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Abstract

Around two decades ago, three Japanese mathematicians Kanemitsu, Tanigawa,

and Yoshimoto investigated an infinite series of the following form:
1X

m=1

m
N�2h

exp(mNx)� 1
,

where N 2 N and h 2 Z with some restriction on h. Recently, Dixit and Maji

pointed out that this series is already present in the lost notebook of Ramanujan

with a more general form. Although, Ramanujan did not provide any transforma-

tion identity for it. Dixit and Maji found an elegant generalization of Ramanu-

jan’s celebrated identity for ⇣(2m+ 1) while extending the results of Kanemitsu

et al. Later, Kanemitsu et al. also studied another extended version of the

aforementioned series, namely,

qX

r=1

1X

n=1

�(r)nN�2hexp
⇣
� r

qn
N
x

⌘

1� exp(�nNx)
,

where � denotes the Dirichlet character modulo q. They have studied this series

for N 2 2N and with some restriction on the variable h. In this thesis, we

investigate the same series for any N 2 N and h 2 Z. Moreover, we obtain

interesting formulas for the Dirichlet L-function at rational arguments.

iii



iv



List of Tables

2.1 A character modulo 14 and its associated primitive character modulo 7. . . 6

2.2 The first few Bernoulli numbers . . . . . . . . . . . . . . . . . . . 6

2.3 The first few Bernoulli numbers associated to the primitive character � . . . 7

6.1 Verification of Theorem4.0.1 . . . . . . . . . . . . . . . . . . . . . 33

v





Contents

Abstract iii

List of Symbols vii

1 Introduction 1

2 Preliminaries 5

3 The Functions ⇣(s) and L(s,�) 9

3.0.1 Riemann zeta function and its generalization . . . . . . . . 9

3.1 Functional equation of ⇣(s) and L(s,�) . . . . . . . . . . . . . . . 10

3.2 Some essential properties of ⇣(s) and L(s,�) . . . . . . . . . . . . 11

4 Main Results 14

5 Proof of Main Results 18

5.1 Proof of Theorem 4.0.1 . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.1 Proof of Corollary 4.0.3 . . . . . . . . . . . . . . . . . . . 26

5.2 Proof of Theorem 4.0.4 . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Concluding Thoughts 32

vi





List of Symbols

Symbol Description

N The set of positive integers

2N The set of all positive even integers

Z The ring of integers

R The field of real numbers

C The field of complex numbers
R
(c0)

R c0+i1
c0�i1

(Z/nZ)⇤ The set of all units of the ring Z/nZ

(a, b) The greatest common divisor of a and b

bxc max{k 2 Z | k  x}

p A rational prime number

P The set of all primes

� Euler’s constant

<(s) Real part of a complex number s

=(s) Imaginary part of a complex number s

g1(x) = O(g2(x)) |g1(x)|  Mg2(x) for x large enough,

where M is a positive constant

g1(x) ⌧ g2(x) g1(x) = O(g2(x))

vii





Chapter 1
Introduction

It is well-known that the infinite series
P1

n=1
1
nx converges if and only if x > 1.

Now the natural question is that where does it converge for a fixed x? Can we

obtain some explicit formula for this series? Can we say something about the

algebraic nature of the values of
P1

n=1
1
n2 ,

P1
n=1

1
n3 ,

P1
n=1

1
n4 , · · · ? Are these

values algebraic or transcendental? The Basel problem was, about finding the

exact value of
P1

n=1
1
n2 , first introduced by Pietro Mengoli in 1644. This problem

remained open for almost 90 years. It was Euler who first showed that the exact

value of the sum
P1

n=1
1
n2 is ⇡2

6 . Moreover, he found a remarkable generalization

of this identity. Mainly, he showed that, for any m 2 N,
1X

n=1

1

n2m
=

(�1)m�1(2⇡)2m

2(2m)!
B2m = ⇡

2m ⇥ r, (1.1)

where B2m denotes the 2mth Bernoulli number, and r is some rational number.

Transcendentality of ⇡ together with the above formula, one can conclude that

the series
P1

n=1
1

n2m converges to a transcendental number. In 19th century,

Bernhard Riemann studied the same series
P1

n=1
1
ns with complex variable s on

his ground-breaking article [23]. Riemann denoted this series by ⇣(s), and due to

that, now it is popularly known as the Riemann zeta function. We can observe

that Euler’s formula (1.1) tells us about the transcendental nature of even zeta

values. The next instinctive question arises about the arithmetic nature of odd
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zeta values. Is there any formula for ⇣(2m + 1) that is similar to the formula

(1.1)? The nature of ⇣(2m + 1), m 2 N, remains mystery except ⇣(3). In 1979,

Roger Apéry [2] demonstrated that ⇣(3) is irrational. But, we are still unaware of

the algebraic nature of ⇣(3). In 2001, Ball and Rioval [4] provided a breakthrough

result. They showed that there are infinitely many ⇣(2m+ 1) which are linearly

independent over the rational. This indicates the existence of infinitely many

irrational odd zeta values. Strikingly, Zudilin [26] gave an impressive result about

the same period. He showed that “At least one among ⇣(5), ⇣(7), ⇣(9) and ⇣(11)

is irrational”. This is one of the finest results in this field.

Ramanujan in his 2nd Notebook [22, p. 173, Entry 21(i)] as well as in his

Lost Notebook [21, p. 320, Formula (28)], noted down the following appealing

identity for ⇣(2m+ 1):

Let ↵, � 2 R+ with ↵� = ⇡
2. For every non-zero integer m,

↵
�m

 
1

2
⇣(2m+ 1) +

1X

n=1

n
�2m�1

(e2n↵ � 1)

!

= (��)�m

 
1

2
⇣(2m+ 1) +

1X

n=1

n
�2m�1

(e2n� � 1)

!

� 22m
m+1X

k=0

(�1)k
B2kB2m+2�2k

(2k)!(2m+ 2� 2k)!
↵
m+1�k

�
k
. (1.2)

This identity does not provide an explicit formula for ⇣(2m + 1), unlike Euler’s

identity (1.1), but it is considered as another outstanding discovery of Ramanujan

that has grabbed the attention of several mathematicians. Malurkar [18], who

had no knowledge of Ramanujan’s Notebook, gave the first published proof in

1925. Berndt [5], in 1977, showed that the Euler’s identity (1.1) and Ramanujan’s

identity (1.2) can be deduced from a single formula associated to an extended

Eisenstien series. The Fourier series expansion of Eisenstien series has a close

connection with the Ramanujan’s identity (1.2). One can learn more about this

connection in [6], [7].

Around two decades ago, three Japanese mathematicians Kanemitsu, Tani-
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gawa, and Yoshimoto [14] investigated an infinite series of the following form:
1X

m=1

m
N�2h

exp(mNx)� 1
, (1.3)

where N 2 N and h is an integer lying in the interval [1, N/2]. They were able

to derive interesting identities for ⇣(s) at rational arguments while studying the

above infinite series. For example, they obtained Ramanujan’s identity for ⇣(1/2).

Recently, Dixit and Maji [10] noticed that the series (1.3) is in fact present in the

Lost Notebook of Ramanujan with a more general form. Although, Ramanujan

did not provide any transformation identity for it. This motivated Dixit and

Maji [10] to study (1.3) further. Quite unexpectedly, they found an astonishing

generalization of Ramanujan’s celebrated identity for ⇣(2m+ 1) while extending

the results of Kanemitsu et al. Mainly, Dixit and Maji [10, Theorem 1.2] obtained

the following generalized identity which connects two distinct odd zeta values:

Suppose N is an odd natural number and ↵, � 2 R+ with ↵�
N = ⇡

N+1.

Then for m 2 Z� {0}, we have

↵
� 2Nm

N+1

 
1

2
⇣(2Nm+ 1) +

1X

n=1

n
�2Nm�1

exp ((2n)N↵)� 1

!
=
⇣
��

2N
N+1

⌘�m 22m(N�1)

N

⇥
 
1

2
⇣(2m+ 1) + (�1)

N+3
2

N�1
2X

j=� (N�1)
2

(�1)j
1X

n=1

n
�2m�1

exp
⇣
(2n)

1
N �e

i⇡j
N

⌘
� 1

!

+ (�1)m+N+3
2 22Nm

bN+1
2N +mcX

j=0

(�1)jB2jBN+1+2N(m�j)

(2j)!(N + 1 + 2N(m� j))!
↵

2j
N+1�

N+ 2N2(m�j)
N+1 . (1.4)

Here we emphasize that the following integral representation of (1.3) was

the starting point of the work of Dixit and Maji:
1X

m=1

m
N�2h

exp(mNx)� 1
=

1

2⇡i

Z c0+i1

c0�i1
�(s)⇣(s)⇣(Ns� (N � 2h))x�sds, (1.5)

where c0 is some large positive quantity. Motivated from this representation,

recently, Gupta and Maji [12] also studied a similar integral to find an extension

of Ramanujan’s identity (1.2) in a di↵erent direction. In a subsequent paper,

Dixit et al. [9] also studied the above integral (6.1) associated to the Hurwitz

3



zeta function ⇣(s, a), inspired from another work of Kanemitsu et al. [15]. Mainly,

they investigated the following infinite series and its integral representation:
1X

m=1

m
N�2h exp

�
�am

N
x
�

exp(mNx)� 1
=

1

2⇡i

Z c0+i1

c0�i1
�(s)⇣(s, a)⇣(Ns� (N � 2h))x�sds.

(1.6)

While studying (1.6), Dixit et al. [9, Theorem 2.4] obtained a gigantic two-

variable extension of Ramanujan’s identity (1.2) by which they were able to con-

nect many odd zeta values from their identity.

A few years later, the trio, Kanemitsu et al. further explored a character

analogue of the series (1.3), namely, the following infinite series and its integral

representation:

qX

r=1

1X

n=1

�(r)nN�2h exp
⇣
� r

qn
N
x

⌘

1� exp(�nNx)
=

1

2⇡i

Z

(c0)

�(s)L(s,�)⇣(Ns�N+2h)

✓
x

q

◆�s

ds,

(1.7)

where � is a Dirichlet character modulo q, and for some large positive c0.

For any N 2 2N and h 2 Z with some restriction on h, they were able

to obtain many interesting identities for the Dirichlet L-function L(s,�) at dif-

ferent rational arguments from a transformation formula for the infinite series

(1.7). For example, they gave formulae for L(1/2,�) and L(1/4,�) analogous to

Ramanujan’s famous identity for ⇣(1/2).

In the current thesis, we further explore the same series (1.7) for any N 2 N

and h 2 Z without any restriction on h. Interestingly, we obtain a new character

analogue of Ramanujan’s identity (1.2). We also found an identity for L(1/3,�).
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Chapter 2
Preliminaries

In this chapter, we will define some basic definitions as well as certain well-known

results that are relevant to the thesis’s major goal.

Preliminaries from Number Theory

Definition 1. (Dirichlet characters) Let N and q be positive integers. A

Dirichlet character modulo q is a homomorphism � : (Z/qZ)⇤ ! C⇤ with the

following properties:

(i) �(m+ q) = �(m) for all m 2 N,

(ii) �(mn) = �(m)�(n), for all m,n 2 N.

The character �0 = �0,q defined by

�0(n) =

8
<

:
0, if (n, q) = 1,

1, otherwise,
(2.1)

is called the principal character modulo q. A character � is called a trivial char-

acter if �(m) = 1 for all m 2 N.

The conductor c� of a Dirichlet character � is the smallest positive integer

c such that � can be generated from (Z/cZ)*.

5



C(Z/qZ)⇤
�

(Z/cZ)⇤
�̄

modulo
c

We say a character is primitive if its conductor is equal to its period. From

any Dirichlet character � : (Z/qZ)⇤ ! C of conductor c we can produce an

associated primitive Dirichlet character of period and conductor c by taking the

character �̃ : (Z/cZ) ! C in the above diagram. A character � is called even or

odd if �(�1) = 1 or �(�1) = �1, respectively.

Table 2.1: A character modulo 14 and its associated primitive character modulo 7.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 period conductor parity

� 0 1 0 ⇣ 0 ⇣5 0 0 0 ⇣2 0 ⇣4 0 �1 14 7 odd
� 0 1 ⇣2 ⇣ ⇣4 ⇣5 �1 0 1 ⇣2 ⇣ ⇣4 ⇣5 �1 7 7 odd

,

Definition 2. (Bernoulli polynomials) The generating function for Bernoulli

polynomial Bn(x) is defined as

te
xt

et � 1
=

1X

n=0

Bn(x)
t
n

n!
.

The nth Bernoulli number is given by Bn(0) = Bn. Also, Bernoulli numbers have

many properties and one can easily see that B2n+1 = 0 for all n 2 N.

Table 2.2: The first few Bernoulli numbers
n 0 1 2 3 4 5 6 7 8 9 10
Bn 1 �1

2
1
6 0 � 1

30 0 1
42 0 � 1

30 0 5
66

Definition 3. (Generalized Bernoulli numbers) Let � be any primitive char-

acter modulo q. Then we define the generalized Bernoulli numbers Bn,� by
qX

k=1

�(k)
te

kt

eqt � 1
=

1X

n=0

Bn,�
t
n

n!
. (2.2)

In fact, we can replace q by any multiple of it in (2.2), using the identity
r�1X

k=0

x
k

xr � 1
=

1

x� 1
.

6



Note that if � is odd, Bn,� = 0 for every even n. In general, Bn,� = 0 for n 6= 0

modulo 2, with the single exception of B1,1 =
1
2 .

Table 2.3: The first few Bernoulli numbers associated to the primitive character �

n 0 1 2 3 4 5 6 7

Bn,� 0 �4
7 �

2
p
3

7 i 0 3+3
p
3i 0 �445

7 � 565
p
3

7 i 0 22249
7 + 30049

p
3

7 i

Definition 4. (Gamma function) Let s 2 C with <(s) > 0. The classical

Gamma function �(s) is given by

�(s) :=

Z 1

0

x
s�1 exp(�x)dx.

One can easily check that �(s + 1) = s�(s) and it can be analytically ex-

tended to a meromorphic function on the whole C except at non-positive integers.

Lemma 2.0.1. For any z 2 C with <(z) > 0 and c > 0, we have

exp(�z) =
1

2⇡i

c+i1Z

c�i1

�(s)z�sds. (2.3)

Proposition 2.0.2. The function �(s) is never zero for all s 2 C.

Proposition 2.0.3. The set of non-positive integers are the only simple poles of

�(s). For m 2 N [ {0}, the residue at �m is (�1)m/m!.

Lemma 2.0.4. The function �(s) has the following expansion around s = 0:

�(s) =
1

s
� � +

1

2

✓
�
2 +

⇡
2

6

◆
s� 1

6

✓
�
3 +

�⇡
2

2
+ 2⇣(3)

◆
s
2 +O(s3). (2.4)

Lemma 2.0.5 (Stirling’s bound for �(s)). [13, p. 151] Let s = � + iR. For

p  �  q, one has

�(� + iR) ⌧ |R|�� 1
2 exp

✓
�⇡|R|

2

◆
, (2.5)

as |R| ! 1.

Lemma 2.0.6. For s 2 C\Z,

�(s)�(1� s) =
⇡

sin(⇡s)
. (2.6)

7



Some trigonometric identities

The following two lemmas will serve a major role in proving the main identities.

Lemma 2.0.7. Suppose z 2 C. Then for any m 2 N,

sin(mz)

sin(z)
=

(m�1)X00

j=�(m�1)

exp(izj), (2.7)

where 00 indicates that the summation runs through j = �(m�1),�(m�3), · · · , (m�

3), (m� 1). Thus, for m even,

sin(mz)

cos(z)
= (�1)

m
2

(m�1)X00

j=�(m�1)

i
j exp(izj), (2.8)

and for m odd,

cos(mz)

cos(z)
= (�1)

m�1
2

(m�1)X00

j=�(m�1)

i
j exp(�izj). (2.9)

Lemma 2.0.8. [10, p. 12, Lemma 3.1] Suppose ↵, �, � are three real numbers.

Then we have

2<
✓

e
i↵�

exp(�e�i↵)� 1

◆
=

cos(� sin(↵) + ↵�)� e
�� cos(↵) cos(↵�)

cosh(� cos(↵))� cos(� sin(↵))
.

8



Chapter 3
The Functions ⇣(s) and L(s,�)

In this chapter, we shall define the Riemann zeta function and discuss one of its

generalization.

3.0.1 Riemann zeta function and its generalization

Let s = � + it be any complex number. The Riemann zeta function is denoted

by ⇣(s) and defined as follows:

⇣(s) :=
1X

m=1

1

ms
, for <(s) = � > 1. (3.1)

The Dirichlet series (3.1) converges uniformly and absolutely if � � �0 > 1. By

Weierstrass’ theorem, ⇣(s) is holomorphic for � > 1. Using product represen-

tations, Euler gave many interesting identities in number theory. For example,

Euler used

⇣(s) =
Y

p

✓
1� 1

ps

◆�1

,<(s) > 1, (3.2)

to show that the series
P

p
1
p = 1. Here both product and sum are taken over

all primes p. The identity (3.2) gives a connection between ⇣(s) and primes.

There are numerous ways to generalize the Riemann zeta function. We shall only

discuss one of these generalizations, which will be used throughout the thesis.

9



Let �(m) be a character modulo q, q � 1. Then, for <(s) > 1, the Dirichlet

L�function is defined by

L(s,�) :=
1X

m=1

�(m)

ms
. (3.3)

Since, the character �(m) is bounded by 1, the above L�series converges abso-

lutely and uniformly if � � �0 > 1. Therefore, L(s,�) is holomorphic for � > 1.

Moreover, analogous to the Euler product for ⇣(s), since �(m) is multiplicative,

L(s,�) satisfies the Euler product:

L(s,�) =
Y

p

✓
1� �(p)

ps

◆�1

, � = <(s) > 1.

One can see the following relation by assuming that �(m) is a principal charac-

ter(2.1) modulo q:

L(s,�0) =
1X

m=1

�0(m)

ns
= ⇣(s)

Y

p|q

✓
1� 1

ps

◆
.

The above identity shows that L(s,�) di↵ers from ⇣(s) only by the finite factor
Y

p|q

✓
1� 1

ps

◆
.

3.1 Functional equation of ⇣(s) and L(s,�)

Riemann [23] established the analytic continuation of ⇣(s) in C except at s = 1,

and it satisfies a beautiful functional equation:

⇣(s) = 2s⇡s�1�(1� s) sin
⇣
⇡s

2

⌘
⇣(1� s). (3.1)

The above functional equation can be written in the following symmetric form:

r(s) = r(1� s), (3.2)

where

r(s) :=
s(s� 1)

2
⇡
� s

2�
⇣
s

2

⌘
⇣(s).

Now to see the functional equation for L(s,�), we need the Gauss sum. The

10



Gauss sum corresponding to a character � modulo q is defined as

G(�) :=
qX

r=1

�(r)e2⇡ir/q. (3.3)

Let

a :=
1� �(�1)

2
=

8
><

>:

0, if � is even,

1, if � is odd.
(3.4)

Now, we assume that � is any primitive character modulo q. Then for every

s 2 C,

L(s,�) = "�2
s
⇡
s�1

q
1
2�s sin

⇣
⇡

2
(s+ a)

⌘
�(1� s)L(1� s, �̄), (3.5)

where

"� =
G(�)
ia
p
q

is an algebraic number of absolute value 1.

3.2 Some essential properties of ⇣(s) and L(s,�)

The function ⇣(s) and L(s,�) have many similar basic properties.

Theorem 3.2.1. For <(s) � 1, ⇣(s) is never zero.

Proposition 3.2.2. (Euler) Let B2` be the 2`th Bernoulli number. For any

positive integer `,

⇣(2`) = (�1)`+1 (2⇡)
2`
B2`

2(2`)!
.

Proposition 3.2.3. For any ` 2 N [ {0},

⇣(�`) = (�1)`
B`+1

`+ 1
.

This implies that ⇣(s) vanishes at �2` because B2`+1 = 0, for all ` 2 N. These

zeros are known as the trivial zeros of ⇣(s).

Proposition 3.2.4 (Zeros of L�function). Assume that � is a primitive character

modulo q, with q > 1. When <(s) > 1, there are no zeros of L(s,�) and for the

11



case <(s)  0, there are zeros at certain negative integers.

(i) If � is an even primitive character, the only zeros of L(s,�) are simple zeros

at 0,�2,�4,�6, · · ·

(ii) If � is an odd primitive character, the only zeros of L(s,�) are simple zeros

at �1,�3,�5,�7 · · · .

Proposition 3.2.5. Let � be a primitive character. Then for every integers

k � 0, we have

L(�k,�) = �Bk+1,�

k + 1
.

One can find the proof in [8, p. 186].

Proposition 3.2.6. [8, p. 188] Suppose � is a character modulo q. Then

L(0,�) =

8
>>>>><

>>>>>:

0 if � is even and q > 1,

�1
2 if q = 1,

�1
q

Pq�1
r=1 �(r)r if � is odd.

Proposition 3.2.7. [8, p. 189] Suppose � is a character modulo q. Then

L
0(0,�) =

8
>>>>>>>><

>>>>>>>>:

�1
2

Pq�1
r=1 �(r) log

⇣
sin
⇣

r⇡
q

⌘⌘
if � is even and non-principle,

Pq�1
r=1 �(r) log

⇣
�
⇣

r
q

⌘⌘
� log(q)L(0,�) if � is odd,

�1
2⇤(q) if � is principle and q > 1,

�1
2 log(2⇡) if q = 1.

Hurwitz zeta function

In 1882, Hurwitz provided one of the many zeta functions, the “shifted” zeta

function, ⇣(s; x) by the series

⇣(s; x) =
1X

n=0

1

(n+ x)s
,

for any x such that 0 < x  1. The Hurwitz zeta function initially defined

for <(s) > 1 and also, it can be extended analytically to the whole complex
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plane, except at s = 1. In his research, Hurwitz was inspired by the problem of

analytic continuation of Dirichlet L-functions. Then we may write the following

proposition.

Proposition 3.2.8. For any character � modulo q, we have

L(s,�) =
1X

m=1

�(m)

ms
= q

�s
qX

r=1

�(r)⇣
⇣
s,
q

r

⌘
.

One can find the proof of this relation in [1].

Lemma 3.2.9. Suppose s = � + iR be a complex number. Then for any � � �0,

9 a constant M(�0), such that

|⇣(s)| ⌧ |R|M(�0) (3.1)

as |R| ! 1.

Proof. One can see the proof in [25, p. 95].

Lemma 3.2.10. Let s = �+ iR 2 C and � be any character modulo q. Then for

any �0  �  b, 9 a constant A(�0), such that

|L(s,�)| ⌧ |R|A(�0) (3.2)

as |R| ! 1.

Proof. The proof can be found in [13, p. 97, Lemma 5.2].

Lemma 3.2.11. [8, p. 206] The Laurent series expansion of ⇣(s) around s = 1

is given by

⇣(s) =
1

s� 1
+
X

k�0

(�1)k
�k

k!
(s� 1)k =

1

s� 1
+ � +O(s� 1), (3.3)

where the constants �k are called Stieltjes constants. Since, ⇣(s) is analytic at

s = 0. The Taylor series of ⇣(s) around s = 0 is given by

⇣(s) = �1

2
� 1

2
log(2⇡)s+

1

48
(24�1 + 12�2 � ⇡

2 � 12(log(2⇡))2)s2 +O(s3). (3.4)
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Chapter 4
Main Results

All the main results of this thesis are stated in this chapter.

Theorem 4.0.1. Let x 2 R+
, q 2 N, and � be a primitive character modulo q.

Let N 2 N and h 2 Z with N � 2h 6= �1. Let us define

F (2h�N, x,�) :=
qX

r=1

1X

n=1

�(r)nN�2h exp
⇣
� r

qn
N
x

⌘

1� exp(�nNx)
,

and

Gj

✓
2h� 1

N
, x,�

◆
:=

1X

n=1

1

n
2h�1
N

�(n)

exp
h
2⇡ (nx)1/N exp

�
� i⇡j

2N

�i
� 1

.

Then, we have

F (2h�N, x,�) = ⇣(�N + 2h)L(0,�) +R1(x)

+
1

N
�

✓
N � 2h+ 1

N

◆
L

✓
N � 2h+ 1

N
,�

◆✓
x

q

◆ 2h�N�1
N

+

b 2h
N c�1X

j=1

(�1)j+1

(j + 1)!
Bj+1,� ⇣(�Nj �N + 2h)

✓
x

q

◆j

+ J�(x), (4.1)
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where

R1(x) :=

8
><

>:

⇣(2h)
x , if q = 1,

0, if q > 1,
(4.2)

and

J�(x) := (�1)h+1G(�)
N

✓
2⇡

x

◆N�2h+1
N

N�1X00

j=�(N�1)

vN,�(j) exp

✓
i⇡j(2h� 1)

2N

◆

⇥Gj

✓
2h� 1

N
,
2⇡

x
, �̄

◆
, (4.3)

where 00 indicates that the sum over j takes the values j = �(N � 1),�(N �

3), · · · , (N � 3), (N � 1). and

vN,�(j) =

8
><

>:

1, if � is even, N 2 N,

(�1)
N
2 i

j�1
, if � is odd, N 2 2N.

(4.4)

Remark 1. The above theorem is not valid for N � 2h = �1.

Letting q = 1 i.e., � being a trivial character in Theorem 4.0.1 and upon

simplification, one can recover the main identity of Dixit and Maji [10, Theorem

1.1]. Again, substituting N = 1 and q = 1 in Theorem 4.0.1, we can derive

Ramanujan’s identity (1.2).

Now considering q > 1 and letting N = 1 in Theorem 4.0.1, we obtain the

below identity.

Corollary 4.0.2. Let � be a primitive even character modular q. Then for x > 0

and h 6= 0, we have

F (2h� 1, x,�) = ⇣(2h� 1)L(0,�) +R1(x)

+ � (2� 2h)L (2� 2h,�)

✓
x

q

◆2h�2

+
b2hc�1X

j=1

(�1)j+1

(j + 1)!
Bj+1,� ⇣(�j � 1 + 2h)

✓
x

q

◆j

+ (�1)h+1G(�)
✓
2⇡

x

◆2�2h

G0

✓
2h� 1,

2⇡

x
, �̄

◆
. (4.5)
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The next lemma gives a new formula for L(1/3,�5).

Corollary 4.0.3. Let �5 be an odd character modulo 5. For any x > 0, we have
5X

r=1

1X

n=1

�5(r)
n exp

�
� r

5n
3
x
�

1� exp (�n3x)
=

G(�5)

3

✓
2⇡

x

◆ 2
3

(
L

✓
1

3
,�5

◆

+
1X

n=1

�5(n)

n
1
3

 
e
u

2 sinh(u)
+

cosh
�p

3u+ ⇡
3

�
� eu

2

cosh(u)� cos
�p

3u
�
!)

,

where

u := u(x) = ⇡

✓
2⇡n

x

◆1/3

. (4.6)

Theorem 4.0.4. Let � be a primitive Dirichlet character modulo q, q � 1 and

x > 0 be any real number. Let h be a integer. Then for any positive integer N

with h = (N + 1)/2, wh have
qX

r=1

1X

n=1

�(r)

n

exp (� r
qn

N
x)

1� exp(�nNx)
= R0 +R1 +

X
R�j +K�,N , (4.7)

where

R0 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

1
2N (�(1�N)� log(2⇡) + log(x)) , if � is even and q = 1,

� 1
2N

Pq�1
r=1 �(r) log

⇣
sin
⇣

r⇡
q

⌘⌘
, if � is even and q > 1,

1
N

"
1
q (log(x)� �(N � 1))

Pq�1
r=1 �(r)r

+
Pq�1

r=1 �(r) log
⇣
�
⇣

r
q

⌘⌘#
, if � is odd,

(4.8)

R1 =

8
><

>:

⇣(N+1)
x , if q = 1,

0, if q > 1,
(4.9)

X
R�j =

8
><

>:

x
2qL(�1,�), if N = 1,

0, if N > 1,
(4.10)

and

K�(x) = (�1)
N�1

2
G(�)
N

1X

n=1

�̄(n)

n

N�1X00

j=�(N�1)

vN,�(j)
exp

�
i⇡j
2

�

exp
⇣
2⇡
�
2⇡n
x

�(1/N)
exp

��i⇡j
2N

�⌘
� 1

,

(4.11)
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where

vN,�(j) =

8
><

>:

1, if � is even N 2 N,

(�1)
N
2 i

j�1
, if � is odd, N 2 2N.

(4.12)

17



Chapter 5
Proof of Main Results

This chapter contains the proofs of all the main identities of this thesis. Before

going to the proof of the main Theorem 4.0.1, we state the following lemma.

Lemma 5.0.1. Let x > 0, N 2 N and � be any Dirichlet character modulo q,

q 2 N. Then for any h 2 Z, we have

qX

r=1

1X

n=1

�(r)nN�2h exp
⇣
� r

qn
N
x

⌘

1� exp(�nNx)
=

1

2⇡i

Z

(c0)

�(s)L(s,�)⇣(Ns�(N�2h))
⇣
q

x

⌘s
ds,

where c0 = <(s) > max{1, (N � 2h+ 1)/N}.

Proof. Note that for x > 0, n 2 N, one has | exp (�n
N
x)| < 1. We write

1

1� exp (�nNx)
=

1X

k=0

exp (�n
N
xk). (5.1)

Now, using inverse Mellin transform (2.3) for exp(�z), for c0 > 0, one has

exp

✓
�n

N
x

✓
k +

r

q

◆◆
=

1

2⇡i

Z

(c0)

�(s)

✓
n
N
x

✓
k +

r

q

◆◆�s

ds

=
1

2⇡i

Z

(c0)

�(s)x�s
⇣
k + r

q

⌘�s

nNs
ds. (5.2)
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Now, use (5.1) and (5.2) to see that

qX

r=1

1X

n=1

�(r)nN�2h exp
⇣
� r

qn
N
x

⌘

1� exp(�nNx)
=

qX

r=1

1X

n=1

�(r)nN�2h
1X

k=0

1

2⇡i

Z

(c0)

�(s)x�s
⇣
k + r

q

⌘�s

nNs
ds

=
1

2⇡i

Z

(c0)

�(s)
qX

r=1

�(r)
1X

n=1

1

nNs�N+2h

1X

k=0

1⇣
k + r

q

⌘s
ds

xs

=
1

2⇡i

Z

(c0)

�(s)⇣(Ns� (N � 2h))
qX

r=1

�(r)⇣

✓
s,

r

q

◆
ds

xs

=
1

2⇡i

Z

(c0)

�(s)⇣(Ns� (N � 2h))L(s,�)

✓
x

q

◆�s

ds,

for c0 > max{1, (N � 2h+ 1)/N}. In the last line we have used the Proposition

3.2.8.

5.1 Proof of Theorem 4.0.1

Proof. From Lemma 5.0.1, for <(s) = c0 > max{1, (N � 2h + 1)/N}, we have

seen that
qX

r=1

1X

n=1

�(r)nN�2h exp (� r
qn

N
x)

1� exp(�nNx)
=

1

2⇡i

Z

(c0)

�(s)L(s,�)⇣(Ns�(N�2h))

✓
x

q

◆�s

ds.

(5.1)

To simplify the above integral, we move the line integration from <(s) = c0

to <(s) = d0, where d0 < �2h/N + 1. Later, we shall explain the purpose of

considering this upper bound for d0.

First, we shall analyse the singularities of the integrand. Note that the only

singularities of �(s) are non-positive integers and all of them are simple pole.

Again, we know, s = 1 is the only simple pole of ⇣(s). Thus, s = (N�2h+1)/N is

the simple pole of ⇣(Ns�(N�2h)). Note that for any j 2 N, s = (N�2h�2j)/N

are the trivial zeros of ⇣(Ns� (N � 2h)).

When, q > 1, one knows that L(s,�) is analytic in C and on the other hand,

if q = 1, it has a simple pole at s = 1. Now, our aim is to determine which poles
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of the integrand function in (5.1) contribute. Mainly, we shall try to see which

poles of �(s) are neutralized by the trivial zeros of ⇣(Ns� (N � 2h)). Suppose,

k is a positive integer such that the pole of �(s) at s = �k is getting neutralized

by some trivial zeros of ⇣(Ns � (N � 2h)). Therefore, for some j 2 N, we must

have �k = (N � 2h � 2j)/N , which suggests that N + Nk � 2h = 2j > 0 ,

�k < �2h/N + 1. This indicates that every negative integer that are less than

�2h/N + 1 are by some real zeros of ⇣(Ns� (N � 2h)).

Now, we observe that

�
�2h

N

⌫
=

8
><

>:

�b2h
N c, if 2h

N 2 Z,

�b2h
N c � 1, if 2h

N /2 Z.
This shows that we must consider the contribution of the poles at s = �j of

�(s) with 1  j  b2h/Nc � 1. We shall also take the contribution of the pole

at s = 0 of �(s). One can verify that the all poles of integrand, namely, at

s = 0, 1, (N � 2h+ 1)/N,�j, for 1  j  b2h/Nc � 1, are all simple.

We consider a contour C with the line segments [c0�iT, c0+iT ], [c0+iT, d0+

iT ], [d0 + iT, d0 � iT ], and [d0 � iT, c0 � iT ].

c0 � iT

c0 + iT
d0 + iT

d0 � iT

0 1-1-2�b 2h
n c + 1�b 2h

n c <(s)

=(s)
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Now, making use of Cauchy’s residue theorem, we arrive at

1

2⇡i

Z

C
�(s)L(s,�)⇣(Ns� (N � 2h))

⇣
q

x

⌘s
ds = R0 +R1 +RN�2h+1

N
(5.2)

+

b 2h
N c�1X

j=1

R�j, (5.3)

where R↵ represents the residual term at s = ↵. Letting T ! 1, and using

Stirling’s bound (2.0.5), and together with known bounds on ⇣(s) and L(s,�),

one can show that the horizontal integrals vanish. Therefore, from (5.2), we get

1

2⇡i

Z

(c0)

�
Z

(d0)

�
�(s)L(s,�)⇣(Ns� (N � 2h))

⇣
q

x

⌘s
ds

= R0 +R1 +RN�2h+1
N

+

b 2h
N c�1X

j=1

R�j. (5.4)

Now employ (5.1) in (5.4) to see that

qX

r=1

1X

n=1

�(r)nN�2h exp
⇣
� r

qn
N
x

⌘

1� exp(�nNx)
= VN,h(x;�) +

b 2h
N c�1X

j=1

R�j

+R0 +R1 +RN�2h+1
N

, (5.5)

where

VN,h(x;�) :=

Z

(d0)

�(s)L(s,�)⇣(Ns� (N � 2h))

✓
x

q

◆�s

ds. (5.6)

The residue R0 is given by

R0 = lim
s!0

s �(s)⇣(Ns� (N � 2h))L(s,�)

✓
x

q

◆�s

= ⇣(�N + 2h)L(0,�). (5.7)

Here we point out that the residue at s = 1 will depend on q. The residue

at s = 1 is given by

R1(x) := R1 =

8
><

>:

⇣(2h)
x , if q = 1,

0, if q > 1,
(5.8)

where R1(x) is the same function defined in (4.2).
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The residue RN�2h+1
N

can be calculated by the following way

RN�2h+1
N

= lim
s!N�2h+1

N

✓
s� N � 2h+ 1

N

◆
�(s)⇣(Ns� (N � 2h))L(s,�)

✓
x

q

◆�s

=
1

N
�

✓
N � 2h+ 1

N

◆
L

✓
N � 2h+ 1

N
,�

◆✓
x

q

◆�(N�2h+1
N )

. (5.9)

Finally, the residue R�j at s = �j, with j 2 N, is given by

R�j = lim
s!�j

(s+ j)�(s)L(s,�)⇣(Ns� (N � 2h))

✓
x

q

◆�s

=
(�1)j

j!
L(�j,�)⇣(�Nj �N + 2h)

✓
x

q

◆j

=
(�1)j+1

(j + 1)!
Bj+1,� ⇣(�Nj �N + 2h)

✓
x

q

◆j

, (5.10)

Now the only thing is left is to verify that the integral VN,h(x;�) is nothing

but the expression J�(x), where J�(x) is defined as in (4.3).

To simplify the integral (5.6), we first employ asymmetric form of the func-

tional equations of ⇣(s) and L(s,�) respectively, namely, the equations (3.1) and

(3.5). Thus, upon simplification, we get

VN,h(x;�) =
G(�)
⇡ia

1

2⇡i

Z

(d0)

�(s)

✓
2⇡

q

◆s

sin
⇣
⇡

2
(s+ a)

⌘
�(1� s)L(1� s, �̄)

⇥ (2⇡)Ns

⇡(2⇡)N�2h
sin
⇣
⇡

2
(Ns� (N � 2h))

⌘
�(1�Ns+N � 2h)

⇥ ⇣(1�Ns+N � 2h)

✓
x

q

◆�s

ds

=

✓
1

2⇡

◆N�2h+1 G(�)
ia

1

2⇡i

Z

(d0)

2 sin
�
⇡
2 (s+ a)

�

sin(⇡s)
sin
⇣
⇡

2
(Ns� (N � 2h))

⌘

⇥ L(1� s, �̄)�(1�Ns+N � 2h)⇣(1�Ns+N � 2h)

✓
(2⇡)N+1

x

◆s

ds

=

✓
1

2⇡

◆N�2h+1 G(�)
ia

1

2⇡i

Z

(d0)


cos(⇡2a)

cos(⇡2 s)
+

sin(⇡2a)

sin(⇡2 s)

�
sin
⇣
⇡

2
(Ns� (N � 2h))

⌘
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⇥ L(1� s, �̄)�(1�Ns+N � 2h)⇣(1�Ns+N � 2h)

✓
(2⇡)N+1

x

◆s

ds.

(5.11)

Note that we have used the reflection identity (2.6) in the second step. Now,

we would like to change the variable 1 � Ns + N � 2h �! s1. In that case,

d0 < �2h/N + 1 leads <(s1) = d1 = 1 + N � 2h � Nd0 > 1. So, the equation

(5.11) becomes

VN,h(x;�) =

✓
1

2⇡

◆N�2h+1 G(�)
iaN

1

2⇡i

Z

(d1)

2

4 cos(⇡2a)

cos
⇣

⇡
2 + ⇡(1�s1�2h)

2N

⌘ +
sin(⇡2a)

sin
⇣

⇡
2 + ⇡(1�s1�2h)

2N

⌘

3

5

⇥ sin
⇣
⇡

2
(1� s1)

⌘
L

✓
s1 + 2h� 1

N
, �̄

◆
�(s1)⇣(s1)

✓
(2⇡)N+1

x

◆ 1�s1+N�2h
N

ds1

=
G(�)
iaN

✓
2⇡

x

◆N�2h+1
N 1

2⇡i

Z

(d1)

"
cos(⇡2a) cos(

⇡
2 s1)

sin
�
⇡
2

�
1�s1�2h

N

�� +
sin(⇡2a) cos(

⇡
2 s1)

cos
�
⇡
2

�
1�s1�2h

N

��
#

⇥ L

✓
s1 + 2h� 1

N
, �̄

◆
�(s1)⇣(s1)(XN)

� s1
N ds1,

=
G(�)
iaN

✓
2⇡

x

◆N�2h+1
N h

cos
⇣
⇡

2
a

⌘
U(XN) + sin

⇣
⇡

2
a

⌘
V(XN)

i
, (5.12)

where XN = (2⇡)N+1
/x, and

U(XN) :=
1

2⇡i

Z

(d1)

cos
�
⇡
2

�

sin
�
⇡
2

�
1�s1�2h

N

���(s1)⇣(s1)L
✓
s1 + 2h� 1

N
, �̄

◆
X

� s1
N

N ds1,

(5.13)

V(XN) :=
1

2⇡i

Z

(d1)

cos
�
⇡
2

�

cos
�
⇡
2

�
1�s1�2h

N

���(s1)⇣(s1)L
✓
s1 + 2h� 1

N
, �̄

◆
X

� s1
N

N ds1.

(5.14)

Now, our main aim is to evaluate the integrals U(XN) and V(XN). First, let

us see the integral U(XN). To evaluate this integral we would like to expand

⇣(s1)L
�
s1+2h�1

N , �̄
�
into a Dirichlet series. We can do this because <(s1) > 1 and

<( s1+2h�1
N ) = 1 + <(s) > 1 as s1 = 1�Ns+N � 2h. Now, we write

L

✓
s1 + 2h� 1

N
, �̄

◆
⇣(s1) =

1X

n=1

�̄(n)

n
s1+2h�1

N

1X

m=1

1

ms1
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=
1X

m=1

1X

n=1

�̄(n)

n
2h�1
N

(mN
n)�

s1
N . (5.15)

Again, one can check that

cos
⇣
⇡

2
s1

⌘
= (�1)h+1 sin

✓
N

✓
⇡

2

s1 + 2h� 1

N

◆◆
. (5.16)

Now, using (2.7), (5.15) and (5.16) the integral U(XN) in (5.13) becomes

U(XN) = (�1)h+1 1

2⇡i

Z

(d1)

(N�1)X00

j=�(N�1)

exp

✓
ij⇡(s1 + 2h� 1)

2N

◆
�(s1)

⇥
1X

m=1

1X

n=1

�̄(n)

n
2h�1
N

(mN
n)�

s1
N X

� s1
N

N ds1

= (�1)h+1

(N�1)X00

j=�(N�1)

exp
⇣
⇡

2N
(2h� 1)

⌘ 1X

m=1

1X

n=1

�̄(n)

n
2h�1
N

⇥ 1

2⇡i

Z

(d1)

�(s1)

✓
X

1
N
N mn

1
N exp

✓
� i⇡j

2N

◆◆�s1

ds1.

(5.17)

Here, we can verify that <
⇣
X

1
N
N mn

1
N exp

�
� i⇡j

2N

�⌘
= X

1
N
N mn

1
N cos

�
� i⇡j

2N

�
> 0,

since X
1
N
N mn

1
N is a positive real number and cos

�
� i⇡j

2N

�
> 0 as j lies in the

interval �(N � 1)  j  (N � 1). Again, using the inverse Mellin integral (2.3)

in (5.17), it reduces to

U(XN) (5.18)

=(�1)h+1

(N�1)X00

j=�(N�1)

exp
⇣
⇡

2N
(2h� 1)

⌘ 1X

m=1

1X

n=1

�̄(n)

n
2h�1
N

exp

✓
�X

1
N
N mn

1
N exp

✓
� i⇡j

2N

◆◆
.

(5.19)

Now we simplify the inner double sum as
1X

n=1

�̄(n)

n
2h�1
N

1X

m=1

✓
exp

✓
�X

1
N
N n

1
N exp

✓
� i⇡j

2N

◆◆◆m

=
1X

n=1

�̄(n)

n
2h�1
N

exp
⇣
�X

1
N
N n

1
N exp

�
� i⇡j

2N

�⌘

1� exp
⇣
�X

1
N
N n

1
N exp

�
� i⇡j

2N

�⌘
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=
1X

n=1

�̄(n)

n
2h�1
N

1

exp
⇣
X

1
N
N n

1
N exp

�
� i⇡j

2N

�⌘
� 1

. (5.20)

Here, we have used the identity
P1

n=1 x
n = x

1�x , whenever |x| < 1. Note that, one

has
���exp

⇣
�X

1
N
N n

1
N exp

�
� i⇡j

2N

�⌘��� < 1, as �(N�1)  j  (N�1). Now substitute

(5.20) in (5.19) to get

U(XN) =(�1)h+1

(N�1)X00

j=�(N�1)

exp
⇣
⇡

2N
(2h� 1)

⌘ 1X

n=1

�̄(n)

n
2h�1
N

1

exp
⇣
X

1
N
N n

1
N exp

�
� i⇡j

2N

�⌘
� 1

.

(5.21)

Now we will look into the integral V(XN), defined in (5.14). Again, using (2.8),

(5.15) and (5.16) in (5.14), for N 2 2N, we obtain

V(XN) =(�1)h+1 1

2⇡i

Z

(d1)

(�1)
N
2

(N�1)X00

j=�(N�1)

i
j exp

✓
ij⇡(s1 + 2h� 1)

2N

◆
�(s1)

⇥
1X

m=1

1X

n=1

�̄(n)

n
2h�1
N

(mN
n)�

s1
N X

� s1
N

N ds1. ⇥ 1

2⇡i

Z

(d1)

�(s1)

✓
X

1
N
N mn

1
N exp

✓
� i⇡j

2N

◆◆�s1

ds1.

Simplification of V(XN) goes in a similar direction to U(XN). Hence, we have

V(XN) = (�1)h+1

(N�1)X00

j=�(N�1)

(�1)
N
2 i

j exp
⇣
⇡

2N
(2h� 1)

⌘

⇥
1X

n=1

�̄(n)

n
2h�1
N

1

exp
⇣
X

1
N
N n

1
N exp

�
� i⇡j

2N

�⌘
� 1

. (5.22)

Note that, here the above expression for V(XN) in (5.22) is true only for

even N due to the fact (2.8). Now, apply (3.4) in (5.12) to see that

VN,h(x;�) =

8
><

>:

G(�)
N

�
2⇡
x

�N�2h+1
N U(XN), if � is even ,

1
i
G(�)
N

�
2⇡
x

�N�2h+1
N V(XN), if � is odd .

(5.23)

Now, combining (5.21), (5.14), and (5.23), we arrive at

VN,h(x;�) =(�1)h+1G(�)
N

✓
2⇡

x

◆N�2h+1
N

N�1X00

j=�(N�1)

vN,�(j) exp

✓
i⇡j(2h� 1)

2N

◆

⇥Gj

✓
2h� 1

N
,
2⇡

x
, �̄

◆
,

where vn,�(j) is defined as in (4.4). The above final expression of the vertical
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integral VN,h(x;�) is nothing but the expression J�(x) defined in (4.3). This

settles the proof of Theorem 4.0.1.

5.1.1 Proof of Corollary 4.0.3

Proof. Taking h = 1, N = 3 and � = �5, an even primitive character modulo 5

in Theorem 4.0.1, we get
5X

r=1

1X

n=1

�5(r)
n exp

�
� r

5n
3
x
�

1� exp (�n3x)
= ⇣(�1)L(0,�5) +

1

3
�

✓
2

3

◆
L

✓
2

3
,�5

◆⇣
x

5

⌘� 2
3

+
G(�5)

3

✓
2⇡

x

◆ 2
3

1X

n=1

�̄5(n)

n
1
3

⇥
2X00

j=�2

exp
�
i⇡j
6

�

exp
⇣
2⇡
�
2⇡n
x

� 1
3 exp

��i⇡j
6

�⌘
� 1

.

(5.24)

Now, using the functional equation of L(s,�), one can derive

L

✓
2

3
,�5

◆
= G(�5)

✓
2

5

◆ 2
3

⇡
� 1

3 sin
⇣
⇡

3

⌘
�

✓
1

3

◆
L

✓
1

3
,�5

◆
. (5.25)

Note �5 is a real character, thus, �5 = �̄5. Using (5.25) and (2.6), we have

1

3
�

✓
2

3

◆
L

✓
2

3
,�5

◆⇣
x

5

⌘� 2
3
=

G(�5)

3

✓
2⇡

x

◆ 2
3

L

✓
1

3
,�5

◆
. (5.26)

Upon simplification, one can see that
2X00

j=�2

exp
�
i⇡j
6

�

exp
⇣
2⇡
�
2⇡n
x

� 1
3 exp

��i⇡j
6

�⌘
� 1

=
1

exp
⇣
2⇡
�
2⇡n
x

� 1
3

⌘
� 1

+
exp

�
� i⇡

3

�

exp
⇣
2⇡
�
2⇡n
x

� 1
3 exp

�
i⇡
3

�⌘
� 1

+
exp

�
i⇡
3

�

exp
⇣
2⇡
�
2⇡n
x

� 1
3 exp

�
� i⇡

3

�⌘
� 1

.

(5.27)
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It is clear that2

4 exp
�
� i⇡

3

�

exp
⇣
2⇡
�
2⇡n
x

� 1
3 exp

�
i⇡
3

�⌘
� 1

+
exp

�
i⇡
3

�

exp
⇣
2⇡
�
2⇡n
x

� 1
3 exp

�
� i⇡

3

�⌘
� 1

3

5

= 2<

2

4 exp
�
i⇡
3

�

exp
⇣
2⇡
�
2⇡n
x

� 1
3 exp

�
� i⇡

3

�⌘
� 1

3

5

(5.28)

Now, putting a = 2⇡
�
2⇡n
x

� 1
3 , u = ⇡

3 and v = 1 in Lemma 2.0.8, we get

2<

0

@ exp
�
i⇡
3

�

exp
⇣
2⇡
�
2⇡n
x

� 1
3 exp

�
� i⇡

3

�⌘
� 1

1

A =

0

BBB@

cosh
⇣p

3⇡
�
2⇡n
x

� 1
3 + ⇡

3

⌘
�

exp

✓
�⇡( 2⇡n

x )
1
3

◆

2

cosh
⇣
⇡
�
2⇡n
x

� 1
3

⌘
� cos

⇣p
3⇡
�
2⇡n
x

� 1
3

⌘

1

CCCA

(5.29)

Again,

1

exp
⇣
2⇡
�
2⇡n
x

� 1
3

⌘
� 1

=
exp

⇣
�⇡
�
2⇡n
x

� 1
3

⌘

exp
⇣
⇡
�
2⇡n
x

� 1
3

⌘
� exp

⇣
�⇡
�
2⇡n
x

� 1
3

⌘

=
exp

⇣
�⇡
�
2⇡n
x

� 1
3

⌘

2 sinh
⇣
2⇡
�
2⇡n
x

� 1
3

⌘ .

(5.30)

Finally, using (5.26), (5.27), (5.28), (5.29), and (5.30) in (5.24), one can complete

the proof.

5.2 Proof of Theorem 4.0.4

Proof. First, we can figure out that the Theorem 4.0.1 is not valid for N � 2h =

�1, due to the presence of ⇣(Ns� (N � 2h)) in the right side of (5.1). The proof

of this identity, corresponding to N � 2h = �1, is almost same as in Theorem

27



4.0.1. For the case N � 2h = �1, Lemma 5.0.1 gives, for <(s) = c0 > 1,
qX

r=1

1X

n=1

�(r)

n

exp (� r
qn

N
x)

1� exp(�nNx)
=

1

2⇡i

Z

(c0)

�(s)L(s,�)⇣(Ns+ 1)

✓
x

q

◆�s

ds. (5.1)

Now as in the proof of (4.0.1), we need to move the line of integration from

<(s) = c0 to <(s) = d0, with d0 < �1/N . As the proof goes in a similar direction

as in Theorem 4.0.1, so we only highlight the locations where the proof is di↵erent

from theorem 4.0.1.

In this case, the main di↵erence is that ⇣(Ns+1) has a pole at s = 0, which

gives three following cases:

Case 1: If � be is even character modulo q with q = 1. Then s = 0 is a

double pole of the integrand in (5.1).

Case 2: If � is an even character modulo q with q > 1. Then s = 0 is a

simple pole of the integrand in (5.1).

Case 3: If � be an odd character modulo q. Then s = 0 is a double pole

of the integrand in (5.1).

To find the residue in each case, we shall use the following Laurent series

expansions around s = 0:

�(s) =
1

s
� � +

1

2

✓
�
2 +

⇡
2

6

◆
s+O(s2),

⇣(s) =
1

s� 1
+ � +O(s� 1),

⇣(Ns+ 1) =
1

Ns
+ � � �1Ns+O(s2),

L(s,�) = L(0,�) + L
0(0,�)s+O(s2),

✓
x

q

◆�s

= 1� log

✓
x

q

◆
s+O(s2),

x
�s = 1� log(x)s+

(log(x))2

2
s
2 +O(s3). (5.2)

The above Laurent series of L(s,�) around s = 0 is valid for non-principal prim-

itive character modulo q with q > 1. Now, we will discuss the cases one by one

and calculate the residue at s = 0 for each case.
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Case 1: In this case, we assume � is an even mod q with q = 1. Then the

integrand becomes �(s)⇣(Ns + 1)⇣(s)x�s. Note, s = 0 is a double pole of the

integrand due to �(s) and ⇣(Ns+ 1). Using the definition of residue, it will be

R0(x) = lim
s!0

d

ds

�
s
2�(s)⇣(Ns+ 1)⇣(s)x�s

�
.

Using the above Laurent series expansions and after a small simplification, one

can easily check that

lim
s!0

✓
d

ds

�
s
2�(s)⇣(s)⇣(Ns+ 1)x�s

�◆
=

1

2N
(log(x)� log(2⇡)� �(N � 1)) .

Hence,

R0(x) =
1

2N
(log(x)� log(2⇡)� �(N � 1)) . (5.3)

Case 2: In this case, we took � as an even character modulo q with q > 1. It

is clear that s = 0 is a simple zero of L(s,�). So, one pole at s = 0 will get

cancelled by this zero. Thus, s = 0 will remain as a simple pole of integrand.

Hence, the residue at s = 0 is given by

R0(x) = lim
s!0

s�(s)⇣(Ns+ 1)L(s,�) (x/q)�s

= lim
s!0

s⇣(Ns+ 1)
L(s,�)

s
,

=
1

N
lim
s!0

L(s,�)

s

=
L
0(0,�)

N
, using L�Hospital’s rule.

In the second last step, we have used the fact that ⇣(Ns + 1) has a simple pole

at s = 0 with residue 1/N . Therefore, Proposition 3.2.7 gives

R0(x) = � 1

2N

q�1X

r=1

�(r) log

✓
sin

✓
r⇡

q

◆◆
. (5.4)

Case 3: In this case, we have taken that � is an odd character. So, L(0,�) 6= 0.

Thus, s = 0 must be a double pole of the integrand. Again, applying the Laurent

series expansions in (5.2) around s = 0, we reach

s
2�(s)L(s,�)⇣(Ns+ 1)

✓
x

q

◆�s
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=
L(0,�)

N
+

1

N


L(0,�)

✓
�(N � 1)� log

✓
x

q

◆◆
+ L

0(0,�)

�
s+O(s2).

Thus,

lim
s!0

d

ds

 
s
2�(s)L(s,�)⇣(Ns+ 1)

✓
x

q

◆�s
!

(5.5)

=
1

N


L(0,�)

✓
�(N � 1)� log

✓
x

q

◆◆
+ L

0(0,�)

�
. (5.6)

Hence, by using Propositions (3.2.6) and (3.2.7) in (5.5), the residue of the inte-

grand takes the shape

R0(x) =
1

N

"
1

q
(log(x)� �(N � 1))

q�1X

r=1

�(r)r +
q�1X

r=1

�(r) log

✓
�

✓
r

q

◆◆#
. (5.7)

Therefore, combining all the three cases, we can check that the residue at s = 0

is exactly same we defined in (4.8).

The residues at the remaining poles are same as in Theorem 4.0.1. For

example, R1 is

R1 =

8
><

>:

⇣(N+1)
x , if q = 1,

0, if q > 1,
(5.8)

and the residue at s = �j is given by

R�j(x) =
(�1)j+1

(j + 1)!
Bj+1,� ⇣(�Nj + 1)

✓
x

q

◆j

,

where 1  j  b1+ 1
N c � 1. In this case N � 2h = �1, so the only negative poles

of integrand are s = �1,�2, .....,�b1 + 1
N c + 1. Thus, the sum of these poles is

given by

X
R�j =

b1+ 1
N c�1X

j=1

R�j(x) =

8
><

>:

x
2qL(�1,�), if N = 1,

0, if N > 1.
(5.9)

The remaining proof is same as in theorem 4.0.1. Thus, in the proof of Theorem

4.0.1, we put h = N+1
2 in (4.3) to get

K�(x) = (�1)
N�1

2
G(�)
N

1X

n=1

�̄(n)

n

N�1X00

j=�(N�1)

vN,�(j)
exp

�
i⇡j
2

�

exp
⇣
2⇡
�
2⇡n
x

�(1/N)
exp

��i⇡j
2N

�⌘
� 1

.

(5.10)
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Hence, gathering all the residual terms and together with the above expression

(5.10), we can conclude the proof of Theorem 4.0.4.

31



Chapter 6
Concluding Thoughts

Inspired from the work of Kanemitsu et al. [14], Dixit and Maji studied the below

infinite series, for N 2 N, h 2 Z,
1X

m=1

m
N�2h

exp(mNx)� 1
(6.1)

Transformation formula for this series was crucial to find a new generalization for

Ramanujan’s identity for ⇣(2m+ 1).

Later, Kanemitsu et al. further explored a character analogue of the series

(1.3), namely, the following infinite series and its integral representation:

qX

r=1

1X

n=1

�(r)nN�2h exp
⇣
� r

qn
N
x

⌘

1� exp(�nNx)
=

1

2⇡i

Z

(c0)

�(s)L(s,�)⇣(Ns�N+2h)

✓
x

q

◆�s

ds,

(6.2)

where � is a Dirichlet character modulo q, and for some large positive c0. Al-

though, they studied it for N 2 N and h 2 Z with some restriction on h. In

this thesis, we studied the same series (6.2) for any N 2 N and h 2 Z. This

motivated us to find a new character analogue of Ramanujan’s identity (1.2). For

any N � 1 and m 6= 0, our generalization will give a relation between ⇣(2Nm+1)

and L(2m + 1,�). We were able to find a transformation formula for the series

(6.2), for any N 2 N, when � is even, whereas when � is odd, our transformation

is valid only for N 2 2N. It would be interesting to find a formula for any N 2 N
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when � is any odd character.

In a forthcoming work, we are planning to study the following integral:

1

2⇡i

Z

(c0)

�(s)L(s,�)L(Ns�N + 2h, )

✓
x

QR

◆�s

ds, (6.3)

where � and  are primitive characters modulo Q and R, respectively.

Verification of Theorem 4.0.1

Let N 2 N and h 2 Z with N � 2h 6= �1. Let x be a positive real number. We
took the left-hand side and right-hand side sum over n considered only first 100
terms. This numerical data has been obtained using the Mathematica software.

Table 6.1: Verification of Theorem4.0.1
N h x q Parity of � Left-hand side Right-hand side
4 7 1.22 2 odd 0.315691 0.315691
4 7 1.22 5 even 0.0929631 0.0929631
6 10 ⇡ 5 odd 0.472922 + 0.138771i 0.472921 + 0.13877i
8 10 ⇡ + 1 5 odd 0.406854 + 0.109186i 0.406807 + 0.109175i
7 8 15 5 even 0.0471911 0.0471705
2 �3 e

2 7 even 4.47864� 0.107135i 4.47848� 0.107115i
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