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ABSTRACT 

Hydrogen as an energy carrier could be a revolutionary fuel in view 

of energy sustainable development if we can abstract it from 

biomass-derived compounds such as biogas, bio-oil, bio-ethanol, 

bio-butanol, etc. Traditionally, SR, POX, and OSR are the major 

processes to produce hydrogen from ethanol but it needs a very high 

temperature. By using catalysts, we can reduce this energy 

consumption. So, here we performed dehydrogenation of ethanol in 

presence of in-situ generated ruthenium nanoparticle as a catalyst by 

using Ru salt as a pre-catalyst in water at low temperature (110 °C). 

Additionally, optimization of reaction was done by using CTAB and 

PVP as stabilizing agent and γ-Al2O3 as an additive.   
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CHAPTER ONE 

1. INTRODUCTION 

1.1 General Introduction 

The importance of hydrogen as an energy carrier is remarkable in 

view of the environment as well as energy density.[1] Hydrogen is a 

clean source of energy, if we can abstract it from water, natural gas, 

or biomass, can be cast-off to power and heat our homes. There are 

two core methods used to abstract hydrogen on a large scale: steam-

methane reforming(gray or blue hydrogen) or electrolysis(green 

hydrogen).[2] Electrolysis includes fleeting a high current of 

electricity over water to isolate the hydrogen and oxygen atoms. It 

sounds meek sufficient, but this is an expensive process because of 

the quantity of electricity desirable. And to make the electricity, 

fossil fuels (e. g. natural gas, oil, or coal) are seared which produces 

carbon discharges. If the electricity cast-off in electrolysis comes by 

means of solar panels, wind, or hydropower farms then we can avoid 

these carbon discharges.[2-12] 

In steam methane reforming there is the unraveling of hydrogen and 

carbon in methane. Because hydrogen can be taken out in large 

quantities it is the method used most commonly at the moment, but 

it results in the releases of carbon monoxide and carbon dioxide.[13] 

Both of these gases are harmful to our atmosphere and will contribute 

to global warming. However, it is possible to capture the carbon 

emitted throughout the process of producing hydrogen with Carbon 

Capture Utilization Storage(CCUS) systems which would avoid the 

carbon from being out into the atmosphere.[14] 

                We cannot course out of hydrogen because it is a renewable energy 

source, at least not on a humanoid timescale. Unlike nuclear energy 

or natural gas, it doesn’t cause damage to human health. Compared 

to the most fossil-based fuel sources less hydrogen is required to 

perform the same tasks because it is 3 times more efficient.[15] 
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That’s the reason why hydrogen is used in space exploration to fuel 

spaceships, airplanes, boats, cars, and fuel cells. 

On the other side hydrogen is a volatile and highly flammable matter 

which makes it a risky fuel to effort with. Also, the processes used to 

produce it are very expensive. Trials and research are in the course 

to attempt and notice a low-priced and bearable method to yield 

sufficient hydrogen without having extra carbon into the 

atmosphere.[16] 

In the continuation of the same, there are some catalytic reactions to 

produce hydrogen from different substrates (e. g. alcohols, 

aldehydes, acids, water, hydrazine, ethylenediamine, ammonia etc.) 

by using two different types of catalysts namely homogenous 

catalysts and heterogeneous catalysts.[17-28] 

When a catalyst and reactant are in the same phase then that catalyst 

is known as a homogeneous catalyst whereas when a catalyst and 

reactants are in a different phase then the catalyst is known as a 

heterogeneous catalyst. In heterogeneous catalysis, at active sites of 

the catalyst, one or more of the reactants are adsorbed. Because of 

the interaction between the surface of the catalyst and the reactant 

molecules, the reactant becomes more reactive and a reaction 

happens. And desorption of product takes place. A decent catalyst 

wishes not to adsorb more or less permanently to the surface but 

adsorb the reactant molecules sturdily enough for them to react. Like, 

reactant molecule can’t add-on sturdily to the silver because of which 

it is not a decent catalyst. Conversely, Tungsten adsorbs too sturdily 

that’s why it isn’t a good catalyst. 

Platinum and nickel adsorb sturdily to clasp and activate the reactants 

but not so sturdily that the products can’t break down away that’s 

why they make good catalysts. 
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1.2 Review of Past Work and Problem Formulation 

 Different substrates have different content of hydrogen among 

which some of them have been shown here in the following table. 

Table 1 Some hydrogen storage materials with their stoichiometric 

hydrogen yield 

Hydrogen storage materials Stoichiometric H2 Yield 

moles % 

(By wt) 

Methane  2 25.14 

Methanol 3 12.5 

Ethanol 6 12.5 

Formic acid   1 4.35 

Hydrazine Hydrate 2 7.9 

Glycerol 1 2.17 

Formaldehyde 2 8.4 

 

Among all the above several renewable feedstock alternatives, 

because of its availability, relatively high hydrogen content, storage 

or handling ease, non-toxicity, and safety, ethanol has been regarded 

as an attractive feedstock. In past years, the major processes for 

hydrogen production from ethanol are steam reforming (SR), partial 
oxidation (POX), and oxidative steam reforming (OSR). 
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 CH3CH2OH + 3H2O                         6H2 + 2CO2                   (SR) 

          CO + H2O                       H2 + CO2      (Water-Gas shift reaction) 

                CH3CH2OH + 1.5O2                          3H2 + 2CO2        (POX) 

 CH3CH2OH + 1.8H2O + 0.6O2                                  4.8H2 + 2CO2    (OSR) 

     There is a vital part of catalysts in terms of whole ethanol 

transformation and making the most of hydrogen. Non-noble metals 

like Ni, Co and noble metals like Ru, Rh, Pd, Pt, and Ir metal possess 

high C-C bond cleavage capacity that has been widely investigated. 
[29-35] The catalyst activity can be influenced by support which 

interacts with ethanol and accelerates its transformation.[36],[37] 

Table 2 Comparative chart of product variety for ethanol OSR on 

M/Al2O3 (M = Rh, Pd, Ag, Au, Pt) under the following catalytic 

conditions: H2O/ethanol = 3 and O2/ethanol = 0.3 at 600 °C.[38] 

 

XC2H6O (%) = [(moles of fed ethanol - moles of exited 

ethanol)/(moles of fed ethanol)] × 100%. 

Catalyst YH2 

(%) 

SCH3CHO 

(%) 

SC2H4 

(%) 

SCH4 

(%) 

SCO 

(%) 

SCO2 

(%) 

Rh (1.6 

wt%) 

94 0 0 18 41 41 

Ag (1.4 

wt%) 

14 58 3 11 0 24 

Au (1.6 

wt%) 

18 53 5 13 3 26 

Pd (1.3 

wt%) 

22 17 28 13 12 28 

Pt (1.5 

wt%) 

29 17 24 18 11 29 
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 SH2 (%) = {(moles of produced H2)/ [3 × (moles of fed ethanol]} × 

100%.  

SX(%) = [(moles of carbon in product X)/(total moles of carbon in 

products)] × 100%. 

Table 3 Comparison of alumina-supported noble metal catalysts 

performance in ethanol reforming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 XC2H6O (%) = [(moles of fed ethanol - moles of exited 

ethanol)/(moles of fed ethanol)] × 100%. 

 SH2 (%) = {(moles of produced H2)/ [3 × (moles of fed ethanol]} × 

100%.  

 

Active 

Metal 

Support T 

(°C) 

C2H6O/H2O 

(molar 

ratio) 

XC2H6O 

(%) 

SH2 

(%) 

Ref. 

Rh (1 

wt%) 

Al2O3 700 1/3 100 72 39 

Ru 

(0.6wt%) 

Al2O3 700 1/3 100 46 39 

Pd (0.8 

wt%) 

Al2O3 700 1/3 100 55 39 

Pt (1 wt%) Al2O3 700 1/3 100 38 39 

Rh (1 

wt%) 

Al2O3 750 1/3 79 90 40 

Ru (1wt%) Al2O3 750 1/3 18 52 40 

Pd (1wt%) Al2O3 750 1/3 25 45 40 

Pt (1wt%) Al2O3 750 1/3 32 63 40 
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All the data given in the above table suggested that for the production 

of hydrogen from ethanol we need a very high temperature. Also, to 

be specific, for non-noble metal catalytic reactions we need a high 

content of water. So, we need to develop a method that can efficiently 

produce hydrogen from ethanol at low temperatures and by using less 

amount of water.  

1.2 The Aim and Strategy of our work 

The aim of our work is to synthesize a highly effective catalyst to 

produce hydrogen from ethanol at low temperatures. The strategy of 

our work is to use metal nanoparticles as a catalyst in the basic 

medium for dehydrogenation of ethanol with water and produce 

hydrogen from it. And also optimize the reaction by changing the 

reaction conditions or providing appropriate support to the catalyst 

to get the most effective results. 

            

C2H5OH
Catalyst

Base+ H2O CO2H2 +

 

Scheme 1: Ethanol dehydrogenation in the presence of catalyst and 

base 
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CHAPTER TWO 

2. EXPERIMENTAL SECTION 

2.1 Materials and Instrumentation 

Sigma-Aldrich, Alfa Aesar and Merck are the ones from where all 

metal salts and chemicals were purchased and used with no more 

purification. Using a Rigaku SmartLab, Automated Multipurpose X-

ray diffractometer at 40 kV and 30 mA using Cu Kα radiation (λ = 

1.5418 Å Powder X-ray diffraction (PXRD) measurements were 

performed on the dried particles. Scanning electron microscopic 

(SEM) images, elemental mapping, energy dispersive X-ray 

spectroscopy (EDS) analyses, and elemental mapping were carried 

out with a Supra55 Zeiss (operating voltage 5 kV) equipped with an 

Oxford instrument EDS X-ray spectrometer. 1H NMR (400 MHz) 

were recorded in D2O on a Bruker Avance 400 spectrometer at 298 

K using tetramethylsilane (TMS) as an external standard. Chemical 

shifts were reported in ppm relative to the center of the singlet at 4.75 

ppm for D2O in 1H NMR. 

2.4 Catalytic hydrogen production from ethanol 

A suitable amount of RuCl3.3H2O (0.1 mmol) and support (50mg) in 

ethanol-water solution (n(C2H5OH)/n(H2O) = 1:1) was taken in a 10 

mL test tube reaction vessel and a suitable base (1.1 equiv. with 

respect to ethanol) was added. After de-aerating, the reaction vessel 

was flushed with N2 where the reaction vessel was equipped with a 

condenser (-10 °C) and water displacement setup. By using the water 

displacement method, the amount of gas generated per unit time was 

quantified, and by using GC-TCD the content of the released gas was 

confirmed.  
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By using the formula [n(H2)/n(catalyst)], the turnover number (TON) 

was calculated. The turnover frequency (TOF) was calculated as 

TON/time. After the catalytic reaction, by using centrifugation the  

supported ruthenium nanoparticles were collected and dried in a 

vacuum oven which can be used for the further catalytic cycles. 

CHAPTER THREE  

3. RESULTS AND DISCUSSION 

3.1 Characterisation of in-situ generated Ru 

nanoparticle 

                    Ruthenium nanoparticles were synthesized in-situ and 

CTAB, PVP, and γ-Al2O3 were added as an additive in the reaction. 

A 2θ value of 43° in the powder X-ray diffractogram (PXRD) (Figure 

1) shows the presence of (101) lattice plane. PXRD analysis also 

suggests a hexagonal closed packed (hcp) structure of the 

nanoparticles. The PXRD analysis of the nanoparticles shows the 

characteristic peaks for the Ru. Also, the Scanning Electron 

Microscope (SEM) images tell the presence of ruthenium 

nanoparticles (Fig. 2a). This is also supported by Energy Dispersive 

X-ray Spectroscopy (EDS) where the corresponding peak with 

respect to ruthenium was observed (Fig. 2b). 
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           Fig. 1 PXRD of in-situ generated ruthenium nanoparticles 
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Fig. 2 (a)SEM image and (b)EDS analysis of in-situ generated 

ruthenium nanoparticles 

Fig. 3 Elemental mapping of in-situ generated ruthenium 

nanoparticles 

3.2 Catalytic dehydrogenation reaction 

The catalytic dehydrogenation of ethanol was carried out over in-situ 

generated Ru nanoparticles to produce hydrogen at a very low 

temperature. For that, first, we have taken RuCl3.3H2O as a pre-

catalyst in the presence of 1.1 Equiv. KOH and ethanol (1:1 molar 

ratio of C2H5OH: H2O) at 110 °C, where the release of 48 mol gas 

per mol of Ru was observed (Initial TOF 14 h-1) (Table 3, entry 1, 
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 Fig 4). The evolved gases were identified as hydrogen and methane 

by GC-TCD (Fig 10). 

Also, when we do an NMR study of the reaction aliquot after the 

reaction, we got peaks corresponding to acetic acid and formic acid 

(Fig 6). On basis of GC-TCD and NMR data, we can say that 

probably there are two reactions happening simultaneously in the 

reaction mixture. At the very first dehydrogenation of ethanol to 

acetic acid and hydrogen occurs then the cleavage of C-C bond 

occurs in the presence of hydrogen produced in the first reaction to 

give methane and formic acid (Scheme 2). 

CH3CH2OH CH3COOH 2H2 (1)
        

CH3COOH H2 CH4 HCOOH (2)
 

         Scheme 2: Plausible pathway of the reaction 

From the past studies, it is observed that the size of the generated 

ruthenium nanoparticle can also alter the reaction.[42], [43] So, we tried 

CTAB and PVP as stabilizing agents separately with RuCl3.3H2O to 

know about the effect of the size of the particle generated in the 

reaction (Table 3, entry 2, 3, and Fig. 4). We observed that in the case 

of CTAB stabilized particles it releases 0.24 mol gas per mol of 

ethanol (TON 39 mol gas per mol of Ru) whereas PVP st abilized 

particles releases 0.36 mol gas per mol of ethanol (TON 58 mol gas 

per mol of Ru). 

An important role in the stability and activity of the catalyst has 

frequently been shown by the supports.[43] Therefore, we investigated 

γ-Al2O3 as a support not only for the finest metallic distribution and 

thermal stability on the metal phase but also to contribute straight in 

the catalytic course. When we use γ-Al2O3 as the support, there is a 

decrease in the gas released to 0.32 mol of H2 per mol of ethanol. 
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 Table 3 Screening of catalyst with various additives to produce 

hydrogen from ethanol 

 

 

 

 

 

 

 

Reaction condition: Ethanol (16.08), Ru catalyst (0.628mol%), 

additive 50 mg, KOH (1.1 equiv.), 10h, Nitrogen. *Initial average 

Turnover frequency at 1h. 
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Fig. 4 Effect of Additive on in-situ generated Ru catalyst for 

hydrogen production from ethanol at 110 °C. (Reaction condition:  

Entry Cat. Additive n(alc.)/ 

n(H2O) 

T 

(°C) 

KOH 

(equiv.) 

n(gas)/ 

n(ethanol) 

n(gas)/ 

n(cat.) 

TOF* 

(h-1) 

1 Ru - 1:1 110 1.1 0.30 48 14 

2 Ru CTAB 1:1 110 1.1 0.24 39 12 

3 Ru PVP 1:1 110 1.1 0.36 58 15 

4 Ru γ-Al2O3 1:1 110 1.1 0.32 52 14 
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ethanol (16.08 mmol), additive(50mg), Ru catalyst (0.625mol%), 

KOH (1.1 equiv.) and ethanol to water molar ratio (1:1), nitrogen) 

 

Further, 1H NMR of the reaction aliquot after the completion of the 

catalytic reaction inferred the presence of acetic acid and formic acid. 

In GC-TCD analysis, there is no peak corresponding to CO or CO2 

suggesting the breakdown of formic acid does not take place. 

 

Fig. 5. Effect of stabilizing agent on the dehydrogenation of ethanol. 

(Reaction conditions: ethanol (16.08 mmol), Ru catalyst 

(0.625mol%), CTAB (50 mg), KOH (1.1 equiv.), 72h, and ethanol to 

water molar ratio (1:1), Nitrogen) 
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The literature tells those reactions performed under reducing 

conditions may come with the transformation of Ru salt to Ru (0) 

nanoparticles.[44] 

Furthermore, in the considered catalytic system, 

acetate/acetic acid and formate/formic acid is found to be a worthful 

side product. These results inferred that using PVP as a stabilizing 

agent with Ru salt can produce a little bit higher content of hydrogen 

gas from ethanol. Therefore, by changing the size and morphology, 

and stabilization of the catalyst we can get good results as shown here 

by taking different stabilizing agents and additives. 
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APPENDIX A. 

1H NMR spectrum of the reaction mixture and GC-TCD 
analysis of gas released from the reaction.  
SKS-MJ-51RRR.001.001.1r.esp
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Fig.7 1H NMR spectrum of the reaction mixture obtained after the 
reaction. Reaction condition: ethanol (16.08 mmol), Ru catalyst 
(0.625 mol%), KOH (1.1 equiv.), water (1 equiv.), 110 °C, Nitrogen 
(Table 3, entry 1). 
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Fig. 8 1H NMR spectrum of the reaction mixture obtained after the 
reaction. Reaction condition: ethanol (16.08 mmol), Ru catalyst 
(0.625 mol%, 50mg CTAB), KOH (1.1 equiv.), water (1 equiv.), 
110 °C, Nitrogen (Table 3, entry 2). 
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Fig. 9 1H NMR spectrum of the reaction mixture obtained after the 
reaction, yield was determined using the maleic acid (1 mmol) as 
internal standard. Reaction condition: ethanol (16.08 mmol), Ru 
catalyst (0.625 mol%, 50mg PVP), KOH (1.1 equiv.), water (1 
equiv.), 110 °C, Nitrogen (Table 3, entry 3). 
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Fig. 10 1H NMR spectrum of the reaction mixture obtained after the 
reaction, yield was determined using the maleic acid (1 mmol) as 
internal standard. Reaction condition: ethanol (16.08 mmol), Ru 
catalyst (0.625 mol%,), γ- Al2O3(50mg), KOH (1.1 equiv.), water 
(1 equiv.), 110 °C, Nitrogen (Table 3, entry 4). 
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Fig. 11 GC-TCD of gas evolved from the reaction mixture (using 
Argon as carrier gas). Reaction condition: ethanol (16.08 mmol), 
Ru catalyst (0.625 mol%,), KOH (1.1 equiv.), water (1 equiv.), 
Nitrogen (Table 3, entry 1). 

 

Fig. 12 GC-TCD of gas evolved from the reaction mixture (using 
Argon as carrier gas). Reaction condition: ethanol (16.08 mmol), 
Ru catalyst (0.625 mol%,), CTAB (50mg), KOH (1.1 equiv.), water 
(1 equiv.), Nitrogen (Table 3, entry 2). 
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