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Abstract 

This report summarizes the synthesis of two linkers 5-(1-oxoisoindolin-2-yl)isophthalic acid 

(H2L) and 5-((2-carboxybenzyl)oxy)isophthalic acid (H3L). A substitution reaction was 

employed between diethyl-5-((2-cyanobenzyl)amino)isophthalate and 2-cyanobenzyl 

bromide in dry acetonitrile solvent using the alkaline medium to synthesize lactam based H2L 

linker. Moreover, the synthesis H3L linker was done by the substitution reaction of diethyl 

5-((2-cyanobenzyl)oxy)isophthalate with 2-cyanobenzyl bromide. Both linkers H2L and H3L 

have been characterized by mass spectrometry, 1H, and 13C NMR spectroscopy. The H2L 

linker was reacted with 4,4’-azopy in the presence of Zn(NO3)2.6H2O under solvothermal 

conditions which gave rise to a Zn-MOF. This was characterized by SC-XRD, PXRD, SEM, 

EDS, TGA, and UV spectroscopy. Further, Ag was incorporated into the pores of Zn-MOF 

to get Ag@Zn-MOF which was characterized by PXRD, SEM, EDS, TGA, and UV 

spectroscopy. Also, the antibacterial studies were done for Zn-MOF and its composite against 

E. coli bacteria. 
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Chapter 1  

Introduction 

            Bacterial contamination1 has led to the emergence of epidemics which is of global 

concern. It is one of the most challenging issues being faced by the world. Millions of people 

have lost their lives due to the contamination of bacteria in food and the environment. 

Antibiotics act as powerful tools to fight against bacteria. Due to their excessive usage, 

bacteria have got antibacterial resistance also called Anti-Microbial Resistance (AMR).1  

Also, Multidrug Resistance (MDR)1 has been shown by a variety of bacteria. Due to these 

problems, the development of novel and effective antimicrobial agents is a prime necessity.     

For the development of such antibacterial agents, three divisions are done. Organic 

or inorganic compounds and salts represent 1st Generation agents, simple metals and their 

oxides represent 2nd Generation agents, while agents with topology come under 3rd 

Generation antibacterial agents.2 

Metal-Organic Frameworks (MOFs)3-6 are one of the 3rd generation antibacterial 

agents. They are highly porous and have a large specific surface area7 which makes them one 

of the perfect candidates for applications in catalysis,8,9 separation,10 gas storage,11 

sensing,12,13 food preservation,14 biomedical15,16 and water treatment.17 

1.1. Metal-organic frameworks (MOFs)  

Metal-organic frameworks (MOFs) are highly porous crystalline polymers composed 

of metal ions or metal clusters and multidentate organic ligands.18 These components are 

linked via coordination bonds to form continuous frameworks. The ultrahigh porosity and 

large surface area make them one of the best candidates for their utilization in food 

technology, environmental and biological aspects. They show better sieve character and have 

high thermal stability. Recently, the applicability of MOFs has been reported extensively in 

biomedical fields15,16 like antibacterial activities, drug delivery,19,20 bio-imaging,21,22,23 and 

bio-sensing.12,13 Moreover, various nanomaterials having antibacterial properties are being 

incorporated into MOFs in composite form to enhance the desired outcome.  

1.2. Synthesis of metal-organic frameworks 
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➢ Generally, Reticular Chemistry24 (choosing molecular building blocks for the 

conceptual design approach) is employed to get the desired structure for a particular 

application. 

➢ The conventional synthesis of MOFs occurs by a solvothermal method25 where metal 

salt, linker, co-linker, and solvents are put after optimization in an autoclave at high 

temperature in the solvothermal oven.  

➢ Other methods like the Solvent evaporation method,26 Diffusion method,27 

Microwave method,28 and electrochemical methods29 are also employed. 

➢ Their synthesis is done under relatively mild conditions in contrast to naturally 

occurring zeolites. 

➢ Due to the incorporation of various organic linkers having different functional groups, 

MOFs can exhibit wonderful required properties like chirality, hydrophilicity, and 

hydrophobicity. 

➢ The preference for MOFs over well-known nano-porous materials like carbon 

nanotubes and zeolites is due to the potential to tune the functionality and structure 

directly during synthesis. 

1.3. Dimensionality in metal-organic frameworks 

The dimensionality and structure of MOFs are determined by the coordination 

behavior of metal salt and the linker. MOFs are 1D, 2D, and 3D based on the flexibility of 

metal to bond with the linker and co-linker. 

1D MOFs are considered to be the most basic coordination array. Generally, zig-zag, 

linear, and ladder chain CPs are reported in the literature. They have excellent electrical, 

magnetic, and optical properties. 

Self-assembly facilitates the coordination of ligand moieties (three or four) as linkers 

between the metal ion centers, ensuing in two-dimensional (2D) MOFs. 

Commonly, anionic or neutral linkers are used to synthesize 3D MOFs. Because 

neutral ligands reduce the porosity of the framework by trapping anions inside the cavity, 

anionic ligands are primarily used for highly porous MOFs. Anionic multidentate ligands 
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such as carboxylate enable the formation of metal clusters known as secondary building units 

(SBUs), which are extremely rigid in nature. 

1.4. Applications of metal-organic frameworks 

The unique combination of crystallinity, large surface area, strong metal to ligand 

interaction, and variable pore size make MOFs a very special and fascinating class of porous 

materials. MOFs show a wide range of applications in drug delivery,19,20 catalysis,8,9 storage 

of gases,11 sensing,12,13 electrochemistry, and so on. 

1.4.1 Gas storage and separation 

Effective storage of gases requires high pressure tanks and multistage compressors. 

This implementation is very difficult for practical usage due to high cost. So, MOFs have 

come across as a safer and cheap solution for gas storage. Due to their high surface area, and 

variable pore size MOFs are one of the most promising materials for this application in 

comparison to various other porous materials. 

MOF-177 shows a gravimetric uptake of H2 of 7.5 wt% at 77 K and 70 bar due to its 

high surface area and large pore volume. Also, MOF-5 (IRMOF-1) has H2 uptake of 7.1 wt% 

at 40 bar and 77 K. Various other MOFs like HKUST-1, MIL-101, MOF-210, PCN-12, NU-

100, MOF-205, and NOTT-102 are also known for H2 storage. 

CO2 level is also being reduced by using MOFs by capturing it and converting into 

useful cyclic carbonates. A zinc-based MOF, MOF-21030 has CO2 uptake of 2400 mg g-1 

which is 74.2 wt% at 50 bar and 298 K. MOF-200 also shows high CO2 uptake as that of 

MOF-210 under experimental conditions. 

1.4.2 Magnetism and its applications 

When 3d transition metal nodes having paramagnetism are combined with suitable 

diamagnetic organic linkers, MOFs so formed are found to have magnetism and such MOFs 

are referred to as magnetic metal organic frameworks (MMOFs). MOFs made out of 3d 

metals have made important contributions to the development of molecular magnets.32-37 

Close-shell ligands with weak magnetic interactions, such as oxo, cyano, azido bridges, and 

polycarboxylic ligands,38 are ideal candidates for this. Magnetic MOFs could possibly be 

used in the environmental sector to remove arsenic.  
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1.4.3 Sensing 

Due to presence of aromatic rings of linkers, various MOFs have been found to be 

photoluminescent. This is due to the luminescence caused by absorbing the UV-visible light. 

Such MOFs show a wide application in projection television, fluorescent tubes, pH sensors,9 

high-technology optics and small-molecule sensors.39,40 Bimodal (or multicoloured) light 

emitters can be made from LnMOFs doped with several Ln3+ ions. 

1.4.4 Catalysis 

MOFs serve as excellent candidate for heterogenous catalysis. MOFs with metal 

centres that are not totally blocked by organic ligands or unsaturated, i.e., labile ligands are 

good catalysts because labile ligands are generally solvent molecules that leave a free 

coordination position on the metal when they are removed. HKUST-141 when activated 

thermally leaves a vacant coordination site due to loss of water molecule.  

1.4.5 Biomedical applications 

MOFs have been widely used for biomedical applications nowadays. Because of their 

increased stability, massive porosity, and high pore volume,44 the MIL family of MOFs is an 

excellent candidate for storing and regulated release of biologically essential chemicals. For 

employing targeted drug delivery, non-toxic metal-organic frameworks are used. Various Fe-

based MOFs like MIL-8, MIL-88A, MIL-101 and MIL-100 have the ability to entrap 

antiretroviral and antitumor drugs. 

 

1.4.5.1 Antibacterial/Antimicrobial applications of MOFs 

The classification of bacteria is done in two types on the basis of their cell wall 

structure which are Gram-negative bacteria (-) and Gram-positive (+). The peptidoglycan 

layer of cell wall in Gram (+) is more thick than that of Gram (-) bacteria.45 Due to this, they 

have different types of tolerance towards antibacterial agents. Most of the studies reveal the 

high sensitivity of gram (-) bacteria in comparison to Gram (+) bacteria against MOFs.  

The need for MOFs-derived carriers came into play due to the non-targeted approach, 

uncontrolled release, and lesser efficacy of conventional delivery agents. pH is one of the 

important stimuli which triggers the drug release at the site of inflammation. MOFs 
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containing anti-cancerous drugs are typically designed in a way that drug release occurs due 

to exposure to an acidic environment. 

 

 

Figure 1: Schematic summary of the possible antibacterial/antimicrobial applications of MOFs46 

 

 

1.4.5.2 Mechanism of regulation of antibacterial activities 

There have been reports of various mechanisms of MOFs being used as antibacterial agents, 

which are as follows -: 

• Antibacterial metal ions like Ag+, Zn2+, Cu2+, and Hg2
2+ are generally employed for 

synthesizing MOFs which can be released at the site of action.47 Metal ions released 

by metal nanoparticles have the ability to cross the cell membrane, which results in 

cell death 

• Antibacterial framework of the linker can also be incorporated in MOF which can be 

released when needed48 

• Reactive Oxygen Species (ROS) is generated when NPs are irradiated with light49,50 
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Figure 2: The probable mechanisms for antibacterial activity of MOFs 

 

• Loading of various drugs having antibacterial agents in the pores which get released 

due to the exposure of stimuli like pH, light, temperature, etc.51,52 

 

 

Figure 3:   Illustration mechanism of drug loading and unloading53 

• Usage of all mechanisms in a single run to get their synergistic effect 
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1.5 Organization of the thesis 

The purpose of this project is to synthesize lactam and oxygen functionalized linkers for the 

construction of Zn-based MOF and its doping with silver. After doping, their antibacterial 

properties were studied.  

Chapter 2: In this chapter, we have discussed about the past and present works on various 

MOFs for the antibacterial applications. 

Chapter 3: This chapter includes materials, instrumentation and experimental procedures 

which were used to synthesize linkers, Zn-MOF and Ag@Zn-MOF. 

Chapter 4: This chapter includes the characterization of linkers, Zn-MOF and Ag@Zn-MOF 

and the results obtained using these compounds.  

Chapter 5: In this chapter, we have concluded all the results of our work and their future 

aspects. 
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Chapter 2  

 Literature review  

 

There are various reports of metal centres being used for synthesizing MOFs, which 

ultimately lead to the stimulation of antibacterial properties. MOFs having an Ag metal centre 

were tested for the 1st time for antimicrobial activities. They have attracted researchers by 

the potential to use them for human welfare.56   

The following table shows some MOFs where metal salt acts as a source to work 

against bacteria-: 

 

Table 1: Summary of antibacterial activities of metal ions of various MOFs1 
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Also, it was seen that metal ions along with linkers in the MOF show a synergistic 

effect to combat against the bacteria. Tamames-Tabar et al. synthesized a novel bioactive 

MOF (BioMIL-5) using Zn2+ metal and azelaic acid (AzA). AzA is widely used as an 

antibacterial agent in dermatology.57 Due to the combination of Zn2+ and AzA, the poor 

absorption of AzA was solved which helped in relieving pain. 

 

Table 2: Summarized antibacterial action by ligands of various MOFs1 

 

The reports of biocompatible metal ions being used in MOFs as composites can be 

seen frequently. Mostly, Ag nanoparticles are used as composites of MOFs.59 

 

Duan et al.,58 and Abd El Salam et al.60 reported the better antibacterial effects of 

MOFs composites having Ag nanoparticles than alone Ag nanoparticles. This happens due 

to the cluster of metal ions of MOFs. Abd El Salam et al.,60 and Duan et al.61 concluded in 

their report that the enhanced activity is due to the disruption of cytomembrane’s 

permeability which leads to the outflow of intracellular contents. 

 

 

 

 

 

 

 

 

 

Compound Ligand Metal Type of 

bacteria 

Antibacterial activity Reference 

BioMIL-5 

 

Azelaic acid Zn S. aureus and 

S. epidermidis 
 

S. aureus: MIC = 1.7 mM; MBC 

= 4.3 mM 
S. epidermidis: MIC = 1.7 mM; 

MBC = 4.3 mM 

[57] 

 

MSN-Sul@ 
carMOF 

Carbenicillin Fe MRSA Confocal laser scanning 
microscopy: 

Biofilm destruction 

[58] 

[Zn(𝜇-4-

hzba)2]2 

⋅4(H2O)n 

4-

hydrazinebenzoate 

Zn S. aureus ZOI = 14.6 ± 3.1 mm 

EC50 = 24.2 ± 3.4 μM 
 

[48] 
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Compound Nanoparticles Combination 

type 

Type of 

bacteria 

Antibacterial activity Reference 

Ag NPs@ 

HKUST-

1@ 
CFs 

Ag NPs In situ reduction 

(simultaneous 

synthesis) 

S. aureus Standard plate count: 99.41% 

of growth inhibition 

[61] 

MIL-

88B(Fe)-

Ag/TiO2 
nanotubes/

Ti plates 

Ag NPs In situ reduction 

(Growing on 

MOFs) 
 

E. coli ZOI: Effectively 

photocatalytically kill bacteria 

under UV light 
 

[62] 

Ag-

CuTCPP 
MOFs 

Ag NPs In situ reduction E. coli, S. 

aureus, B. 
subtilis 

E. coli: MIC = 12.50 μM; MBC 

= 25.00 μM 
S. aureus: MIC = 6.25 μM; 

MBC = 12.50 μM 

B. subtilis: MIC = 6.25 μM; 
MBC = 12.50 μM 

Mixed strains: MIC = 12.50 

μM; MBC = 25.00 μM 
SEM: Disruption of bacteria 

surface 

 

[63] 

Ag@ZIF-8  

 

 

Ag nanowires ZIF-8 were 

located on Ag 

nanowires 

B. subtilis 

and E. coli 

Kinetic test: Efficiently slow 

down the growth 

Growth inhibition assay: At the 
concentration of 

10 mM 

B. subtilis: MIC = 200 μM E. 
coli: MIC = 300 μM 

 

[65] 

Ag@MOF-

5  

Ag NPs Dispersed in 

MOFs 

E. coli Rapid inactivation of >91% 

bacteria in only 70 min 
of time under visible light 

irradiation 
 

[64] 

Ag@NH2-

MOP(Ti)  

Ag NPs Doped 

nanoparticles 

with 
MOFs 

ND ZOI: High activity in killing 

bacteria under Xenon 

Lamp 
 

[66] 

Ag-NPs @ 

Ni-MOF  
 

 

Ag NPs Ag-NPs and Ni-

MOF were 
mixed together 

 

B. subtilis, 

E. coli, 
P. 

aeruginosa, 

and 
C. albicans 

Growth inhibition assay: At the 

concentration of 2.5 
μM of approximately 5 × 107 

CFU/mL microbial cells 

MIC = 0.025 μM; MBC = 2.5 
μM 

 

[60] 

 

Table 3: Summarized antibacterial applications of MOF composites having nanoparticles1 
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Chapter 3  

 

 Experimental section 

 

3.1 Chemicals and reagents: 

All of the reagents used were commercially available and were used without further 

purification. Sigma-Aldrich supplied Zn(NO3)2.6H2O, 2-cyanobenzyl bromide, and 5-

aminoisophthalic acid (98%) and were used as received. Rest other chemicals like K2CO3, 

KOH, HCl, and solvents were obtained from Finar Chemicals (India). Prior to use, all the 

solvents were dried. 

3.2    Instrumentation: 

The purified products were verified using NMR spectra recorded in CDCl3 and 

DMSO-d6 using a Bruker Advance 500 Spectrometer at 500 MHz (1H) with tetramethylsilane 

as an internal standard on a Bruker Advance 500 Spectrometer. All chemical shift values are 

listed in parts per million on the scale (ppm). The CDCl3 and DMSO-d6 residual solvent 

peaks were 7.26 and 2.50 ppm, respectively. The multiplicities of desired peaks were denoted 

as given s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet). 

3.3   Synthetic schemes: 

3.3.1    Synthesis of diethyl-5-((2-cyanobenzyl)amino)isophthalate (DCAI)54 

Diethyl 5-aminobenzene-1,3-dicarboxylate (2.0 g, 8.40 mmol), dry K2CO3 (1.6 g, 

12.3 mmol) were taken in an RB flask and dry acetonitrile (200 mL) was added to the 

mixture. The mixture was stirred for 4 h at 80 °C in an N2 atmosphere (Scheme 1). Then, 2-

cyanobenzyl bromide (1.7 g, 8.40 mmol) was added to the mixture and it was again refluxed 

for 48 h by maintaining the N2 atmosphere. After completion of 48 h, the reaction mixture 

was cooled to normal temperature. Then, it was poured in 100 mL of ice-cold water. The 

appearance of white precipitates took place and these precipitates were collected by filtration 

using filter paper and then air-dried. Yield: 65% (1.2 g). 
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3.3.2    Synthesis of 5-(1-oxoisoindolin-2-yl)isophthalic acid (H2L)  

The above-obtained compound, DCAI (2.0 g, 5.17 mmol) was hydrolyzed with 6 N 

KOH solution (25 mL) and methanol (25 mL) for 24 h at 70 °C under reflux conditions 

(Scheme 1). After its completion, the reaction mixture was cooled to around 5 °C. Then, 

neutralization of the solution was done using 6N HCl solution which results in the formation 

of pale-yellow precipitate. These precipitates were filtered, washed several times with water 

and then, air-dried. Yield: 80% (1.4 g). 

 

Scheme 1: Schematic representation for the synthesis of DCAI and H2L 

 

3.3.3 Synthesis of diethyl 5-(2-cyanophenethyl)isophthalate (o-decpi) 

Diethyl 5-hydroxybenzene-1,3-dicarboxylate (2.0 g, 8.40 mmol), dry K2CO3 (1.6 g, 

12.30 mmol) were taken in an RB flask and dry acetonitrile (200 mL) was added to the 

mixture. The mixture was stirred for 4 h at 80 °C in an N2 atmosphere (Scheme 2). Then, 2-

cyanobenzyl bromide (1.7 g, 8.40 mmol) was added to the mixture and was again refluxed 

for 48 h by maintaining the N2 atmosphere. After completion of 48 h, it was cooled to normal 

temperature. Then, it was poured in 100 mL of ice-cold water. The appearance of white 

precipitate took place and these precipitates were collected by filtration using filter paper and 

then air-dried. Yield: 86% (2.8 g). 
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3.3.4 Synthesis of 5-(2-Carboxybenzyloxy)isophthalic acid (H3L)  

The above-obtained compound, o-decpi (2.0 g, 5.17 mmol) was hydrolyzed with 6 N 

KOH solution (25 mL) and methanol (25 mL) for 72 h at 90 °C under reflux conditions 

(Scheme 2). After its completion, it was cooled to around 5 °C. Then, neutralization of the 

solution was done using 6N HCl solution which results in the formation of white precipitate. 

These precipitates were filtered, washed several times with water and then, air-dried. Yield: 

80% (1.3 g). 

 

Scheme 2: Schematic representation for the synthesis of o-decpi and H3L 

3.3.5 Synthesis of Zn-MOF: 

Zn(NO3)2·6H2O (60 mg, 0.20 mmol), linker H2L (15 mg, 0.60 mmol), co-linker 4,4’-

azopy (15 mg, 0.60 mmol), DMF (1 mL), NaOH (1 M, 20 μL), and DI water (1 mL)  were 

dissolved in a 5 mL Teflon vessel and heated for 72 h at 100 °C in a heating furnace. After 

the reaction’s completion, we got golden-colored and needle-shaped crystals of Zn-MOF. 

The MOF was filtered from the mother liquor and then, washed with DI water four to five 

times, then 2-3 times with acetone. These crystals were, then soaked in acetone for 5 days so 

as to remove water and DMF from their pores for their activation. The acetone was changed 
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every day for better activation. After five days, the acetone was removed and the MOF was 

vacuum-dried to be fully activated. 

  

               H2L                  4,4’-azopy                                                                        Zn-MOF 

Scheme 3:  Schematic representation for the synthesis of Zn-MOF 

3.3.6 Synthesis of Ag@Zn-MOF: 

Zn-MOF (0.005 g) and AgBF4 (0.002 g) were added to 15 mL dichloromethane 

(DCM), then stirred for 12 h at 400 rpm in dark. After 12 h, there was a change in the color 

of the solution. The resultant solution was centrifuged to get the desired Ag@Zn-MOF. 

 

Scheme 4:  Schematic representation for the synthesis of Ag@Zn-MOF 
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Chapter 4 

  Results and discussion 

Zn-MOF was synthesized by the solvothermal reaction of zinc nitrate and H2L with 

4,4’-py as co-linker in H2O in an alkaline medium at 130 °C. The presence of bidentate ligand 

and the tendency of Zn to form MOFs have led to the formation of this Zn-MOF. The linker 

H2L was characterized by mass spectrometry and NMR spectroscopy. The MOF was 

characterized by SC-XRD, bulk purity by PXRD, surface morphology by SEM analysis, 

Elemental mapping by EDS, absorbance by UV spectroscopy, and thermal stability by TGA 

analysis. 

4.1 Characterization of DCAI:  

DCAI has been characterized by mass spectrometry, 1H and 13C NMR. 1H NMR (500 

MHz, CDCl3) δ=8.81 (s, J = 0.9 Hz, 2H, Ar-H), 8.43 (s, 1H, N-H), 7.76 (d, J = 4.6 Hz, 1H, 

Ar-H), 7.58-7.55(d, 1H, Ar-H), 7.52-7.49 (m, 2H, Ar-H), 5.00(s, 2H,-CH2-N), 4.46-4.41(q, 

4H, -CH2-), 1.43(t, 6H, -CH3) ppm (Figure 5); 13C NMR (126 MHz, CDCl3) δ=166.95, 

140.61, 133.13, 132.51, 128.78, 125.54, 123.93, 123.65, 50.92 ppm (Figure 6); ESI-MS: m/z 

[M+nH]+ = 353.1514 (Figure 4).  
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Figure 4:  ESI-MS spectrum of DCAI 

 

 

Figure 5: 1H NMR spectrum of DCAI 
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Figure 6:  13C NMR spectrum of DCAI 

 

 

4.2 Characterization of H2L:  

Lactum-based linker was characterized by 1H, 13C NMR & mass Spectrometry1H 

NMR (500 MHz, DMSO-d6) δ=8.73 (s, 2H, Ar-H), 8.27 (s, 1H, -NH), 7.81 (m, 1H), 7.96 –

7.75 (t, J = 11.7, 6.7 Hz, 2H), 7.57 (dd, J = 9.7, 3.8 Hz, 1H), 5.15 (s, 2H) ppm (Figure 8); 

13C NMR (126 MHz, DMSO-d6) δ=167.59, 166.95, 141.62, 140.61, 133.12, 132.50, 128.77, 

125.54, 123.93, 123.65, 50.91 ppm (Figure 9);  ESI-MS: m/z [M+K]+ = 336.0245  (Figure 

7). 
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Figure 7:  ESI-MS spectrum of H2L 

 

 

Figure 8: 1H NMR spectrum of H2L 
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Figure 9: 13C NMR spectrum of H2L 

 

 

4.3 Characterization of o-decpi:  

o-decpi linker is characterized by the 1H, 13C & mass spectrometry. 1H NMR (500 

MHz, CDCl3) δ=8.32 (s, 1H), 7.84 (d, J = 1.3 Hz, 2H), 7.74 – 7.70 (m, 1H), 7.65 (dd, J = 

15.1, 11.1, 4.1 Hz, 2H), 7.46 (td, J = 7.6, 1.2 Hz, 1H), 5.32 (s, 2H), 4.40 (q, J = 7.1 Hz, 4H), 

1.40 (t, J = 7.1 Hz, 6H) ppm (Figure 11); 13C NMR (126 MHz, CDCl3) δ=165.49, 158.18, 

139.62, 133.11, 132.37, 128.81, 123.79, 119.97, 116.95, 111.59, 77.33, 77.07, 76.82, 68.08, 

61.51, 14.30 ppm (Figure 12); ESI-MS: m/z [M+nK]+ = 392.1127 (Figure 10). 
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Figure 10: ESI-MS spectrum of o-decpi 

 

 

Figure 11: 1H NMR spectrum of o-decpi 
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Figure 12: 13C NMR spectrum of o-decpi 

 

4.5 Characterization of H3L:  

Oxygen-based H3L linker is characterized by the following 1H, 13C and mass 

spectrometry. 1H NMR (500 MHz, DMSO-d6) δ=8.11 (s, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.70 

(t, J = 5.5 Hz, 3H), 7.61 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.3 Hz, 1H), 5.56 (s, 2H) ppm (Figure 

14); 13C NMR (126 MHz, DMSO-d6) δ=168.71, 167.00, 158.92, 138.07, 133.64, 132.53, 

130.98, 130.32, 128.33, 123.02, 119.59, 68.63 ppm (Figure 15); ESI-MS: m/z 

[M+nNa]+=339.0523 (Figure 13). 



23 
 

 

Figure 13:  ESI-MS spectrum of H3L 

 

 

Figure 14: 1H NMR spectrum of H3L 
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Figure 15: 13C NMR spectrum of H3L 

 

4.6 Characterization of Zn-MOF:  

SC-XRD studies reveal that Zn-MOF crystallizes in a triclinic space group P-1. 

Figure 16 shows the asymmetric unit of the Zn-MOF, which contains one Zn (II) ion, one 

H2L unit, and a 4,4’-azopy molecule. It also exhibits the coordination of each Zn (II) ion with 

three O atoms of two different H2L molecules and one N atom of 4,4’-azopy linker.  

Zn(II) metal ions in the MOF formed distorted octahedral geometry. 

Two adjacent Zn(II) ions forming a metallacycle ring where both the Zn(II) ions are 

separated by 4.079 Å which extended to create a 1D layers which are pillared by azo-dpe 

molecule forming a 2D framework containing square shaped voids along the c-axis. Also, 

C–H⋯O type hydrogen bond interactions form a self-assembled 3D network. 
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Parameters Zn-MOF 

Crystal System  Triclinic 

Empirical formula C26H17N5O5Zn  

Space Group P-1  

a (Å) 10.0192(9)  

b (Å) 13.3441(15)  

c (Å) 14.680(2)  

α (º) 100.841(10)  

Β (º) 100.374(9)  

γ (º) 92.200(8)  

Volume (Å3) 1890.9(4)  

Z 2 

Final R indices (R1
a, wR2

b) 

[I>2σ(I)]  

9.97, 23.70  

R indices (R1
a, wR2

b)  

(all data) 

22.33, 29.36 

 

Table 4: Cell parameters of Zn-MOF 

aR1 = Σ(|Fo| ‒ |Fc|)/Σ |Fo|. bR2
 = [Σ{w(Fo2 ‒ Fc2)2}/Σ{w(Fo2)2}]1/2 

 

 

Figure 16: Asymmetric unit of Zn-MOF            Figure 17: The consecutive representation of                                                                                                                                                                                      

I                                                                                                      Zn-MOF from the c-axis 
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PXRD Analysis: 

Bulk purity of the Zn-MOF was confirmed by PXRD analysis. As most of the peaks 

matched with the simulated pattern which was obtained from SC-XRD, we can interpret that 

the bulk reproduced had the same crystal structure as of data interpreted by SC-XRD.  

 

Figure 18: PXRD analysis of Zn-MOF 

FE-SEM Analysis:  

The particle size distribution and shape of Zn-MOF crystals were measured using a 

field emission scanning electron microscope (FE-SEM), as shown in fig. 19.  These images 

clearly show the cuboidal type of structure of our MOF.  

    

Figure 19: FE-SEM analysis of Zn-MOF 
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EDS analysis:  

EDS analysis was done over an area of 5 µm to check the elements present in the 

MOF. It was found that this MOF contains Zn, C, N, O and H in different proportions. 

Element Zn C N O 

At% 1.5 67.9 12.6 18.0 

Wt% 7.2 59.1 12.8 20.9 

Table 5: EDS analysis of Zn-MOF 

 

Figure 20: EDS analysis of Zn-MOF 
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UV Analysis:  

The photophysical properties of Zn-MOF was studied using electronic absorption 

spectroscopy. A solution of 0.1 mg/mL was used. The UV-vis spectrum (Figure 21) of Zn-

MOF displayed an intense absorption band at 270.5 nm.  

 

Figure 21: UV spectrum of Zn-MOF  

Thermal analysis:  

TGA was done to check the thermal stability of our MOF. By analyzing the data, it 

was found that in the first step, 30-300 ºC around 10.00 weight % was lost due to the presence 

of H2O molecules and other solvent molecules which are present in the framework. In the 

second step, 320-500 ºC, breakage of covalent bonds led to the decrease of 47.92 weight % 

and finally in the third step, 500-600 ºC, the disintegration of the framework took place by 
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14.23 weight % which indicates that all the elements have reached in elemental state, thereby 

putting no effect on further increasing the temperature. 

 

Figure 22: TGA analysis of Zn-MOF 

 

4.7 Characterization of Ag@Zn-MOF: 

PXRD Analysis -: 

 After doping with Ag, the crystal structure was examined whether it has changed or 

not, by PXRD. By interpreting the data and comparing the peaks with as-synthesized Zn-

MOF, we can infer that the bulk purity was maintained even after doping with Ag. There is 

slight reduction in the crystallinity due to the enrichment of amorphicity of the composite, so 

formed. 
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Figure 23: PXRD analysis of Ag@Zn-MOF 

FE-SEM analysis -:  

The particle size distribution and shape of Zn-MOF crystals were measured using a field 

emission scanning electron microscope (FE-SEM), as shown in fig. 24.  These images clearly 

show the cuboidal type of structure of our MOF. The morphology was intact even after 

doping with Ag.  

    

 Figure 24: FE-SEM analysis of Ag@Zn-MOF 
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EDS mapping -:  

EDS mapping was done over an area of 3 µm to check the elements present in the 

MOF. It was found that the composite contains Zn, Ag, C, N, O and H in different 

proportions. 

    

Table 25: EDS mapping of Ag@Zn-MOF 
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UV Analysis -:  

 

Figure 26: UV Spectra of Zn-MOF & Ag@Zn-MOF  

The photophysical properties of Zn-MOF and its composite Ag@Zn-MOF were 

studied using electronic absorption spectroscopy. A solution of 0.1 mg/mL was used to study 

these properties. The UV-vis spectra of Zn-MOF and Ag doped Zn-MOF displayed 

absorption bands between 250-450 nm. The Ag@Zn-MOF exhibited intense absorption 

bands at 270.5 nm and 420.3 nm respectively. This absorption peak at 420.3 nm confirms the 

presence of silver. Further, we discovered that Ag@Zn-MOF had a redshift in UV-vis 

absorption spectroscopy. The UV data indicates that the primary structure is intact even after 

doping with Ag. 

Thermal analysis:-  

Thermogravimetric plots infer that more thermal degradation has taken place due to the 

incorporation of Ag. The weight loss percentage is almost similar to that of Zn-MOF upto 

2nd step. The change in weight loss percentage is around 7.62% between Zn-MOF and its 

composite Ag@Zn-MOF. The reason for shift is because of doping with Ag. The primary 
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interactions (bonds) between Zn metal, linker and co-linker sites get weakened as Ag also 

interacts with the donor sites after incorporation. 

 

Figure 27: TGA Analysis of Ag@Zn-MOF 

 

4.8 Antibacterial studies of Zn-MOF and Ag@Zn-MOF 

4.8.1 Turbidity Assay of Zn-MOF and its composite Ag@Zn-MOF 

The in vitro antibacterial studies were performed using the E. coli DH5α bacterial 

strain. To ensure the sterility, all the labware was autoclaved at 121 °C for 15 minutes. 

Escherichia coli was cultured in Luria broth in an orbital shaker at 37 °C with continuous 

shaking at 220 rpm and harvested till the exponential growth phase was reached. The OD of 

the resuspended bacterial pallet in PBS was measured at 600 nm (OD600) and was adjusted 

to 0.1 by using PBS to form a fresh inoculum. Addition of 10 µL inoculum to the 5mL of 

Luria broth was done to perform the experiments. The inhibition of E. coli growth study was 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/optical-density
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/inoculation
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tested using four treatments; 1.) positive control where only inoculum and bacterial cells 

were incubated, 2.) negative control containing only inoculum, 3.) Broth having bacteria, 

inoculum and Zn-MOF (1 mg/mL), 4.) broth containing bacteria, inoculum and Ag@Zn-

MOF (1 mg/mL). The optical density of these samples was measured using UV-vis 

spectrometer at wavelength 600 nm after every 30 minutes for 8 h and a graph was plotted 

(Fig. 28). 

 

 

Figure 28: Growth curves of Escherichia coli on treatment with Zn-MOF and its composite Ag@Zn-MOF  

The results obtained from the growth curves indicate that Ag@Zn-MOF has better 

antibacterial property in comparison to Zn-MOF. This can be attributed due to the excellent 

antimicrobial properties of silver. 

Biocompatibility of our Zn-MOF and its composite is yet to be done in the future with healthy 

cell lines using MTT Assay. This will check the cell viability of our MOF and will be helpful 

in opening the new aspects for antibacterial activities in MOFs. 

 



35 
 

Chapter 5 

 Conclusion and Future Scope 

Two ligands namely, 5-(1-oxoisoindolin-2-yl)isophthalic acid (H2L) and 5-((2-

carboxybenzyl)oxy)isophthalic acid (H3L) were synthesized and characterized by NMR 

spectroscopy and Mass spectrometry. We synthesized a Zn-MOF using H2L as linker and 

4,4’-azopy as co-linker under solvothermal conditions. Also, post-synthetic modification was 

done to Zn-MOF. Ag+ ions were incorporated into the pores of Zn-MOF by treatment with 

AgBF4 to get Ag@Zn-MOF. Single Crystal XRD, PXRD, SEM, TGA, EDS, and UV 

techniques were done for the characterization of our MOF and its composite. Also, 

antibacterial application has been investigated against E. coli bacteria using the MOF and its 

composite. The results showed that Ag-doped MOF had better inhibition towards E. coli in 

comparison to Zn-MOF alone. 

There has been a tremendous growth in synthesizing MOFs which has opened lots of 

paths for the future. Some gaps are still there in completely understanding their crystal 

structure, stability and various factors which affect their formation and destruction. MOFs 

having biological properties will act as a boon for the upcoming generations as these are one 

of the best and economical candidates for nanotechnology. Commercialization of MOFs-

based drugs has given a promising and exciting in the area of science.  
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