image first its colour is made uniform. Therefore, for each
signature image which may have different colour is converted into a black and white
image !!
2.2.2 Noise Removal!!
! Once the image is converted into black and white the noise removal process start.
The signature image can have noise due to two main sources: first, the background
paper on which the signature is taken which may not be uniformly white. Secondly, the
scanning of the signed hard copy into its soft form may lead to the addition of noise. This
noise will hinder the training and testing of signatures and hence must be removed.
Median Filtering is used as a remedy here. Median filtering is more effective than
convolution methods. !!!
2.2.3 Decreasing the thickness!!

�15

! Since the difference in the nib size of pen must not be a factor affecting the
verification process, hence the thickness of pen strokes is reduced to a single pixel and
the most intense pixel value is stored with their coordinated for feature extraction. !
2.2.4 Feature Extraction!!
! After the Preprocessing is being done on the input signatures, features will be
extracted so as to put them up in the first layer of Neural Network such as !
• Number of loops

Figure2.3: Number of Loops !!
• Dimensions !

Figure 2.4: Dimensions or say Ration of dimensions !!
• Vertical Dense strip
• Horizontal Dense strip
• Dense Patch !!!!!!

�16

Figure 2.5: Dense Square
• Angle

Figure 2.6: Slope of Signature !!
• Bounding Caps

!
Figure 2.7: Image is divided in four uniform patches !!

2.3 Proposal for hardware implementation!!
! We proposed on following the FPGA based approach for hardware implementation
as it was better than the ASIC approach for testing and initial implementation as we were
aiming at !
• Comparable Performance.
• Small Development Cycle.
• Lower Cost.
• Possibility of performing algorithmic changes at the later stages of development.
• Best suited for initial prototyping

�17

!
2.4 XST User Guide!!
! At initial stage for the learning of hardware concept and introduction to HDL coding
for coding hardware blocks, several reading of the Xylinx XST Used Guide were
recommended. Xilinx® Synthesis Technology (XST) is a Xilinx application that
synthesises Hardware Description Language (HDL) designs to create Xilinx-specific
netlist files called NGC files. The NGC file is a netlist that contains both logical design
data and constraints. The NGC file takes the place of both Electronic Data Interchange
Format (EDIF) and Netlist Constraints File (NCF) files. !
 Designs are usually made up of combinatorial logic and macros such as flip-flops,
adders, subtractors, counters, FSMs, and RAMs. The macros greatly improve
performance of the synthesised designs. It is important to use coding techniques to
model the macros so they are optimally processed by XST.  
XST first tries to recognise (infer) as many macros as possible. These macros are then
passed to the Low Level Optimisation step. In order to obtain better optimisation results,
the macros are either preserved as separate blocks, or merged with surrounded logic.
This filtering depends on the type and size of a macro. For example, by default, 2-to-1
multiplexers are not preserved by the optimisation engine. Synthesis constraints control
the processing of inferred macros !!!
2.4.1 XST HDL Coding Techniques!!
 Before beginning the hardware implementation we first had to take an idea of HDL
coding techniques to be utilised in FPGA implementation. The general sections in this
context were: !
• A general description of Macro processing
• Sample log files
• Constraints that can be used to control macro processing in XST
• VHDL and Verilog coding examples. !
The chapter on HDL coding techniques included: !
Signed and unsigned support in XST: When using Verilog or VHDL in XST, some macros,
such as adders or counters, can be implemented for signed and unsigned values. For
VHDL, depending on the operation and type of the operands, we must include additional
packages in our code. To create an unsigned adder, use the arithmetic packages and
types that operate on unsigned values shown in the table below: !

Table 2.1 : Arithmetic packages and types that operate on unsigned values

PACKAGE TYPE

numeric_std unsigned

std_logic_arith unsigned

std_logic_unsigned std_logic_vector

�18

!!
To create a signed adder, use the arithmetic packages and types that operate on
unsigned values shown in the table below: !!

Table 2.2 : arithmetic packages and types that operate on signed values !!
Coding techniques for different blocks :
• Register HDL Coding Technique
• Latches HDL Coding Technique
• Tristates HDL Coding Technique
• Counters HDL Coding Technique
• Accumulators HDL Coding Technique
• Shift Registers HDL Coding Technique
• Dynamic Shift Registers HDL Coding Technique
• Multiplexers HDL Coding Technique !!
2.4.2 XST Design Constraints!
 ! !
! Constraints help you meet our design goals and obtain the best implementation of
our circuit. Constraints control various aspects of synthesis, as well as placement and
routing. Synthesis algorithms and heuristics automatically provide optimal results in most
situations. If synthesis fails to initially achieve optimal results, we use available constraints
to try other synthesis alternatives. VHDL attributes can be directly inserted into the VHDL
code and attached to individual elements of the design to control both synthesis, and
placement and routing. !
! The local specification of a constraint overrides its global setting. Similarly, if a
constraint is set both on a node (or an instance) and on the enclosing design unit, the
former takes precedence for the considered node (or instance).  
Follow these general rules:

• Several constraints can be applied on signals. In this case, the constraint must be
placed in the block where the signal is declared and used. !

• If a constraint can be applied on an entity (VHDL), then it can also be applied on
the component declaration. The ability to apply constraints on components is not
explicitly stated for each individual constraint, since it is a general XST rule. !

PACKAGE TYPE

numeric_std signed

std_logic_arith signed

std_logic_signed std_logic_vector

�19

• Some third party synthesis tools allow you to apply constraints on architectures. XST
allows constraints on architectures only for those third party constraints automatically
supported by XST. !!

Generally there are many classifications and further sub classifications of XST Design
constraints, but generally they are organised the the following types: !
• XST general constraints
• XST HDL constraints
• XST FPGA constraints
• XST CPLD(complex programable logic device) constraints
• XST Timing constraints
• XST implementation constraints
• Third party constraints !!
2.4.3 XST VHDL Language Support!!!
	 This chapter we learned how XST supports the VHDL hardware description
language, and provides details on VHDL, supported constructs, and synthesis options.
VHDL offers a broad set of constructs for compactly describing complicated logic: !
• VHDL allows the description of the structure of a system — how it is decomposed into

subsystems, and how those subsystems are interconnected. !
• VHDL allows the specification of the function of a system using familiar programming

language forms. !
• VHDL allows the design of a system to be simulated before being implemented and

manufactured. This feature allows you to test for correctness without the delay and
expense of hardware prototyping. !

• VHDL provides a mechanism for easily producing a detailed, device-dependent
version of a design to be synthesised from a more abstract specification. This feature
allows you to concentrate on more strategic design decisions, and reduce the overall
time to market for the design. !

 Further in the chapter there was an extensive study of: !
- VHDL IEEE support, explaining the IEEE supports, IEEE conflicts and how to

resolve them and the Non-LRM Complaint constructs in VHDL. !
- XST VHDL File type support explaining file read capabilities, file write capabilities

for debugging processes or to write a specific constant or generic value to an
external file. !

- Debugging using write operation in VHDL !
- VHDL Data Types

�20

!
- VHDL Record Types !
- VHDL Initial Values !
!
2.5 Vivado Design Suite(UG902)!!
	 For the introduction of C-based FPGA design HLS was introduced as, the Xilinx

High-Level Synthesis software Vivado HLS transforms a C specification into a Register
Transfer Level (RTL) implementation that synthesises into a Xilinx Field Programmable
Gate Array (FPGA).

High-Level Synthesis (HLS) bridges the software and hardware domains.

	 •	 Allows hardware designers who implement designs in an FPGA to take advantage
of the productivity benefits of working at a higher level of abstraction, while
creating high-performance hardware.

 • Provides software developers with an easy way to accelerate the computationally
intensive parts of their algorithms on a new compilation target, the FPGA provides
a massively paralleled architecture with benefits in performance, cost and power
over traditional processors.

!
The primary benefits of an HLS design methodology are improved productivity or
hardware designers and improved system performance for software designers as follow: !!
	 •	 Develops algorithms at the C-level, which abstract you from the implementation

details that consume development time.

 • Verification at the C-level, which allows you to validate the functional correctness of
the orders of magnitude faster than traditional hardware description languages
allows.

 • Controls the C synthesis process through optimisation directives allowing the
creation of specific high-performance hardware implementations.

 • Quickly create many different implementations from the C source code using
optimisation directives which enables easy design space exploration and improves
the likelihood of finding the most-optimal implementation

!
! Using the HLS Design methodology also ensures read-able and portable C source
code. You can re-target the C source into different FPGA devices as well as incorporated
into newer projects.  !

�21

 The introduction section explains the basic concepts associated with High-Level
Synthesis (HLS) and provides an overview of the usage and capabilities of Vivado HLS.

Figure 2.8 : HLS Overview

!
! Further in this chapter the basics about Vivado HLS were explained such as how to
use it(starting a new project, documentation, tutorials), HLS ultra fast design methodology
as a key component in using a High-Level Synthesis design flow is to follow a good
design methodology, managing interfaces which is very important to understand because
in C based design, all input and output operations are performed, in zero time, through
formal function arguments. In an RTL design these same input and output operations
must be performed through a port in the design interface and typically operates using a
specific I/O (input-output) protocol. Design optimisation outlining the various
optimisations and techniques that can be employed to direct Vivado HLS to produce a
micro-architecture that satisfies the desired performance, and area goals. RTL verification
is a Post-synthesis verification is automated through the C/RTL co-simulation feature
which re-uses the pre-synthesis C test bench to perform verification on the output RTL..
Finally exporting the RTL design, the final step in the Vivado HLS flow is to export the RTL
design as a block of Intellectual Property (IP) which can be used by other tools in the
Xilinx design flow.

�22

!!
2.6 Vivado HLS!!
! Our respective study starts with the paper published in IEEE in 2016 naming High
level synthesis using Vivado HLS for Zynq SOC : Image Processing Case Studies
authored by A. Cortes et. al. The paper gives a comparative analysis between the
synthesis reports of hand coded HDL and vivado HLS. They have shown some of the
most common image processing algorithms : Data Binning, Sobel Filter, Step Row Filter.
These algorithm have very high computational complexity. Authors tried to explain pros
and cons of Vivado HLS. Author finds that time to market is less and handling of complex
computational algorithm is quite easy in case of Vivado HLS. However the libraries of
Vivado HLS significantly increases the necessary FPGA resources. Vivado HLS have
some libraries similar to OpenCV which helps the user to develop projects even faster
since software designers are familiar to these libraries. the data binning operation was
implemented by using the Resize function of the hls_video_imgproc library. This function
uses bi-linear interpolation to reduce the size of the input image to the size of the output
image. The FPGA resources using the hls_video_imgproc library increase significantly
with respect to the hand-coded solution.

Figure 3.3: Illustration 1: A. Cortes et. al.!

Figure 3.4: Illustration 2: A. Cortes et. al.

�23

!!
Based on these illustrations some conclusions were being made, !!
2.6.1 Usefulness of Vivado HLS!!
• Easier to implement computationally demanding algorithm.

• Higher Abstract level makes easy for normal software program to code for FPGA.

• Using a simple set of directives, multiple iterations are unrolled, each having its own
loop body without the designer needing to worry about synchronisation issues as
required in an HDL design.

• It is easier to pipeline the design. It reduces the complexity involved with the tracking
register assignments.

• Flexibility — instantiation of multiple identical modules.
!
!
2.6.2 Vivado HLS are used by!
!
• Companies who want to reduce time to market, want to use re-configurable logic and

do not want to invest on VLSI design engineer.

• Researchers are using it for comparative analysis.

• Researchers are also using this tool to implement the algorithm and test its functionality
on hardware before actually going for HDL code.

• Used for hardware software co-design problems (used at cern).

!
!
2.6.3 Problems with Vivado HLS!
!
• Proper control is hard to find.

• Too much latency.

• Over utilisation of resources.

!
!
!

�24

!
!
!
Chapter 3!
!
!
Design and Analysis!
!
!
!
3.1 Overview!

! !
! We started off the project work with the understanding of the Quantum Fuzzy
Neural Network Algorithm and understanding the software implementation of the
algorithm in MATLAB. For the next step we learned and practiced various hardware
modules from basics to multiple blocks. Moving on to next step we were recommended to
convert the presently available MATLAB implementation of the algorithm into a C-code for
better understanding of all the blocks and flow of the code involved in the training, but
conversion of MATLAB code into C-code was to be hardcoded line by without using any
libraries except the standard input/output library and the math.h header file library. After
the conversion of code we went on to understanding of VLSI hardware design flow to be
followed for the hardware implementation. Design flow will be necessary so as to provide
some algorithmic accelerations on the later stages of hardware implementation as well as
it involves the study of optimal resource allotment. the work flow on project is also
represented in the flow diagram on the next page.!

!
3.2 VLSI Design Flow!

!
! Today, VLSI design flow is a very solid and mature process. The overall VLSI
design flow and the various steps within the VLSI design flow have proven to be both
practical and robust in multi-millions VLSI designs until now. Assuming your VLSI
specifications are completed and approved by the different parties, it’s time to start
thinking about the architectural design. In VLSI system design phase, the entire chip
functionality is broken down to small pieces with clear understanding about the block
implementation. For example: for an encryption block, do you use a CPU or a state

�25

Figure 3.1: Flow of Project work!!!
machine. Some other large blocks need to be divided into subsystems and the
relationship between the various blocks has to be defined. In this phase the
working environment is documentation. Each and every step of the VLSI design flow has
a dedicated EDA tool that covers all the aspects related to the specific task perfectly. And
most importantly, all the EDA tools can import and export the different file types to help
making a flexible VLSI design flow that uses multiple tools. VLSI design flow can be better
explained in the flow chart below: !!
3.2.1 Design Entry!!
! This is the algorithmic stage of hardware implementation where frame the design of
the algorithm. It includes converting the algorithm into a working VHDL(or any other
hardware definition language) code. This part !
was taken care in the stage of C-code generation and while modification of C-code into
Vivado HLS supported code. !!!!

�26

Figure 3.2: VLSI Design Flow!!
3.2.2 Design Synthesis!!
! This stage essentially covers the conversion of hardware definition language code
to Register Transfer Level(RTL), or say conversion of VHDL in RTL. Creation of logic
elements takes place at this stage. this stage on initial level will be taken care by the HLS
tool, generally this stage is done manually after the study of performance of HLS tool is
being completed by an expert in VLSI design. !!
3.2.3 Design Implementation!!
! This is the final placement routing stage, it includes where the logics are to be
implemented, in what cell and how the connections are made so as to attain
synchronisation and less latency. This stage too will be handled by the HLS tool for the
initial hardware implementation. !!

�27

3.3 C-code Conversion!!
! In this project the major challenging part was coding of the algorithm into a C or C
++ code without using any libraries except the basic math.h and I/O libraries. As the
Vivado HLS Math Library (hls_math.h) provides extensive support for the synthesis of the
standard C (math.h) and C++ (cmath.h) libraries but not every function supported by the
standard C math libraries is provided in the HLS Math Library. Some of the supported
math functions are in the list below(which were used in the code) which are supported for
synthesis: !
• Exponential
• Logarithmic
• Trigonometric
• Modulus, Square,Sqrt, etc. !!
The C-code Implementation of the algorithm can be downloaded from https://
www.dropbox.com/sh/83rm0ufwy57dbed/AACBogu42ESHqZ6PhEsjmew5a?dl=0 !
3.4 Testing code Generation!!
! Next step after conversion of the C-code was generating Testing code in C. Initially,
we read the IRIS data from the "iris.txt" file and split the training examples and category
into two matrices 'X' and 'y' respectively. !
We then create matrices 'Centres', 'Betas', 'Theta' which would store the values we
calculated after training the classifier. !
In the next step, we call the 'get_accuracy' function and pass the above matrices as
parameters.
The 'get_accucracy' function will predict the category for each input row one by one by
passing each of them to the 'evaluateRBFN' function. The predicted category is then
compared to the actual answer and in case of a match, we increment the 'numRight'
counter by one. !
The final accuracy can be calculated by the formula: ((numRight)/(total)) * 100 !
The 'evaluateRBFN' function works in the following manner-
1. 'diffs' matrix is created which holds the absolute distance between each row of the
'Centres' matrix and the 'input' vector.
2. 'sqrdDists' array is calculated by squaring each element of the 'diffs' matrix and storing
the sum of each row as the Ith element in the array.
3. 'phis' matrix is calculated by exp(-1 * 'Betas' * 'sqrdDists')
4. A row of ones is added to the top of the 'phis' matrix.
5. The transpose of theta is calculated and stored in the 'Theta_transpose' matrix.
6. The final scored matrix can be calculated by multiplying 'Theta_transpose' with 'phis'
matrix.
7. In the 'scores' matrix, if the Ith row has the maximum values, then the predicted
category is 'I'. (1-based indexing)

�28

!!
3.5 Testing code to Vivado HLS!!
! Once the testing code was ready certain modifications had to be made in order for
it to work on the Vivado HLS tool. All the inputs being given to the software were given as
arrays and stored in the given Block RAM. First the Iris dataset matrix (150X4) was sent in
as an array, following that Final_centers, Final_Thetas and Final_Betas matrices were
given as input and stored in the block RAMs, then inputs were given from the test bench
and data is classified one by one into their respective categories.!!
!
3.6 Analysis of obtained results with results generated from VHDL code. !
The results obtained by synthesis of testing code done by Vivado HLS tool cab be
compared with the results generated by the hand coded VHDL implementation of the
testing code. Although the boards used in the software simulation were different but the
resources used can be compared. !
Accuracy obtained by VHDL implementation : 90.07%
Accuracy obtained by HLS Tool : 89.33% !
Time taken by VHDL implementation : 0.11 Microseconds
Time taken by HLS Tool : 0.27 Microseconds !
Total Slice LUTs utilised by VHDL implementation : 1538
Total Slice LUTs utilised by HLS Tool : 11662 !
Total DSP utilised by VHDL implementation : 87
Total DSP utilised by HLS Tool : 74 !
The above comparison between the results obtained by HLS tool and hand coded VHDL
code clearly shows that for a smaller set of operation hand-coding components in VHDL
is definitely a better option, but Vivado HLS tool does come in handy when the
implementation becomes complicated and there is extensive use of mathematical
functions. Therefore HLS tool was used as to compare the results generated by two
different methods and it reduces programers involvement lower level languages which
comes in handy with hardware implementation of complex algorithms.
 !!
!
!
!
!

�29

!
!
!
Chapter 4!
!
!
Results & Future Scope!
!
! The converted C-code was then executed and their results were compared to the
existing MATLAB code, it was observed that there was a reduction is execution of time
and dataset was learned at 100% accuracy. !
Synthesis results observed by Vivado HLS!!
FPGA Device : Virtex-7 xc7vx690tffg1761-2!
Software Tool : Vivado HLS 2016.4 !

Table 4.1 : Resource utilisation by Vivado HLS !
Time elapsed : .27 Microseconds
Time Elapsed In Software : 56 Microseconds
Accuracy obtained : 89.33
Note : The complete Report is generated and given in appendix 1. !

Name BRAM_18K DSP48E FF LUT

DSP - - - -

Expression - - 0 908

FIFO - - - -

Instance - 74 9413 10514

Memory - - - -

Multiplexer - - - 230

Register - - 719 10

Total 0 74 10132 11662

Availible 2940 3600 866400 433200

Utilisation(%) 0 2 1 2

�30

Synthesis Results Obtained by VHDL hand coding !!
FPGA Device : Zynq-7000 XC7Z020 CLG484-1 AP SoC
Software Tool : Vivado 2016.4

!

Table 4.2 : Resource utilisation by HDL Code !
Maximum Clock Frequency = 222.2 MHz
Number of Clock Cycles = 24
Time Taken = 0.11 Microseconds (Speedup by 500 Times)
Time Taken In Software = 57.54 Microseconds
Accuracy on Iris Database = 90.07 % !!
Results of Training code!!
 Before generating the testing code and then taking it to Vivado HLS synthesizable
code profiling test using the thyroid dataset and iris dataset were done with the training
code generated after conversion of code in C, to get an estimate of time utilisation of
individual functions working in the code. The complete profiling test report is attached in
appendix 2. !!
Hardware Generation for Q-FNN!

!
! With the understanding of the Q-FNN algorithm and its resource utilisation
hardware profiling was done for the algorithm and the following VLSI Design was
generated : !
!
!
!
!
!

Resources Utilised Availible Utilisation (%)

Slice LUTs 1538 53200 2.89

Slice Registers 1259 106400 1.18

DSP 87 220 39.55

�31

!

Figure 4.1 : Design and Implemented Architecture of Q-FNN

!
Future Scope!

!
! The works to be taken care in the remaining part of the project and future aspects
of this project can be: !
• FPGA implementation of complete QFNN algorithm in HDL
• FPGA implementation of complete QFNN algorithm in Vivado HLS
• Dedicated hardware for Signature verification using QFNN algorithm!
!
!
!
!
!
!
!

�32

Bibliography!
!

!
Patel, O. P. and Tiwari, A. (2014) ‘Quantum inspired binary neural network algorithm’,
IEEE International Conference on Information Technology (ICIT), Bhubaneswar, India ,
pp.270–274. !!
 Buryne, P. d. and Forre, R. (1986) ‘Signature verification with elastic image matching’,
IEEE International Carnahan Conference on Security Technology Gothenburg, Sweden,
August!!!
 Gandhi,V., Prasad, G., Coyle, D., Behera, L., and McGinnity, T. M. (2013) ‘Quantum
neural network-based eeg filtering for a brain-computer interface’, IEEE Transactions on
Neural Networks and Learning Systems , Vol. 25, No. 2, pp.278–288. !!
Xilinx XST User Guide for basics of hardware blocks and block coding in VHLD. https://
www.xilinx.com/itp/xilinx10/books/docs/xst/xst.pdf !!
Xilinx Vivado HLS UG902, UG871 and UG998 user guide for transformation of a C
specification into a Register Transfer Level (RTL) implementation that synthesizes into a
Xilinx Field Programmable Gate Array (FPGA). https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf !!
Xilinx XAPP 890 user guide for how to generate the Sobel edge detection filter in the
Zynq™-7000 All Programmable SoC ZC702 Base Targeted Reference Design (TRD)
using the Vivado™ High-Level Synthesis (HLS) tool.
https://www.xilinx.com/support/documentation/application_notes/xapp890-zynq-sobel-
vivado-hls.pdf !!
Xilinx AXI Interconnect for the information on how to connect one or more AXI memory-
mapped Master devices to one or more memory-mapped Slave devices. https://
www.xilinx.com/products/intellectual-property/axi_interconnect.html#overview !
Wikipiedia : for basic study of Quantum and Fuzzy concepts, Physical design
(electronics) for VLSI design and study of features and feature extraction for signature
dataset. !
anysilicon.com for instructions on VLSI design flow. !
Scholorpedia for Concepts of Neural Networks and Comparisions in different algorithms. !! !

�33

https://www.xilinx.com/itp/xilinx10/books/docs/xst/xst.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp890-zynq-sobel-vivado-hls.pdf
https://www.xilinx.com/products/intellectual-property/axi_interconnect.html#overview
http://anysilicon.com

Appendix 1!

!
�34

!

!
�35

!!!
�36

!!
�37

!!
�38

!
!
�39

Appendix 2(Profiling result Iris Dataset)!
Flat profile: !
Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
100.03 0.01 0.01 6 1.67 1.67 getTheta
 0.00 0.01 0.00 9583 0.00 0.00 sqr
 0.00 0.01 0.00 6831 0.00 0.00 getnew
 0.00 0.01 0.00 1554 0.00 0.00 parse
 0.00 0.01 0.00 1526 0.00 0.00 getRBFActivations
 0.00 0.01 0.00 1036 0.00 0.00 getCofactor
 0.00 0.01 0.00 793 0.00 0.00 multiply
 0.00 0.01 0.00 775 0.00 0.00 transpose
 0.00 0.01 0.00 763 0.00 0.00 evaluateRBFN
 0.00 0.01 0.00 148 0.00 0.00 randval
 0.00 0.01 0.00 104 0.00 0.00 lookup_table
 0.00 0.01 0.00 95 0.00 0.00 det
 0.00 0.01 0.00 34 0.00 0.00 readfile
 0.00 0.01 0.00 30 0.00 0.00 concat_row_wise
 0.00 0.01 0.00 24 0.00 0.00 writefile
 0.00 0.01 0.00 6 0.00 0.00 GetCenters
 0.00 0.01 0.00 6 0.00 0.00 adjoint
 0.00 0.01 0.00 6 0.00 0.00 euclidean
 0.00 0.01 0.00 6 0.00 0.00 get_accuracy
 0.00 0.01 0.00 6 0.00 0.00 get_betas
 0.00 0.01 0.00 6 0.00 0.00 get_kmat
 0.00 0.01 0.00 6 0.00 0.00 get_m
 0.00 0.01 0.00 6 0.00 0.00 get_mem_mat
 0.00 0.01 0.00 6 0.00 0.00 getrandnew
 0.00 0.01 0.00 6 0.00 0.00 initCentersUsingQ
 0.00 0.01 0.00 6 0.00 0.00 inverse
 0.00 0.01 0.00 3 0.00 0.00 unique_elements
 0.00 0.01 0.00 2 0.00 0.00 get_max
 0.00 0.01 0.00 2 0.00 0.00 init_center_quantum
 0.00 0.01 0.00 2 0.00 0.00 init_m_quantum
 0.00 0.01 0.00 2 0.00 5.00 trainRBFN_final
 0.00 0.01 0.00 1 0.00 0.00 in_dat
 0.00 0.01 0.00 1 0.00 10.00 train_final !
 % the percentage of the total running time of the
time program used by this function. !
cumulative a running sum of the number of seconds accounted
 seconds for by this function and those listed above it. !
 self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
 listing. !
calls the number of times this function was invoked, if
 this function is profiled, else blank. !
 self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
 else blank. !
 total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
 function is profiled, else blank.

�40

!
name the name of the function. This is the minor sort
 for this listing. The index shows the location of
 the function in the gprof listing. If the index is
 in parenthesis it shows where it would appear in
 the gprof listing if it were to be printed. !
Copyright (C) 2012-2015 Free Software Foundation, Inc. !
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. !
 Call graph (explanation follows) !!
granularity: each sample hit covers 2 byte(s) for 99.97% of 0.01 seconds !
index % time self children called name
 0.01 0.00 6/6 trainRBFN_final [2]
[1] 100.0 0.01 0.00 6 getTheta [1]
 0.00 0.00 763/1554 parse [7]
 0.00 0.00 763/1526 getRBFActivations [8]
 0.00 0.00 30/6831 getnew [6]
 0.00 0.00 30/793 multiply [10]
 0.00 0.00 12/775 transpose [11]
 0.00 0.00 6/6 inverse [29]

 0.00 0.01 2/2 train_final [3]
[2] 100.0 0.00 0.01 2 trainRBFN_final [2]
 0.01 0.00 6/6 getTheta [1]
 0.00 0.00 130/9583 sqr [5]
 0.00 0.00 104/104 lookup_table [14]
 0.00 0.00 42/6831 getnew [6]
 0.00 0.00 22/34 readfile [16]
 0.00 0.00 10/24 writefile [18]
 0.00 0.00 6/6 get_m [25]
 0.00 0.00 6/6 initCentersUsingQ [28]
 0.00 0.00 6/6 get_kmat [24]
 0.00 0.00 6/6 get_mem_mat [26]
 0.00 0.00 6/6 GetCenters [19]
 0.00 0.00 6/6 get_betas [23]
 0.00 0.00 6/6 get_accuracy [22]
 0.00 0.00 2/2 init_center_quantum [32]
 0.00 0.00 2/2 init_m_quantum [33]

 0.00 0.01 1/1 main [4]
[3] 100.0 0.00 0.01 1 train_final [3]
 0.00 0.01 2/2 trainRBFN_final [2]
 0.00 0.00 30/30 concat_row_wise [17]
 0.00 0.00 28/1554 parse [7]
 0.00 0.00 14/6831 getnew [6]
 0.00 0.00 1/1 in_dat [34]
 0.00 0.00 1/3 unique_elements [30]

 <spontaneous>
[4] 100.0 0.00 0.01 main [4]
 0.00 0.01 1/1 train_final [3]

 0.00 0.00 130/9583 trainRBFN_final [2]

�41

 0.00 0.00 136/9583 initCentersUsingQ [28]
 0.00 0.00 213/9583 get_betas [23]
 0.00 0.00 9104/9583 get_kmat [24]
[5] 0.0 0.00 0.00 9583 sqr [5]

 0.00 0.00 1/6831 in_dat [34]
 0.00 0.00 4/6831 init_center_quantum [32]
 0.00 0.00 6/6831 adjoint [20]
 0.00 0.00 6/6831 euclidean [21]
 0.00 0.00 6/6831 get_mem_mat [26]
 0.00 0.00 6/6831 get_m [25]
 0.00 0.00 6/6831 GetCenters [19]
 0.00 0.00 6/6831 get_accuracy [22]
 0.00 0.00 12/6831 inverse [29]
 0.00 0.00 12/6831 get_kmat [24]
 0.00 0.00 12/6831 initCentersUsingQ [28]
 0.00 0.00 12/6831 get_betas [23]
 0.00 0.00 14/6831 train_final [3]
 0.00 0.00 30/6831 concat_row_wise [17]
 0.00 0.00 30/6831 getTheta [1]
 0.00 0.00 34/6831 readfile [16]
 0.00 0.00 42/6831 trainRBFN_final [2]
 0.00 0.00 418/6831 det [15]
 0.00 0.00 775/6831 transpose [11]
 0.00 0.00 793/6831 multiply [10]
 0.00 0.00 1554/6831 parse [7]
 0.00 0.00 3052/6831 getRBFActivations [8]
[6] 0.0 0.00 0.00 6831 getnew [6]

 0.00 0.00 28/1554 train_final [3]
 0.00 0.00 763/1554 getTheta [1]
 0.00 0.00 763/1554 get_accuracy [22]
[7] 0.0 0.00 0.00 1554 parse [7]
 0.00 0.00 1554/6831 getnew [6]

 0.00 0.00 763/1526 getTheta [1]
 0.00 0.00 763/1526 evaluateRBFN [12]
[8] 0.0 0.00 0.00 1526 getRBFActivations [8]
 0.00 0.00 3052/6831 getnew [6]

 0.00 0.00 89/1036 adjoint [20]
 0.00 0.00 947/1036 det [15]
[9] 0.0 0.00 0.00 1036 getCofactor [9]

 0.00 0.00 30/793 getTheta [1]
 0.00 0.00 763/793 evaluateRBFN [12]
[10] 0.0 0.00 0.00 793 multiply [10]
 0.00 0.00 793/6831 getnew [6]

 0.00 0.00 12/775 getTheta [1]
 0.00 0.00 763/775 evaluateRBFN [12]
[11] 0.0 0.00 0.00 775 transpose [11]
 0.00 0.00 775/6831 getnew [6]

 0.00 0.00 763/763 get_accuracy [22]
[12] 0.0 0.00 0.00 763 evaluateRBFN [12]
 0.00 0.00 763/1526 getRBFActivations [8]
 0.00 0.00 763/775 transpose [11]
 0.00 0.00 763/793 multiply [10]

�42

 0.00 0.00 12/148 get_m [25]
 0.00 0.00 68/148 getrandnew [27]
 0.00 0.00 68/148 initCentersUsingQ [28]
[13] 0.0 0.00 0.00 148 randval [13]

 0.00 0.00 104/104 trainRBFN_final [2]
[14] 0.0 0.00 0.00 104 lookup_table [14]

 947 det [15]
 0.00 0.00 6/95 inverse [29]
 0.00 0.00 89/95 adjoint [20]
[15] 0.0 0.00 0.00 95+947 det [15]
 0.00 0.00 947/1036 getCofactor [9]
 0.00 0.00 418/6831 getnew [6]
 947 det [15]

 0.00 0.00 6/34 get_m [25]
 0.00 0.00 6/34 initCentersUsingQ [28]
 0.00 0.00 22/34 trainRBFN_final [2]
[16] 0.0 0.00 0.00 34 readfile [16]
 0.00 0.00 34/6831 getnew [6]

 0.00 0.00 30/30 train_final [3]
[17] 0.0 0.00 0.00 30 concat_row_wise [17]
 0.00 0.00 30/6831 getnew [6]

 0.00 0.00 2/24 init_center_quantum [32]
 0.00 0.00 6/24 get_m [25]
 0.00 0.00 6/24 initCentersUsingQ [28]
 0.00 0.00 10/24 trainRBFN_final [2]
[18] 0.0 0.00 0.00 24 writefile [18]

 0.00 0.00 6/6 trainRBFN_final [2]
[19] 0.0 0.00 0.00 6 GetCenters [19]
 0.00 0.00 6/6831 getnew [6]

 0.00 0.00 6/6 inverse [29]
[20] 0.0 0.00 0.00 6 adjoint [20]
 0.00 0.00 89/1036 getCofactor [9]
 0.00 0.00 89/95 det [15]
 0.00 0.00 6/6831 getnew [6]

 0.00 0.00 6/6 get_kmat [24]
[21] 0.0 0.00 0.00 6 euclidean [21]
 0.00 0.00 6/6831 getnew [6]

 0.00 0.00 6/6 trainRBFN_final [2]
[22] 0.0 0.00 0.00 6 get_accuracy [22]
 0.00 0.00 763/1554 parse [7]
 0.00 0.00 763/763 evaluateRBFN [12]
 0.00 0.00 6/6831 getnew [6]

 0.00 0.00 6/6 trainRBFN_final [2]
[23] 0.0 0.00 0.00 6 get_betas [23]
 0.00 0.00 213/9583 sqr [5]
 0.00 0.00 12/6831 getnew [6]

 0.00 0.00 6/6 trainRBFN_final [2]
[24] 0.0 0.00 0.00 6 get_kmat [24]
 0.00 0.00 9104/9583 sqr [5]

�43

 0.00 0.00 12/6831 getnew [6]
 0.00 0.00 6/6 euclidean [21]

 0.00 0.00 6/6 trainRBFN_final [2]
[25] 0.0 0.00 0.00 6 get_m [25]
 0.00 0.00 12/148 randval [13]
 0.00 0.00 6/34 readfile [16]
 0.00 0.00 6/6831 getnew [6]
 0.00 0.00 6/24 writefile [18]

 0.00 0.00 6/6 trainRBFN_final [2]
[26] 0.0 0.00 0.00 6 get_mem_mat [26]
 0.00 0.00 6/6831 getnew [6]

 0.00 0.00 6/6 initCentersUsingQ [28]
[27] 0.0 0.00 0.00 6 getrandnew [27]
 0.00 0.00 68/148 randval [13]

 0.00 0.00 6/6 trainRBFN_final [2]
[28] 0.0 0.00 0.00 6 initCentersUsingQ [28]
 0.00 0.00 136/9583 sqr [5]
 0.00 0.00 68/148 randval [13]
 0.00 0.00 12/6831 getnew [6]
 0.00 0.00 6/6 getrandnew [27]
 0.00 0.00 6/34 readfile [16]
 0.00 0.00 6/24 writefile [18]

 0.00 0.00 6/6 getTheta [1]
[29] 0.0 0.00 0.00 6 inverse [29]
 0.00 0.00 12/6831 getnew [6]
 0.00 0.00 6/95 det [15]
 0.00 0.00 6/6 adjoint [20]

 0.00 0.00 1/3 train_final [3]
 0.00 0.00 2/3 init_center_quantum [32]
[30] 0.0 0.00 0.00 3 unique_elements [30]

 0.00 0.00 2/2 init_center_quantum [32]
[31] 0.0 0.00 0.00 2 get_max [31]

 0.00 0.00 2/2 trainRBFN_final [2]
[32] 0.0 0.00 0.00 2 init_center_quantum [32]
 0.00 0.00 4/6831 getnew [6]
 0.00 0.00 2/2 get_max [31]
 0.00 0.00 2/3 unique_elements [30]
 0.00 0.00 2/24 writefile [18]

 0.00 0.00 2/2 trainRBFN_final [2]
[33] 0.0 0.00 0.00 2 init_m_quantum [33]

 0.00 0.00 1/1 train_final [3]
[34] 0.0 0.00 0.00 1 in_dat [34]
 0.00 0.00 1/6831 getnew [6]
--- !
 This table describes the call tree of the program, and was sorted by
 the total amount of time spent in each function and its children. !
 Each entry in this table consists of several lines. The line with the
 index number at the left hand margin lists the current function.

�44

 The lines above it list the functions that called this function,
 and the lines below it list the functions this one called.
 This line lists:
 index A unique number given to each element of the table.
 Index numbers are sorted numerically.
 The index number is printed next to every function name so
 it is easier to look up where the function is in the table. !
 % time This is the percentage of the `total' time that was spent
 in this function and its children. Note that due to
 different viewpoints, functions excluded by options, etc,
 these numbers will NOT add up to 100%. !
 self This is the total amount of time spent in this function. !
 children This is the total amount of time propagated into this
 function by its children. !
 called This is the number of times the function was called.
 If the function called itself recursively, the number
 only includes non-recursive calls, and is followed by
 a `+' and the number of recursive calls. !
 name The name of the current function. The index number is
 printed after it. If the function is a member of a
 cycle, the cycle number is printed between the
 function's name and the index number. !!
 For the function's parents, the fields have the following meanings: !
 self This is the amount of time that was propagated directly
 from the function into this parent. !
 children This is the amount of time that was propagated from
 the function's children into this parent. !
 called This is the number of times this parent called the
 function `/' the total number of times the function
 was called. Recursive calls to the function are not
 included in the number after the `/'. !
 name This is the name of the parent. The parent's index
 number is printed after it. If the parent is a
 member of a cycle, the cycle number is printed between
 the name and the index number. !
 If the parents of the function cannot be determined, the word
 `<spontaneous>' is printed in the `name' field, and all the other
 fields are blank. !
 For the function's children, the fields have the following meanings: !
 self This is the amount of time that was propagated directly
 from the child into the function. !
 children This is the amount of time that was propagated from the
 child's children to the function. !
 called This is the number of times the function called

�45

 this child `/' the total number of times the child
 was called. Recursive calls by the child are not
 listed in the number after the `/'. !
 name This is the name of the child. The child's index
 number is printed after it. If the child is a
 member of a cycle, the cycle number is printed
 between the name and the index number. !
 If there are any cycles (circles) in the call graph, there is an
 entry for the cycle-as-a-whole. This entry shows who called the
 cycle (as parents) and the members of the cycle (as children.)
 The `+' recursive calls entry shows the number of function calls that
 were internal to the cycle, and the calls entry for each member shows,
 for that member, how many times it was called from other members of
 the cycle. !
Copyright (C) 2012-2015 Free Software Foundation, Inc. !
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. !
Index by function name !
 [19] GetCenters [24] get_kmat [14] lookup_table
 [20] adjoint [25] get_m [10] multiply
 [17] concat_row_wise [31] get_max [7] parse
 [15] det [26] get_mem_mat [13] randval
 [21] euclidean [6] getnew [16] readfile
 [12] evaluateRBFN [27] getrandnew [5] sqr
 [9] getCofactor [34] in_dat [2] trainRBFN_final
 [8] getRBFActivations [28] initCentersUsingQ [3] train_final
 [1] getTheta [32] init_center_quantum [11] transpose
 [22] get_accuracy [33] init_m_quantum [30] unique_elements
 [23] get_betas [29] inverse [18] writefile !!!!!!!!!!!!!!!!!

�46

!
Appendix 3(Profiling Result Thyroid Dataset)!

Flat profile: !
Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 50.01 0.01 0.01 2568 0.00 0.00 parse
 50.01 0.02 0.01 32 0.31 0.31 GetCenters
 0.00 0.02 0.00 54247 0.00 0.00 sqr
 0.00 0.02 0.00 11156 0.00 0.00 getnew
 0.00 0.02 0.00 2486 0.00 0.00 getRBFActivations
 0.00 0.02 0.00 1298 0.00 0.00 multiply
 0.00 0.02 0.00 1265 0.00 0.00 transpose
 0.00 0.02 0.00 1243 0.00 0.00 evaluateRBFN
 0.00 0.02 0.00 1216 0.00 0.00 getCofactor
 0.00 0.02 0.00 292 0.00 0.00 randval
 0.00 0.02 0.00 216 0.00 0.00 lookup_table
 0.00 0.02 0.00 145 0.00 0.00 det
 0.00 0.02 0.00 86 0.00 0.00 concat_row_wise
 0.00 0.02 0.00 64 0.00 0.00 readfile
 0.00 0.02 0.00 45 0.00 0.00 writefile
 0.00 0.02 0.00 32 0.00 0.00 euclidean
 0.00 0.02 0.00 32 0.00 0.00 get_kmat
 0.00 0.02 0.00 32 0.00 0.00 get_mem_mat
 0.00 0.02 0.00 11 0.00 0.00 adjoint
 0.00 0.02 0.00 11 0.00 0.44 getTheta
 0.00 0.02 0.00 11 0.00 0.44 get_accuracy
 0.00 0.02 0.00 11 0.00 0.00 get_betas
 0.00 0.02 0.00 11 0.00 0.00 get_m
 0.00 0.02 0.00 11 0.00 0.00 getrandnew
 0.00 0.02 0.00 11 0.00 0.00 initCentersUsingQ
 0.00 0.02 0.00 11 0.00 0.00 inverse
 0.00 0.02 0.00 4 0.00 0.00 unique_elements
 0.00 0.02 0.00 3 0.00 0.00 get_max
 0.00 0.02 0.00 3 0.00 0.00 init_center_quantum
 0.00 0.02 0.00 3 0.00 0.00 init_m_quantum
 0.00 0.02 0.00 3 0.00 6.56 trainRBFN_final
 0.00 0.02 0.00 1 0.00 0.00 in_dat
 0.00 0.02 0.00 1 0.00 20.01 train_final_thyroid !
 % the percentage of the total running time of the
time program used by this function. !
cumulative a running sum of the number of seconds accounted
 seconds for by this function and those listed above it. !
 self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
 listing. !
calls the number of times this function was invoked, if
 this function is profiled, else blank. !
 self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
 else blank. !
 total the average number of milliseconds spent in this

�47

ms/call function and its descendents per call, if this
 function is profiled, else blank. !
name the name of the function. This is the minor sort
 for this listing. The index shows the location of
 the function in the gprof listing. If the index is
 in parenthesis it shows where it would appear in
 the gprof listing if it were to be printed. !
Copyright (C) 2012-2015 Free Software Foundation, Inc. !
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. !
 Call graph (explanation follows) !!
granularity: each sample hit covers 2 byte(s) for 49.99% of 0.02 seconds !
index % time self children called name
 0.00 0.02 1/1 main [2]
[1] 100.0 0.00 0.02 1 train_final_thyroid [1]
 0.00 0.02 3/3 trainRBFN_final [3]
 0.00 0.00 82/2568 parse [4]
 0.00 0.00 86/86 concat_row_wise [18]
 0.00 0.00 20/11156 getnew [9]
 0.00 0.00 1/1 in_dat [34]
 0.00 0.00 1/4 unique_elements [30]

 <spontaneous>
[2] 100.0 0.00 0.02 main [2]
 0.00 0.02 1/1 train_final_thyroid [1]

 0.00 0.02 3/3 train_final_thyroid [1]
[3] 98.4 0.00 0.02 3 trainRBFN_final [3]
 0.01 0.00 32/32 GetCenters [5]
 0.00 0.00 11/11 getTheta [6]
 0.00 0.00 11/11 get_accuracy [7]
 0.00 0.00 270/54247 sqr [8]
 0.00 0.00 216/216 lookup_table [16]
 0.00 0.00 79/11156 getnew [9]
 0.00 0.00 42/64 readfile [19]
 0.00 0.00 32/32 get_kmat [22]
 0.00 0.00 32/32 get_mem_mat [23]
 0.00 0.00 20/45 writefile [20]
 0.00 0.00 11/11 get_m [26]
 0.00 0.00 11/11 initCentersUsingQ [28]
 0.00 0.00 11/11 get_betas [25]
 0.00 0.00 3/3 init_center_quantum [32]
 0.00 0.00 3/3 init_m_quantum [33]

 0.00 0.00 82/2568 train_final_thyroid [1]
 0.00 0.00 1243/2568 getTheta [6]
 0.00 0.00 1243/2568 get_accuracy [7]
[4] 50.0 0.01 0.00 2568 parse [4]
 0.00 0.00 2568/11156 getnew [9]

 0.01 0.00 32/32 trainRBFN_final [3]
[5] 50.0 0.01 0.00 32 GetCenters [5]

�48

 0.00 0.00 32/11156 getnew [9]

 0.00 0.00 11/11 trainRBFN_final [3]
[6] 24.2 0.00 0.00 11 getTheta [6]
 0.00 0.00 1243/2568 parse [4]
 0.00 0.00 1243/2486 getRBFActivations [10]
 0.00 0.00 55/11156 getnew [9]
 0.00 0.00 55/1298 multiply [11]
 0.00 0.00 22/1265 transpose [12]
 0.00 0.00 11/11 inverse [29]

 0.00 0.00 11/11 trainRBFN_final [3]
[7] 24.2 0.00 0.00 11 get_accuracy [7]
 0.00 0.00 1243/2568 parse [4]
 0.00 0.00 1243/1243 evaluateRBFN [13]
 0.00 0.00 11/11156 getnew [9]

 0.00 0.00 270/54247 initCentersUsingQ [28]
 0.00 0.00 270/54247 trainRBFN_final [3]
 0.00 0.00 372/54247 get_betas [25]
 0.00 0.00 53335/54247 get_kmat [22]
[8] 0.0 0.00 0.00 54247 sqr [8]

 0.00 0.00 1/11156 in_dat [34]
 0.00 0.00 6/11156 init_center_quantum [32]
 0.00 0.00 11/11156 adjoint [24]
 0.00 0.00 11/11156 get_m [26]
 0.00 0.00 11/11156 get_accuracy [7]
 0.00 0.00 20/11156 train_final_thyroid [1]
 0.00 0.00 22/11156 inverse [29]
 0.00 0.00 22/11156 initCentersUsingQ [28]
 0.00 0.00 22/11156 get_betas [25]
 0.00 0.00 32/11156 euclidean [21]
 0.00 0.00 32/11156 get_mem_mat [23]
 0.00 0.00 32/11156 GetCenters [5]
 0.00 0.00 55/11156 getTheta [6]
 0.00 0.00 64/11156 readfile [19]
 0.00 0.00 64/11156 get_kmat [22]
 0.00 0.00 79/11156 trainRBFN_final [3]
 0.00 0.00 86/11156 concat_row_wise [18]
 0.00 0.00 483/11156 det [17]
 0.00 0.00 1265/11156 transpose [12]
 0.00 0.00 1298/11156 multiply [11]
 0.00 0.00 2568/11156 parse [4]
 0.00 0.00 4972/11156 getRBFActivations [10]
[9] 0.0 0.00 0.00 11156 getnew [9]

 0.00 0.00 1243/2486 getTheta [6]
 0.00 0.00 1243/2486 evaluateRBFN [13]
[10] 0.0 0.00 0.00 2486 getRBFActivations [10]
 0.00 0.00 4972/11156 getnew [9]

 0.00 0.00 55/1298 getTheta [6]
 0.00 0.00 1243/1298 evaluateRBFN [13]
[11] 0.0 0.00 0.00 1298 multiply [11]
 0.00 0.00 1298/11156 getnew [9]

 0.00 0.00 22/1265 getTheta [6]
 0.00 0.00 1243/1265 evaluateRBFN [13]
[12] 0.0 0.00 0.00 1265 transpose [12]

�49

 0.00 0.00 1265/11156 getnew [9]

 0.00 0.00 1243/1243 get_accuracy [7]
[13] 0.0 0.00 0.00 1243 evaluateRBFN [13]
 0.00 0.00 1243/2486 getRBFActivations [10]
 0.00 0.00 1243/1265 transpose [12]
 0.00 0.00 1243/1298 multiply [11]

 0.00 0.00 134/1216 adjoint [24]
 0.00 0.00 1082/1216 det [17]
[14] 0.0 0.00 0.00 1216 getCofactor [14]

 0.00 0.00 22/292 get_m [26]
 0.00 0.00 135/292 getrandnew [27]
 0.00 0.00 135/292 initCentersUsingQ [28]
[15] 0.0 0.00 0.00 292 randval [15]

 0.00 0.00 216/216 trainRBFN_final [3]
[16] 0.0 0.00 0.00 216 lookup_table [16]

 1082 det [17]
 0.00 0.00 11/145 inverse [29]
 0.00 0.00 134/145 adjoint [24]
[17] 0.0 0.00 0.00 145+1082 det [17]
 0.00 0.00 1082/1216 getCofactor [14]
 0.00 0.00 483/11156 getnew [9]
 1082 det [17]

 0.00 0.00 86/86 train_final_thyroid [1]
[18] 0.0 0.00 0.00 86 concat_row_wise [18]
 0.00 0.00 86/11156 getnew [9]

 0.00 0.00 11/64 get_m [26]
 0.00 0.00 11/64 initCentersUsingQ [28]
 0.00 0.00 42/64 trainRBFN_final [3]
[19] 0.0 0.00 0.00 64 readfile [19]
 0.00 0.00 64/11156 getnew [9]

 0.00 0.00 3/45 init_center_quantum [32]
 0.00 0.00 11/45 get_m [26]
 0.00 0.00 11/45 initCentersUsingQ [28]
 0.00 0.00 20/45 trainRBFN_final [3]
[20] 0.0 0.00 0.00 45 writefile [20]

 0.00 0.00 32/32 get_kmat [22]
[21] 0.0 0.00 0.00 32 euclidean [21]
 0.00 0.00 32/11156 getnew [9]

 0.00 0.00 32/32 trainRBFN_final [3]
[22] 0.0 0.00 0.00 32 get_kmat [22]
 0.00 0.00 53335/54247 sqr [8]
 0.00 0.00 64/11156 getnew [9]
 0.00 0.00 32/32 euclidean [21]

 0.00 0.00 32/32 trainRBFN_final [3]
[23] 0.0 0.00 0.00 32 get_mem_mat [23]
 0.00 0.00 32/11156 getnew [9]

 0.00 0.00 11/11 inverse [29]
[24] 0.0 0.00 0.00 11 adjoint [24]

�50

 0.00 0.00 134/1216 getCofactor [14]
 0.00 0.00 134/145 det [17]
 0.00 0.00 11/11156 getnew [9]

 0.00 0.00 11/11 trainRBFN_final [3]
[25] 0.0 0.00 0.00 11 get_betas [25]
 0.00 0.00 372/54247 sqr [8]
 0.00 0.00 22/11156 getnew [9]

 0.00 0.00 11/11 trainRBFN_final [3]
[26] 0.0 0.00 0.00 11 get_m [26]
 0.00 0.00 22/292 randval [15]
 0.00 0.00 11/64 readfile [19]
 0.00 0.00 11/11156 getnew [9]
 0.00 0.00 11/45 writefile [20]

 0.00 0.00 11/11 initCentersUsingQ [28]
[27] 0.0 0.00 0.00 11 getrandnew [27]
 0.00 0.00 135/292 randval [15]

 0.00 0.00 11/11 trainRBFN_final [3]
[28] 0.0 0.00 0.00 11 initCentersUsingQ [28]
 0.00 0.00 270/54247 sqr [8]
 0.00 0.00 135/292 randval [15]
 0.00 0.00 22/11156 getnew [9]
 0.00 0.00 11/11 getrandnew [27]
 0.00 0.00 11/64 readfile [19]
 0.00 0.00 11/45 writefile [20]

 0.00 0.00 11/11 getTheta [6]
[29] 0.0 0.00 0.00 11 inverse [29]
 0.00 0.00 22/11156 getnew [9]
 0.00 0.00 11/145 det [17]
 0.00 0.00 11/11 adjoint [24]

 0.00 0.00 1/4 train_final_thyroid [1]
 0.00 0.00 3/4 init_center_quantum [32]
[30] 0.0 0.00 0.00 4 unique_elements [30]

 0.00 0.00 3/3 init_center_quantum [32]
[31] 0.0 0.00 0.00 3 get_max [31]

 0.00 0.00 3/3 trainRBFN_final [3]
[32] 0.0 0.00 0.00 3 init_center_quantum [32]
 0.00 0.00 6/11156 getnew [9]
 0.00 0.00 3/3 get_max [31]
 0.00 0.00 3/4 unique_elements [30]
 0.00 0.00 3/45 writefile [20]

 0.00 0.00 3/3 trainRBFN_final [3]
[33] 0.0 0.00 0.00 3 init_m_quantum [33]

 0.00 0.00 1/1 train_final_thyroid [1]
[34] 0.0 0.00 0.00 1 in_dat [34]
 0.00 0.00 1/11156 getnew [9]
--- !
 This table describes the call tree of the program, and was sorted by
 the total amount of time spent in each function and its children. !

�51

 Each entry in this table consists of several lines. The line with the
 index number at the left hand margin lists the current function.
 The lines above it list the functions that called this function,
 and the lines below it list the functions this one called.
 This line lists:
 index A unique number given to each element of the table.
 Index numbers are sorted numerically.
 The index number is printed next to every function name so
 it is easier to look up where the function is in the table. !
 % time This is the percentage of the `total' time that was spent
 in this function and its children. Note that due to
 different viewpoints, functions excluded by options, etc,
 these numbers will NOT add up to 100%. !
 self This is the total amount of time spent in this function. !
 children This is the total amount of time propagated into this
 function by its children. !
 called This is the number of times the function was called.
 If the function called itself recursively, the number
 only includes non-recursive calls, and is followed by
 a `+' and the number of recursive calls. !
 name The name of the current function. The index number is
 printed after it. If the function is a member of a
 cycle, the cycle number is printed between the
 function's name and the index number. !!
 For the function's parents, the fields have the following meanings: !
 self This is the amount of time that was propagated directly
 from the function into this parent. !
 children This is the amount of time that was propagated from
 the function's children into this parent. !
 called This is the number of times this parent called the
 function `/' the total number of times the function
 was called. Recursive calls to the function are not
 included in the number after the `/'. !
 name This is the name of the parent. The parent's index
 number is printed after it. If the parent is a
 member of a cycle, the cycle number is printed between
 the name and the index number. !
 If the parents of the function cannot be determined, the word
 `<spontaneous>' is printed in the `name' field, and all the other
 fields are blank. !
 For the function's children, the fields have the following meanings: !
 self This is the amount of time that was propagated directly
 from the child into the function. !
 children This is the amount of time that was propagated from the
 child's children to the function.

�52

!
 called This is the number of times the function called
 this child `/' the total number of times the child
 was called. Recursive calls by the child are not
 listed in the number after the `/'. !
 name This is the name of the child. The child's index
 number is printed after it. If the child is a
 member of a cycle, the cycle number is printed
 between the name and the index number. !
 If there are any cycles (circles) in the call graph, there is an
 entry for the cycle-as-a-whole. This entry shows who called the
 cycle (as parents) and the members of the cycle (as children.)
 The `+' recursive calls entry shows the number of function calls that
 were internal to the cycle, and the calls entry for each member shows,
 for that member, how many times it was called from other members of
 the cycle. !
Copyright (C) 2012-2015 Free Software Foundation, Inc. !
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. !
Index by function name !
 [5] GetCenters [22] get_kmat [16] lookup_table
 [24] adjoint [26] get_m [11] multiply
 [18] concat_row_wise [31] get_max [4] parse
 [17] det [23] get_mem_mat [15] randval
 [21] euclidean [9] getnew [19] readfile
 [13] evaluateRBFN [27] getrandnew [8] sqr
 [14] getCofactor [34] in_dat [3] trainRBFN_final
 [10] getRBFActivations [28] initCentersUsingQ [1] train_final_thyroid
 [6] getTheta [32] init_center_quantum [12] transpose
 [7] get_accuracy [33] init_m_quantum [30] unique_elements
 [25] get_betas [29] inverse [20] writefile !!!!!!!!!!!!!!!!

�53

Appendix 4!!!
#include <stdio.h> // Used for IO
//#include "matrix.h" // Includes the matrix.h file
#include <math.h> // Used for abs(),sin(),cos()
#include <stdlib.h>// Used for rand() function !
#define pi 3.14159265358979323846; // Value of PI
float sq2=1.41; // value of square root of 2
float eps=1e-8; // epsilon value used for comparison of two double numbers !
//
//float multiply(matrix a,rs1, cs1, matrix b, rs2, cs2){// Returns the product of two matrices
// int i, j, k;
// float res[rs1][cs2];
// //matrix res=getnew(a.rs,b.cs);
// for (i = 0; i < rs1; i++)
// {
// for (j = 0; j < cs2; j++)
// {
// res[i][j] = 0; // initializing element to 0.0
// for (k = 0; k<rs2; k++)
// res[i][j] += a[i][k]*b[k][j]; // adding values to element(refer to how matrix multiplication
is done)
// }
// }
// return res;
//}
//
//float sqr(float x){ // Functions returns square of a number
// return x*x;
//} // 125,151,185 !
/*float getRBFActivations(float centers,float betas,float input){ // Function to calculate the
RBFActivations
 float diffs [3][4];
 //matrix diffs=getnew(centers.rs,centers.cs); // matrix stores the difference of elements
between center matrix and input matrix
 float sqrdDists[4]; //diffs.rs+1 = 6
 int i,j;
 getRBFActivations_label3:for(i=0;i<3;i++){
 for(j=0;j<4;j++) diffs[i][j]=centers[i][j]-input[0][j]; // note that input matrix is a row
matrix
 }
 sqrdDists[0]=0;
 getRBFActivations_label4:for(i=0;i<3;i++){
 sqrdDists[i]=0;
 for(j=0;j<4;j++) sqrdDists[i]+=diffs[i][j]*diffs[i][j]; // finding sum of squares of
elements of diff matrix
 }
 float z[3][1];
 //matrix z=getnew(betas.rs,betas.cs);
 getRBFActivations_label5:for(i=0;i<3;i++) z[i][0]=exp(-1.0*betas[i][0]*sqrdDists[i]);
 return z;

�54

}*/ !
//matrix evaluateRBFN(matrix Centers,matrix betas,matrix Theta,matrix input){ // Function to
evaluate RBFN
// matrix phis=getRBFActivations(Centers, betas, input);
// int i,j;
// for(j=1;j<=phis.cs;j++){ // Function of this loop is to add a row of '1's before the first row of
the phis matrix
// for(i=phis.rs+1;i>=2;i--){ // shifting all elements of the phis matrix down by 1 unit
// phis.mat[i][j]=phis.mat[i-1][j];
// }
// phis.mat[1][j]=1; // setting the first row of the phis matrix to be 1
// }
// ++phis.rs; // increasing row size of phis matrix because we added a row of 1s at the top
// matrix z=multiply(transpose(Theta),phis);
// return z;
//} !
void evaluateRBFN(float Centers[3][4], float Betas[3][1], float Theta[4][3], float input[1][4], float
scores[3][1]){ // Function to evaluate RBFN
 //check here
 float phis[4][1];
 //float phis[3][1]=getRBFActivations(Centers, betas, input);
 float z[3][1];
 //till here
 float Theta_transpose[3][4];
 //int i,j; !
 //float getRBFActivations(float centers,float betas,float input){ // Function to calculate the
RBFActivations
 float diffs [3][4];
 //matrix diffs=getnew(centers.rs,centers.cs); // matrix stores the difference of
elements between center matrix and input matrix
 float sqrdDists[4]; //diffs.rs+1 = 6
 //int i,j;
 for(int i=0;i<3;i++){
 for(int j=0;j<4;j++) diffs[i][j]=(Centers[i][j])-(input[0][j]); // note that input
matrix is a row matrix
 }
 sqrdDists[0]=0;
 for(int i=0;i<3;i++){
 sqrdDists[i]=0;
 for(int j=0;j<4;j++) sqrdDists[i]+=diffs[i][j]*diffs[i][j]; // finding sum of
squares of elements of diff matrix
 }
 //float z[3][1];
 //matrix z=getnew(betas.rs,betas.cs);
 for(int i=0;i<3;i++) phis[i][0]=exp(-1.0*(Betas[i][0])*sqrdDists[i]); !
 evaluateRBFN_label6:for(int j=0;j<1;j++){ // Function of this loop is to add a row of '1's
before the first row of the phis matrix
 for(int i=3;i>0;i--){ // shifting all elements of the phis matrix down by 1 unit
 phis[i][j]=phis[i-1][j];
 }
 phis[0][j]=1; // setting the first row of the phis matrix to be 1
 }

�55

 //++phis.rs; // increasing row size of phis matrix because we added a row of 1s at the top
 //Theta_transpose = transpose(Theta,3,3);
 //matrix transpose(float temp, char cs, char rs){// Returns the transpose of the matrix
 //float ans[rs][cs];
 for(int i=0;i<3;i++){
 for(int j=0;j<4;j++){
 Theta_transpose[i][j]=Theta[j][i]; // (i,j) of transpose matrix
corresponds to (j,i) of original matrix
 }
 }
 //float multiply(matrix a,rs1, cs1, matrix b, rs2, cs2){// Returns the product of two matrices
 //int i, j, k;
 //float res[rs1][cs2];
 //matrix res=getnew(a.rs,b.cs);
 for (int i = 0; i < 3; i++)
 {
 for (int j = 0; j < 1; j++)
 {
 z[i][j] = 0; // initializing element to 0.0
 for (int k = 0; k<4; k++)
 z[i][j] += Theta_transpose[i][k]*phis[k][j]; // adding values
to element(refer to how matrix multiplication is done)
 scores[i][j]=z[i][j];
 }
 }
 int j;
 //*scores = z;
} !
void get_accuracy(float X[150][4],float y[150][1],float Centers[3][4],float Theta[4][3], float Betas[3]
[1], float *accuracy,int *numRight,int *total){ // Function to calculate Accuracy, Number of right
predictions,total predictions and indices of wrong predictions
 *numRight=0;
 int i,j;
 int numRight_1=0;
 char wrong [150][1];
 float scores[3][1];
 int l=-1;
 get_accuracy_label7:for(i=0;i<150;i++){
 float irow[1][4];
 for(j=0;j<4;j++){
 irow[0][j]=X[i][j]; }
 //printf("Iteration=%d\n",i);
 evaluateRBFN(Centers,Betas,Theta,irow,scores); //parse(X,i,i,1,X.cs) is the
rectangle with left upper corner (i,1) and lower right corner (i,X.cs)
 /*for(j=0;j<3;j++){
 printf("%f\n",scores[j][0]);
 }*/
 int idx;
 float maxscore=-1e5; // initializing maxscore to a large negative value
 for(j=0;j<3;j++){
 if(scores[j][0]>maxscore){
 maxscore=scores[j][0]; //if element is greater than maxscore, set
maxscore = element
 idx=j; // if element is greater than maxscore, we record its index
 }

�56

 }
 //printf("maxscore=%f , idx=%d\n, y[i][0]=%f",maxscore,idx,y[i][0]);
 ++idx;
 if(abs(idx-y[i][0])<eps){
 numRight_1+=1; // if idx is equal to y.mat[i][1] then increment number of
right predictions
 } !
 }
 *numRight=numRight_1;
 *total=150; // setting total number of examples equal to total number of rows in X matrix
 (*accuracy)=(100.0*(float)(numRight_1))/ 150; // calculating accuracy of classifier
 printf("total=%d ,numRight=%d \n",*total,numRight_1); !
}

�57

