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ABSTRACT 

 

Aza–boron–dipyrromethene (Aza–BODIPY) is a hetero–atom substituted 

boron–dipyrromethene (BODIPY), in which a carbon atom present at the meso–position 

is replaced by a nitrogen atom. Aza–BODIPYs show good optical and thermal stability. 

The donor-acceptor functionalized aza–BODIPY conjugates show lower HOMO–

LUMO gap and absorption in near infra–red (NIR) region. Thus, such NIR absorbing 

materials can be used in various photonic and bio–applications such as bioimaging, 

sensors, therapeutics, organic light emitting diodes (OLEDs), organic photovoltaics, etc. 

In present work, we synthesized and characterized β–substituted aza–BODIPY 

derivatives by Palladium catalyzed Suzuki cross–coupling reaction. Also, the 

photophysical properties and theoretical calculations have been performed using the 

density functional theory (DFT) and time–dependent density functional theory (TD–

DFT). 
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Chapter 1 

INTRODUCTION 

 

Boron–dipyrromethene (BODIPY) dyes are the organo–boron compounds which 

show absorption in ultraviolet (UV)/visible (vis) regions [1–2]. Also, BODIPYs show 

high donor ability, due to which they are used to generate multi–chromophore systems 

for the studying artificial photosynthetic models. Moreover, BODIPY dyes have good 

photostability & fluorescence quantum yield. However, the maximum absorptions of 

BODIPYs are below wavelength 700 nm and that is suboptimal for bio–applications 

because of the limited penetration depths.  

Near–infrared (NIR) absorbing dyes show many applications such as 

fluorescence imaging used for deep tissue penetration and high resolution. O’Shea’s 

group reported aza–boron–dipyrromethene i.e., aza–BODIPY in 2002 [3]. It is a 

hetero–atom substituted analogue of the conventional BODIPY, in which a carbon atom 

present at the meso–position on the BODIPY ring is replaced by a nitrogen atom 

(Figure 1). Such aza–BODIPY dyes retain the optical and thermal stability as well as 

exhibits bathochromically shifted absorption, and increased absorption coefficient 

compared to the BODIPY dyes. Aza–BODIPY dyes show fluorescence and absorption 

in a region with wavelength longer than 650 nm.  

Along with the long wavelength absorptions aza–boron–dipyrromethenes have 

high molar extinction coefficient (ε), high quantum yields as well as narrow emission 

and absorption peaks [4]. Thus, aza–BODIPYs show various applications in sensors [5–

6], bioimaging [7–10], OLEDs [11], OFETs, therapeutics [12–15], organic 

photovoltaics, photosensitizers used in photodynamic therapy [16–20]. Aza–BODIPYs 

can be extensively studied as fluorescent probes as well as phototherapeutic agents. 
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Figure 1. General structures of BODIPY and aza–BODIPY dye. 

The significant red–shifted absorption and emission of aza–BODIPYs from 

those of BODIPYs can be explained by the efficient stabilization of the LUMO due to 

the presence of nitrogen atom with higher electronegativity in the aza–BODIPY 

analogue than carbon atom in the BODIPY analogue at the meso–position. Since, a 

HOMO–LUMO transition occurs in case of absorption of BODIPY and aza–BODIPY, 

it has a longer wavelength absorption than BODIPY because of the narrower band gap 

[21–22]. The structural design of aza–BODIPY dye has an important role for its 

excellent photophysical properties that ultimately determine its versatile application. 

Apart from this, a further shift in the maximum absorption of aza–BODIPYs into the 

NIR–I or NIR–II region becomes a new drift for its application in high performance 

bio–applications.  

Importantly, it has been observed that a significant red–shift of maximum 

absorption and emission into near–infrared region can be effectively achieved by π–π* 

conjugated extension, attachment of different donor moieties on the phenyl rings, B-

atom chelation, different substitutions on core aza–BODIPY with electron–

accepting/donating aromatic rings and replacing the fluorine atom by alkynyl groups or 

aryl groups [23–24].  
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Figure 2. Chemical structures of compounds synthesized. 

Herein, we perform the synthesis of the three different β–functionalized aza–

BODIPY dyes 3–5. These compounds have been characterized by 1H NMR, 13C NMR, 

LCMS and HRMS. Also, we have performed the photophysical properties and DFT, 

TD–DFT studies. These materials can be used in various photonic applications such as 

solar cell applications, sensing, bioimaging, etc.  
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Chapter 2 

LITERATURE REVIEW 

 

Owing to pioneering the investigations on aza–BODIPY dyes, three major 

synthetic methods of aza–BODIPY have been reported (Scheme 1–3). O’Shea et al. 

[3,25] proposed a synthetic method for symmetrical and asymmetrical aza–BODIPY 

products which includes a cyclization reaction of substituted ketones and nitromethane 

via Michael addition, followed by boron trifluoride complexation to generate the 

desired products (Scheme 1). Though the synthesis is simple following this method and 

the conditions used are mild, the yield of the product is quite less (20–50%).  

 

Scheme 1. O’Shea’s method for aza–BODIPY synthesis. 

 Carreira et al. [25,26] proposed a synthetic method for symmetrical and 

asymmetrical aza-BODIPY products which includes a direct cyclization of substituted 

pyrrole followed by boron trifluoride complexation (Scheme 2). In this case, product 

yield is higher (>50%). Furthermore, on comparison with the O’Shea’s molecular 

structure, in this case the π–π* conjugated extension could be achieved in the parent 

molecule as this version can be fused with pyrrole. 
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Scheme 2. Carreira’s method for aza–BODIPY synthesis. 

 Lukyanets et al. [25,27] proposed a synthetic method for symmetrical aza–

BODIPY products which includes a reaction of aryl MgBr and phthalonitrile. Further, 

the desired product can be generated by the boron trifluoride complexation (Scheme 3). 

However, this synthetic route for aza–BODIPY is having the lowest yield among all the 

three pathways (10–30%). Conclusively, the three synthetic routes provide a foundation 

for the synthesis of aza–BODIPY derivatives. 

 

Scheme 3. Lukyanet’s method for aza–BODIPY synthesis. 
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Chapter 3 

EXPERIMENTAL SECTION 

 

3.1 General Methods 

All the chemicals were used as received unless otherwise indicated. The 

moisture sensitive reactions were done under argon using Schlenk method. 1H NMR 

(500 MHz) and 13C NMR (125 MHz) spectra were recorded by using solvent CDCl3. 

The chemical shifts for 1H NMR are mentioned in parts per million (ppm) relative to the 

solvent residual peak (CDCl3, 7.26 ppm). The multiplicities are written as singlet (s), 

doublet (d), multiplet (m), and coupling constants, J, are reported in Hz. The chemical 

shifts for 13C NMR are given in ppm relative to solvent residual peak (CDCl3, 54.0 

ppm). LCMS and HRMS were performed on a mass spectrometer (ESI–TOF). The UV–

visible absorption spectra of aza–BODIPY were performed on UV–visible 

Spectrophotometer in DCM (dichloromethane). 

3.2 Experimental Procedures 

3.2.1 Method for synthesis of aza-BODIPY 1 

 Aza-BODIPY 1 was synthesized using a four–step literature procedure [28]. 1H 

NMR (500 MHz, CDCl3, δ in ppm): 8.08–8.07 (4H, d, J = 5 Hz), 8.00–7.98 (4H, d, J = 

10 Hz), 7.29–7.26 (4H, m), 7.02–7.00 (6H, d, J = 10 Hz), 3.89 (6H, s), 2.45 (6H, s); 13C 

NMR (125 MHz, CDCl3, δ in ppm): 161.8, 158.0, 147.7, 145.3, 143.2, 131.6, 129.9, 

129.4, 129.2, 124.3, 118.0, 114.2, 55.4, 53.4, 31.6, 25.3, 22.7, 22.4, 21.5, 18.9; HRMS 

(ESI) m/z calcd for C36H30BF2N3O2: 586.2478 [M+nH]+, found 586.2479 [M+nH]+. 

3.2.2 Method for synthesis of aza-BODIPYs 3–5 

2,8-dibromo-5,5-difluoro-3,7-bis(4-methoxyphenyl)-1,9-di-p-tolyl-5H-

dipyrrolo[1,2-c:2',1'-f][1,3,5,2]triazaborinin-4-ium-5-uide 2 (100 mg, 0.14 mmol) and 

an appropriate boronic acid (phenyl boronic acid, naphthalenyl boronic acid and 

phenanthrenyl boronic acid) (50–100 mg, 0.42 mmol) were taken in a solvent mixture 

of water/THF/toluene (1:1:1) (20 mL) in a 100 mL one-neck round–bottomed flask. 

Na2CO3 (60 mg, 0.56 mmol) was added further. The RB was fitted with condenser and 
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stirred for 15 minutes under argon atmosphere. Pd(PPh3)4 (16 mg, 0.014 mmol) was 

used as a catalyst and added to the reaction mixture. Further, it was refluxed at 60 °C for 

6 to 10 hours. After completion of the reaction, the reaction mixture was quenched with 

distilled water (5 mL) and it was extracted with DCM. The combined organic layers 

were further washed with water and brine solution and dried over anhydrous Na2SO4. 

The solvent was evaporated using rota evaporator, and the crude residue was purified by 

column chromatography (3:2, dichloromethane:hexane) to afford aza–BODIPY 3–5.  

Aza–BODIPY 3: 

Yield: 33%; 1H NMR (500 MHz, CDCl3, δ in ppm): 8.08–7.98 (3H, m), 7.47–

7.37 (6H, m) 7.29 (1H, s), 7.24–7.18 (6H, m), 7.12–7.10 (1H, d,  J = 10 Hz), 7.06–7.04 

(2H, m), 7.00–6.97 (4H, m), 6.81–6.75 (3H, m), 3.89–3.78 (6H, m), 2.45–2.36 (6H, m); 

13C NMR (125 MHz, CDCl3, δ in ppm): 162.1, 160.7, 159.4, 158.1, 156.6, 146.2, 

145.2, 144.4, 143.8, 140.9, 140.0, 139.8, 138.4, 138.2, 135.6, 135.5, 133.0, 1332.4, 

131.7, 131.0, 130.9, 130.7, 129.5, 129.4, 129.3, 129.1, 129.0, 128.5, 128.3, 128.2, 

127.2, 127.1, 124.0, 123.4, 123.1, 118.1, 114.3, 113.3, 113.2, 55.4, 55.1, 34.7, 31.6, 

26.9, 25.3, 22.7, 22.4, 22.5, 21.4, 20.7, 18.8; HRMS (ESI) m/z calcd for 

C48H38BF2N3O2: 738.3106 [M+nH]+, found 738.3106 [M+nH]+. 

Aza–-BODIPY 4: 

Yield: 27%; 1H NMR (500 MHz, CDCl3, δ in ppm): 8.08–8.05 (2H, t, J = 7.5 

Hz), 7.80–7.74 (4H, m), 7.41–7.28 (11H, m), 7.25–7.22 (5H, m), 7.06–6.98 (2H, m), 

6.94–6.88 (3H, m), 6.61–6.56 (3H, m) 3.89–3.66 (6H, m), 2.45–2.17 (6H, m); 13C 

NMR (125 MHz, CDCl3, δ in ppm): 162.1, 160.6, 160.4, 142.4, 139.8, 138.5, 138.3, 

133.6, 132.4, 131.7, 130.4, 130.3, 129.6, 129.4, 129.3, 129.2, 128.5, 128.2, 128.1, 

126.3, 126.2, 126.0, 125.9, 125.5, 124.0, 123.6, 123.3, 114.3, 114.0, 113.1, 113.0, 55.4, 

55.0, 21.5, 21.4; LCMS (ESI) m/z calcd for C56H42BF2N3O2: 838.3420 [M+nH]+, found 

838.3488 [M+nH]+. 

Aza–BODIPY 5: 

Yield: 25%; 1H NMR (500 MHz, CDCl3, δ in ppm): 8.69 (4H, s), 8.09 (2H, s), 

7.90–7.88 (2H, m), 7.75–7.42 (18H, m), 7.09–6.99 (2H, m), 6.92–6.87 (3H, m), 6.56–

6.54 (3H, m), 3.89–3.61 (6H, m), 2.44–2.21 (6H, m); 13C NMR (125 MHz, CDCl3, δ in 

ppm): 162.1, 160.6, 160.4, 159.5, 159.1, 145.4, 144.0, 142.6, 139.8, 138.6, 138.4, 136.0, 

132.5, 131.8, 131.6, 131.5, 131.4, 131.3, 130.9, 130.7, 130.6, 130.5, 130.4, 130.3, 
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130.2, 130.1, 129.9, 129.6, 129.5, 129.4, 129.3, 129.2, 128.9, 128.7, 128.6, 128.4, 

127.2, 127.0, 126.9, 126.8, 126.7, 126.6, 126.5, 124.3, 124.0, 123.6, 123.3, 123.2, 

122.9, 122.8, 122.7, 122.3, 118.2, 115.9, 114.3, 114.2, 114.0, 113.3, 113.2, 106.1, 55.4, 

55.0, 34.1, 33.8, 32.0, 31.6, 31.5, 30.2, 29.5, 29.4, 29.2, 29.0, 22.7, 22.4, 21.5, 21.3; 

LCMS (ESI) m/z calcd for C56H42BF2N3O2: 938.3734 [M+nH]+, found 938.3763 

[M+nH]+. 
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Chapter 4 

RESULTS AND DISCUSSION 

 

4.1 Synthesis 

 

Scheme 4. Synthesis route of aza–BODIPY dyes 3–5. 

5,5-Difluoro-3,7-bis(4-methoxyphenyl)-1,9-di-p-tolyl-5H-dipyrrolo[1,2-c:2',1'-

f][1,3,5,2]triazaborinin-4-ium-5-uide 1 was produced according to the literature 

procedures for the synthesis of aza–BODIPY dyes [28]. Further, the main precursor i.e., 

2,8-dibromo-5,5-difluoro-3,7-bis(4-methoxyphenyl)-1,9-di-p-tolyl-5H-dipyrrolo[1,2-

c:2',1'-f][1,3,5,2]triazaborinin-4-ium-5-uide 2 was generated by reacting 1 with 2.2 

equivalents of bromine in benzene solvent at room tempt for 2 hours [29].  

The desired aza–BODIPY dyes 3–5 were synthesized by reacting compound 2 

with three different aryl boronic acids such as phenyl boronic acid, naphthalenyl 

boronic acid, phenanthrenyl boronic acid respectively under Suzuki cross–coupling 

reaction conditions. These reactions were carried out in presence of catalyst Pd(PPh3)4 

and base Na2CO3 at 60 °C in toluene/THF/water solvents taken in 1:1:1 ratio. The 
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reaction mixture was further stirred for 6–10 hours to get the desired products. (Scheme 

4)  

The crude reaction mixtures were further subjected to column chromatography 

using neutral activated aluminium oxide to obtain the pure products. All the compounds 

(3–5) were characterized by LCMS, HRMS, 1H NMR and 13C NMR techniques. These 

compounds found to be readily soluble in various organic solvents like toluene, 

chloroform, dichloromethane, etc. 

4.2 Photophysical properties 

 

Figure 3. Normalized absorption maxima of aza–BODIPYs 3–5 in DCM (1×10-5M). 

 The photophysical properties of the aza–BODIPYs 3–5 in dichloromethane 

(DCM) are given in Table 1. In general, the aza–BODIPY dyes show absorption in 

visible to NIR region. Aza–BODIPY dyes 3–5 show absorption bands in the wavelength 

region of 670 to 680 nm owing to intramolecular charge transfer due to the aza–

BODIPY core. Whereas, the absorption bands observed in the region of wavelength 430 

to 540 nm are because of π–π* transitions. 
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Table 1. The photophysical properties of aza–BODIPYs 3–5. 

 

Dye λabs  

(nm)a 

ɛ 

(M-1.cm-1)a 

Eg
b 

(eV) 

3 677 

498 

62,382 2.13 

4 676 

497 

93,623 2.16 

5 674 

502 

51,192 1.52 

 

aAbsorbance measured in DCM at a concentration of 1 × 10-5 M, ε; molar extinction coefficient, 
bTheoretical values of the band calculated by the DFT calculations. 

 

The phenyl substituted aza–BODIPY 3 shows slightly longer wavelength 

absorption compared to the naphthalene substituted aza–BODIPY 4, while the aza–

BODIPY 4 shows slightly longer wavelength absorption than the phenanthrene 

substituted aza–BODIPY 5. Moreover, the molar extinction coefficient for aza–

BODIPY 3 is 62,382 M-1.cm-1, for aza–BODIPY 4 is 93,623 M-1.cm-1 and for aza–

BODIPY 5 is 51,192 M-1.cm-1. 

 

4.3 Density functional theory 

The frontier molecular orbitals of aza–BODIPYs 3–5 were investigated with 

DFT calculations by using Gaussian 09W program, at the B3LYP/6–319G(d, p) and 

structure optimization was carried out in the gas phase to better understand their 

structural properties and electronic properties.  
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Figure 4. The FMOs of aza–BODIPY dyes 3–5 at the B3LYP/6–31G(d, p) level. 

The optimized structures of aza–BODIPY dyes 3–5 exhibit distorted geometry. 

The frontier molecular orbitals and the theoretically calculated highest occupied 

molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) 

energy levels are depicted in Figure 4. The HOMOs are localized on the donor as well 

as acceptor moieties and the LUMOs are localized on the aza–BODIPY core. 

According to the computational calculations for aza–BODIPYs 3–5, the HOMO 

energy levels are -5.01 eV, -5.01 eV, -4.80 eV and the corresponding LUMO energy 

levels are -2.88 eV, -2.85 eV, -3.28 eV respectively. Moreover, the TD–DFT approach 

was used to predict the vertical excitation energies in the aza–BODIPY dyes 3–5. TD–

DFT calculations suggest that the aza–BODIPY dyes 3–5 show two main transitions 
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occurring from HOMO to LUMO and HOMO-1 to LUMO in vis–NIR region. The low 

energy transition in aza–BODIPY dyes is π–π* in nature. 

 

Figure 5. Energy level diagram of aza–BODIPY dyes 3–5. 

 In order to better understand the photophysical properties of aza–BODIPY dyes, 

we have performed DFT and TD–DFT calculations. The DFT–predicted molecular 

orbital diagram is shown in figure 5. Aza–BODIPY 3 shows band gap of 2.13 eV, aza–

BODIPY 4 shows band gap of 2.16 eV whereas, aza–BODIPY 5 shows band gap of 

1.52 eV.  

 

 

 

 

 

 



14 
 

Chapter 5 

CONCLUSIONS 

 

In conclusion, aza–BODIPY dyes 3–5 were synthesized using Palladium 

catalyzed Suzuki cross–coupling reaction. These dyes are characterized by 1H NMR, 

13C NMR and HRMS. In photophysical properties, aza–BODIPY dyes 3–5 show 

absorption in UV–visible region. According to the density functional theory, for 

compounds 3–5, HOMO is localized on donor as well as acceptor moieties, whereas the 

LUMO is localized on the acceptor aza–BODIPY core. Incorporating with various 

donor moieties such as phenothiazine, carbazole, etc., the absorption maxima can be 

further shifted to near infrared region. Thus, these molecules will be utilized in various 

applications such as optoelectronic devices, solar cells, sensing, bioimaging, etc. 
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Chapter 6 

SUPPORTING INFORMATION 

  

 

 

Figure 6. HRMS of aza–BODIPY 1. 
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Figure 7. 1H NMR spectrum of aza–BODIPY 1. 
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Figure 8. 13C NMR spectrum of aza–BODIPY 1. 
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Figure 9. HRMS of aza–BODIPY 3. 
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Figure 10. 1H NMR spectrum of aza–BODIPY 3. 
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Figure 11. 13C NMR spectrum of aza–BODIPY 3. 

 

 

 

 

 

 

 

 



21 
 

 

 

 

 

Figure 12. LCMS of aza–BODIPY 4. 
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Figure 13. 1H NMR spectrum of aza–BODIPY 4. 
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Figure 14. 13C NMR spectrum of aza–BODIPY 4. 
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Figure 15. LCMS of aza–BODIPY 5. 
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Figure 16. 1H NMR spectrum of aza–BODIPY 5. 
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Figure 17. 13C NMR spectrum of aza–BODIPY 5. 
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