
1 
 

SOLVING SCHRÖDINGER EQUATION FOR A ONE- 
DIMENSIONAL SYSTEM IN A HARMONIC POTENTIAL 
WELL USING ARTIFICIAL NEURAL NETWORK  

                                 

CH-800 

M.Sc. THESIS RESEARCH PROJECT(STAGE-II) 

By 

Soumya Shriwastava 

(2003131024) 

 
Department of Chemistry 

Indian Institute of Technology 

Indore 

MAY 2022 
 

 

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

                              INDIAN INSTITUTE OF TECHNOLOGY 

INDORE 

CANDIDATE’S DECLARATION 

  I  hereby certify that the work which is being presented in the thesis entitled “SOLVING 

SCHRÖDINGER EQUATION FOR ONE DIMENSIONAL SYSTEM IN A HARMONIC 

POTENTIAL WELL USING ARTIFICIAL NEURAL NETWORK” and submitted in the 

DEPARTMENT OF CHEMISTRY, Indian Institute of  Technology  Indore, is an authentic 

record of my own work carried out during the time period from August 2021 to May 2022 under 

the supervision of Dr. Satya S. Bulusu,  Associate  Professor,  Department of Chemistry, Indian 

Institute of Technology, Indore. 

The matter presented in this thesis has not been submitted by me for the award of any other degree 

of this or any other institute.                                                                                     

                                                                                                                                

                                                                                                                Soumya Shriwastava           

                                                                                                         
This is to certify that the above statement made by the candidate is correct to the 
best of my/our knowledge.                                                                                                               

                                                                                                                    Dr. Satya S. Bulusu 

SOUMYA SHRIWASTAVA has successfully given her M.Sc. Oral Examination held on 24/5/22 

 

Signature of Supervisor M.Sc. thesis                                                  Convenor, DPGC 

Date:      27/5/22                                                                                              Date: 

Signature of PSPC member 1                                                         Signature of PSPC member 2 

Date:                                                                                                     Date: 
27/05/2022

Vinta
Stamp

Vinta
Typewritten Text
27.05.2022



4 
 

                                                            

 

 

 

 

 

 

 

 

                                                          

 

 

 

 

 

 

 

 



5 
 

Acknowledgment 

I would like to thank my supervisor, Dr. Satya S. Bulusu, for his constant support, 

guidance, and encouragement. He has assisted me throughout this project. I have 

been extremely lucky to have a supervisor who cared so much about my work and 

promptly responded to my questions and queries.  I would also like to thank my 

PSPC members. 

 I would like to acknowledge this assistance given to me by my lab senior Ms. 

Aparna Gangwar. She helped me a lot by giving me guidance and encouragement 

whenever I was stuck in any problem. Their contribution was precious to me in this 

project. I feel lucky to work under her guidance. 

I would like to thank all my classmates, labmates, friends. Finally, I would like to 

thank my parents who have always been a constant source of support for me 

throughout my life.  

 

                                                                                                             Soumya Shriwastava 

 

 

 

                                                                                                                        

 

 

 

 

 



6 
 

Abstract 

It is well known that the solution of the Schrödinger equation beyond the hydrogen 

atom is a non-trivial problem. Our main objective in this report is to use artificial 

neural network to solve Schrödinger equation. In the study we considered one 

dimensional Schrödinger wave equation in harmonic potential well as a model 

system. Also, the ANN is faster than the Numerov method. In our project, we have 

considered two and three non-interacting fermion systems. We have got the 

wavefunctions and probability densities for the two and three fermion systems using 

the Numerov algorithm. Our target is fitting of kinetic energy density functional 

using artificial neural network. For this, we made a dataset of about 2000 probability 

densities using Numerov method. The dataset is obtained by randomly changing the 

value of the force constant in harmonic potential well. Also, the input of the artificial 

neural network would be the probability densities and output would be the total 

energy of the system. Such models can be used to calculate the energies of one-

dimensional Schrödinger equation in a similar way but unknown potential energy 

well without really solving the Schrödinger equation analytically.  
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2. Symbols Representation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

                             

S. No. Symbols Name of the Symbol 

1. E Energy  

2. h Planck’s Constant 

3. m Mass (kg) 

5. J Joule 

6. V Potential 

7. Ѱ Wavefunction 
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Chapter 1  

                                     Introduction 

1.1 General Introduction: 

Artificial neural network is used to approximate density functionals. It is a powerful 

tool for finding patterns in high dimensional data. It employs algorithms by which 

computer learns from empirical data via induction and it has been very successful 

in many computer applications [1]. In artificial neural network, mean errors can be 

systematically reduced with the increasing number of inputs. Artificial neural 

network are capable of solving quantum mechanical problems. 

The total ground state energy of many electrons system can be expressed as the 

functional of ground state density and the ground state energy satisfies the energy 

stationery principle resulting in Euler – Lagrange equation given by: 

𝜇 =
𝛿𝐸[𝑛]

𝛿𝑛(𝑟)
 

Where n(r) is the electron density and μ is the chemical potential for the system.  

The ground state energy functional E[n] is given as: 

E[n] = T[n] + Eext[n] + Ecoul[n] + EXC[n] 

Where T[n] is the non-interacting kinetic energy, Eext[n] is the interaction energy of 

electron density with the external potential, Ecoul[n] is the classical coulomb 

repulsion energy, EXC[n] is the exchange correlation energy.  

Artificial neural network, which is inspired by biological neural network, is the most 

important methods in machine learning technique [3]. Artificial neural networks 

are massively parallel interconnected networks of simple (usually adaptive) 
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elements and their hierarchical organizations which are intended to interact with 

the objects of the real world in the same way as biological nervous systems do. 

Examples of artificial neural networks are feed-forward neural network, radial basis 

function network, and restricted Boltzmann machine. As a universal approximator, 

an artificial neural network can be used to represent functions. Naturally it is 

possible to use artificial neural network as a representation of the wavefunction in 

a quantum system. Researchers have been trying to combine neural network 

theory and quantum mechanics. For example, using neural network in the real 

space to solve differential equations, especially Schrodinger equation in some 

specific potential. On using neural network, there is no need to change the input to 

get the desired output [2]. In this method, input values are not changing for a 

particular result. Only the modification of weights connection between the neurons 

of a specified network is required. The NNs energy expression is unbiased, which 

means it does not require any type of system modifications generally applicable to 

all types of bonding. In this project, we are using machine learning technique, 

artificial neural networks to map probability densities with energies [4]. Here, we 

are using probability density as input for artificial neural networks, and the output 

will be the total energies of the system.  

Our main motive in this thesis is to use artificial neural network to solve Schrodinger 

equation. In this study we considered one-dimensional Schrodinger wave equation 

in harmonic potential well as a case study to use artificial neural network. This 

project has been taken as a prototype for typical problems.  

The potential which is being used is 𝑉 =
1

2
𝑘𝑥2 
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Also, the potential 𝑉 =
1

2
𝑘(𝑥 − 𝑎)2 which would be represented with shifted harmonic 

potential throughout the thesis.  
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       1.2 Organization of the report: 

• Chapter 2: Theory 

• Chapter 3 Numerov C code  

• Chapter 4: Results and Discussion 

• Chapter 5: Problems faced 

• Chapter 6: Conclusion 

• Chapter 7: References 
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Chapter 2 

                                                 Theory 

 2.1 Time Independent Schrodinger Equation: 

                         −ħ
2

2𝑚

𝑑2𝑌(𝑥)

𝑑𝑥2
+ 𝑉(𝑥)𝑌(𝑥) = 𝐸𝑌(𝑥)                                     (1)             

                         Kinetic energy operator (K.E) =    −ħ
2

2𝑚

𝑑2

𝑑𝑥2
 

                       Potential energy operator (P.E) =   V(x) 

 It can be rewritten as:            

                          (−ħ
2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉(𝑥) ) Y(x) = EY(x)                                        (2) 

                         (K.E + P.E) Y(x) =  EY(x)                                            (3) 

 Where, Y(x) is the wave function  

   Or, 

                          HY(x) = EY(x)                                                            (4)       

Here, H is the Hamiltonian operator which is equal to the sum of kinetic energy and 
potential energy. E is the eigenvalue and represents total energy of the system. 
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2.2 Schrӧdinger Equation for Harmonic Oscillator: 

      From equation (1)                   

                                    −ħ
2

2𝑚

𝑑2𝑌

𝑑𝑥2
+ 𝑉(𝑥)𝑌(𝑥)  = EY(x)                       

      Here,                    V(x)   = 1
2
k𝑥2 

 Above equation can rewrite as -               

                                    𝑑
2𝑌

𝑑𝑥2
 = - 2𝑚

ħ2
 (E- 1

2
k𝑥2) Y(x) = 0                                       (7) 

For adimensional results we are introducing adimensional variables x and e. 

Where, 

                                    x =√
𝑚𝑘

ħ2

4

)*x                                                                      

  And                 e   = 𝐸
ħ𝑤

                     (w√
𝑘

𝑚
 )                                       

‘k’ denotes the force constant and w frequency of classical oscillator. 

equation (2) can be rewritten by using adimensional variables a and b and the 
formula is given below:- 

                                     𝑑
2𝑌

𝑑𝑥2
  - 2(e -𝑥

2

2
) Y(x) = 0                                                 (8) 

On solving above we get the eigenvalues for harmonic oscillator:                 

                                  e = (n +1

2
)               n = 0, 1, 2……….. 

 Here, n is the quantum number, and the value of n is varied from 0 to ∞ . There is 
no unit of energy. 

 

 

2.3 Numerov’s method: 
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Equation for 1-D box with potential is shown in equation (1), and it can be rewritten 

as given below- 

                                   𝑑
2𝑌

𝑑𝑥2
 + 𝑘2Y(x) = 0                                                        (9) 

where, 

                                    𝑘2(x) =     2𝑚
ħ2
[𝐸 − 𝑉(𝑥)] 

 

A numerical method is a method which is used to solve the second-order ordinary 

differential equation in which the first-order term does not appear. Numerov’s 

method [17] is a suitable algorithm to determine this type of problem because 

Numerov’s method is simpler and one order higher (fifth) than RK4.   

 From equation (9) 

                                     𝑑
2𝑌(𝑥)

𝑑𝑥2
  + 𝑘2(x) Y(x) = 0                    

The above equation is linear in Y, and there is no term involving the first derivative. 

So, Numerov’s method is a suitable algorithm for this type of problem.  So, we have 

used this method to calculate wave functions and densities. 

 

 

 

 

 

 2.4 Description of Numerov’s method: 
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 To describe the Numerov’s method, firstly, we will write the Talor series for 

Ψ(x+h). 

 So,  

 Y(x+h) = Y(x) + h Y'(x) +ℎ2

2
 Y"(x) + ℎ

3

6
 Y'''(x) +ℎ4

24
 Y''''(x) +……….        (10) 

 On adding Y(x+h) and Y(x-h) all the h of odd powers will be terminate  

Y(x+h) + Y(x-h) = 2Y(x) + h Y''(x) + ℎ
4

24
  Y''''(x) + O (h⁶)                           (11)  

 Subsequently, we can write second order Schrӧdinger equation as given below-  

         Y''(x) =  (𝑌(𝑥+ℎ)+𝑌(𝑥−ℎ)−2𝑌(𝑥))
ℎ2

 -ℎ
2

12
Y''''(x) - O (h⁴)                              (12)        

We want to estimate the term including the 4th derivative so, for this; we will work 

on Eq. (1) with 1 + ℎ
2

12

𝑑2𝑌

𝑑𝑥2
  which gives 

  Y''(x)+ℎ2

12
Y''''(x)+𝑘2(x)Y(x) + ℎ

2

12

𝑑2𝑌

𝑑𝑥2
[𝑘2 (x) Y(x)] = 0                               (13) 

 Here,  

   𝑘2=       

Substituting for Y''(x) +ℎ2

12
 Y''''(x) from equation 13 in to 12 

Y(x+h)+Y(x-h)-2Y(x)+ℎ2𝑘2(x)Y(x) + ℎ
4

12

𝑑2𝑌

𝑑𝑥2
[𝑘2(x)Y(x)] + O(h⁶) = 0           (14)                       

 So, now we evaluate 𝑑
2

𝑑𝑥2
 [𝑘2 (x) Y(x)] by using elementry difference formula  

         𝑑
2

𝑑𝑥2
[𝑘2(x)Y(x)]~(𝑘2(𝑥+ℎ)𝑌(𝑥+ℎ)+𝑘2(𝑥−ℎ)𝑌(𝑥−ℎ)−2𝑘2(𝑥)𝑌(𝑥))

ℎ2
                    (15)  
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Now equation (12) is substituting in equation (11) and rearranging, after that on 

assuming x˳= 𝑥𝑛= x˳+nh and defining 𝑘𝑛= k (𝑥𝑛) we get  

Final equation:- 

                         𝑌𝑛+1=
2(1−

5

12
ℎ2𝑘𝑛

2)𝑌𝑛−(1+
1

12
ℎ2𝑘𝑛−1

2 )𝑌𝑛−1

1+
1

12
ℎ2𝑘𝑛+1

2
                                         (16) 

 Equation (13) which is given above is used to determine 𝑌𝑛  for n= 2, 3, 4…But there 

is a condition two initial values𝑌0, and𝑌1should be given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Working of Artificial neural network: 
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An artificial neural network consists of a network of artificial neurons, or we can say 

that artificial neural networks are parallel computing devices, which is basically an 

attempt to make a computer model of the brain [11]. A simple example of a feed-

forward neural network that consists of three layers of artificial neurons is given 

below. Each neuron is represented by a circle. Suppose we have N inputs denoted 

by x(
i
1). i = 1, 2... N. These inputs are represented by N neurons in the input layer. 

The input layer can be fed to the hidden layer through the relation.                                     

                                                                    

                       Fig1. Feed- forward three layer neural network. 

                                  𝑌𝑗1= ∑ 𝑤𝑗𝑖
(1)

𝑖 𝑥𝑖
(1)

+ 𝑏𝑗
(1)                                                   (17) 

Here, 𝑤𝑗𝑖
(1) is called weight and 𝑏𝑗

(1) is called bais. j=1, 2..., M is the index labeling the 

hidden layer and M is the number of neurons in the hidden layer. In the hidden layer, 

each𝑌𝑗
(1) is transformed to the input of the next layer through the activation function 

                         𝑥𝑗
(2)    =   a*(𝑦𝑗

(1)                                                                      (18) 

It has been reported that mostly sigmoid function is used as activation function.                

                Sigmoid (x) = σ(x) =      
1

1+𝑒−𝑥
                                                           (19) 

After the activation function, xj
(2) is fed to the output layer through     

                   𝑌𝑘(2) = ∑ 𝑤𝑘𝑗
(2)𝑥𝑗

(2)
𝑗 + 𝑏𝑘

(2)                                                                                   (20) 
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Here, k labeling the output layer. Then 𝑌𝑘(2) is trans-formed to the final output of the 
neural network through the activation function  

                     𝑍𝑘  = σ*
𝑌

( |𝑘(2))                                                                               (21) 

The learning process can be carried out by minimizing the error function 

       E (w, b) = 1
2
∑ |𝑍(𝑥𝑖; 𝑤, 𝑏) − 𝑍𝑜(𝑥𝑙)| ∨
𝑁𝑡
𝑖=1

2                                                                  (22) 

In this equation w, b are the weights and biases in the neural network. Nt, denotes   

number of elements in the training set, and Z, Z0 is the output of the neural network   

the measured value in the training set respectively [15]. The main objective of the  

learning process is to find out the optimal w and b so that the error function  

E(w,b) become less. 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Methods 

3.1). Simple Harmonic Oscillator potential is given by 
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                                                       𝑉 =
1

2
𝑘𝑥²                                                      (23)                                                      

Where k is the force constant.  

3.2). For the two electron and three electron systems, we have used the Numerov 

algorithm to get the wavefunctions and the electron densities respectively. The C 

code that we are using for it is: 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

 

static double pi = 3.14159265358979323846; 

void numerov(double k1, int nodes,double xa[1050], double ya[1050], double e[1], 

double v[1050]); 

 

int main() 

{ 

    char fileout[80]; 

    FILE *out, *in, *out1; 

    double totts[1050],tsyterm1,tsyterm2,dx,xmax,e[6],v[1050],tottsvW[1050]; 

    double xa[1050], ya[1050], tts, toten, dtottsvW[1050], tsyterm3, k1; 

    double dens01[6][1050],ts[6][1050],totdens[1050], avgdens[1050],tsy,chempot; 

    

    int num, occu,ith,j, nd, nodes, npart; 

     

    int mesh=250; xmax =6.0; 

    dx=xmax/mesh; 
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   //Here, mentioning the parameter file name 

 

 

     out=fopen("h_density2.dat", "w"); 

    out1=fopen("h_avgdens2.dat","w"); 

 

    //in =fopen("gparameters_1dpot",  "r"); 

    in =fopen("hparameters2",  "r"); 

 

    for (j=0; j < 2*mesh; j++){ 

    avgdens[j] =0.0; 

    } 

    for (num=1; num < 4; num++) 

    { 

      fscanf(in,"%d\n",&ith); 

      //fscanf(in,"%lf%lf%lf\n",&pa1,&pa2,&pa3); 

      //fscanf(in,"%lf%lf%lf\n",&pb1,&pb2,&pb3); 

     // fscanf(in,"%lf%lf%lf\n",&pc1,&pc2,&pc3); 

      tsy=0.0; 

      tts=0.0; 

      toten=0.0; 

      nodes=1; 

      npart=2; 

       

      for (nd=0; nd<nodes+1; nd++) 

      { 

       for (j=0; j < 2*mesh; j++) 
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       { 

 dens01[nd][j]=0.0; 

 ts[nd][j]=0.0; 

 ya[j]=0.0; 

 totts[j]=0.0; 

 totdens[j]=0.0; 

       } 

      }       

 

      for (nd=0; nd<nodes+1; nd++)  

      { 

        

       numerov(pa1,pa2,pa3,pb1,pb2,pb3,pc1,pc2,pc3,nd,xa,ya,e,v); 

       if (nd == 0) { occu = 1;} 

       else if (nd >= 1) { occu = 1;} 

 

       for (j=0; j <= 2*mesh; j++) 

       { 

        if  (j == 0 || j == 2*mesh) {tsyterm1 =0.0; tsyterm2=0.0;} 

        else { tsyterm1=(ya[j+1] - ya[j-1])/(2.0*dx); 

     // tsyterm2=ya[j]*(2*ya[j] - ya[j+1] - ya[j-1])/(2.0*dx*dx); 

      }   

             ts[nd][j]=occu*(tsyterm1*tsyterm1); 

             dens01[nd][j]=occu*ya[j]*ya[j]; 

             //if (xa[j] >= -3.0 && xa[j] <= 3.0)                   

{printf("%7.3f%16.8e\n",xa[j],dens01[nd][j]);} 

       } 
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       toten = toten + occu * e[0]; 

       //printf("%4d%16.5f%16.5f\n", num, toten, e[0]);  

        

      } 

      chempot = toten/npart; 

      //c1 =c1 + num; 

      for (j=0; j <= 2*mesh; j++) 

      { 

 if(j>0 && ts[0][j] ==0){ts[0][j] = 0.5*(ts[0][j-1]+ts[0][j+1]);} 

        if(j>0 && ts[1][j] ==0){ts[1][j] = 0.5*(ts[1][j-1]+ts[1][j+1]);} 

 

        totts[j] = 0.5*(ts[0][j] + ts[1][j]);     

        totdens[j]=(dens01[0][j] + dens01[1][j]); 

        //printf("%7.3f%16.8e%16.8e\n",xa[j],totts[j], totdens[j]); 

         

      } 

      //discrete data integration 

      double integral=0.0; 

      for (j=0; j <= 2*mesh-1; j++) 

      { 

       if (xa[j] >= -6.0 && xa[j] <= 6.0){ 

       integral=integral + ((dx/2.0)*(totts[j] + totts[j+1]));} 

      } 

       for (j=0; j <= 2*mesh; j++) 

      { 

       if  (j == 0 || j == 2*mesh) {tottsvW[j]=0.0;dtottsvW[j]=0.0;} 
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       else  

       { tsyterm1=(totdens[j+1] - totdens[j-1])/(2.0*dx); 

         tottsvW[j] = (1.0/8.0)*(tsyterm1 * tsyterm1 / totdens[j]); 

         tsyterm2= ((totdens[j+1] - 2*totdens[j] + totdens[j-1])/(dx*dx)); 

         dtottsvW[j] = (-1.0)*(((-1.0/4.0)*(tsyterm2/totdens[j])) + 

(tottsvW[j]/totdens[j])); 

         dtottsvW[j]=dtottsvW[j]; 

       } 

       } 

 

      //printf("%4d%16.5f\n", num, integral); 

         fprintf(out,"%4d%16.5f\n", num, integral); 

      //printf("\n"); 

      // fprintf(out,"\n"); 

      for (j=0; j <= 2*mesh; j++) 

      { 

       //if (xa[j] >= -9.0 && xa[j] <= 9.0) 

{fprintf(out,"%7.3f%16.8e%16.8e%16.8e\n",xa[j],totts[j],totdens[j],tottsvW[j]);} 

         if (xa[j] >= -6.0 && xa[j] <= 6.0) 

{fprintf(out,"%7.3f%16.8e%16.8e%16.8e\n",xa[j],totts[j],(-

chempot+v[j]),totdens[j]);} 

       //if (num==3){ 

        // if (xa[j] >= -6.0 && xa[j] <= 6.0) 

{fprintf(out,"%7.3f%16.8e\n",xa[j],totdens[j]);} 

        //printf("%7.3f%16.8e\n",xa[j],totdens[j]); 

      // if (xa[j] >= -6.0 && xa[j] <= 6.0) 

{fprintf(out,"%7.3f%16.8e%16.8e%16.8e\n",xa[j],v[j],chempot,(-chempot+v[j]));} 
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       avgdens[j] = avgdens[j] + totdens[j]; 

      } 

      for (j=0; j <= 2*mesh; j=j+10){ 

     //     fprintf("%7.3f%16.8e\n",xa[j],totdens[j]); 

      } 

 

    }   

    for (j=0; j <= 2*mesh; j++){ 

        avgdens[j] = avgdens[j]/3; 

        if (xa[j] >= -6.0 && xa[j] <= 6.0) 

{fprintf(out1,"%7.3f%16.8e\n",xa[j],avgdens[j]);} 

    } 

    //printf("%16.5e\n", c1/13999); 

    fclose(in); 

    fclose(out1); 

    fclose(out); 

}//end of main 

 

//////////////////////////////////////start of function/////////////////////////////// 

void numerov(double k1, int nodes, double xa[1050],double ya[1050], double 

energy[0], double v[1050]) 

{  

     char fileout[80]; 

     FILE *out2;  

     int mesh, ii,i, icl, imin, imax, k; 

     int  hnodes, ncross, parity, kkk, n_iter; 

     double xmax, dx, ddx12, xmcl, norm, arg, yicl, djump, xmin; 
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     double elw, eup, tsyyterm, tsyterm; 

    // double *x, *y, *p, *vpot, *f, *xx, *yy, *vpot1; 

     double x[1050],y[1050], 

p[1050],vpot[1050],f[1050],xx[1050],yy[1050],vpot1[1050]; 

    // double ext1, ext2, ext3, e; 

     double e; 

 

     mesh=250; xmax=6.0; 

/*  Allocate arrays (from 0 to mesh), Initialize grid */ 

/*       x = (double *) malloc( (mesh+50) * sizeof (double)); 

       xx= (double *) malloc( (mesh+50) * sizeof (double)); 

       yy= (double *) malloc( (mesh+50) * sizeof (double)); 

       y = (double *) malloc( (mesh+50) * sizeof (double)); 

       p = (double *) malloc( (mesh+50) * sizeof (double)); 

       f = (double *) malloc( (mesh+50) * sizeof (double)); 

    vpot = (double *) malloc( (mesh+50) * sizeof (double)); 

    vpot1= (double *) malloc( (mesh+50) * sizeof (double)); */ 

     

 

    dx = xmax / mesh; 

    ddx12 = dx * dx / 12.; 

     

/*  set up the potential (must be even w.r.t. imin) */ 

 

    for (i = 0; i <= mesh; ++i)  

    { 

 x[i] = (double) i * dx; 
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        //ext1 = ((x[i]-b1)*(x[i]-b1))/(2*(c1*c1)); 

        //ext2 = ((x[i]-b2)*(x[i]-b2))/(2*(c2*c2)); 

        //ext3 = ((x[i]-b3)*(x[i]-b3))/(2*(c3*c3)); 

        vpot[i] = 0.5*k1*(x[i])*(x[i]); 

         

        //printf("%7.3f%16.8f\n", x[i],vpot[i]); 

    } 

    

    eup = vpot[mesh]; 

    elw = eup; 

    for (i = 0; i <= mesh; ++i) { 

         if ( vpot[i] < elw ){ 

            elw = vpot[i]; 

            xmin=x[i]; 

            imin=i; 

            f[i]=0.0; 

            y[i]=0.0;}} 

    k=0; 

    for (i=imin-1; i >= -mesh; --i){ 

        xx[k] = (double)i*dx; 

       vpot1[k] = 0.5*k1*(xx[k])*(xx[k]); 

         

        

 

        //printf("%7.3f%16.8f\n", xx[k],vpot1[k]); 

        k=k+1; 

        } 
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        e=0.; 

      if (e == 0.) { /* search eigenvalues with bisection (max 1000 iterations) */ 

 e = 0.5 * (elw + eup); 

 n_iter = 1000; 

      } else {    /*  test a single energy value */ 

 n_iter = 1; 

      } 

        

      for (kkk = 0; (kkk < n_iter) && (eup-elw > 1.e-10); kkk++) { 

  

 f[imin] = ddx12 * (2.*(vpot[imin] - e)); 

 icl = -1; 

 for (i = imin+1; i <= mesh; ++i) 

        { 

          f[i] = ddx12 * 2. * (vpot[i] - e); 

   if (f[i] == 0.)   { 

       f[i] = 1e-20; } 

   if (f[i] != copysign(f[i],f[i-1])) { 

     icl = i; 

   } 

 } 

  

  

 /*   f(x) as required by the Numerov algorithm  */ 

  

 for (i = imin; i <= mesh; ++i) { 

          f[i] = 1. - f[i]; 
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 } 

 for (i = imin; i <= mesh; ++i) { 

          y[i] = 0.; 

 } 

 hnodes = nodes / 2; 

 if (2*hnodes == nodes) { 

   y[imin] = 1.; 

   y[imin+1] = 0.5 * (12. - f[imin] * 10.) * y[imin] / f[imin+1]; 

 } else { 

   y[imin] = 0.; 

   y[imin+1] = dx; 

 } 

 ncross = 0; 

 for (i = imin+1; i <= icl-1; ++i) { 

          y[i + 1] = ((12. - f[i] * 10.) * y[i] - f[i - 1] * y[i - 1]) 

     / f[i + 1]; 

          if (y[i] != copysign(y[i],y[i+1])) 

     ++ncross; 

 } 

         

 yicl = y[icl]; 

 

       if (2*hnodes == nodes) { 

          ncross = 2*ncross; 

 } else { 

          ncross = 2*ncross+1; 

 } 
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 if (n_iter > 1) { 

          if (ncross != nodes) { 

     if ( kkk == 1) { 

     } 

     if (ncross > nodes) { 

       eup = e; 

     } else { 

       elw = e; 

     } 

     e = 0.5 * (eup + elw); 

          } 

 } else { 

 } 

 if ( n_iter == 1 ||  ncross == nodes ) { 

   y[mesh] = dx; 

   y[mesh - 1] = (12. - 10.*f[mesh]) * y[mesh] / f[mesh-1]; 

    

   /* Inward integration */ 

   for (i = mesh - 1; i >= icl+1; --i) { 

     y[i-1] = ((12. - 10.*f[i]) * y[i] - f[i+1] * y[i+1]) / f[i-1]; 

   } 

   /* Rescale function to match at the classical turning point (icl) */ 

   yicl /= y[icl]; 

   for (i = icl; i <= mesh; ++i) { 

     y[i] *= yicl; 

   } 
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   if (n_iter > 1) { 

     i = icl; 

     djump = (y[i+1] + y[i-1] - (14. - 12.*f[i]) * y[i]) / dx; 

    // fprintf(stdout, "%5d%25.15e%5d%14.8f\n", kkk, e, nodes, djump); 

     if (djump*y[i] > 0.) { 

       /*               Energy is too high --> choose lower energy range */ 

       eup = e; 

     } else { 

       /*               Energy is too low --> choose upper energy range */ 

       elw = e; 

     } 

     e = 0.5 * (eup + elw); 

   } 

 } /* end if (ncross==nodes) */ 

      } // end of iterations  

     

      norm = 0.; 

      for (i = imin; i <= mesh; ++i) { 

         norm += y[i]*y[i]; 

       } 

       norm = dx * (2* norm); 

       norm = sqrt(norm); 

       for (i = imin; i <= mesh; ++i) { 

       y[i] /= norm; 

       } 

       k=0; 

       for (ii = imin-1; ii >=-mesh; ii=ii-1)  
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       { 

 i = (2*(k+1)) + ii; yy[k] = y[i];  

       // printf("%4d%4d%4d\n", ii, i, k); 

        k=k+1; 

       } 

       //exit(0); 

       i=k-1; 

       int j; 

       //printf("\n"); 

       // applying parity for the wavefunction 

       if (hnodes << 1 == nodes) 

        parity = +1; 

      else 

        parity = -1; 

       out2=fopen("ground", "w"); 

       for (j=0;j<=k-1;j++) 

       { 

           xa[j]=xx[i]; 

           ya[j]=parity*yy[i]; 

           v[j] =vpot1[i]; 

    i=i-1; 

       //  fprintf(out2,"%7.3f\t%16.8e\n",xa[j],ya[j]); 

       } 

      for (i = imin;i<=mesh;++i)  

      { 

          xa[j]=x[i]; 

          ya[j]=y[i]; 
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          v[j]=vpot[i]; 

//   printf("%4d%4d\n", i, j); 

      //  fprintf(out2,"%7.3f\t%16.8e\n",xa[j],ya[j]); 

          j++; 

      } 

      for (i =mesh; i >=0; --i) { 

        xa[j]=x[i]; 

         ya[j]=parity*y[i]; 

          v[j]=vpot[i]; 

        //fprintf(out2, "%7.3f %16.8e\n", x[i], parity*y[i]); 

 

        // j++; 

      } 

 

 

      fclose(out2); 

energy[0]=e; 

//free(vpot);free(f);free(p);free(y);free(x);free(vpot1);free(xx),free(yy); 

} 
 

 

 

3.3) To train the neural network, we have considered the system of N non interacting 

fermions where we have taken (N = 2,3).  

For the 2SL system we have considered N = 2, where the two fermions, we have 

considered to be spinless and are filled following the Pauli’s exclusion principle. 
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One electron is filled in the ground state and the second electron is filled in the first 

excited state.  

 For N =3, we have considered two configurations arising from the choice of 

fermions: 

The first configuration is 3S, in which the two fermions are filled in the lowest 

energy state occupying the opposite spin and the third electron is in the first excited 

state. 

The second configuration is 3SL in which the three fermions are considered to be 

spinless, in which all the three energy levels i.e. ground state, first excited state and 

the second excited states are singly occupied.  

The system is confined to the coordinate values of x ranging from -3 to +3. 

This gives the wavefunction and corresponding eletron densities for the two and 

three electrons systems from -x to +x coordinates. 

 

3.4) Now, we have shifted the potential from 0 to 6 coordinates (i.e. in positive x 

coordinates). So, for this, we would do some changes in the potential of the system. 

So, the potential corresponding to the changes for the system would be: 

 

                                          𝑉 =
1

2
𝑘(𝑥 − 𝑎)²                                                       (24) 

where  

k is the force constant. 

a is the mean value. 
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For this system, we have used Numerov algorithm corresponding to the changes. 

Similarly, here also, we have got the wavefunction and corresponding densities for 

the two electron and three electron systems (i.e. 2SL, 3S, 3SL).  

For this the Numerov algorithm, we have used the above C code, the only change in 

it is the potential mentioned n equation  

 

3.5)  By randomly changing the value of force constant between (1.08 to 1.2),  we 

have got the dataset of densities for 2000 potentials. For each data set there would 

be individual densities and single kinetic energy associated with each data point.  

3.6) This output file of the numerical densities would be used as the fitting into the 

orthogonal basis functions. So, to use the numerical densities as the descriptors, we 

fitted them with the mathematical functions under the constraint ∫ 𝑛(𝑥) ⅆ𝑥 = 𝑁. Then 

we expanded each density in the basis function as: 

                              𝑛(𝑥) = ∑ 𝑎𝑖𝜓𝑖(𝑥)
𝑀
𝑖=0                                                         (25)  

 So, for it, we considered a wavefunction to be: 

                             𝜓𝑖(𝑥) = 𝐻𝑛(𝑥)𝑒𝑥𝑝(−𝑏𝑥
2)                                                 (26) 

Where, 

 𝐻𝑛(𝑥) is Hermite polynomial which is being used for the orthogonality of the 

wavefunction, 𝑎𝑖 and 𝜓𝑖(𝑥) are the variational parameters.   

𝑒−𝑎𝑥
2 is the exponential form of the orthogonal basis function. 

We have used the orthogonal basis function ranging the value of i from 0 to 5. 

Correspondingly, the values of Hermite polynomials are as follows: 



39 
 

𝐻𝑜(𝑥) = 1 

𝐻₁(𝑥) = 2𝑥 

𝐻₂(𝑥) = 4𝑥2 − 2  

𝐻3(𝑥) = 8𝑥3 − 12𝑥 

𝐻4(𝑥) = 16𝑥4 − 48𝑥2 + 12 

𝐻5(𝑥) = 32𝑥5 − 160𝑥3 + 120𝑥 

After few trials, we fixed the value of b to be 3.0 and the value of M to be  5.  The 

linear fitting coefficients are obtained using constraint minimization using 

Sequential Least-Squares Programming (SLSQP) method in Scipy optimization 

module. Then, we selected the best values of linear fitting coefficients. This was 

determined by the chi-square test. Through this test, we set the value of b to be less 

than 0.1, so that, we get the best fitting. We did this for 2SL, 3S and 3SL fermions 

system. For these, we took the 2000 data set of densities and for each dataset, there 

are individual densities known as data points.  

The linear fitting coefficients, thus obtained, used as the input to train the artificial 

neural network for fitting of kinetic energy. 

 

3.7) The python code which is used for fitting is as follows: 

################################# 
# For any fitting procedure check the arguments and based on the structure of 
arguments  
# it is good to make repective functions 
# Two examples are given 1. cureve fit and 2. leastsq 
# Here we will deal with minimize program 
# 
import numpy as np 
import math 
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import matplotlib.pyplot as plt 
from scipy import asarray as ar, exp, sqrt 
from scipy.optimize import curve_fit, minimize, leastsq, basinhopping 
import statistics 
from scipy.stats import chisquare 
from itertools import islice 
from scipy.integrate import quad, simps 
############################################### 
#np.seterr(all="raise") 
#b =p/2  
n=252 
#p=1.5 
#b=2*p 
b= 2.0 
a= 3.0 
c= 1.00 
file1=open("2_1.dat","w") 
#with open('hdensity.dat', 'r') as f: 
with open('temp.dat', 'r') as f: 
        while True: 
                 next_n_lines = list(islice(f, n)) 
                 if not next_n_lines: 
                   break 
                 #print(next_n_lines[0], file=file1) 
                # print(next_n_lines[0])  
                 #try:   
                 next_n_lines.pop(0) 
                 lines_array=[] 
                 lines_array = np.array(next_n_lines) 
                 X=[] 
                 Y=[] 
                 Y1=[] 
                 Y2=[] 
                 y00=[] 
                 y01=[] 
                 y02=[] 
                 y03=[] 
                 y04=[] 
                 y05=[] 
                 co0=[] 
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                 co1=[] 
                 co2=[] 
                 co3=[] 
                 co4=[] 
                 co5=[] 
                 for line in lines_array: 
                    line = line.rstrip('\n') 
                    values= line.split() 
                    X.append(float(values[0])) 
                    Y.append(float(values[1])) 
                    Y1.append(float(values[2])) 
                    Y2.append(float(values[3])) 
 
                 #print(Y1, sep="\n",file=file1) 
                 X=np.asfarray(X) 
                 Y=np.asfarray(Y) 
                 Y1=np.asfarray(Y1) 
                 Y2=np.asfarray(Y2) 
                 #data to be fitted and initial parameters 
                 a0  = 1.0 
                 a1  = 1.0 
                 a2  = 1.0 
                 a3  = 1.0 
                 a4  = 1.0 
                 a5  = 1.0 
  
                 def n00(X,b,a,c): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     psi0 =ex 
                     return(psi0**2) 
                 res0= quad(n00,-math.inf,math.inf, args=(b,a,c)) 
                  
                 def n01(X,b,a,c): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     psi1=2.0*(math.sqrt(b)*((X-a)))*ex 
                     return (psi1**2) 
                 res1= quad(n01,-math.inf,math.inf, args=(b,a,c)) 
 
                 def n02(X,b,a,c): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
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                     psi2=(4.0*(b*((X-a)**2))-2.0)*ex 
                     return (psi2**2)  
                 res2= quad(n02,-math.inf,math.inf,args=(b,a,c)) 
 
                 def n03(X,b,a,c): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     psi3=ex*(8.0*(math.sqrt(b**3)*((X-a)**3))-(12.0*(math.sqrt(b)*((X-
a))))) 
                     return (psi3**2) 
                 res3= quad(n03,-math.inf,math.inf,args=(b,a,c)) 
 
                 def n04(X,b,a,c): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     psi4=ex*((16.0*(b**2)*((X-a)**4))-(48.0*(b*((X-a)**2)))+12.0) 
                     return(psi4**2) 
                 res4= quad(n04,-math.inf,math.inf,args=(b,a,c)) 
 
                 def n05(X,b,a,c): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     psi5=ex*((32.0*(math.sqrt(b**5))*((X-a)**5))-
(160.0*(math.sqrt(b**3))*((X-a)**3))+(120.0*(math.sqrt(b)*(X-a)))) 
                     return(psi5**2) 
                 res5= quad(n05,-math.inf,math.inf,args=(b,a,c))       
                  
              
                 ri00 = math.sqrt(1/res0[0]) 
                 ri01 = math.sqrt(1/res1[0]) 
                 ri02 = math.sqrt(1/res2[0]) 
                 ri03 = math.sqrt(1/res3[0]) 
                 ri04 = math.sqrt(1/res4[0]) 
                 ri05 = math.sqrt(1/res5[0]) 
                 print(ri00,ri01,ri02,ri03,ri04,ri05) 
                 #exit() 
                 print("normalization") 
                 def np0(X,b,a,c,ri00): 
                     return((ri00*(np.exp(-(b*((X-a)/c)**2)*0.5)))*(ri00*(np.exp(-(b*((X-
a)/c)**2)*0.5))) ) 
                 psi0_n = quad(np0,0,math.inf,args=(b,a,c,ri00))[0] 
                 print(psi0_n) 
                 #exit() 
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                 def np1(X,b,a,c,ri01): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5) ) 
                     return((ri01*(2.0*(math.sqrt(b)*(X-a))*ex))* (ri01*( 
2.0*(math.sqrt(b)*(X-a))*ex))) 
                 psi1_n =quad(np1,0,math.inf,args=(b,a,c,ri01))[0] 
                 print(psi1_n) 
                 #exit() 
                 def np2(X,b,a,c,ri02): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5) ) 
                     return((ri02*((4.0*(b*(X-a)**2)-2.0)*ex))*(ri02*((4.0*(b*(X-a)**2)-
2.0)*ex))) 
                 psi2_n =quad(np2,0,math.inf,args=(b,a,c,ri02))[0] 
                 print(psi2_n) 
                 #exit() 
                 def np3(X,b,a,c,ri03): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5) ) 
                     return((ri03*((8.0*(math.sqrt(b**3)*((X-a)**3)))-
(12.0*(math.sqrt(b)*(X-a))))*ex)*(ri03*((8.0*(math.sqrt(b**3)*((X-a)**3)))-
(12.0*(math.sqrt(b)*(X-a))))*ex))       
                 psi3_n =quad(np3,0,math.inf,args=(b,a,c,ri03))[0] 
                 print(psi3_n) 
                 #exit() 
                 def np4(X,b,a,c,ri04): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5) ) 
                     return((ri04*ex*((16.0*(b**2)*((X-a)**4))-(48.0*(b*((X-
a)**2)))+12.0))*(ri04*ex*((16.0*(b**2)*((X-a)**4))-(48.0*(b*((X-
a)**2)))+12.0)))  
                 psi4_n = quad(np4,0,math.inf,args=(b,a,c,ri04))[0] 
                 print(psi4_n) 
                 #exit() 
                 def np5(X,b,a,c,ri05): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5) ) 
                     return((ri05*ex*((32.0*(math.sqrt(b**5))*((X-a)**5))-
(160.0*(math.sqrt(b**3))*((X-a)**3))+(120.0*(math.sqrt(b)*(X-
a)))))*(ri05*((32.0*(math.sqrt(b**5))*((X-a)**5))-(160.0*(math.sqrt(b**3)*((X-
a)**3)))+(120.0*(math.sqrt(b)*(X-a))))*ex)) 
                 psi5_n = quad(np5,0,math.inf,args=(b,a,c,ri05))[0] 
                 print (psi5_n) 
                 #exit() 
                 #print(psi0_n, psi1_n, psi2_n, psi3_n, psi4_n, psi5_n, psi6_n) 



44 
 

                 print("orthogonal") 
                 def no01(X,b,a,c,ri00,ri01): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri00*ex)*(ri01*ex*(( 2.0*(math.sqrt(b)*(X-a))))) )  
                 psi0_1= quad(no01,0,math.inf,args=(b,a,c,ri00,ri01))[0] 
                 print(psi0_1) 
                 #exit() 
                 def no02(X,b,a,c,ri00,ri02): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri00*ex)*(ri02*((4.0*(b*(X-a)**2)-2.0)*ex)))  
                 psi0_2 =quad(no02,0, math.inf,args=(b,a,c,ri00,ri02))[0] 
                 print(psi0_2) 
                 #exit() 
                 def no03(X,b,a,c,ri00,ri03): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri00*ex)*(ri03*ex*((8.0*(math.sqrt(b**3)*(X-a)**3)-
(12.0*math.sqrt(b)*(X-a)))) ) ) 
                 psi0_3 =quad(no03,0,math.inf,args=(b,a,c,ri00,ri03))[0] 
                 print(psi0_3) 
                 #exit() 
                 def no04(X,b,a,c,ri00,ri04): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri00*ex)*(ri04*(ex*((16.0*(b**2*(X-a)**4)-(48.0*(b*(X-
a)**2))+12.0)))) ) 
                 psi0_4 =quad(no04,0,math.inf,args=(b,a,c,ri00,ri04))[0] 
                 print(psi0_4) 
                 #exit()  
                 def no05(X,b,a,c,ri00,ri05): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri00*ex) *(ri05*ex*(((32.0*(math.sqrt(b**5)*(X-a)**5)-
(160.0*(math.sqrt(b**3)*(X-a)**3))+(120.0*math.sqrt(b)*(X-a))) )))) 
                 psi0_5 =quad(no05,0,math.inf,args=(b,a,c,ri00,ri05))[0] 
                 print(psi0_5) 
                 #exit() 
                 def no12(X,b,a,c,ri01,ri02): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri01*ex*(( 2.0*math.sqrt(b)*(X-a))))*(ri02*ex*((4.0*(b*(X-
a)**2)-2.0))))  
                 psi1_2 =quad(no12,0,math.inf,args=(b,a,c,ri01,ri02))[0] 
                 print(psi1_2) 
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                 #exit() 
                 def no13(X,b,a,c,ri01,ri03): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri01*ex*(( 2.0*math.sqrt(b)*(X-
a))))*(ri03*ex*((8.0*(math.sqrt(b**3)*(X-a)**3)-(12.0*math.sqrt(b)*(X-a))))) )  
                 psi1_3 =quad(no13,0,math.inf,args=(b,a,c,ri01,ri03))[0] 
                 print(psi1_3) 
                 #exit() 
                 def no14(X,b,a,c,ri01,ri04): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5))               
                     return((ri01*(ex*( 2.0*math.sqrt(b)*(X-
a))))*(ri04*(ex*((16.0*(b**2*(X-a)**4)-(48.0*(b*(X-a)**2)))+12.0))))   
                 psi1_4=quad(no14,0,math.inf,args=(b,a,c,ri01,ri04))[0] 
                 print(psi1_4) 
                 #exit()                 
                 def no15(X,b,a,c,ri01,ri05): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri01*ex*(( 2.0*math.sqrt(b)*(X-
a))))*(ri05*ex*(((32.0*(math.sqrt(b**5)*(X-a)**5)-(160.0*(math.sqrt(b**3)*(X-
a)**3))+(120.0*math.sqrt(b)*(X-a))) ))))   
                 psi1_5=quad(no15,0,math.inf,args=(b,a,c,ri01,ri05))[0] 
                 print(psi1_5) 
                 #exit()  
                 def no23(X,b,a,c,ri02,ri03): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri02*ex*((4.0*(b*(X-a)**2)-
2.0)))*(ri03*(ex*(8.0*(math.sqrt(b**3)*(X-a)**3)-(12.0*math.sqrt(b)*(X-a))))) )               
                 psi2_3 =quad(no23,0,math.inf,args=(b,a,c,ri02,ri03))[0] 
                 print(psi2_3) 
                 #exit() 
                 def no24(X,b,a,c,ri02,ri04): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri02*ex*((4.0*(b*(X-a)**2)-
2.0)))*(ri04*ex*((16.0*(b**2*(X-a)**4)-(48.0*(b*(X-a)**2))+12.0))) )    
                 psi2_4=quad(no24,0,math.inf,args=(b,a,c,ri02,ri04))[0] 
                 print(psi2_4) 
                 #exit() 
                 def no25(X,b,a,c,ri02,ri05): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
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                     return((ri02*ex*((4.0*(b*(X-a)**2)-
2.0)))*(ri05*ex*(((32.0*(math.sqrt(b**5)*(X-a)**5)-(160.0*(math.sqrt(b**3)*(X-
a)**3))+(120.0*math.sqrt(b)*(X-a))) ))))   
                 psi2_5 =quad(no25,0,math.inf,args=(b,a,c,ri02,ri05))[0] 
                 print(psi2_5) 
                 #exit() 
                 def no34(X,b,a,c,ri03,ri04): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri03*ex*((8.0*(math.sqrt(b**3)*(X-a)**3)-
(12.0*math.sqrt(b)*(X-a)))))  *(ri04*ex*((16.0*(b**2*(X-a)**4)-(48.0*(b*(X-
a)**2))+12.0))))     
                 psi3_4=quad(no34,0,math.inf,args=(b,a,c,ri03,ri04))[0] 
                 print(psi3_4) 
                  
                 def no35(X,b,a,c,ri03,ri05): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri03*ex*((8.0*(math.sqrt(b**3)*(X-a)**3)-
(12.0*math.sqrt(b)*(X-a)))))*(ri05*ex*(((32.0*(math.sqrt(b**5)*(X-a)**5)-
(160.0*(math.sqrt(b**3)*(X-a)**3))+(120.0*math.sqrt(b)*(X-a)) )))))  
                 psi3_5= quad(no35,0,math.inf,args=(b,a,c,ri03,ri05))[0] 
                 print(psi3_5) 
                 #exit() 
                 def no45(X,b,a,c,ri04,ri05): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     return((ri04*ex*((16.0*(b**2*(X-a)**4)-(48.0*(b*(X-
a)**2))+12.0)))  *(ri05*ex*(((32.0*(math.sqrt(b**5)*(X-a)**5)-
(160.0*(math.sqrt(b)*(X-a)**3))+(120.0*math.sqrt(b)*(X-a))) )))) 
                 psi4_5 = quad(no45,0,math.inf,args=(b,a,c,ri04,ri05))[0] 
                 print(psi4_5) 
                 #exit() 
                   
                 def ni0(X,b,a,c,ri00): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     npsi0=ri00*ex 
                     return(npsi0) 
                 in0= quad(ni0,0,math.inf,args=(b,a,c,ri00))[0] 
 
                 def ni1(X,b,a,c,ri01): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     npsi1=ri01*(2.0*(math.sqrt(b)*(X-a))*ex) 
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                     return(npsi1) 
                 in1=quad(ni1,0,math.inf,args=(b,a,c,ri01))[0] 
 
                 def ni2(X,b,a,c,ri02): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     npsi2=ri02*((4.0*(b*(X-a)**2)-2.0)*ex) 
                     return(npsi2) 
                 in2=quad(ni2,0,math.inf,args=(b,a,c,ri02))[0] 
 
                 def ni3(X,b,a,c,ri03): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     npsi3=(ri03*((8.0*(math.sqrt(b**3)*(X-a)**3))-
(12.0*(math.sqrt(b)*(X-a))))*ex) 
                     return(npsi3) 
                 in3=quad(ni3,0,math.inf,args=(b,a,c,ri03))[0] 
 
                 def ni4(X,b,a,c,ri04): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     npsi4=(ri04*ex*((16.0*(b**2)*(X-a)**4)-(48.0*(b*(X-
a)**2))+12.0)) 
                     return(npsi4) 
                 in4 = quad(ni4,0,math.inf,args=(b,a,c,ri04))[0] 
 
                 def ni5(X,b,a,c,ri05): 
                     ex=(np.exp(-(b*((X-a)/c)**2)*0.5)) 
                     npsi5=(ri05*ex*((32.0*(math.sqrt(b**5))*(X-a)**5)-
(160.0*(math.sqrt(b**3))*(X-a)**3)+(120.0*math.sqrt(b)*(X-a)))) 
                     return(npsi5) 
                 in5=quad(ni5,0,math.inf,args=(b,a,c,ri05))[0] 
                 
                 #psi0 = ni0(X,b,a,c,ri00) 
                 #psi1 = ni1(X,b,a,c,ri01) 
                 #psi2 = ni2(X,b,a,c,ri02) 
                 #psi3 = ni3(X,b,a,c,ri03) 
                 #psi4 = ni4(X,b,a,c,ri04) 
                 #psi5 = ni5(X,b,a,c,ri05) 
                 #psi6 = ni6(X,b,a,c,ri06) 
                 #print(in0,in1,in2,in3,in4,in5) 
                 #exit() 
                 off =0.0 
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                ################################################# 
                 def multigaus(xx, ri00, ri01, ri02, ri03, ri04, ri05, b,a,c, params1): 
                     a0, a1, a2, a3, a4, a5 = params1 
                     ex=(np.exp(-(b*((xx-a)/c)**2)*0.5)) 
                     psi0=ex*ri00 
                     psi1=ex*ri01*(2.0*(math.sqrt(b)*(xx-a))) 
                     psi2=ex*ri02*((4.0*(b*((xx-a)**2))-2.0)) 
                     psi3=ex*ri03*((8.0*(math.sqrt(b**3)*((xx-a)**3)))-
(12.0*(math.sqrt(b)*(xx-a)))) 
                     psi4=ex*ri04*((16.0*(b**2)*((xx-a)**4))-(48.0*(b*((xx-
a)**2)))+12.0) 
                     psi5=ex*ri05*((32.0*(math.sqrt(b**5))*((xx-a)**5))-
(160.0*(math.sqrt(b**3))*((xx-a)**3))+(120.0*(math.sqrt(b)*(xx-a)))) 
                     return (a0*psi0 + a1*psi1 + a2*psi2 + a3*psi3 + a4*psi4 + a5*psi5) 
                ############################################## 
                 def penal(params1, ri00, ri01, ri02, ri03, ri04, ri05,b,a,c,x, y): 
                     (a0, a1, a2, a3, a4, a5) = params1 
                     residual= sum((y- multigaus(x, ri00, ri01, ri02, ri03, ri04, ri05, b, a, c, 
(a0,a1,a2,a3,a4,a5)))**2) 
                     return residual 
                ############################################## 
                 def constraint(params1): 
                     (a0, a1, a2, a3, a4, a5) = params1 
                     #penalty = ((a0*1.4306128055802485)+(a1*1.106551718532689e-
06)+(a2*1.0115902662668896)+(a3*2.4846131574496333e-
05)+(a4*0.8759782176040072)+(a5*0.00028435409468241524)) -2 
                     penalty = 
((a0*1.5832159998788626)+(a1*0.00011023504751145334)+(a2*1.11903508189
96617)+(a3*0.0016651209787289058)+(a4*0.9646574849507779)+(a5*0.012387
598577603937)) -2 
 
 
                     return penalty 
                ############################################## 
                 params1 =(a0, a1, a2, a3, a4, a5) 
                 con = {'type':'eq','fun':constraint} 
                 #bounds=((0,50),(0,50),(0,50),(0,50),(0,50),(0,50),(-10,50)) 
                 #minimizer_kwargs = {"method":"SLSQP","args":(ri00, ri01, ri02, ri03, 
ri04, ri05, ri06, b,a,c, X, Y2),"constraints":con, "bounds":bounds} 
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                 minimizer_kwargs = {"method":"SLSQP","args":(ri00, ri01, ri02, ri03, 
ri04, ri05, b,a,c,X,Y2),"constraints":con} 
                 fit2 = basinhopping(penal, (a0,a1,a2,a3,a4,a5), 
minimizer_kwargs=minimizer_kwargs,niter=100) 
                 yfit2 = multigaus(X, ri00, ri01, ri02, ri03, ri04, ri05, b,a,c,fit2.x) 
                 #res= quad(multigaus,ri00, ri01, ri02, ri03, ri04, ri05,b,-
math.inf,math.inf, args=(fit2.x)) 
                 res= simps(yfit2,X) 
                 #pa = (fit2.x[0], fit2.x[1], fit2.x[2]) 
                 #pb = (fit2.x[3], fit2.x[4], fit2.x[5]) 
                 #cfita=gaus(X, (fit2.x[0], fit2.x[1], fit2.x[2])) 
                 #cfitb=gaus(X, (fit2.x[3], fit2.x[4], fit2.x[5])) 
                 print(*fit2.x, sep=' ', file=file1) 
                 print(fit2.fun, file=file1) 
                 print(res, file=file1) 
                 #print(fit2.x, fit2.fun, res1) 
                 #print(p) 
                 #print(nin0, nin1, nin2, nin3, nin4, nin5) 
                 #print(i00, i01, i02, i03, i04, i05) 
                 #print(res1) 
                 plt.plot(X, Y2, 'bo', label="y-original") 
                 #plt.plot(X, yfit1, color="orange", label="unconstrained mimimize") 
                 plt.plot(X, yfit2, color="green", label="constrained mimimize") 
                 #plt.plot(X, cfita, color="red", label="cfita") 
                 #plt.plot(X, cfitb, color="black", label="cfitb") 
                 plt.xlabel('X') 
                 plt.ylabel('Y2') 
                 plt.legend(loc='best', fancybox=True, shadow=True) 
                 plt.grid(True) 
                 plt.show() 
                 #exit() 
                 #except: 
                 #print ("error") 
file1.close() 
 

Now, as mentioned above, we have also considered a system in which we have 

shifted the coordinates of the box. Now, the coordinate of the box is changed from 

(-3 to +3) to (0 to +6). The corresponding potential is as follows:  
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𝑉 =
1

2
𝑘(𝑥 − 𝑎)²                                           (27) 

Now for such systems, we have randomly changed the value of the parameter k from 

1.08 to 1.4 and then correspondingly, we have generated the 2000 potentials. For 

each potential, the Schrödinger equation is solved numerically to get the energy 

eigen values and the wavefunctions. This has been done with the Numerov C code 

which is mentioned above. 

 

3.8) The electron density is employed from the following function: 

                                         𝑛(𝑥) = ∑ 𝑓𝑖|𝜙1 ⋅ (𝑥)|
2𝑁

𝑖=1                                         (28) 

Where 𝑓𝑖 denotes the occupation number.  

As kinetic energy is a function of density which is a function of wave function, so, 

the kinetic energy functional can be written in the form of: 

                                          𝑇[𝑛] = ∫ 𝜏(𝑥) ⅆ𝑥
∞

−∞
                                                 (29) 

Where 𝜏(𝑥) denotes the kinetic energy density, which is also obtained by employing 

the function as follows: 

                                        𝜏(𝑥) = 1

2
∑ |𝛻𝜙𝑖(𝑥)|

2𝑁
𝑖=1                                           (30) 

Here, we generated the 2000 data set of densities. These numerical densities are used 

as the descriptors of artificial neural network, so we fit them with the mathematical 

functions under the constraints ∫ 𝑛(𝑥) ⅆ𝑥 = 𝑁. Now, similarly as mentioned above, we 

expanded each density in terms of basis functions as: 

                                      𝑛(𝑥) = ∑ 𝑎𝑖𝜓𝑖(𝑥)
𝑀
𝑖=0                                                    (31) 



51 
 

For it, we considered wavefunction to be: 

                                    𝜓𝑖(𝑥) = 𝐻𝑛(𝑥)𝑒𝑥𝑝(−𝑏(𝑥 − 𝑎)2)                                    (32) 

 

Where a denotes the mean value. 

𝑎𝑖 and b denotes the variational parameters.  

𝐻𝑛(𝑥) is the Hermite polynomial which is being used for the orthogonality of the 

wavefunctions. 

𝑒−𝑎(𝑥−𝑎)
2 is the exponential part of the wavefunction. 

The value of hermite polynomials ranging from n = 0 to 5 is as follows: 

𝐻𝑜(𝑥) = 1 

𝐻₁(𝑥) = 2(𝑥 − 𝑎) 

𝐻₂(𝑥) = 4(𝑥 − 𝑎)2 − 2  

𝐻3(𝑥) = 8(𝑥 − 𝑎)3 − 12(𝑥 − 𝑎) 

𝑥 − 𝑎

𝐻4(𝑥) = 16(𝑥 − 𝑎)4 − 48

 

𝐻5(𝑥) = 32(𝑥 − 𝑎)5 − 160(𝑥 − 𝑎)3 + 120(𝑥 − 𝑎) 

Now, after so many trials, the value of b is set to be 3.0. The value of a is set to be 

3.0.  

The linear fitting coefficients are obtained using constraint minimization using 

Sequential Least-Squares Programming (SLSQP) method in Scipy optimization 

module. Then, we selected the best values of linear fitting coefficients. This was 
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determined by the chi-square test. Through this test, we set the value of b to be less 

than 0.1, so that, we get the best fitting. We did this for 2SL, 3S and 3SL fermions 

system. For these, we took the 2000 data set of densities and for each dataset, there 

are individual densities known as data points.  

The linear fitting coefficients, thus obtained, used as the input to train the artificial 

neural network for fitting of kinetic energy. 

The python code which is used for fitting is mentioned in point (3.8). Only the 

difference is that we have used the above Hermite polynomial and exponential 

function in the basis set. 

3.9) Similarly, we are using the Pöschl Teller potential, which is given by: 

𝑣(𝑥) =
−ℏ2

2𝑚
[𝑙(𝑙 + 1)𝑠𝑒𝑐ℎ2(𝑥)]                                 (33)           

Where 𝑙 is 1,2, 3,…is a natural number. Here, we have obtained the family of 

potentials, by changing the value of 𝑙.  

For this system, we have got the wavefunction and densities for two electron and 

three electron system (i.e.  2SL, 3S, 3SL) as mentioned above.  

We have used the Numerov C code for getting wavefunction. Randomly changing 

the value of l between the range (3 to 5), we have generated data sets for numerical 

densities for 2000 potentials.  

These numerical densities are used as the descriptors of artificial neural network, so 

we fit them with the mathematical functions under the constraints ∫ 𝑛(𝑥) ⅆ𝑥 = 𝑁. Now, 

similarly as mentioned above, we expand each density in terms of basis functions 

as: 

                                      𝑛(𝑥) = ∑ 𝑎𝑖𝜓𝑖(𝑥)
𝑀
𝑖=0                                                    (34) 
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So, for it, we would consider a wavefunction to be: 

                             𝜓𝑖(𝑥) = 𝐻𝑛(𝑥)𝑒𝑥𝑝(−𝑏𝑥
2)                                                  (35) 

Where, 

 𝐻𝑛(𝑥) is Hermite polynomial which is being used for the orthogonality of the 

wavefunction, 𝑎𝑖 and 𝜓𝑖(𝑥) are the variational parameters.   

𝑒−𝑎𝑥
2 is the exponential form of the orthogonal basis function. 

 

 

 

 

 

 

 

 

3.10) Fitting of Kinetic energy T[n]: 

For the training of kinetic energy, we used feed forward artificial neural network 
with 5 nodes in each layer. We have used the inear ftting coefficients as the input 
for the artificial neural network.  

Out of the 2000 data sets we divided them in such a way that 1000 datasets used 
for raining purpose and rest (999) for testing purpose.  

The ANN KE expression used is given by: 
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where, 𝑇𝑗 is energy of jth density and hn is number of hidden nodes. ai,j is input 
descriptor of length M for jth density. W01

ik, W12
kl and W23

l1 are weights connecting 
from input layer to hidden layer one, hidden layer one to hidden layer two and hidden 
layer two to output layer respectively. af2

l and af1
k represents sigmoid activation 

functions of network and Wb2
l, Wb1

k are bias weights. 

The network had total 360 weights which were optimized using Global Advanced 
Extended Kalman Filter. The average root mean square error was calculated and 
validated the training weights iteratively at each point. 

                            

Where Nt is the number of datapoints in the test set.  

The exact KE is obtained by the following expression: 

 

 

 

 

Chapter 4 

                                      Results and Discussion 

4.1) We have solved the one-dimensional Schrӧdinger equation in harmonic 

potential well by using Numerov method. We have calculated the wavefunction, 

probability density for the ground state, first excited state and the second excited 

state respectively. The value of energy for the ground state, first excited state and 

the second excited state are 0.5 hv, 1.5hv, 2.5hv respectively. The Numerov method 
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is used to solve the 1- dimensional Schrodinger wave equation in harmonic potential 

well. 

4. 2) The Simple Harmonic Oscillator potential that we are using is: 

                               𝑣(𝑥) = 1

2
𝑘x2     

         

4.2.a) The plot of harmonic potential is as follows:                        

 

Figure (4.2.a) Plot for harmonic potential 

 

We have solved the Schrӧdinger equation for a one-dimensional system in 
Harmonic potential well by using the Numerov algorithm. We have calculated the 
wavefunctions and probability densities for two electron and three electron system 
(i.e., 2SL, 3S, 3SL). Also, we generated the datasets for densities by randomly 
changing the value of force constant for 2000 potentials.  

The values of force constant k have been taken in the range of 1.08 to 1.2. 

Then, we fitted the probability densities with the analytical equations and 
generated the values of linear fitting (i.e., a0, a1, a2, a3, a4, a5). Firstly, we generated 
the linear fitting coefficients for one dataset and then we generated for the 2000 
dataset of densities.   
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4.2.b) The wavefunction for ground state harmonic oscillator wavefunction is 
as follows: 

 

Figure (4.2.b) Wavefunction for ground state harmonic oscillator potential 

 

4.2.c) The wavefunction for first excited state harmonic oscillator is as follows: 
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Figure (4.2.c) Wavefunction for first excited state harmonic oscillator potential 

       4.2.d) The wave function for second excited state potential is as follows: 

 

Figure (4.2.d) Wavefunction for second excited state harmonic oscillator potential 

4.3) Data generation: 
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As already mentioned, we have generated the datasets for 2000 potentials for all 
the three systems by randomly changing the value of the force constant and got the 
2000 datasets for densities.  

 

The plots for 2000 datasets of densities are as follows: 

 4.3.a) Plots for densities for two electron and one node system (i.e. 2SL) 

 

Figure (4.3.a) Plots for 2000 dataset of densities for 2SL system 

 

 

 

 

 

4.3.b.) Plots for the dataset of densities for three electron and 1 node system 
(i.e. 3S)  
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Figure (4.3.b) Plots for 2000 dataset of densities for 3S system 

 

  

 

 

 

 

 

 

 

 

4.3.c.) Plot for the dataset of densities for the three electron 2 node system 
(3SL) 
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Figure (4.3.c) Plots for 2000 dataset of densities for 3SL system 

 

Now, the plots for first datapoint in the density dataset for each system is shown as 
follows: 
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4.3.e) Average density plot for the 2SL system: 

 

Figure (4.3.e) Average density plots for 2S system for harmonic oscillator potential 

      

 

 

 

 

 

 

 

 

4.3.f.) Average density plot for the 3S sytem: 
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Figure (4.3.f) Average density plots for 3SL system for harmonic oscillator 

potential 

4.3.g.) Average density plot for the 3SL system:

 

Figure (4.3.g) Average density plots for 3SL system for harmonic oscillator 

potential 
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Similarly for the harmonic potential which is being shifted from 0 to positive x 
coordinates, i.e.  

𝑉 =
1

2
𝑘(𝑥 − 𝑎)2 

4.3.h) The plot of harmonic potential for such system is as follows: 

                               

Figure (4.3.h) Plot for shifted harmonic oscillator potential 

Similarly, for the 2SL, 3S and 3SL system plots for datasets of densities obtained 
from 2000 potentials is as follows: 
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4.3.i) Plots for numerical densities dataset for 2SL system

 

Figure (4.3.i) Plots for 2000 dataset of densities for 2SL system 

4.3.j) Plots for numerical densities dataset for 3S system: 

 

Figure (4.3.j) Plots for 2000 dataset of densities for 3S system 
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4.3.j) Plots for numerical dataset ofdensities for 3SL system

 

Figure (4.3.J) Plots for 2000 dataset of densities for 3SL system 

Similarly for average densities plots for all the three systems are as follows: 
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4.3.k). Average density plots for 2SL system:

 

Figure (4.3.k) Average density plots for 2SL system for harmonic oscillator 

potential 

4.3.l) Average density plot for  3S system: 

 

Figure (4.3.l) Average density plots for 3S system for harmonic oscillator potential 
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4.3.m) Average density plots for 3SL system

 

Figure (4.3.m) Average density plots for 3SL system for harmonic oscillator 

potential 

 

4.4) By using numerov algorithm, we have also solved the Schrӧdinger equation 

for the Pӧschl Teller potential. We have got the wavefunction and corresponding 

probability densities for two electron and the three electron systems. 

Pӧschl Teller potential is expressed as : 

 

Where l can take 1,2,3…..N integer values. 
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The plot for Pӧschl Teller potential is as follows: 

 

Figure(4.4) Plot for Pöschl Teller potential 

 

Similarly as mentioned above, the probability densities plots for dataset of 2000 
potentials by randomly changing the value of the parameter l. 

4.4.a.) Plot for the two electron, 1 node system dataset of densities: 

 

Figure (4.4.a) Plot for 2000 dataset of densities for 2SL 
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4.4.b.) plot for the three elctron and one node system datset of densities: 

 

Figure (4.4.b) Plot for 2000 dataset of densities for 3S 

4.4.c.) Plot for the three electron and two node system dataset of densities:            

 

Figure (4.4.c) Plot for 2000 dataset of densities for 3SL 

 

 We have also plotted the first data point of the density dataset in the following 
figure. 
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4.4.d) Average density plot for 2SL system:       

 

Figure (4.4.d) Plot for average density for 2SL 

4.4.e) Average density plots for 3S system: 

 

Figure (4.4.e) Plot for average density for 3S 
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4.4.f) Average density plots for 3SL system:           

 

Figure (4.4.f) Plot for average density for 3SL 

 

 

4.5) Fitting equation and plots for all the three systems: 

Here, we have established a general form of the probability density to use linear 

fitting coefficients as input for the artificial neural network. We need to ensure that 

the fitting coefficients which we are using are relatively independent. So, we use 

hermite polynomials, which shows the orthogonality of the wavefunction. That 

means the two wavefunctions are independent of each other. Also, in our analytical 

equation we have used the exponential term, 

So, from here, we obtained the linear fitting coefficients using constraint 

minimization using sequential least square programming (SLSQP) method. We 

select the best fitting coefficients obtained through constraint minimization and 

characterized by the chi-square test. We choose the chi square value less than 0.1 as 
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the best fit for all the systems. The set of optimized coefficients ai forms the input 

for the artificial neural network.  

The fitting equations for all the systems are as follows: 

n(x) = [a0 * H0(x) + a1 *H1(x) + a2 H2(x) + a3*H3(x) + a4*H4(x) + a5*H5(x)]𝑒−𝑏
𝑥2

2
 

Where n(x) is total probability density of all electrons in the system                                                                                                

a0, a1, a2, a3, a4, a5 are fitted coefficients.                                                                                            

H0(x), H1(x),  H2(x),  H3(x),  H4(x), H5(x) are Hermite polynomials up to order 5. 

The values of fitting coefficients obtained for the 2000 datasets of numerical 

densities which we got from the randomly generating data set of potential (i.e.,𝑣 =
1

2
𝑘𝑥2) are as following: 

 

 

   Fitted coefficient     Value of fitted coefficient 

         a0       0.9100                                                                                                                              

         a1       0.0000                                                                                                        

         a2       0.5571                                                                                                        

         a3       0.0000                                                                                                  

         a4       0.1533                                                                                                   

         a5       0.0000 

Table1: Values of fitting coefficients for harmonic potential 

The corresponding plot for the fitting for the above mentioned numerical densities 

for the 2SL system is: 
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4.5.a) Plot for fitting of densities with original density for 2SL system: 

 

Figure (4.5.a) Plot for the fitting of density with original density for 2SL 
system 
 

Now, similarly for the 3S and 3SL systems, the values of fitting coefficients 
obtained from the fitting of numerical densities for the above systems would be: 

   Fitted coefficient     Value of fitted coefficient 
a0 1.5499 
a1 0.0000 
a2 0.6363 
a3 0.0000 
a4 0.1667 
a5 0.0000 

Table2: Fitting coefficients for numerical densities for 3S system 
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   Fitted coefficient     Value of fitted coefficient 
a0 1.2077 
a1 0.0000 
a2 0.6720 
a3 0.0000 
a4 0.3495 
a5 0.0000 

Table3: Fitting coefficients for numerical densities obtained for 3SL system 

 Following are the plots for the fitting of original probability density and fitted   
probability densities for all the three systems (i.e., 3S, 3SL) 

4.5.b.) Plot for fitting of densities with the original densities for 3S system: 

 

Figure (4.5.b) Plot for the fitting of density with original density for 3S system 
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4.5.c.) Plot for fitting of  densities with original density for 3SL system: 

 

Figure (4.5.c) Plot for the fitting of density with original density for 3SL system 

 For the harmonic oscillator potential, which is being shifted from 0 to positive x 
coordinates, the potential i.e., 𝑉 =

1

2
𝑘(𝑥 − 𝑎)2,  the fitting has been done for all the 

three systems.  

For such systems, the fitting equation has been taken as: 

n(x) = [a0 * H0(x) + a1 *H1(x) + a2 H2(x) + a3* H3(x) + a4* H4(x) + a5* H5(x)]𝑒
−𝑏(𝑥−𝑎)2

2
 

Here, we have taken ‘a’ as the mean value.  

Where n(x) is total probability density of all electrons in the system.                                                                                            

a0, a1, a2, a3, a4, a5 are fitted coefficients.                                                                                             

H0(x), H1(x), H2(x), H3(x), H4(x), H5(x) are the shifted Hermite polynomials up to 
order 5, that means we have taken the Hermite polynomial corresponding to the 
coordinates of the system. 

For such system, after so many trials, we have chosen the value of b to be 3.0 

Similarly, the value of linear fitting coefficients has been obtained for the dataset 
of numerical densities. 
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   Fitted coefficient     Value of fitted coefficient 
a0 0.9459 
a1 0.0000 
a2 0.4443 
a3 0.0000 
a4 0.1026 
a5 0.0000 

Table4: Linear fitting coefficients for the 2-electron system (2SL) 

   Fitted coefficient     Value of fitted coefficient 
a0 1.4336 
a1 0.0000 
a2 0.5627 
a3 0.0000 
a4 0.1041 
a5 0.0000 

Table 5: Linear fitting coefficients for the three-electron system (3S) 

   Fitted coefficient     Value of fitted coefficient 
         a0      1.482                                                                                                                            
         a1      0.0000                                                                                                        
         a2      0.6757                                                                                                      
         a3      0.0000                                                                                                
         a4      0.3836                                                                                                
         a5      0.0000 

Table 6: Linear fitting coefficients for the three electron system(3SL) 

Following are the plots for the fitting of densities obtained from the mathematical 
functions and the numerical densities for all the three systems (i.e. 2SL, 3S, 3SL). 

 

 

 

4.5.d) Plot for the fitting of density with original density for 2SL system for 
shifted harmonic potential 
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Figure (4.5.d) Plot for the fitting of density with original density for 2SL system 

4.5.e.) Plots for the fitting of density with original density for 3S sytem for 
shifted Harmonic potential: 

                      

Figure (4.5.e) Plot for the fitting of density with original density for 3S system 

4.5.f.) Plots for the fitting of density with original density for 3SL system for 
shifted harmonic potential: 
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Figure (4.5.f) Plot for the fitting of density with original density for 3SL system 

Now, in the similar fashion, we have also done fitting for the densities obtained from 
the mathematical functions with the original densities and obtained the linear fitting 
coefficients for all the three systems of two electrons and three electrons 
respectively.  

Following are the plots for the fitting of density obtained from the mathematical 

functions and the original density for all the three systems (i.e. 2SL, 3S, 3SL). 

For the fitting, after many trials, we have set the value of b to be 8.0 for all the 

systems in our mathematical expression. 

 

 

 

 

4.6) Fitting of Kinetic Energy : 
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For the fitting of kinetic energy, linear fitting coefficients and the single kinetic 

energy associated with each data point is given as input. The following correlation 

plots have been obtained for the two electron system. We could plot only for two 

electron system. Plot (4.6.a) is for 2SL system for which the harmonic potential is 

being shifted from ) to positive x coordinates and then got the numerical densities as 

input to train ANN. 

4.6.a.) Correlation plot for Exact KE versus ANN KE for 2SL: 

 

Figure (4.6.a) Correlation plot for Exact KE versus ANN KE for 2SL 
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4.6.b.) Correlation plot for Exact KE versus ANN KE for 2SL for shifted 
harmonic potential:                                                                      

 

Figure (4.6.b) Correlation plot for Exact KE versus ANN KE for 2SL for shifted 
harmonic potential 

Error 2SL 
RMSE in T (a) 0.000043 
RMSE in T (b) 0.000107 

 

Table 3: RMSE for Exact KE versus ANN KE 
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Chapter 5 

Problems faced: 

Understanding the Numerov C code initially. Then shifting the potential and 

wavefunction for the harmonic potential from 0 to positive x coordinates took much 

time. Once parity in the wavefunction was introduced, the problem got solved. 

During the fitting of the original density with the mathematical function , we initially 

considered wavefunction  for the system to be the product of normalization constant 

and the exponential function(𝑒−𝑏
𝑥2

2 ), but, this wavefunction was not satisfying the 

condition for orthonormality So to introduce orthogonality to the wavefunction, we 

added the Hermite polynomial to the wavefunction as it shows the independency that 

is they are orthogonal to each other.  

Also, for the fitting of densities with the reference numerical dataset of densities 

obtained from the 2000 set of potential which is being shifted from 0 to positive x 

coordinates, for such potential, we consider our mathematical wavefunction to be 

the same in terms of 𝑒−𝑏
𝑥2

2 initially, but it was not to be done this way. As the Gaussian 

distribution term is 𝑒−𝑏∗(𝑥−𝑎)∗(𝑥−𝑎) 𝑐⁄  so the mean value of the function has to be also 

mentioned and standard deviation has to be mentioned. But in our case, we have 

taken the value of standard deviation to be the same as the deviation for  -x to +x 

coordinates because standard deviation is just the deviation from  its mean position. 

Now, still the mathematical wave function, we considered was not coming to be 

orthogonal. Hence, we multiplied it with Hermite polynomial. Also, in the Hermite 

polynomial, we added the mean value term in such a way that the polynomial became 

consistent with the coordinates of system. Then the mathematical wavefunctions 

became orthogonal and normalized. 



82 
 

         Chapter 6 

Conclusion 

In this project, we solved Schrӧdinger Equation for one-dimensional system 

in a Harmonic potential well by using the artificial neural network. So, from 

the future perspective, such models can be used to calculate energies of 1- 

dimensional Schrödinger equation in a similar way but for unknown potential 

energy well without really solving the Schrӧdinger equation analytically. We 

considered two and three non-interacting fermion systems and filled the 

available energy states giving three types of unique total densities for the 

system. Each density is expanded in terms of Hermite basis function. Our aim 

was to map the probability densities to energies using artificial neural 

networks.  For this we made a dataset of about 2000 probability densities using 

the Numerov method and trained these probability densities to the known 

energies obtained. We have fitted kinetic energy density functional using the 

feed forward artificial neural network for the 2SL system.   
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