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Abstract

Let d(n) be the well-known divisor function. Using hyperbola method, Dirichlet, in

1849, proved that
X

nx

d(n) = x log x+ (2� � 1)x+
1

4
+ E(x), as x ! 1,

with E(x) = O(
p
x). After a long period of time, in 1904, Voronoi used the method

of contour integration to improve the error term as O
⇣
x

1
3+✏
⌘
, for any positive ✏.

Recently, Gupta and Maji studied a generalized form of d(n) given by

Dk,r(n) :=
X

d
k|n

✓
n

dk

◆r

,

where k 2 N and r 2 Z. In this thesis, we study the summatory function of Dk,r(n)

and establish a Voronoi-type bound for the error term. Moreover, we recover the

Voronoi’s error bound for the summartory function of d(n).

v
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Chapter 1

Introduction

First, we define an important arithmetic function, namely, divisor function d(n),

which will be one of the main objects of study of this thesis.

1.0.1 Divisor function

Definition 1.1 (Divisor function). The divisor function d(n) is an arithmetic func-

tion that counts the number of distinct positive divisors of a positive integer n.

We often write d(n) in the following manner:

d(n) :=
X

d|n

1.

The theory of the divisor function d(n) has a pivotal role in the progress of analytic

number theory. It is a non-monotonic multiplicative function. Over the times, this

function has been analysed by many mathematicians. Ramanujan [9, 10] gave many

interesting identities associated with the divisor function. There are many general-

izations of d(n) in the literature. In this thesis, we will be studying the average order

of one of these generalizations.

Example 1. Below are the examples how divisor function returns the values for

di↵erent values of n:

1. d(2022) = 8,

2. d(p) = 2, for any prime p.

Refer to the figure below for the graph of d(n).
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Figure: Graph of d(n) with respect to n

Picture has been taken from www.wikipedia.com

All the values of n where the graph cuts the line d(n) = 2 are prime numbers

and we can observe that the graph will cut this line infinitely many times, due to the

infinitude of prime numbers. We can also see that the graph of the divisor function

does not behave so nicely. So, we rather try to study the summatory function of d(n),

that is, D(x) :=
P

1nx d(n) for large positive real number x.

1.0.2 Work of Dirichlet and Voronoi

Here, we will see some di↵erent generalized forms of the divisor function d(n). In

1849, Dirichlet, with the help of the hyperbola method, showed that, for x > 0,
X

nx

0
d(n) =

1

4
+ x log(x) + (2� � 1)x+ E(x), (1.1)

with the error term E(x) = O(
p
x) and the prime 0 on the top of the summation

means that the last term is d(n)/2 if x is an integer. Improving this error term had

been considered as one of the challenging problems in analytic number theory. The

first improvement was due to the Russian mathematician Georgy F. Voronoi [12] in

1904. He found an exact infinite series representation for the error term E(x). Mainly,

he proved that

E(x) = �
p
x

1X

m=1

d(m)p
m

✓
Y1(4⇡

p
mx+

2

⇡
K1(4⇡

p
mx

◆
, (1.2)

where Y1(x) and K1(x) denote the Bessel function and the modified Bessel function

of the 2nd kind, respectively, of order 1. Utilizing the available asymptotic properties
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of Y1(x) and K1(x), Voronoi was able to show that, for any positive ✏,

E(x) = O
⇣
x1/3+✏

⌘
. (1.3)

This bound has been further improved by many mathematicians over the times. The

current best bound is due to Huxley [3]. In 2003, he was able to show that

E(x) = O
⇣
x

131
416+✏

⌘
. (1.4)

The problem of finding the smallest value of ✓ such that E(x) = O(x⌘+✏) is well-

known as the Dirichlet’s divisor problem. Hardy, in 1916, derived that inf(⌘) � 1/4.

It is broadly conjectured that inf(⌘) must be equals to 1/4.

1.0.3 Some generalized divisor functions

One of the well-known generalizations of the divisor function is given by,

�r(n) =
X

d|n

dr, (1.5)

where r is any complex number. One can clearly see that �0(n) = d(n). Like divisor

function, the summatory function of �r(n) has been studied by a few mathematicians.

Readers can see [1, Sections 6] for a Voronoi-type formula for �r(n). Let k be a natural

number. In 1925, Wigert studied a restricted divisor function, namely, d(k)(n), which

counts the number of k-full divisors of n. We write

d(k)(n) :=
X

d
k|n

1. (1.6)

One can clearly see that d(k)(n) = d(n) when k = 1. Wigert studied a transformation

formula for the following Lambert series

Lk(w) :=
1X

n=1

d(k)(n)e�nw, (1.7)

where Re(w) > 0, to derive a formula ⇣
�
1
k

�
for k 2 2N. In 1929, Koshliakov [6]

established a Voronoi-type exact formula corresponding to d(k)(n). Although, he did

not give any explicit bound for the error term while studying the summatory function
P

nx d
(k)(n). Recently, Gupta and Maji [2, p. 4] studied a new generalization Dk,r(n)

of the divisor function d(n) while obtaining a new extension of Ramanujan’s famous

formula for odd zeta values. The divisor function Dk,r(n) is defined as

Dk,r(n) =
X

d
k|n

✓
n

dk

◆r

, (1.8)

where k 2 N and r 2 Z. We can easily see thatD1,0(n) = d(n), Dk,0(n) = d(k)(n), D1,r(n) =

�r(n). One of our main objectives of this thesis is to study the summatory function
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of Dk,r(n), that is, X

nx

Dk,r(n), as x ! 1.
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Chapter 2

Main Results

In this chapter, we state the main identities of this thesis.

Theorem 2.1. Let r be a non-negative real number and k be a natural number such

that k < 2r+3
(r+1)(2r+1) . Let Dk,r(n) be the arithmetic function defined as in (1.8). Then,

we have
X

nx

0
Dk,r(n) = Mk,r(x) + Ek,r(x), (2.1)

where the main term Mk,r(x) is given by

Mk,r(x) =

8
<

:
� ⇣(�r)

2 + ⇣
�
1
k � r

�
x

1
k + ⇣(k(1+r))x

1+r

(1+r) , if (k, r) 6= (1, 0),

1
4 + x log x+ (2� � 1)x, if (k, r) = (1, 0).

(2.2)

and the error term Ek,r(x) is

Ek,r(x) = Ok,r,✏

⇣
x

(r+1)(2r+1)
(2r+3) +✏

⌘
, (2.3)

for any positive ✏.

Letting (k, r) = (1, 0) in the above identity, we can immediately recover the

main term and the error term of Voronoi’s bound for the summatory function of

d(n). Moreover, for r = 0, one can check that the only possibilities of k are 1 and 2.

Thus, for (k, r) = (2, 0), we obtain the below identity.

Corollary 2.2. For any positive ✏ > 0, we have

X

nx

0
d(2)(n) =

1

4
+ ⇣

✓
1

2

◆
x

1
2 +

⇡2

6
x+O✏

⇣
x

1
3+✏
⌘
.

Remark 1. If k > 2r+3
(r+1)(2r+1) in Theorem 2.1, then the error term will dominate the

main term ⇣
�
1
k � r

�
x

1
k . Due to this fact, for k � 3, we will have

X

nx

0
d(k)(n) =

1

4
+ ⇣(k)x+O✏

⇣
x

1
3+✏
⌘
. (2.4)
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Again, considering k = 1 in Theorem 2.1, we obtain the following bound.

Corollary 2.3. Let r be any real number lying in the interval
⇥
0,

p
17�1
4

�
. Then, we

have
X

nx

0
�r(n) = Mr(x) + Er(x), (2.5)

where

Mr(x) =

8
<

:
� ⇣(�r)

2 + ⇣ (1� r) x+ ⇣(1+r)x
1+r

(1+r) , if r 6= 0,

1
4 + x log x+ (2� � 1)x, if r = 0.

(2.6)

and the error term Ek,r(x) is

Er(x) = Or,✏

⇣
x

(r+1)(2r+1)
(2r+3) +✏

⌘
. (2.7)
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Chapter 3

Important Lemmas

In this chapter, we state a few essential results which will be crucial in the proof of

the main results. First, we define the Riemann zeta function, for Re(s) > 1,

⇣(s) :=
1X

n=1

1

ns . (3.1)

We can easily show that the Dirichlet series for d(n) is ⇣2(s), that is,

⇣2(s) =
1X

n=1

d(n)

ns .

Again, one can derive that,

⇣(s)⇣(s� r) =
1X

n=1

�r(n)

ns , for Re(s) > max{1, 1 + r}.

The Dirichlet series for the Wigert’s divisor function d(k)(n) is ⇣(s)⇣(ks) for Re(s) > 1.

Moreover, one can show that, for Re(s) > max{1/k, 1+r}, the Dirichlet series for the
divisor function Dk,r(n) is ⇣(ks)⇣(s�r). Here one can observe that the Dirichlet series

for these divisor functions are all product of ⇣(s) with di↵erent arguments. Thus, the

theory of the Riemann zeta function will play an important role in the study of the

summatory function of these divisor functions. The Riemann zeta function ⇣(s) has

an analytic continuation in the whole complex plane except at s = 1 and satisfies the

following symmetric functional equation:

�(s) = �(1� s), (3.2)

where �(s) = �(s/2)⇣(s)

⇡
s/2 . Simplifying this functional equation [8], one can rewrite

⇣(s) = �(s)⇣(1� s), (3.3)

where

�(s) =
(2⇡)s

⇡
�(1� s) sin

⇣⇡
2
s
⌘
. (3.4)

The next lemma provides a bound for �(s).
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Lemma 3.1. For a > 0 and 1  t  T , we have

�(�a+ it) = C exp (�it log t+ it log(2⇡) + it) ta+
1
2 +O

⇣
ta�

1
2

⌘
. (3.5)

To prove this lemma we need to make use of the Stirling’s formula for �(s),

which is stated below.

Lemma 3.2. For z ! 1, we have

�(z) =

✓
2⇡

z

◆ 1
2 ⇣z

e

⌘z ✓
1 +O

✓
1

z

◆◆
. (3.6)

Proof. This lemma can be found in [7, p. 92].

The next lemma plays an important role in proving the main identity.

Lemma 3.3. [4, p. 486] Let an be an arithmetical function such that

an = O(�(n)),

where �(x) is an increasing function for x � x0. Suppose the Dirichlet series

A(s) =
1X

n=1

an
ns

is absolutely convergent for Re(s) > c0 and if

1X

n=1

an
n� ⌧ 1

(� � c0)
↵ if � ! c+0 ,

for some ↵ > 0. Then for any c > c0, one has

X

nx

0
an =

1

2⇡i

Z c+iT

c�iT

A(s)
xs

s
ds+O

✓
xc

T

1

(c� c0)
↵

◆
+O

✓
�(2x)

T
x log 2x

◆
+O(�(2x)).

The below result gives a bound for a finite integral with an exponential function

in the integrand.

Lemma 3.4. Let F (x) be a real valued function, F (x) 2 C2[a, b] and

F 00(x) � L > 0, or F 00(x)  �L < 0,

for some L 2 R+, 8x 2 [a, b], G(x)

F
0
(x)

is monotonic and |G(x)|  P , then

����
Z b

a

G(x)eiF (x)dx

���� 
8Pp
L
.

Proof. Proof of this lemma can be found in [11, p. 72].
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Chapter 4

Proof of Main Results

In this chapter, we provide proofs of the main results of this thesis.

Proof of Theorem 2.1. First, we shall make of use of Lemma 3.3. Recall that the

Dirichlet series forDk,r(n) is A(s) = ⇣(ks)⇣(s�r), when Re(s) > max{ 1
k , 1+r} = 1+r

as r � 0. To apply Lemma 3.3, we let

an = Dk,r(n).

One can check that, for any ✏ > 0,

Dk,r(n) = O(nr+✏), as r � 0.

By taking �(x) = xr+✏ and using the fact that log(x) = O(x✏) in Lemma 3.3, for any

c > 1 + r, we have
X

nx

0
Dk,r(n) =

1

2⇡i

Z c+iT

c�iT

⇣(ks)⇣(s� r)xs

s
ds+O

✓
xc

T (c� (1 + r))

◆

+Or,✏

✓
x1+r+✏

T

◆
, (4.1)

where T is some large positive number. We will now evaluate the following vertical

integral:

V (1)
k,r (x;T ) :=

1

2⇡i

Z c+iT

c�iT

⇣(ks)⇣(s� r)xs

s
ds. (4.2)

To simplify the above line integral, we construct a rectangular path Ua,c in such a way

so that it contains all the singularities of the integrand. Thus, we choose the contour

Ua,c containing the line segments [c� iT, c+ iT ], [c+ iT,�a+ iT ], [�a+ iT,�a� iT ],

and [�a� iT, c� iT ], where c > 1 + r and a > 0.

We first inspect the singularities of the integrand. Note that x
s

s has a simple

pole at s = 0, due to presence of the factor 1
s . We know ⇣(s) has a simple pole at

s = 1. Hence, ⇣(ks) has a simple pole at s = 1
k and ⇣(s � r) has a simple pole at

s = 1 + r. Thus, the integrand function has simple poles at s = 0, 1
k , 1 + r.

13



c� iT

c+ iT
�a+ iT

�a� iT

0 1-1 1+r

1
k Re(s)

Im(s)

Now making use of Cauchy’s residue theorem, one has
1

2⇡i

Z

Ua,c

⇣(ks)⇣(s� r)
xs

s
ds = R0 +R 1

k
+R1+r, (4.3)

where Ra denotes the residue at s = a. Using (4.2) in (4.3) and separating all the

line integrals, we get

V (1)
k,r (x;T ) =R0 +R 1

k
+R1+r

+
1

2⇡i

Z c+iT

�a+iT

+

Z �a+iT

�a�iT

+

Z �a�iT

c�iT

�
⇣(ks)⇣(s� r)

xs

s
ds. (4.4)

Now we shall analyse the terms on the right hand side of (4.4) one by one. One can

immediately see that

R0 = lim
s!0

s⇣(ks)⇣(s� r)xs

s
= ⇣(0)⇣(�r) = �⇣(�r)

2
. (4.5)

For calculating R 1
k
and R1+r, we would like to use the following limit for ⇣(s):

lim
s!1

(s� 1)⇣(s) = 1.

Note that 1/k and 1 + r are simple poles if (k, r) 6= (1, 0). Thus, we have

R 1
k
= lim

s! 1
k

�
s� 1

k

�
⇣(ks)⇣(s� r)xs

s
= ⇣

✓
1

k
� r

◆
x

1
k , (4.6)

and

R1+r = lim
s!(1+r)

(s� (1 + r))⇣(ks)⇣(s� r)xs

s
=

⇣(k(1 + r))x1+r

(1 + r)
. (4.7)

Moreover, if (k, r) = (1, 0), then s = 1 is a pole of order 2. In this case, the integrand

function becomes ⇣2(s)x
s

s . Using the Laurent series expansion of ⇣(s) at s = 1, one

14



can show that, the residue at s = 1 is x log(x) + (2� � 1)x, We now concentrate on

the integrals that are present on the right hand side of (4.4). Let us write the top

horizontal integral as

H(1)
k,r (x;T ) =

Z c+iT

�a+iT

⇣(ks)⇣(s� r)
xs

s
ds. (4.8)

Employing Phragmén-Lindelöf principle, for s = � + iT with �a < � < c, one can

deduce that

⇣(s) = O
⇣
T (a+

1
2)(

c��
a+c )

⌘
. (4.9)

Now making use of the above bound (4.9) for ⇣(s) and upon simplification, we obtain

⇣(s� r) = O
⇣
T (a+r+ 1

2)(
c��
a+c )

⌘
,

⇣(ks) = O
⇣
T (ka+

1
2)(

c��
a+c )

⌘
.

Utilizing the above bounds in (4.8), we arrive at

H(1)
k,r (x;T ) = O

✓Z c

�a

T ((k+1)a+r+1)( c��
a+c )�1x�d�

◆
. (4.10)

Note that the integrand function is of the form exp[(A� + B) log(T ) + � log(x)] for

some constants A and B. Thus the maximum of this integrand function will be

attained at one of the end points as the integral. Therefore, we get

H(1)
k,r (x;T ) = O

 
T (k+1)a+r

xa

!
+O

✓
xc

T

◆
. (4.11)

In a similar way, the same bound can be obtained for the below horizontal integral.

Now we shall try to find a bound for the following left vertical integral:

V (2)
k,r (x;T ) :=

1

2⇡i

Z �a+iT

�a�iT

⇣(ks)⇣(s� r)
xs

s
ds. (4.12)

Notice that the real part of the integral is Re(s) = �a < 0. So, we need to use

the functional equation of ⇣(s) to shift the integral to the right half plane. We shall

employ the asymmetric functional equation (3.3) of ⇣(s). Thus, employing (3.3), the

left vertical integral takes the following shape:

V (2)
k,r (x;T ) =

1

2⇡i

Z �a+iT

�a�iT

�(ks)�(s� r)⇣(1� ks)⇣(1� s+ r)
xs

s
ds, (4.13)

where �(s) = ⇡(s�1)2s�(1 � s) sin
�
⇡
2 s
�
. Now looking at the argument of the both

of the Riemann zeta functions, we can conclude that they are absolutely convergent.

Therefore, using the series expansions, we can write

⇣(1� ks)⇣(1� s+ r) =
1X

n=1

Ek,r(n)

n1�s , (4.14)

where

Ek,r(n) =
X

d
k|n

 
dk

n

!r

dk�1.

15



Substituting (4.14) in (4.13) and then swapping the summation and integration, we

reach

V (2)
k,r (x;T ) =

1X

n=1

Ek,r(n)
1

2⇡i

Z �a+iT

�a�iT

�(ks)�(s� r)xs

n1�ss
ds. (4.15)

Replacing s by �a+ it, the vertical integral becomes

V (2)
k,r (x;T ) =

x�a

2⇡

1X

n=1

Ek,r(n)

n1+a

Z T

�T

�(�ka+ ikt)�(�a� r + it)(xn)it

�a+ it
dt. (4.16)

In this situation, we must use the bound for �(s). Thus, applying Lemma 3.1, we

obtain, for 1  t  T ,

�(�ka+ ikt) = C1 exp (i(�kt log kt+ kt log 2⇡ + kt)) tka+
1
2 +O

⇣
tka�

1
2

⌘
,

�(�(a+ r) + it) = C2 exp (i(�t log t+ t log 2⇡ + t)) ta+r+ 1
2 +O

⇣
ta+r� 1

2

⌘
, (4.17)

where C1 and C2 are some constants. Note that 1
�a+it =

1
it + O

⇣
1

t
2

⌘
. Now utilizing

these bounds and simplifying further, one can see that
Z T

1

�(�ka+ ikt)�(�a� r + it)(xn)it

�a+ it
dt ⌧

Z T

1

G(t) exp(iF (t))dt, (4.18)

where

F (t) = �t(k + 1) log t� kt log k + t(k + 1) log (2⇡) + t(k + 1) + t log(nx), (4.19)

G(t) = t(k+1)a+r. (4.20)

Note that F 0(t) = �(k+1) log(t)� k log k+ (k+1) log(2⇡) + log(nx) and F 0(t)/G(t)

is a monotonically decreasing function. Moreover, we have

F 00(t)  �k + 1

T
and G(t)  T (k+1)a+r.

Therefore, using these bounds and appealing to Lemma 3.4, we deduce thatZ T

1

G(t) exp(iF (t))dt = Ok

⇣
T (k+1)a+r+ 1

2

⌘
. (4.21)

In the interval (�T,�1), one can obtain the same bound, whereas in the interval

(�1, 1) the integrand is bounded. Now using (4.21) in (4.18), the final bound for the

left vertical integral (4.16) reduces to

V (2)
k,r (x;T ) = Ok,r

 
T (k+1)a+r+ 1

2

xa

!
. (4.22)

To obtain the above bound, we have utilized the fact that the series
P1

n=1 Ek,r(n)n
�s

is uniformly and absolutely convergent in Re(s) > 1. Finally, taking into account

all the residual terms (4.5)-(4.7) and the bounds for horizontal and vertical integrals,

i.e., equations (4.11), (4.22), and in view of (4.1), (4.2), and (4.4), we get
X

nx

0
Dk,r(n)�Mk,r(x) = Ek,r(x), (4.23)
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where Mk,r is the sum of all residual terms and Ek,r(x) is the error term given by

Ek,r(x) = O

✓
xc

T (c� (1 + r))

◆
+O

✓
x1+✏+r

T

◆
+O

 
T (k+1)a+r

xa

!

+O

✓
xc

T

◆
+Ok,r

 
T (k+1)a+r+ 1

2

xa

!
. (4.24)

Now we let c = 1 + r + ✏, since c is any number bigger than 1 + r, then the first

two big-oh terms and the second last term are of the same order. Moreover, one can

observe that the last term will dominate the third term. Therefore, simplifying, we

arrive at

Ek,r(x) = O✏

✓
x1+✏+r

T

◆
+Ok,r

 
T (k+1)a+r+ 1

2

xa

!
. (4.25)

Again, to compare these two big-oh terms, we choose a = ✏ and let ✏ ! 0 in the

following identity:

x1+✏+r

T
=

T (k+1)✏+r+ 1
2

x✏ . (4.26)

One can easily determine that the best possible values for T is x
2r+2
2r+3 . Hence putting

this value of T in (4.25), the final error term becomes

Ek,r(x) = Ok,r,✏

⇣
x

(r+1)(2r+1)
(2r+3) +✏

⌘
. (4.27)

Note that the main terms are of the form Ax1+r and Bx1/k, for some positive constants

A,B. We can clearly observe the exponent of x in the above error term is less than

1 + r, whereas to make it less than 1/k we need to take 1  k < (2r+3)
(r+1)(2r+1) . This

concludes the proof of Theorem 2.1.

Proof of Corollary 2.2. Letting r = 0 in Theorem 2.1, one can clearly observe that

the possibilities of k are 1 and k = 2. Now corresponding to k = 2, the arithmetic

function Dk,r(n) is nothing but Wigert’s function d(2)(n). Therefore, simplifying all

the terms in Theorem 2.1 and together with the fact that ⇣(2) = ⇡2/6, we complete

the proof.

Proof of Corollary 2.3. Putting k = 1 in Theorem 2.1, one can see that the real

number r satisfies the following inequality:

2r2 + r � 2 < 0. (4.28)

Therefore, r lies in the interval
⇣
�1+

p
17

4 ,
p
17�1
4

⌘
. Note that the arithmetic function

Dk,r(n) = �r(n) when k = 1. Upon simplification, one can obtain this corollary.
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Chapter 5

Concluding Thoughts

In this thesis, we have studied the summatory function of the divisor functionDk,r(n),

defined as in (1.8), and established a Voronoi-type bound for the error term. More-

over, we recover the Voronoi’s error bound for the summatory function for d(n). As

an application, we also obtained a Voronoi-type bound for Wigert’s divisor function

d(2)(n), but our method does not give a good error bound for the summatory function

of d(k)(n) when k � 3. So, it would be an interesting problem to study the summatory

function of d(k)(n) for k � 3.
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de quelques séries, Ann. École Norm. Sup. (3) 21 (1904), 207–267, 459–533.

[13] S. Wigert, Sur une extension de la série de Lambert, Arkiv Mat. Astron. Fys. 19
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