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Abstract

Numerical Weather Prediction is the basis for weather forecasting which require interpretation by
experts to generate weather forecasts for a local area. NWPs predictions have very low spatial
resolution like 30-50 kms or more. For disaster management, agriculture, etc we often need weather
prediction for local regions, in some cases for a particular location. Deep learning models like CNN
can be used to downscale the global NWPs predictions to produce local forecasts.

In this project, | have used different convolutional neural network models to interpret numerical
weather prediction model data. Also, different architectures are compared against each other to find
which gives the best performance. Here the measure of the performance is mean absolute error (MAE).
We show that CNNs can learn certain configurations of the atmospheric pressure system and connect
them with wind speed and visibility. There is a possibility CNN-based models can be used to

automatically generate derived products, in addition to numerical weather model interpretation.
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Chapter 1- Introduction

Predicting and comprehending the atmospheric status in the future and the past requires numerical modelling.
Numerical Weather Predictions (NWP) models are the most common techniques for forecasting weather. These
are computer models that take the atmospheric condition and simulate its development using models that are
both physical and chemical that mathematically depict numerous physical processes of the global weather
system. In most cases, NWPs provide a significant number of parameters that reflect various physical quantities
such as humidity, temperature, pressure, wind speed, etc. Because the interactions between the quantities are
described by equations in physics, such as mass conservation, momentum conservation, and energy
conservation, these processes are well understood, but due to computational resource constraints, they are not
fully represented in the models. Many numerical simulations operate at grid spacings of approximately 20-50
km. This resolves mainly weather phenomena at large scales. NWPs are only evaluated for weather forecasting
at global or continental scales due to their coarse spatial resolution, and to make forecasts for any specific region

(downscaling), the predictions must be downscaled to a greater spatial resolution (3-5 kilometres).

For atmospheric modeling's real-world applications, such as climate risk assessment, and natural resource
planning, atmospheric variables (e.g., precipitation, 2-m temperature, wind speed) with very fine spatiotemporal
scales and, updates in near-real-time are required, which goes beyond what many meteorological centres in
operation can provide right now.. Agriculture, transportation, and energy all require high-resolution estimates
(between 1 and 5 kilometres). Predicting wind speed accurately, for example, enhances wind power generating
planning, lowering costs and maximising resource utilisation. It can also be utilised to ensure the air traffic flow
safety and to help airports construct a power generation system that is both reliable and secure. A post-
processing approach called Statistical Downscaling (SD) can offer localised information on the weather based
on reanalysis data or crude numerical model outputs, has the ability to address this issue and has sparked

considerable interest since the 1990s.

Downscaling, or at a small scale, inferring information about physical properties from publicly accessible

simulation data with a poor resolution utilising appropriate refining techniques, is one way to avoid simulations
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with a high resolution (costing a lot of money) over wide scales of space. It's the umbrella term for a method
for using data from vast scales to create predictions at smaller scales. Many scientific disciplines have long
been interested in downscaling, and there are numerous methods for downscaling physical parameters in

meteorological research. Two main classification of these methods are Dynamical and statistical downscaling.

1. Dynamical: A higher resolution climate model is utilised for dynamic downscaling. These models are
frequently referred to as regional climate models (RCM). To mimic local climate, RCM use lower
resolution climate models (in most instances GCMs) as boundary conditions and physical principles.
It is computationally expensive and necessitates a vast amount of information as well as a high degree
of understanding to apply and assess results, which is often beyond the scope of institutional capacities

in developing countries.

2. Statistical: establishing statistical linkages between large-scale climate features provided by NWPs and
local climate circumstances. In contrast to dynamical methods, statistical methods are easy to
apply and interpret. They only require a little amount of computing power, but they rely mostly on
historical climate records and the assumption that present conditions would remain similar to those
previously observed. With improved quality and longer duration of previously observed weather data,
the statistical downscaling findings improve. High-quality historical weather data, on the other hand,

is not always available.

CNNs are deep learning networks that can be used to statistically downscale weather predictions provided by
global numerical models like the NWP. CNNs have convolutional layers that receive inputs that are gridded.
The convolutional layer output channels of CNNs correspond to an activation function for each channel and a
convolution kernel. Picture classification, image segmentation, and object recognition have all been found to
be quite effective with CNNs. Deep learning-based downscaling algorithms can be a powerful and effective
way to extract fine-scale local weather data from coarse resolution global NWP data. CNNs extract spatial
information from images, enabling for the creation of higher-level structures from fine-grained input. Without
the need for huge computation needs, CNNs can give a model for directly reading numerical weather model

fields and creating local weather forecasts, as is the case with dynamical downscaling.

The employment of cutting-edge CNNs in downscaling techniques is still in its early stages. Downscaling based

on CNN has the potential to deliver novel insights in the context of SD. For starters, CNNs excel at gridded
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data learning. Based on their achievements in the field of computer vision, such as semantic segmentation, and
single-image super resolution which figures out how low-resolution and high-resolution images are related, in
gridded downscaling situations that are similar to image-to-image learning, CNNs are likely to perform well.
This is evidenced by the recent progress of sea surface temperature and precipitation downscaling. Second,
although developing creating deep-learning models from the ground up is costly, porting deep-learning models
that already exist is quick and simple. CNNs and other deep-learning models that are cutting-edge are modular

and has the ability to extract hierarchical representations for a variety of tasks for learning.

CNNs work best with regular-gridded data in multi-dimensional array representations, enabling for quick and
efficient concurrent calculation of optimization problems on computer hardware equipped with graphics
processing units (GPUs). One of CNN's primary selling factors is their computational efficiency via
parallelization, which is taken into account during model building and preparation of data. In addition, more
complex mappings can be learned, by stacking together many layers of convolution operations (increasing the
model depth) and applying them consecutively to get feature representations that is more abstract. The model
can learn nonlinear mappings by using activation functions that are non-linear, between consecutive

convolution layers, as in traditional artificial neural networks.

Beyond sequential feature processing, more complex design patterns, such as skip connections in between
convolution layers, residual learning can be employed to increase model performance. As a result, CNNs are
especially well adapted to learning tasks employing data that is spatially scattered, which are common in
meteorology. Despite the fact that CNN based model architectures are becoming more widely used in Earth-
system sciences, their application in downscaling applications has received less attention. Earlier research has
concentrated on simplistic CNN designs that do not leverage modern model design trends and so do not fully
harness the possibilities of cutting-edge CNN architectures.

In computer vision, single-image super-resolution is a problem setting that is similar to downscaling in
meteorology and climatology and is the basis of many technological advances in machine learning. The goal
is to develop mappings that allow a single image with a low resolution as an input to be increased in resolution
while avoiding pixel distortions and blurriness and keeping visual quality. Deep learning has resulted in
significant gains over traditional statistical models in this situation. CNNSs, in particular, have been shown to
be quite effective. This project shows how CNNs may be employed to automatically understand the Numerical

Weather Prediction’'s output to produce forecasts for the local area.



A variety of statistical downscaling approaches and techniques are now available as a consequence of decades
of thorough investigation. The predictands of interest in the local area (for example, temperature and pressure)
are known from Global Climate Model (GCM) outputs by making use of statistical models based on a set of
predictors (atmospheric variables at large scales, for e.g., fraction of cloud cover, temperature, relative humidity

or geopotential) that explain a significant portion of local climate variation.

Bao-Medina et al. (2019) used large-scale reanalysis predictions to investigate the viability of downscaling
temperature and precipitation with deep CNNSs, throughout Europe. To do so, they compared the CNNs provided
results with those produced through a variety of other more traditional, well-established methods, such as
generalised linear models giving the conclusion that CNNs are highly suited for applications on continental
scale, according to the researchers. Similar studies in China (Sun and Lan 2020) and North America (Pan et al
2019) have all found that convolutional neural networks perform similarly or superior to regular Statistical
Downscaling Methods (SDMs). Furthermore, the issue of feature selection is avoided by CNNs, which is very
dependent on case and becomes a difficult process in traditional downscaling approaches. These prior studies,
on the other hand, did not examine the appropriateness and drawbacks of CNNs for use in applications related
to climate change. This is especially important because these "black-box™ models have poor interpretability,
which can make analysis of extrapolation difficult. As a consequence, people are wary of using these techniques,

and regular SDMs remain the primary method for downscaling climate change scenarios.



Chapter 2- Literature review

Maraun et al. (2019) and Gutierrez et al. (2019) conducted a thorough analysis and compared different statistical
models for downscaling climatic variables, finding that several of the techniques perform well in general but
have room for improvement. Pryor (2005) and Michelangeli et al. (2009) suggested inference of wind fields
using distribution-based methods and Huang et al. (2015) for downscaling, presented a physical-statistical
hybrid technique, all addressing the topic of wind field downscaling and forecasting. Only a few smaller model
comparison studies have attempted to answer which strategies produce the best results and added benefit over
traditional approaches, with mixed findings. While Mao (2018) and Monahan (2018), and Vandal et al. (2019)
showed little or no benefit from using non-traditional machine learning techniques, Gaitan et al. (2014)
discovered that non-traditional methods outperform classical methods, with ANNs (artificial neural networks)
as an example. Buzzi et al. (2019) employed neural networks to nowecast (prediction of very near future) wind
speed in the Swiss Alps and produced highly accurate models. These seemingly contradicting findings ask when

and under what circumstances deep learning technologies can be used to downscale effectively.

Only a few research in meteorology have looked at the use of CNNs in applications of downscaling. Vandal et
al. (2018) suggested "DeepSD," a CNN for precipitation downscaling over wide domains of space, while Bao-
Medina et al. (2019) recently investigated the performance of a collection of CNNs for temperature and
precipitation downscaling over Europe. Pan et al. (2019) presented a similar architecture, focusing on
precipitation once again. While Bao-Medina et al. (2019) investigated the impact of model complexity on model
depth, the used models did not take advantage of the most latest design trends such as skip connections (e.g.,
Srivastava et al., 2015; He et al., 2016) or the fully-convolutional U-Net-like architecture (Ronneberger et al.,
2015), which makes it possible for network models to attain cutting-edge results in tasks related to computer

vision.

To test different CNN model settings, Pablo Rozas Larraondo et al., 2017, recommend using NWP and
observed precipitation data from several locations. The purpose was training a model that forecasts the
presence of rain for a specific area by making use of data from a numerical weather model as input. They used
the ERA Interim dataset from the European Centre for Medium Range Weather Forecasts (ECMWF), which
is a publicly available meteorological reanalysis dataset, as input data. This data was compiled by making use
of a numerical weather model that mimics the atmospheric state for the entire planet with a space resolution

of around 50 miles. This available data has a three-hour temporal resolution since 1979. The form of the



presented output is traditional numerical grids, with geopotential, relative humidity, wind speed among the
physical attributes to pick from. They used METARs (Meteorological Variables for Every Commercial Airport
in the World) for their target data, which are text reports on operational aviation weather that encodes every
commercial airport's observed meteorological variables.

METARSs are issued every hour or half-hour and made available to the public via the World Meteorological

Organization's (WMQO) communications system.



Chapter 3- DATA

Our task is to use numerical weather model ERA-5 geopotential data as input and METAR observations (wind

velocity, visibility, etc) as target to train the CNN models.

Estimates of a large variety of air, land, and oceanic climate variables on an hourly basis are provided by
ERADS. The data has 30 km grid resolution and atmosphere is resolved with 137 pressure levels ranging from
the ground to 80 km in altitude. ERA5 uses complex modelling and data assimilation technologies to turn
massive volumes of historical data into global estimations. The ECMWE’s ERA 5 is a publicly available
meteorological reanalysis dataset. It is reanalysis product of the global weather and climate during the previous
40 to 70 years. This dataset was created with the help of a numerical weather model that simulates the
atmospheric state for the entire Earth with a space resolution of about 30 kilometres. Since 1979, data has been
accessible with a hourly temporal resolution. The result is given in form of conventional grids of numbers, and
there are several physical characteristics to choose from, including relative humidity, geopotential, and
temperature. Using the rules of physics, reanalysis combines observations from around the world and data
from the model to create a dataset that is globally comprehensive and consistent. This is known as data
assimilation. It is based on the method, in which a a previous prediction is integrated with newly available
data/observation in an optimal way every few hours (for e.g., 12 hours at ECMWF) in order to generate a fresh
best estimate of the status of the atmosphere, known as analysis, based on which a revised and enhanced
prediction is supplied. Because reanalysis is not constrained by the need to issue forecasts that are timely, time
to gather information and data is more which benefit the reanalysis product's quality. For the reanalysis, data

is regridded to a normal latitude-longitude grid of 0.25 degrees.

Data description of Era-5:

Type of data Gridded

Projection Grid with latitudes and longitudes
Coverage on the horizontal plane Global

Resolution on the horizontal plane 0.25° x 0.25° reanalysis

Vertical coverage 1000 hPato 1 hPa

Resolution in the vertical plane 37 different pressure levels




Time coverage From 1979 to the present

Time resolution hourly

Table 1: description of Era-5 data

A unit mass's gravitational potential energy at a given location in relation to mean sea level is known as
geopotential. Its also the amount of effort required to elevate a unit mass from mean sea level to that point
against the force of gravity. The geopotential height is the ratio of geopotential and Earth’s gravitational
acceleration, g (9.80 ms-2). In the study of weather patterns, the geopotential height plays very essential role.
Weather systems for e.g., cyclones, anticyclones can be identified using geopotential height charts drawn at

constant pressure levels (e.g., 500, 700, or 1000 hPa).

METAR is a weather information reporting format. This weather report is primarily utilised by pilots and
meteorologists to help forecast weather. For every commercial airport in the globe, they encode observed
meteorological variables. METARS are issued every hour or half hour and are made available to public via the
WMO’s (World Meteorological Organization) communications system. The header of each report comprises
the ICAO (International Civil Aviation Organization) airport code as well as a time stamp in UTC, allowing it
to be understood in many parts of the world. Raw METAR is the most widely used format for transmitting
observational weather data around the world. Permanent weather monitoring stations or airports are the most
common sources of METARs. Temperature, wind speed and direction, precipitation, cloud cover, cloud heights,
visibility, and pressure are all included in a typical METAR that may be useful to pilots or meteorologists.

Input (geopotential) data used:

Spatial resolution 0.25° x 0.25°

Temporal resolution Hourly

Area covered 63°W - 102°E and 3°S - 42°N

Time period covered 3 years from 01/01/2018 to 30/12/2020
Pressure levels used 500, 700, 1000 hPa

Table 2: description of geopotential data
We extract the entire area of India and some sections of the Indian subcontinent using Era-5, resulting in an
hourly sequence of images made up of three bands that correspond to the geopotential height at the 500, 700
and 1000 atmospheric pressure levels. This variable defines the altitude at which a specific pressure value is
reached in the atmosphere, and the levels correspond to approximately 5.5, 3, and 1 km above mean sea level,

respectively. These fields were chosen because they are commonly used by weather forecasters to make



forecasts. They contain information regarding the location, shape and evolution of atmospheric pressure
systems.

The goal is to use as input ERA Interim geopotential data and METAR observations to predict the wind speed
and visibility for the airports in question.

Five airports are used.

. Trivandrum International Airport(VOTV)

. Chhatrapati Shivaji Maharaj International Airport(VABB)

. Kempegowda International Airport Bengaluru(\VOBL)

. Indira Gandhi International Airport (VIDP)

. Netaji Subhash Chandra Bose International Airport (VECC)



Data characteristics

Wind Speed (mph) data for airport VABB
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We can see that wind speed is highest in monsoon. For most times, wind speed is confined to 20 miles/hr.
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windspeed at different times in monsocon windspeed at different times in autumn
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In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the
day” is 1 hour.

We can see that wind speed is highest in monsoon. For most times, wind speed is confined to 15 miles/hr.
During monsoon, speed is highest around 12:30 pm.

Wind Speed (mph) data for airport VOTV

\[o} Mean [Median  [Mode [std dev =LA Table 4: wind speed data for
Of samples airport VOTV

26280 548 4.59 3.45 3.34 85.09 85.09
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fig 3.2(a) histogram of wind speed fig 3.2(b) histogram of wind speed in different seasons
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In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the
day” is 1 hour.

We can see that wind speed is highest in monsoon. For most times, wind speed is confined to 15 miles/hr. In
winter, autumn and summer, wind speed is highest around 2:30 pm. During monsoon, wind speed is highest
around 2:30 pm.

Wind Speed (mph) data for airport VOBL

\[o} Mean |Median [Mode range
Of samples

26280 8.006 6.9 4.6 10234 0 102.34

Table 5: wind speed data for airport VOBL
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We can see that wind speed is highest in monsoon. For most times, wind speed is confined to about 22 miles/hr.
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In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the
day” is 1 hour.
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In summer, wind speed is highest around 5:30 pm. During monsoon, winter and autumn, wind speed is highest
around 11:30 am.

We can see that wind speed is highest in monsoon. For most times, wind speed is confined to 20 miles/hr. In
winter, summer and autumn, wind speed is highest around 3:30 pm.

Wind Speed (mph) data for airport VECC
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We can see that wind speed is highest in summer. For most times, wind speed is confined to about 18 miles/hr.
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In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the
day” is 1 hour.

In winter and autumn, wind speed is generally highest around 1:30 pm. During monsoon and summer, wind
speed is highest around 3:30 pm.

Wind Speed (mph) data for airport VIDP

Table 7: wind speed data for airport VIDP

e i
of samples

26280 3 8 126.5 126.5
windspeed in different seasons for 3 years
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fig 3.5(a) histogram of wind speed fig 3.5(b) wind speed in different seasons

We can see that wind speed is generally highest in monsoon. For most times, wind speed is confined to 15
miles/hr.
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windspeed at different times in summer windspeed at different times in winter
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fig 3.5(e) wind speed in autumn fig 3.5(f) wind speed in monsoon

In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the
day” is 1 hour.

In winter and autumn, wind speed is generally highest around 3:30 pm. During monsoon, wind speed is highest
around 2:30 pm and for summer it is 4:30 pm.

Visibility (miles) data for airport VABB

Sl i O
Of samples Table 8: visibility data for

26280 airport VABB
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fig 3.6(a) histogram of visibility

visibility in different seasons for 3 years

visibility(miles)
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fig 3.6(b) visibility in different seasons

We can see that visibility is generally highest in summer. For most times, visibility is confined to about 5 miles.

visibility at different times in summer
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fig 3.6(c) visibility in summer
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fig 3.6(e) visibility in autumn
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fig 3.6(d) visibility in winter

visibility at different times in monsoon
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fig 3.6(f) visibility in monsoon

In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the

day” is 1 hour.

In all the seasons, visibility is generally highest around 4:30 pm.
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Visibility (miles) data for airport VOTV
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Table 9: visibility data for airport VOTV

frequency
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fig 3.7(b) visibility in different seasons

We can see that visibility is generally highest in summer. For most times, visibility is confined to about 5 miles.
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fig 3.7(c) visibility in winter
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fig 3.7(d) visibility in summer
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visibility at different times in monsoon visibility at different times in autumn

visibility(miles)
visibility{miles)
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fig 3.7(e) visibility in monsoon fig 3.7(f) visibility in autumn

In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the
day” is 1 hour.

In autumn and summer, visibility is generally highest around 12:30 pm. In winter and monsoon, visibility is
highest around 1:30 pm.

Visibility (miles) data for airport VOBL

\[o} Mean [Median |Mode |[std. dev. |max min range Table 10: visibility data for
Of samples airport VOBL
3.99 3.73 3.73 1.34 6.21 0.02 6.18

26280
visibility in different seasons for 3 years
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fig 3.8(a) histogram of visibility fig 3.8(b) visibility in different seasons

We can see that visibility is generally highest in summer. For most times, visibility is confined to about 8 miles.
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visibility at different times in summer

visibility at different times in monsoon
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fig 3.8(c) visibility in summer

visibility at different times in winter
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fig 3.8(e) visibility in winter
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fig 3.8(d) visibility in monsoon

visibility at different times in autumn
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fig 3.8(f) visibility in autumn

In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the

day” is 1 hour.

In winter, visibility is generally highest around 3:30 pm and in summer it’s about 12:30 pm. In autumn and

monsoon, visibility is highest around 2:30 pm.

Visibility (miles) data for airport VECC

26280

20

\[o} Mean |Median [Mode [std dev |max min range Table 11: visibility data for
of samples airport VECC
1.9 1.99 1.99 0.47 4.96 0.02 4.93



visibility in different seasons for 3 years
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fig 3.9(a) histogram of visibility fig 3.9(b) visibility in different seasons

We can see that visibility is generally highest in summer. For most times, visibility is confined to about 3.5
miles.
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In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the
day” is 1 hour.

In all the seasons, visibility is generally highest around 2:30 pm.

Visibility (miles) data for airport VIDP

No. Mean [Median [Mode |[std dev [max lly range Table 12: visibility data for
Of samples airport VIDP
1.66 1.74 2.17 0.69 4.34 0 4.34
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visibility in different seasons for 3 years
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fig 3.10(a) histogram of visibility fig 3.10(b) visibility in different seasons
We can see that visibility is generally highest in summer. For most times, visibility is confined to about 3.6 miles.

wvisibility at different times in summer wisibility at different times in winter

visibility(miles)

wisibility{miles)

12345676 910111213141516171581920212223

012345678 9101112131415161718 1920212223
Time of the day

Time of the day
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visibility at different times in autumn visibility at different times in monsoon
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fig 3.10(e) visibility in autumn fig 3.10(f) visibility in monsoon

In the above 4 plots, on x-axis, “time of the day” is in UTC and interval between two consecutive “time of the
day” is 1 hour.

In winter and summer, visibility is generally highest around 4:30 pm. In autumn and monsoon, visibility is
highest around 3:30 pm.
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Chapter 4- Methodology

I have used ERA-5 reanalysis dataset having values of variable ‘geopotential” with 0.25° x 0.25° spatial
resolution stretching (from 63° in the west and 102° in the east and 3° in the south to 42° in the north) as input
and metar observations with hourly temporal resolution for 5 stations as target.

The data taken is for a total of 3 years from 01/01/2018 to 30/12/2020. In this work | have used 4 models. One
is a 6 layer (layers with learnable parameters) 2D CNN trained from scratch and the others are pretrained
VGG16 and Resnet-50 (both trained on imagenet dataset) for transfer learning. Mean squared error (MSE) is

used as loss function while MAE is used as metric to assess the effectiveness of the models.

VGG16, 2D CNN, 3D CNN

VGG16 is a CNN architecture that is basic and extensively used. The VGG16 Architecture was designed by

Andrew Zisserman and Karen Simonyan of the Oxford University in their 2014 paper "Very Deep
Convolutional Networks for Large-Scale Image Recognition™. The acronym 'VGG' refers for Visual Geometry
Group, a Oxford university group of scholars that designed this architecture, and the number '16' denotes the
architecture's 16 layers. The VGG16 model achieved 92.7 percent top 5 test accuracy on ImageNet, a dataset
of over 14 million images belonging to 1000 classes. It outperforms AlexNet by replacing large sized filters
(11 and 5 in the first and second convolutional layers, respectively) with a series of three-three kernel-sized

filters.
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Fig 4.1 VGG16

Credit: https://www.mygreatlearning.com/blog/introduction-to-vgg16/#VGG%2016%20Architecture
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It was discovered that increasing representation depth enhances classification accuracy, and that utilising a
typical ConvNet architecture with greatly increased depth, cutting-edge performance on the ImageNet dataset
may be achieved. VGG16, which is popular due to its ease of use, is used in several deep learning image
categorization approaches. Training these models from scratch takes long time, so it may turn out better to use

pretrained weights.

2D CNN- For the 5 layer 2D CNN employed in the trials, a 3x3 kernel is used in each convolution layer followed
by a 2x2 max pooling layer. RMSprop is used as optimizer with learning rate 0.001. Following the convolution
processes, a fully connected layer with no activation function is utilized to connect the output (real number). As
a simple non machine learning baseline performance, i have used mean absolute error (MAE) of mean of
absolute of the difference between historical observation and actual target. Here we make a comparison of the
effectiveness of the simple 2D CNN and the pretrained model VGG16 for the problem of predicting wind
velocity and visibility for the airports given ERA-5 geopotential data as input and METAR observations (wind
velocity and visibility) as target. Both ERA-5 and metar observational data require lot of time in data processing.
Also initially the plan was to predict only the precipitation values but after searching and processing(lots of trial
and error) we concluded that due to insufficient data available we needed to concentrate on other variables like
wind velocity and visibility the data for which were readily available. The reason for choosing wind velocity

and visibility is that these variables greatly affect the normal functioning of the airports.

3D CNN- With 3D CNN, we are predicting wind speed and visibility in the next 6 hour. The 3D CNN is trained
by combining the input dataset into groups of 6 consecutive images. This aggregation represents the evolution
of the atmosphere over the course of a 6-hour period. The neural network can then extract information from

the temporal dimension by using the observation that corresponds to the series' last image as an output.
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Hyperparameters used:

o

2D CNN 5 1 0.4 4 Max-pool RMSprop(Ir 0.00 128 100

VGG-16 13 1 0.4 5 Max-pool RMSprop(Ir=0.00 128 100
1)

3D CNN 2 1 0.4 2 Max-pool RMSprop(Ir=0.00 16 20
1)

Table 13: hyperparameters used

No. of filters used in 2D CNN are 32 -> 64 -> 128 -> 256 -> 512, in 3D CNN are 64 ->128.
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Chapter 5- Results

Climatology: Long-term average of a given variable.

Result (Mean Absolute Error) for Visibility:

isibility climatology2D CNN  [VGG16 3D CNN
(miles) (miles) (miles)

0.47 0.545 0.67
1.14 0.64 0.56
0.89 0.952 1.61
0.261 0.338 0.35

0.31 0.513 0.96

Table 14: Visibility forecasting accuracy for several stations comparing 2D CNN, 3D CNN and pretrained

model VGG16 with the reference accuracy of climatology. The metric used is mean absolute error (MAE).
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For station VABB,

With 2D CNN,

Training and validation loss(MSE)

® Training loss{MSE)
75 = Validaticn loss{MS5E)

20 1
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10 4
| Mﬂﬁ“&_ﬁa—
N

0 20 40 60 80 100

fig 5.1(a) epoch Vs loss
On the x-axis we have no. of epochs and on y-axis loss value (unit = miles squared).

This is the plot of loss Vs epochs. We can see that with continuous training, loss decreases.

Training and validation accuracy(MAE)

5 & Training accuracy(MAE)
—— Validation accuracy{MAE)

4 -

T

2 -

) .\_

D -

o 20 40 (] a0 100

fig 5.1(b) epoch Vs accuracy
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x-axis = no. of epochs, y-axis = accuracy value (unit = miles).

We can see that accuracy improves with subsequent training process.

500 4

=
=

Freguency

200 1

100 4

T
-2 -1 ] 1 2

prediction - ground truth (Unit — mileS)

Fig 5.1(c) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. There were 3942 data points (15 % of the whole dataset of 3 years). The train, validation and test dataset
split is in the ratio of 70%, 15% and 15% respectively of the whole dataset of 3 years from January 2018 to
December 2020. We can see that most of the predictions are closer to ground truth i.e., errors are mostly
concentrated around 0. Most of the errors are within about 1 miles.

Correlation matrix,

[l 056]
[056 1]
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The correlation coefficient between prediction and actual observation (i.e., ground truth) is 0.55. So there is
only moderate correlation between the two.

observation vs prediction for the monsoon season
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Fig 5.1(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1% june 2021
to 31% august 2021. We first find the prediction made by our model on this 3 month input data. This is a time-
series data.
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Fig 5.1(e) histogram of errors on 1 year independent dataset

We have the histogram of errors (prediction — ground truth) our model gives when tested on 1 year (1 march
2021 to 28 february 2022) of independent dataset. Again, most of the errors are within 1 miles.

1000

o 200 400 600 800 1000 1200

perentage eor(rorotservdon - 100) On the x-axis, percentage error has no unit.
Fig 5.1(f) percentage error for the same

We have the histogram of percentage error ((error/observation)*100) when our model is tested on 1 year (1
march 2021 to 28 february 2022) of independent dataset. As we can see, most of the data points fall under 200
% error (in miles).

In both the plots we can see majority of predictions are closer to observation (or ground truth).
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Fig 5.1(g) error histogram for summer fig 5.1(h) error histogram for monsoon
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100

(x-axis unit = miles)
Fig 5.1(i) error histogram for autumn fig 5.1(j) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons.

Summer- 1 March to 31 May
Monsoon- 1 June to 31 August
Autumn- 1 September to 30 November
Winter- 1 December to 28 February

1%, 2" 3" and 4™ plots are for summer, monsoon, autumn and winter datasets respectively. Most of the errors

are spread over 1 miles from center.
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With VGG16,

Training and validation accuracy(MAE)

Training and validation loss(MSE) 062 -
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Fig 5.1(k) epoch Vs loss fig 5.1(l) epoch Vs accuracy

This is the plot of epochs Vs loss. We can see that in the very beginning of the training process, loss drops fast
but after just few epochs with continuous training, validation loss remains quite constant. The same way on
the right side plot, accuracy becomes quite stagnant after just few epochs and we don’t see any further

improvement.
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(unit on x-axis = miles)
Fig 5.1(m) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on
validation dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly

concentrated around 0 miles. Most of the errors are spread within about 1 miles.

Correlation matrix,

[[1.  0.17939892]
[0.17939892  1]]

The correlation coefficient between prediction and actual observation (i.e., ground truth) is 0.17. So there is

only weak correlation between the two which we can see in the next plot.

observation vs prediction for the monsoon season
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Fig 5.1(n) observation and prediction plot for monsoon season
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In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1% june 2021
to 315 august 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is a weak correlation between the predictions made by

VGG16 model and observations made for the 3 month monsoon season.

1400

-1 0 400 600 800 1000
prediction - ground truth percentage error ({errorjobservation]*100)

(unit = miles) (unitless)
fig 5.1(0) error histogram for independent dataset fig 5.1(p) percentage histogram for the same

On the left side we have the histogram of errors (prediction — ground truth) our model gives when tested on 1
year (1 march 2021 to 28 february 2022) of independent dataset. Again, most of the errors are within 1 miles

from the center.

On the right side we have the histogram of percentage error ((error/observation)*100) when our model is tested
on 1 year (1 march 2021 to 28 february 2022) of independent dataset. As we can see, most of the data points

fall under 200 % error.
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(unit = miles) error histogram for summer (unit = miles) error histogram for monsoon

Fig 5.1(q) fig 5.1(r)

300

15

(unit = miles) error histogram for autumn (unit = miles) error histogram for winter
Fig 5.1(s) fig 5.1(t)

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1

year of independent dataset has been broken into 4 seasons.
Summer- 1 March to 31 May

Monsoon- 1 June to 31 August

Autumn- 1 September to 30 November

Winter- 1 December to 28 February

1%, 2" 3" and 4™ plots are for summer, monsoon, autumn and winter datasets respectively. Most of the errors

are spread over 1 miles from the center.
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With 3D CNN,

. . Training and validation accuracy(MAE
Training and validation loss(MSE) 9 i }
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Fig 5.1(u) epoch Vs loss fig 5.1(v) epoch Vs accuracy

With 3D CNN, we are making predictions for 6 hours in future. With continuous training, validation loss

decreases and validation accuracy improves.

For station VOTV,
With 2D CNN,
Training and validation loss(MSE) Training and validation accuracy(MAE)
® Training loss{MSE) 10 ® Training accuracy(MAE)
100 4 — Validation loss(MSE) = Walidation accuracy{MAE]
B
BD -
w60 w
= £ )
40 1 4
20 1 w q 2
0 0
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epochs epochs
(Unit of MSE = miles squared) (unit of MAE = miles)
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Fig 5.2(a) epoch Vs loss fig 5.2(b) epoch Vs accuracy

This is the plot of loss Vs epochs. We can see that with continuous training, loss decreases and accuracy

improves with subsequent training process.
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Fig 5.2(c) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that errors are mostly concentrated around -1 miles. Most of the errors are within about 2

miles.
Correlation matrix,

[[l.  0.69386602]
[0.69386602  1.]]
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observation vs prediction for the monsoon season
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Fig 5.2(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st june 2021
to 31st august 2021. We first find the prediction made by our model on this 3 month input data. This is a time-
series data. There is moderate correlation between observation and prediction.
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Fig 5.2(e) histogram of errors on 1 year independent dataset fig 5.2(f) percentage error for the same
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 march 2021 to 28 February 2022) of independent dataset. Again, most of
the errors are within 1 miles and 100% respectively. In both the plots we can see majority of predictions are
closer to observation (or ground truth).
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Fig 5.2(g) error histogram for summer fig 5.2(h) error histogram for monsoon
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Fig 5.2(i) error histogram for autumn fig 5.2(j) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are spread over 1 miles from the center.



With VGG16,

Training and validation loss(MSE)
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Fig 5.2(k) epoch Vs loss

MAE

080 4

0.78 1

076 4

0.74 4

072 4

070 4

068 1

Training and validation accuracy(MAE)

b ® Training accuracy({MAE)

— Validation accuracy{MAE)

o 20 40 60 80

epochs

(unit of MAE = miles)

fig 5.2(1) epoch Vs accuracy

This is the plot of loss Vs epochs and loss Vs accuracy. We can see that loss decreases fast in the beginning but
after that becomes quite stagnant. Accuracy keeps fluctuating with continuous training and we don’t see any

big improvement.
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Fig 5.2(m) histogram of errors
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This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the errors are within about 2 miles.

Correlation matrix,
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Fig 5.2(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is a very weak correlation between the predictions made
by VGG16 model and observations made for the 3 month monsoon season.
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Fig 5.2(0) histogram of errors on 1 year independent dataset ~ fig 5.2(p) percentage error for the same

On the left side we have the histogram of errors (prediction — ground truth) our model gives when tested on 1
year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of the errors are within 1.5 miles.

On the right side we have the histogram of percentage error ((error/observation)*100) when our model is tested
on 1 year (1 March 2021 to 28 February 2022) of independent dataset. As we can see, most of the data points
fall under 200 % error.
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Fig 5.2(s) error histogram for autumn
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Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1

year of independent dataset has been broken into 4 seasons. 1st , 2nd, 3rd and 4th plots are for summer,

monsoon, autumn and winter datasets respectively. Most of the errors are about 1.5 miles.

With 3D CNN,

Training and validation loss(MSE)
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Fig 5.2(u) epoch Vs loss
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fig 5.2(v) epoch Vs accuracy

With 3D CNN, we are making predictions for 6 hours in future. With continuous training, validation loss

decreases and validation accuracy improves.
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For station VOBL,

With 2D CNN,
70 Training and validation loss(MSE) Training and validation accuracy(MAE)
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Fig 5.3(a) epoch Vs loss fig 5.3(b) epoch Vs accuracy

This is the plot of epoch Vs epochs and epoch Vs accuracy. We can see that with continuous training, loss

decreases and accuracy improves with subsequent training process.
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Fig 5.3(c) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around -1 miles. Most of the errors are within about 2 miles.

Correlation matrix,

[[1.  0.64763702]
[0.64763702  1.]]

observation vs prediction for the monsoon season
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Fig 5.3(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month input data. This is a time-
series data. There is moderate correlation between observation and prediction.
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of

the errors are concentrated around 0 miles and within about 2 miles.
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Fig 5.3(i) error histogram for autumn fig 5.3(j) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are about 2 miles.

With vgg16,
Training and validation loss(MSE) Training and validation accuracy(MAE)
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Fig 5.3(k) epoch Vs loss fig 5.3(l) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves with subsequent training
process.
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Fig 5.3(m) histogram of errors
This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation

dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around 0. Most of the errors are within about 3 miles.

Correlation matrix,

[[1.  0.15910329]
[0.15910329 1.]]
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observation vs prediction for the monsoon season
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Fig 5.3(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is a weak correlation between the predictions made by
VGG16 model and observations made for the 3 month monsoon season.
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Fig 5.3(0) histogram of errors on 1 year independent dataset ~ fig 5.3(p) percentage error for the same
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of

the errors are concentrated around 0 miles and within about 3 miles.
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Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are about 3 miles.



With 3D CNN,

Training and validation accuracy(MAE)

Training and validation loss(MSE)
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With 3D CNN, we are making predictions for 6 hours in future. With continuous training, validation loss

decreases and validation accuracy improves.

For station VECC,

With 2D CNN,

Training and validation accuracy(MAE)
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(unit of MSE = miles squared) (unit of MAE = miles)
Fig 5.4(a) epoch Vs loss fig 5.4(b) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves with subsequent training
process.
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Fig 5.4(c) histogram of errors
This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation

dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around 0. Most of the errors are within about 1 miles.

Correlation matrix,

[[1.  0.51972465]
[0.51972465 1]]
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observation vs prediction for the monsoon season
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Fig 5.4(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021

to 31st August 2021. We first find the prediction made by our model on this 3 month input data. This is a time-

series data. There is moderate correlation between observation and prediction.
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Fig 5.4(e) histogram of errors on 1 year independent dataset 5.4(f) percentage error for the same
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of
the errors are concentrated around 0 miles and within about 1 miles. In both the plots we can see majority of
predictions are closer to observation (or ground truth).
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Fig 5.4(i) error histogram for autumn fig 5.4(j) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,
autumn and winter datasets respectively. Most of the errors are spread over 1 miles from the center.



With vgg16,

Training and validation loss(MSE) Training and validation accuracy(MAE)
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Fig 5.4(K) epoch Vs loss fig 5.4(1) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves with subsequent training
process. Though the improvement is only minor.
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This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around 0 miles. Most of the errors are within about 1 miles.

Correlation matrix,

[[1.  0.35146881]
[0.35146881 1.]]
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Fig 5.4(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is a weak correlation between the predictions made by
VGG16 model and observations made for the 3 month monsoon season.
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of

the errors are concentrated around 0 miles and within about 2 miles.
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Fig 5.4(s) error histogram for autumn fig 5.4(t) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are spread over 2 miles from the center.

With 3D CNN,
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With 3D CNN, we are making predictions for 6 hours in future. With continuous training, we do not see
validation loss decreasing and validation accuracy improving, they degrade. But training loss and accuracy

improves. This shows there is over-fitting early on in the training process.

For station VIDP,

With 2D CNN,

Training and validation accuracy(MAE)
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Fig 5.5(a) epoch Vs loss fig 5.5(b) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves with subsequent training

process.
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Fig 5.5(c) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated

around 0 miles. Most of the errors are within about 1 miles.
Correlation matrix,

[1.  0.62770413]
[0.62770413 1]]
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observation vs prediction for the monsoon season

35 1

3.0 -

25 1

windspeed (miles/hr)
N
o

05 1 — gbservation

——  prediction

T T T T

0 500 1000 1500 2000
Hour since first june 00:00 in UTC

Fig 5.5(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month input data. This is a time-
series data. There is moderate correlation between observation and prediction.
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of

the errors are concentrated around 0 miles and within about 2 miles.
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Fig 5.5(g) error histogram for summer fig 5.5(h) error histogram for monsoon
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Fig 5.5(i) error histogram for autumn fig 5.5(j) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,
autumn and winter datasets respectively. Most of the errors are spread over 2 miles from the center.



With VGG16,

Training and validation loss{MSE)

Training and validation accuracy(MAE)
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Fig 5.5(k) epoch Vs loss

We can see that with continuous training, loss decreases and accuracy improves with subsequent training

process. Though the improvement is only minor.
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fig 5.5(I) epoch Vs accuracy
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This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated

around 0 miles. Most of the errors are within about 1.5 miles.
Correlation matrix,

[[1.  0.4720698]
[0.4720698 1.]]

observation vs prediction for the monsoon season
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Fig 5.5(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is a weak correlation between the predictions made by

VGG16 model and observations made for the 3 month monsoon season.
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Fig 5.5(0) histogram of errors on 1 year independent dataset
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our

model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of

the errors are concentrated around 0 miles and within about 2 miles.
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(unit= miles)

Fig 5.5(s) error histogram for autumn

fig 5.5(t) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1

year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are spread over 1.5 miles from the center.

With 3D CNN,

Training and validation loss(MSE)
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fig 5.5(Vv) epoch Vs accuracy

With 3D CNN, we are making predictions for 6 hours in future. With continuous training, we see validation
loss and validation accuracy fluctuating (decreasing then increasing).

Result (Mean Absolute Error) for Wind Speed:
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2D CNN GG16
speed climatology|(mph) (mph)
6.465 291
1.95 2.55
2.3 3.43
2.786 2.99
\VVIDP 3.87 4.67 2.79

3D CNN
(mph)

2.32

1.78

2.5

2.44

2.25

Table 15: Wind speed forecasting accuracy for several stations comparing 2D CNN, 3D CNN and pretrained

model VGG16 with the reference accuracy of climatology. The metric used is mean absolute error (MAE).

We can observe that the 2D and 3D convolutional models achieve a relative improvement over climatology.

For station VABB,

With vgg16,

Training and validation loss(MSE)

| ® Training loss{MSE}
i = Validation loss[MSE)
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epochs
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Fig 5.6(a) epoch Vs loss
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This is the plot of loss Vs epochs. We can see that with continuous training, first validation loss decreases and
then after it plateau before training loss. On the right side plot, validation accuracy improves with subsequent

training process but it too plateaus after a while though not before training accuracy.
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Fig 5.6(c) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. There were 3942 data points (15 % of the whole dataset of 3 years). The train, validation and test dataset
split is in the ratio of 70%, 15% and 15% respectively of the whole dataset of 3 years from January 2018 to
December 2020. We can see that a lot of the predictions are not close to ground truth. Errors are spread over 10
miles/hr.

Correlation matrix:

[1.  0.23181734]

[0.23181734 1. ]]
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The correlation coefficient between prediction and actual observation (i.e., ground truth) is 0.23. So there is
only weak correlation between the two.

observation vs prediction for the monsoon season
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Fig 5.6(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1% June 2021
to 31% August 2021. We first find the prediction made by our model on this 3 month input data and then plot

both prediction made and the corresponding observation in this same plot together. This is a time-series data.
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Fig 5.6(e) histogram of errors on 1 year independent dataset fig 5.6(f) percentage accuracy for the same

On the left side we have the histogram of errors (prediction — ground truth) our model gives when tested on 1
year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of the errors are within 10

miles/hr.

On the right side we have the histogram of percentage error ((error/observation)*100) when our model is tested
on 1 year (1 March 2021 to 28 February 2022) of independent dataset. As we can see, most of the data points

fall under 200 % error.
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Fig 5.6(g) error histogram for summer fig 5.6(h) error histogram for monsoon
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Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1%,
2" 3" and 4" plots are for summer, monsoon, autumn and winter datasets respectively. 1 year of independent

dataset has been broken into 4 seasons.
Summer- 1 March to 31 May
Monsoon- 1 June to 31 August
Autumn- 1 September to 30 November

Winter- 1 December to 28 February
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With 2D CNN,

Training and validation loss(MSE) Training and validation accuracy(MAE)
5000 1 ]
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(unit of MSE = miles squared/hr squared) (unit of MAE = miles/hr)
Fig 5.6(k) epoch Vs loss fig 5.6(l) epoch Vs accuracy

This is the plot of loss Vs epochs. We can see that with continuous training, loss decreases. The same way on

the right side plot, accuracy improves with subsequent training process.
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Fig 5.6(m) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. There were 3942 data points (15 % of the whole dataset of 3 years). The train, validation and test dataset
split is in the ratio of 70%, 15% and 15% respectively of the whole dataset of 3 years from January 2018 to
December 2020. We can see that most of the errors are spread over 10 miles/hr.

Correlation matrix:

[[1.  0.58028508]
[0.58028508 1. 1]

The correlation coefficient between prediction and actual observation (i.e., ground truth) is 0.58. So there is

moderate correlation between the two.

observation vs prediction for the monsoon season
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Fig 5.6(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1% June 2021
to 31% August 2021. We first find the prediction made by our model on this 3 month input data. This is a time-
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series data. From the plot we can see there is moderate level of correlation between the prediction and
observation.
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Fig 5.6(0) histogram of errors on 1 year independent dataset ~ fig 5.6(p) percentage accuracy for the same

On the left side we have the histogram of errors (prediction — ground truth) our model gives when tested on 1
year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of the errors are within 10
miles/hr. On the right side we have the histogram of percentage error ((error/observation)*100) when our
model is tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. As we can see, most of

the data points fall under 200 % error.
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Fig 5.6(q) error histogram for summer fig 5.6(r) error histogram for monsoon
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Fig 5.6(s) error histogram for autumn fig 5.6(t) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1%,
2" 3" and 4™ plots are for summer, monsoon, autumn and winter datasets respectively. 1 year of independent

dataset has been broken into 4 seasons.
Summer- 1 March to 31 May
Monsoon- 1 June to 31 August
Autumn- 1 September to 30 November

Winter- 1 December to 28 February
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With 3D CNN,

Training and validation loss(MSE)

m -
7| \
w40 1 ® Training loss{MSE)
= — Validation loss{MSE)
3[] 4
20 1
10 1 LN B B )
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(unit of MSE = miles squared/hr squared)

Fig 5.6(u) epoch Vs loss

Training and validation accuracy(MAE)
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fig 5.6(Vv) epoch Vs accuracy

With 3D CNN, we are making predictions for 6 hours in future. With continuous training, we see validation

loss and validation accuracy fluctuating (decreasing then increasing).

For station VOTV,

With 2D CNN,

Training and validation loss{MSE)

400 ® Training loss{MSE)

350 = alidation loss(MSE)
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(unit of MSE = miles squared/hr squared) (unit of MAE= miles/hr)
Fig 5.7(a) epoch Vs loss fig 5.7(b) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves with subsequent training
process.
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Fig 5.7(c) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated

around 0 miles/hr. Most of the errors are within about 5 miles/hr.

Correlation matrix

[[l.  0.50751333]
[0.50751333 1.]
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Fig 5.7(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021

to 31st August 2021. We first find the prediction made by our model on this 3 month input data. This is a time-

series data. There is moderate correlation between observation and prediction.
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Fig 5.7(e) histogram of errors on 1 year independent dataset fig 5.7(f) percentage accuracy for the same
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of
the errors are concentrated around 0 miles/HR and within about 5 miles/hr and 200% error.
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Fig 5.7(g) error histogram for summer fig 5.7(h) error histogram for monsoon
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Fig 5.7(i) error histogram for autumn fig 5.7(j) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,
autumn and winter datasets respectively. Most of the errors are about 7.5 miles/hr.



With VGG16,

Training and validation loss(MSE) Training and validation accuracy(MAE)
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Fig 5.7(k) epoch Vs loss fig 5.7(l) epoch Vs accuracy

We can see that with continuous training, loss and accuracy improves only a little. They plateaus at the very
start.
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Fig 5.7(m) histogram of errors
This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation

dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around 0. Most of the errors are within about 15 miles/hr.

Correlation matrix,

[l 0.29230694]
[0.29230694 1.]]

observation vs prediction for the monsoon season
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Fig 5.7(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is a weak correlation between the predictions made by
VGG16 model and observations made for the 3 month monsoon season.
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Fig 5.7(0) histogram of errors on 1 year independent dataset fig 5.7(p) percentage error for the same

We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of

the errors are concentrated around 0 miles/hr and within about 7.5 miles/hr and 200% error.

200

175

150

(x-axis unit = miles/hr)

Fig 5.7(q) error histogram for summer fig 5.7(r) error histogram for monsoon



IS ] =
e} & )

Frequency
B
3
Frequency

o

-2.5 0.0 2 A E & -2 0
predictien - observation prediction - observation

(unit = miles/hr)
Fig 5.7(s) error histogram for autumn fig 5.7(t) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are spread over 7.5 miles/hr from the center.

With 3D CNN,
Training and validation loss(MSE] Training and validation accuracy(MAE)
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= Validation loss(MSE) — Validation accuracy{MAE)
40 4
5_
i 30 ]
Z £
20 A
3_
01 .
TR ‘EEEREEN) 2] ®0 e e Wesessssssgenaee
25 50 75 100 125 150 175 200 25 5.0 75 100 125 150 175 200
epochs gpochs
(unit of MSE = miles squared/hr squared) (unit of MAE = miles/hr)
Fig 5.7(u) epoch Vs loss fig 5.7(v) epoch Vs accuracy
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With 3D CNN, we are making predictions for 6 hours in future. With continuous training, validation loss

decreases and validation accuracy improves at first but then after few epochs over- fitting of the data starts

happening.
For station VOBL,
With vggl6,
Training and validation loss(MSE)
3251 = ® Training loss{MSE)
0.0 - =— Validation loss(M5E)
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Fig 5.8(a) epoch Vs loss
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(x-axis = epochs, y-axis = MAE(unit = miles/hr))
Fig 5.8(b) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves. Though the improvement is

only minor.
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Fig 5.8(c) histogram of errrors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated

around 0. Most of the errors are within about 10 miles/hr.
Correlation matrix,

[l  0.43166513]
[0.43166513 1.]]
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observation vs prediction for the monsoon season
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Fig 5.8(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is a weak correlation between the predictions made by

VGG16 model and observations made for the 3 month monsoon season.
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of
the errors are concentrated around O miles/hr and within about 10 miles/hr and 250% error.
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Fig 5.8(g) error histogram for summer fig 5.8(h) error histogram for monsoon
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Fig 5.8(i) error histogram for autumn fig 5.8(j) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are spread over 15 miles/hr from the center.



With 2D CNN,

Training and validation loss(MSE)
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Fig 5.8(k) epoch Vs loss
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fig 5.8(l) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves.
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Fig 5.8(m) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around 0. Most of the errors are within about 10 miles/hr.
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Correlation matrix

[[1.  0.64836289]
[0.64836289 1.]]

observation vs prediction for the monsoon season
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Fig 5.8(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month input data. This is a time-

series data. There is moderate correlation between observation and prediction.
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(unit = miles/hr) (unitless)
Fig 5.8(0) histogram of errors on 1 year independent dataset fig 5.8(p) percentage error for the same

We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of
the errors are concentrated around O miles/hr and within about 10 miles/hr and 250% error.
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91



Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are spread over about 10 miles/hr from the center.

With 3D CNN,
Training and validation loss(MSE) Training and validation accuracy(MAE)
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Fig 5.8(u) epoch Vs loss fig 5.8(Vv) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves with some fluctuation.
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For station VECC,

With VGG16,

Training and validation loss(MSE)
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Fig 5.9(b) epoch Vs accuracy
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We can see that with continuous training, loss decreases and accuracy improves. Though the improvement is

only minor.
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Fig 5.9(c) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated

around 0. Most of the errors are within about 15 miles/hr.

Correlation matrix,

[[1.  0.18223773]
[0.18223773 1.]]
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observation vs prediction for the monsoon season
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Fig 5.9(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is a very weak correlation between the predictions made

by VGG16 model and observations made for the 3 month monsoon season.
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of
the errors are concentrated around 0 miles/hr and within about 10 miles/hr and 100 % error.
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Fig 5.9(g) error histogram for summer fig 5.9(h) error histogram for monsoon
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Fig 5.9(i) error histogram for autumn fig 5.9(j) error histogram for winter

Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,
autumn and winter datasets respectively. Most of the errors are spread over 10 miles/hr from the center.



With 2D CNN,

Training and validation lossiMSE) Training and validation accuracy(MAE)
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Fig 5.9(k) epoch Vs loss fig 5.9(1) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves.
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Fig 5.9(m) histogram of errors
This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation

dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around 0. Most of the errors are within about 15 miles/hr.
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Correlation matrix :

[[1.  0.40316432]
[0.40316432 1.]]

observation vs prediction for the monsoon season
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Fig 5.9(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month input data. This is a time-
series data. There is moderate correlation between observation and prediction.
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(unit= miles/hr) (unitless)
Fig 5.9(0) histogram of errors on 1 year independent dataset  fig 5.9(p) percentage error for the same

We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of
the errors are concentrated around O miles/hr and spread within about 10 miles/hr and 100% error.
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Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are about 10 miles/hr.

With 3D CNN,
Training and validation loss(MSE) Training and validation accuracy(MAE)
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Fig 5.9(u) epoch Vs loss fig 5.9(v) epoch Vs accuracy

With 3D CNN, we are making predictions for 6 hours in future. With continuous training, though validation
loss decreases and validation accuracy improves but it also fluctuates meaning there is some over-fitting of the
data.
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For station VIDP,

With VGG16,
Training and validation loss(MSE) Training and validation accuracy(MAE)
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Fig 5.10(a) epoch Vs loss fig 5.10(b) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves. Though the improvement is

only minor.
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Fig 5.10(c) histogram of errors

This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around 0. Most of the errors are within about 10 miles/hr.

Correlation matrix,
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Fig 5.10(d) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month independent input dataset.
This is a time-series data. The plot clearly shows there is very weak correlation between the predictions made
by VGG16 model and observations made for the 3 month monsoon season.
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Fig 5.10(e) histogram of errors on 1 year independent dataset fig 5.10(f) percentage error for the same

We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of

the errors are concentrated around 0 miles/hr and within about 10 miles/hr and 100% error.
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Fig 5.10(g) error histogram for summer fig 5.10(h) error histogram for monsoon
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Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,

autumn and winter datasets respectively. Most of the errors are spread over 10 miles/hr from the center.

With 2D CNN,
Training and validation loss(MSE) Training and validation accuracy(MAE)
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Fig 5.10(k) epoch Vs loss fig 5.10(1) epoch Vs accuracy

We can see that with continuous training, loss decreases and accuracy improves although there is definitely
some over-fitting of the data.
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Fig 5.10(m) histogram of errors
This is the histogram of the errors (prediction — observation) that we get after evaluating our model on validation
dataset. We can see that most of the predictions are closer to ground truth i.e., errors are mostly concentrated
around -5 miles/hr. Most of the errors are spread over 5 miles/hr from the center.

Correlation matrix

[[1.  0.4289302]
[0.4289302 1.]]
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observation vs prediction for the monsoon season
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Fig 5.10(n) observation and prediction plot for monsoon season

In this, observation and prediction are put in the same plot. The data taken was for 3 months from 1st June 2021
to 31st August 2021. We first find the prediction made by our model on this 3 month input data. This is a time-

series data. There is moderate correlation between observation and prediction.
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We have the histogram of errors (prediction — ground truth) and percentage error ((error/observation)*100) our
model gives when tested on 1 year (1 March 2021 to 28 February 2022) of independent dataset. Again, most of
the errors are concentrated around 0 miles/hr and within about 10 miles/hr and 100 % error.
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Fig 5.10(q) error histogram for summer fig 5.10(r) error histogram for monsoon

160 75

140 150

120
125

-10.0 = 5. -25 00
prediction - observation

(unit = miles/hr)
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Above 4 plots are error plots when the model is tested on 4 different seasons each of 3 month time length. 1
year of independent dataset has been broken into 4 seasons. 1st, 2nd, 3rd and 4th plots are for summer, monsoon,
autumn and winter datasets respectively. Most of the errors are over 7.5 miles/hr from the center.
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With 3D CNN,

Training and validation loss(MSE) Training and validation accuracy(MAE)
® Training loss{MSE) #® Training accuracy(MAE)
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Fig 5.10(u) epoch Vs loss fig 5.10(v) epoch Vs accuracy

With 3D CNN, we are making predictions for 6 hours in future. With continuous training, validation loss
decreases and validation accuracy improves.

After all these experiments on different stations using differernt models, we come to the conclusion that our
custom made and trained from scratch 2D CNN model performs best. Transfer learning has not worked very
well in this case. We need to do more experiments with other pretrained models to conclusively say if state of

the art pretrained models in computer vision can be applied in case of weather downscaling too. 3D CNN is
working good for 6 hour in future prediction.

108



CHAPTER 6 — Conclusions and Future work

This research shows that CNNs can be used to analyse the output of numerical weather models directly by
using observed metar data as a target. Despite the fact that they are simple, convolutional layers can be utilised
to interpret the output of numerical weather models, according to the findings. The wind speed or visibility
output variable are not directly related to the NWP parameter (geopotential) employed in the studies. The goal
of this initial experiment was to show that CNNs can learn certain atmospheric pressure system configurations
and connect them with wind speed and visibility. These methodologies enable a new research avenue to
automatically generate many derived products, in addition to weather model interpretation. Some variables in
NWPs are computed using statistical models rather than physical equations. So, there is a possibility that CNN-
based models can be used to compute these variables, perhaps providing better results.

The code and corresponding datasets used to run all the experiments included in this work are available at the

following repository: https://github.com/AlMa-hash/Deep-Learning-for-Climate-Studies
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