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Abstract

This thesis discuss the rare decays b � s�+�� which shows significant devi-
ations from Standard Model predictions. Here, we discussed the Standard
Model, Flavour Structure, Neutral currents, Charged currents, and possi-
bilities of FCNC at tree level and loop levels. We try to reproduce the
Standard Model prediction of Rk values. We try to understand statistical
methods to understand data and graphs of experiments of Rk.

The LHCb detector at CERN collected in beauty quarks decays, RK⇥RK⇥
measurements show the violation of lepton universality and 3.1⇥ deviation
from standard model prediction. Further experimental runs give us more
confidence in the search for the Beyond Standard Model.
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Chapter 1

Introduction

We always desire to find a simple and elegant theory to explain every pro-

cess in the universe; Einstein’s general theory of relativity describes the idea

of Gravitation and quantum mechanics, which leads to Quantum Field The-

ory, then to Standard Model explains strong, weak, and electromagnetic

interaction of elementary particles. The Standard Model(SM) develop in

the 1960-70s through many experimental observations which explain ele-

mentary particles and their dynamics. Higgs boson predicted by SM which

was found in 2012, results in near completion of SM theory. Some recent

experiments, the Anomalous magnetic dipole moment of the muon, Rare

decays experimental results point toward failure of SM, which motivate us

to look at physics Beyond the Standard Model. Hierarchy problem and

other theoretical concepts also indicate there is physics beyond the stan-

dard model.

As for now, we don’t have observe a direct indication of BSM, so we can

speculate that BSM occurs in a high energy scale that cannot be reached

right now with present experimental technology or that BSM has very

weak coupling strength. Studies of rare decays open up a window to look

for BSM; small e⇤ects of BSM could be hidden away in SM in abundant

decays, that’s why looking for rare decays. Also, in rare decay experi-

ments, we are testing the compatibility of experimental results with stan-

dard model predictions, and these rare decay experiments can be performed

right now with the present level of technology. If rare decay experiment
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hints for BSM, we can then invest money and e⇤orts to find a direct search.

In rare decays, in this thesis, we look for B � K�+�� (b � s�+��) de-

cays, the LHCb detector at CERN collected in beauty quarks decays ,

RK⇥RK⇥ measurements show the violation of lepton universality and 3.1⇥

deviation from standard model prediction. Further experimental runs give

us more confidence in the search of BSM.

In SM, di⇤erent leptons have the same interaction strength except for the

lepton-Higgs interaction, which gives leptons di⇤erent masses. In the stan-

dard model, strong force doesn’t couple with lepton; therefore, B+ �
K+e+e� and B+ � K+µ+µ� decays identically, giving Rk nearly equal

to 1. Beyond SM predicts new virtual particles which can interact non

universally to leptons which can explain experimentally found branching

fraction of B+ � K+�+��. Based on data collected in LHCb, CERN there

is lepton universality violation in beauty-quark decays.

RH =
Br(B � Hµ+µ�)

Br(B � He+e�)
(1.1)

For H = K+ ,ratio denotes Rk and for H = K⇥0 ratio called Rk�0

Measured Rk values

Rk(1.1 < q2 < 6.0 GeV 2/c4) = 0.846+0.042+0.013
�0.039�0.012 [3]

SM expectation is Rk = 1.00±0.01. [3]

The discrepancy of 3.1⇥ with SM [3], gives evidence of a violation of lepton

universality.
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Chapter 2

Standard Model

The standard model(SM) of Particle Physics is a theory of elementary par-

ticles and their behavior. SM consist of 12 elementary particles (Fermions)

:- 6 Quarks.

 
u

d

!
,

 
c

s

!
,

 
t

b

!
and uR, dR, cR, sR, tR, bR

and 6 leptons as

 
e�

ve

!

L

,

 
µ�

vµ

!

L

,

 
⌅�

v�

!

L

, and
�
e�
⇥
R
,
�
µ�⇥

R
,
�
⌅�
⇥
R

Chirality of lepton arises due to weak interaction in SM. SM’s interac-

tions/Forces carriers (Boson) are Gluon, Z Boson, W Boson, Photon, and

Higgs Boson. Massless photons and gluons ignore the Higgs field, whereas

quarks, leptons, and particles interact with the Higgs field; because of this

interaction, these particles have mass. SM can accurately anticipate the

results of many collider experiments and has predicted the existence of sev-

eral elementary particles before they were discovered.
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Figure 2.1: Standard Model of Elementary Particles

source:https://en.wikipedia.org/wiki/Standard_Model

In the Standard Model, we have to following gauge group [1] :

SU(3)c ◊ SU(2)L ◊ U(1)Y , (2.1)

where SU(3)c is the Quantum chromodynamics or QCD gauge group and

SU(2)L ◊ U(1)Y is the electroweak part. After spontaneously symmetry

breaking, this symmetry ends up into,

SU(3)c ◊ SU(2)L ◊ U(1)Y � SU(3)c ◊ U(1)Q. (2.2)

Here Y and Q denote the weak hypercharge and the electric charge gen-

erators, respectively. The QCD part describes the strong interactions of

particle physics. Strong interactions are mediated by eight gluons Ga. The

SU(2)L ◊ U(1)Y is called the electroweak part of the Standard Model and

describes both electromagnetic and weak interactions. These interactions
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are mediated by Photon(⇧),W Boson(W±), Z Boson(Z0) and the neutral

Higgs boson H.

Quantum number of SU(3)c called color, SU(2)L called weak isospin, and

U(1)Y is called hypercharge. The Gell-Mann-Nishima relation gives electric

charge Q.

Q = T3 +
Y

2
(2.3)

where T3 is the third component of weak spin and Y is hypercharge.

Let’s look Standard Model Lagrangian, the first kinetic term of fermions

L
SM

fermion
=

X

j=1,2,3

Lji /DLj + eRj i /DeRj +Q
j
i /DQj

+uRj i /DuRj + dRj i /DdRj (2.4)

where /D = Dµ⇧µ.

Covariant derivatives are given as

For LH lepton doublets Lj

Dµ = ⌃µ ⇥ ig1Y Bµ ⇥ ig2
⇥a

2
W a

µ
(2.5)

For RH lepton singlets eRj

Dµ = ⌃µ ⇥ ig1Y Bµ (2.6)

For LH quarks doublets Qj

Dµ = ⌃µ ⇥ ig1Y Bµ ⇥ ig2
⇥a

2
W a

µ
⇥ igs

⌥a

2
Ga

µ
(2.7)

For RH quarks singlets uRj , dRj

Dµ = ⌃µ ⇥ ig1Y Bµ ⇥ igs
⌥a

2
Ga

µ
(2.8)
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here, Y denotes hypercharge, Pauli matrices denoted by ⇥a and Gell-Mann

matrices by ⌥a.

Kinetic term of gauge boson is as follows :

L
SM

gauge
= ⇥1

4
Ga

µ⇥G
µ⇥,a ⇥ 1

4
W a

µ⇥W
µ⇥,a ⇥ 1

4
Bµ⇥B

µ⇥ (2.9)

where,

Ga

µ⇥ = ⌃µG
a

⇥ ⇥ ⌃⇥G
a

µ
+ gsf

abcGb

µ
Gc

⇥ , (2.10)

W a

µ⇥ = ⌃µW
a

⇥ ⇥ ⌃⇥W
a

µ
+ g2�

abcW b

µ
W c

⇥ , (2.11)

Bµ⇥ = ⌃µB⇥ ⇥ ⌃⇥Bµ. (2.12)

Mass terms of both fermions and gauge bosons are not allowed in SM. To

resolve this issue, we turn to the Higgs mechanism. Therefore, Higgs dou-

blets ⇧ is also part of Lagrangian :

L� = (Dµ⇧)
†(Dµ⇧)⇥ V (⇧) (2.13)

Yukawa sector of SM describes the coupling of Higgs doublets to fermions.

It determines the flavor structure of SM. Lagrangian of Yukawa part is given

by:

LY = ⇥Q⇧Y DdR ⇥Q⇧cY UuR ⇥ L⇧Y EeR + h.c. (2.14)

where ⇧c = i⇥2⇧⇥.
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Therefore, Total SM Lagrangian is given by adding eqn. 2.4,2.9,2.13,2.14.

L
SM = L

SM

fermion
+ L

SM

gauge
+ L� + LY (2.15)

L
SM =

X

j=1,2,3

Lji /DLj + eRj i /DeRj +Q
j
i /DQj + uRj i /DuRj + dRj i /DdRj

⇥1

4
Ga

µ⇥G
µ⇥,a ⇥ 1

4
W a

µ⇥W
µ⇥,a ⇥ 1

4
Bµ⇥B

µ⇥

+(Dµ⇧)
†(Dµ⇧)⇥ V (⇧)

⇥Q⇧Y DdR ⇥Q⇧cY UuR ⇥ L⇧Y EeR + h.c. (2.16)
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Chapter 3

Flavor structure of SM

3.1 Quark Sector

Yukawa Lagrangian for quarks can be written as [1]

LY = ⇥(Y D

11Q1L⇧d1R + Y D

12Q1L⇧d2R + Y D

13Q1L⇧d3R + Y D

21Q2L⇧d1R + Y D

22Q2L⇧d2R

+Y D

23Q2L⇧d3R + Y D

31Q3L⇧d1R + Y D

32Q3L⇧d2R + Y D

33Q3L⇧d3R

+Y U

11Q1L⇧
cu1R + Y U

12Q1L⇧
cu2R + Y U

13Q1L⇧
cu3R + Y U

21Q2L⇧
cu1R + Y U

22Q2L⇧
cu2R

+Y U

23Q2L⇧
cu3R + Y U

31Q3L⇧
cu1R + Y U

32Q3L⇧
cu2R + Y U

33Q3L⇧
cu3R + h.c.) (3.1)

where Q is SU(2)L doublet ,

QiL =

 
uiL

diL

!
(3.2)

Using spontaneous symmetry breaking and taking ⇧ to be ;

⇧ =

 
0
v⇤
2

!
(3.3)

Quarks mass terms be ;
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Lmass = ⇥ v⌅
2
(Y D

11d1L⇧d1R + Y D

12d1L⇧d2R + Y D

13d1L⇧d3R + Y D

21d2L⇧d1R + Y D

22d2L⇧d2R

+Y D

23d2L⇧d3R + Y D

31d3L⇧d1R + Y D

32d3L⇧d2R + Y D

33d3L⇧d3R

+Y U

11u1L⇧
cu1R + Y U

12u1L⇧
cu2R + Y U

13u1L⇧
cu3R + Y U

21u2L⇧
cu1R + Y U

22u2L⇧
cu2R

+Y U

23u2L⇧
cu3R + Y U

31u3L⇧
cu1R + Y U

32u3L⇧
cu2R + Y U

33u3L⇧
cu3R + h.c.) (3.4)

Above equations can be written in matrice form

Lmass = ⇥ v⌅
2

⇤
d̄1L d̄2L d̄3L

⌅
⇧

⌃⌥
Y D

11 Y D

12 Y D

13

Y D

21 Y D

22 Y D

23

Y D

31 Y D

32 Y D

33

�

 ⌦

⇧

⌃⌥
d1L

d2L

d3L

�

 ⌦

⇥ v⌅
2

⇤
ū1L ū2L ū3L

⌅
⇧

⌃⌥
Y U

11 Y U

12 Y U

13

Y U

21 Y U

22 Y U

23

Y U

31 Y U

32 Y U

33

�

 ⌦

⇧

⌃⌥
u1L

u2L

u3L

�

 ⌦+ h.c. .(3.5)

Here,

Md =
v⌅
2

⇧

⌃⌥
Y D

11 Y D

12 Y D

13

Y D

21 Y D

22 Y D

23

Y D

31 Y D

32 Y D

33

�

 ⌦ , Mu =
v⌅
2

⇧

⌃⌥
Y U

11 Y U

12 Y U

13

Y U

21 Y U

22 Y U

23

Y U

31 Y U

32 Y U

33

�

 ⌦ (3.6)

Md and Mu are mass matrices for down-type quarks and up-types quarks.

These matrices are not diagonal, so fields ui and di do not represent physical

particles. We have to diagonalize these matrices to get physical fields.
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Bi-unitary Transformation : For any matrix A, we can find two uni-

tary matrices UL and UR such that ULAU
†
R
is diagonal, with real positive

entries.

Bi-unitary transformation signifies that the left-chiral and right-chiral fields

change di⇤erently when unitary transformation. Therefore,

mA = U †
L
.mdiag

A
.UR (3.7)

The left-handed down-type fields transform as

⇧

⌃⌥
d1L

d2L

d3L

�

 ⌦ = U †
L

⇧

⌃⌥
dL

sL

bL

�

 ⌦ =⇧
⇤
d̄1L d̄2L d̄3L

⌅
=
⇤
d̄L s̄L b̄L

⌅
UL .(3.8)

Similarly, for the right-handed down-type field

⇧

⌃⌥
d1R

d2R

d3R

�

 ⌦ = U †
R

⇧

⌃⌥
dR

sR

bR

�

 ⌦ . (3.9)

And for the left-chiral up-type fields,

⇧

⌃⌥
u1L

u2L

u3L

�

 ⌦ = V †
L

⇧

⌃⌥
uL

cL

tL

�

 ⌦ =⇧
⇤
ū1L ū2L ū3L

⌅
=
⇤
ūL c̄L t̄L

⌅
VL .(3.10)

Right-chiral field transforms as

⇧

⌃⌥
u1R

u2R

u3R

�

 ⌦ = V †
R

⇧

⌃⌥
uR

cR

tR

�

 ⌦ . (3.11)
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The mass terms for the down-type and up-type quarks can then be

rewritten as

Lmass =
⇤
d̄L s̄L b̄L

⌅
UL ·Md · U

†
R

⇧

⌃⌥
dR

sR

bR

�

 ⌦

⇤
ūL c̄L t̄L

⌅
VL ·Mu · V

†
R

⇧

⌃⌥
uR

cR

tR

�

 ⌦+ h.c. (3.12)

Here, Dd = UL ·Md · U
†
R
and Du = VL ·Mu · V

†
R
are diagonal matrices.
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3.2 Lepton Sector

Yukawa interaction Lagrangian for the lepton sector [1]:

LY = ⇥(Y l

11L̄1L⇧e1R + Y l

12L̄1L⇧e2R + Y l

13L̄1L⇧e3R + Y l

21L̄2L⇧e1R + Y l

22L̄2L⇧e2R

+Y l

23L̄2L⇧e3R + Y l

31L̄3L⇧e1R + Y l

32L̄3L⇧e2R + Y l

33L̄3L⇧e3R + h.c), (3.13)

where L is the SU(2)L doublet of the form

LiL =

 
 iL

eL

!
. (3.14)

After spontaneous symmetry breaking, using 3.3, the mass terms are

Lmass = ⇥ v⌅
2
(Y l

11ē1Le1R + Y l

12ē1Le2R + Y l

13ē1Le3R + Y l

21ē2Le1R + Y l

22ē2Le2R

+Y l

23ē2Le3R + Y l

31ē3Le1R + Y l

32ē3Le2R + Y l

33ē3Le3R + h.c.) , (3.15)

L = ⇥ v⌅
2

3X

i,j=1

(Y l

ij
ēiLejR + h.c.) . (3.16)

In the generation indices Y l is a matrix. We can redefine our fields in a

way such that the matrix Y l becomes diagonal.

⇧

⌃⌥
e1

e2

e3

�

 ⌦

L

= e†
L

⇧

⌃⌥
eL

µL

⌅L

�

 ⌦ ,

⇧

⌃⌥
e1

e2

e3

�

 ⌦

R

= E†
R

⇧

⌃⌥
eR

µR

⌅R

�

 ⌦ . (3.17)

Here, e, µ and ⌅ represent physical fields. After changing the basis, the

mass terms are written as

Lmass = ⇥ v⌅
2

⇤
ēL µ̄L ⌅̄L

⌅
eL.Md.e

†
R

⇧

⌃⌥
eR

µR

⌅R

�

 ⌦+ h.c. . (3.18)

As we can see, there are no mass terms for neutrinos because right-handed

neutrinos do not exist in the Standard Model. There is only one kind of

mass term, and those are for the charged leptons as given in 3.18. We could
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work on the basis of generations where these terms are diagonal.

There was no need to write the lepton fields; we could have started with

the physical fields.
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3.3 Spontaneous Symmetry Breaking in SM

In SM,Higg field breakdown electroweak to electromagnetic gauge symme-

try [1];

SU(2)L ◊ U(1)Y � U(1)em (3.19)

To derive mass of MW and MZ , we see,

Dµ = ⌃µ ⇥ ig1Y Bµ ⇥ ig2
⇥a

2
W a

µ

= ⌃µ ⇥ i

 
g1Y Bµ +

g2

2 W
3
µ

g2⇤
2
W+

µ

g2⇤
2
W�

µ
g1Y Bµ ⇥ g2

2 W
3
µ

!
. (3.20)

where W 1,2
µ

replaced by W±
µ

W�
µ

=
1⌅
2
(W 1

µ
+ iW 2

µ
),W+

µ
= [W�

µ
]† =

1⌅
2
(W 1

µ
⇥ iW 2

µ
) (3.21)

which are eigenvectors of T3 and Q due to Y = 0;

T3

⇧

⌃⌥
W 1

µ

W 2
µ

W 3
µ

�

 ⌦ = i

⇧

⌃⌥
0 ⇥1 0

1 0 0

0 0 0

�

 ⌦

⇧

⌃⌥
W 1

µ

W 2
µ

W 3
µ

�

 ⌦ =

⇧

⌃⌥
⇥iW 2

µ

iW 1
µ

0

�

 ⌦ (3.22)

Therefore,

T3W
±
µ

= QW±
µ

= ±W±
µ

(3.23)

which means W±
µ

have electric charge ±1 , whereas W 3
µ
and Bµ are elec-

trically neutral.

Due to mixing between W 3
µ
and Bµ, they can not be physical mass eigen-
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states. Therefore we do an orthogonal transformation with one mass-less

state Aµ and a second one massive Zµ.

Orthogonal transformation characterized by Weinberg mixing angle ⌦w

given as:

 
Aµ

Zµ

!
=

 
cos ⌦w sin ⌦w

⇥ sin ⌦w cos ⌦w

! 
Bµ

W 3
µ

!
(3.24)

or its inverse be;

 
Bµ

W 3
µ

!
=

 
cos ⌦w ⇥ sin ⌦w

sin ⌦w cos ⌦w

! 
Aµ

Zµ

!
(3.25)

After inserting back the value of Bµ and W 3
µ
; we can get the following re-

lations;

tan ⌦w =
g1
g2
, e = g2 sin ⌦w = g1 cos ⌦w (3.26)

The boson mass can be calculated from;

(Dµ⇧)
†Dµ⇧

!
= M2

W
W�

µ
W µ+ +

1

2
M2

Z
ZµZ

µ +
1

2
m⇤AµA

µ (3.27)

MW =
g2v

2
,MZ =

g2v

2 cos ⌦w
,m⇤ = 0 (3.28)

MW =
g2v

2
,MZ =

gzv

2
, gz =

g2
cos ⌦w

=
q
g21 + g22,

MW

MZ

= cos ⌦w (3.29)
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3.4 Neutral Currents

To derive couplings of quarks and leptons to photon and z-boson [1] , we

need covariant derivatives

For LH lepton doublets Lj

Dµ = ⌃µ ⇥ ig1Y Bµ ⇥ ig2
⇥a

2
W a

µ
(3.30)

For RH lepton singlets eRj

Dµ = ⌃µ ⇥ ig1Y Bµ (3.31)

For LH quarks doublets Qj

Dµ = ⌃µ ⇥ ig1Y Bµ ⇥ ig2
⇥a

2
W a

µ
⇥ igs

⌥a

2
Ga

µ
(3.32)

For RH quarks singlets uRj , dRj

Dµ = ⌃µ ⇥ ig1Y Bµ ⇥ igs
⌥a

2
Ga

µ
(3.33)

we put Aµ and Zµ in above equations; or we can directly use following

equation for doublets with proper value of Y;

Dµ = ⌃µ ⇥ ig1Y Bµ ⇥ ig2
⇥a

2
W a

µ

= ⌃µ ⇥ i

 
g1Y Bµ +

g2

2 W
3
µ

g2⇤
2
W+

µ

g2⇤
2
W�

µ
g1Y Bµ ⇥ g2

2 W
3
µ

!
(3.34)
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For lepton doublets Lj , we get

Dµ = ⌃µ ⇥ ie

 
K11 K12

K21 K22

!
, (3.35)

where,

K11 = (Y +
1

2
)Aµ ⇥ (

2Y tan2 ⌦w ⇥ 1

2 tan ⌦w
Zµ)

K11 =
1

2 sin ⌦w cos ⌦w
Zµ, (3.36)

K12 =
1⌅

2 sin ⌦w
W+

µ
, (3.37)

K21 =
1⌅

2 sin ⌦w
W�

µ
, (3.38)

K22 = (Y ⇥ 1

2
)Aµ ⇥ (

2Y tan2 ⌦w + 1

2 tan ⌦w
Zµ)

K22 = ⇥Aµ ⇥
⇥ sin2 ⌦w + 1

2

sin ⌦w cos ⌦w
Zµ. (3.39)

above , we put the value of Y = ⇥1
2 for LH leptons.

For RH lepton singlets eRj ,

Dµ = ⌃µ ⇥ i
e

cos ⌦w
Y (cos ⌦wAµ ⇥ sin ⌦wZµ)|Y=�1

= ⌃µ + ieAµ ⇥ ie tan ⌦wZµ (3.40)
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The couplings to neutral bosons be;

L
SM

I
⌃

X

j=1,2,3

Lji /DLj + eRj i /DeRj

⌃
X

j=1,2,3

↵
e

2 sin ⌦w cos ⌦w
 Lj⇧

µZµ Lj ⇥ eeLj⇧
µAµeLj

⇥eeRj⇧
µAµeRj +

e

sin ⌦w cos ⌦w
(⇥1

2
+ sin2 ⌦w)eLj⇧

µZµeLj

+
e

sin ⌦w cos ⌦w
sin2 ⌦weRj⇧

µZµeRj

�
(3.41)

We can conclude that photons couple similarly with LH and RH particles.

We can do the same calculation for quarks too, and we can come to the

following conclusion;

L
SM

I
⌃ e

sin ⌦w cos ⌦w
(T3 ⇥ sin2 ⌦wQf )f⇧

µZµf + eQff⇧
µAµf (3.42)

where f denotes fermions (leptons or quarks) with weak isospin T3 (T3 =
1
2

for LH fermions and T3 = 0 for RH fermions ) and Qf is electric charge in

unit of electron charge (e). Eq.(3.42) is valid for all three generations; the

CKM matrix (we will discuss later) does not occur in photon and Z boson

interactions. Due to the unitarity of the CKM matrix , for Vµ = Zµ, Gµ or

Aµ neutral currents does not change flavor on rotation from flavor state to

mass eigenstates:

X

j=1,2,3

dLj⇧µdLjV
µ �

X

j,k=1,2,3

dLj (V
†
CKM

VCKM)jk| {z }
=⌅jk

⇧µdLkV
µ (3.43)

The above result is called Tree-level GIM (Glashow, Iliopoulos, and Ma-

iani) mechanism, and it’s a significant result.

Due to the unitarity of the CKM matrix, there are no flavor-changing neu-

tral currents (FCNCs) at the tree level in SM. GIM mechanism gives the
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possibilities of FCNCs in loop level but not in tree-level within SM.

3.5 Charged Currents

As discussed in Sec.3.1 , the matrix Mu and Md are not necessarily be di-

agonalized by same matrix. Cabibbo gives the mismatch between the LH

up-type and down-type quark sector–Kobayashi–Maskawa(CKM) matrix.

For charged current interactions. [1];

L
CC =

g2⌅
2
uLj⇧µW

µ+dLj. (3.44)

After field rotation;

L
CC =

g2⌅
2
(uLVL⇧µW

µ+U †
L
dL), (3.45)

=
g2⌅
2
(uLVLU

†
L
⇧µW

µ+dL), (3.46)

=
g2⌅
2
(uLVCKM⇧µW

µ+dL) (3.47)

CKM matrix may also refer to as the quark mixing matrix because the

charged current interactions couple any up-type quark to a down-type

quark of any generation. The above section shows that the mixing does

not appear in neutral currents involving the Z boson. The neutral current

interactions do not change quark flavor. There are no flavor-changing inter-

actions in the SM in the lepton sector because we don’t have any rotation

matrices for leptons.

The CKM matrix is given as

VCKM = VL · U †
L
=

⇧

⌃⌥
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

�

 ⌦ . (3.48)
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Chapter 4

Lepton Flavour Universality

SM lagrangian states that leptons don’t interact with gluons, which implies

leptons don’t take part in strong interactions. Electromagnetic and weak

interaction also doesn’t have di⇤erent interactions for di⇤erent generations

(flavor) of leptons. In SM, di⇤erent leptons have the same interaction

strength except for the lepton-Higgs interaction, which gives leptons di⇤er-

ent masses. Lepton Flavour Universality (LFU) is an essential feature of

SM.

Couplings of the Z boson, W boson, and photons have been probed di-

rectly Large Electron-Positron Collider (LEP) experiments, via precision

measurements and the ratios of these partial widths, are in good agreement

with unity, which implies these interactions are flavor universal.( [21]- [25])

⌥Z⌅µ++µ⇥

⌥Z⌅e++e⇥
= 1.0009± 0.0028; (4.1)

⌥Z⌅µ++µ⇥

⌥Z⌅�++�⇥
= 1.0029± 0.0032; (4.2)

Measurements also exist (at LEP and LHC) comparing the W ± decays:

B(W� � e� e)

B(W� � µ� µ)
= 1.004± 0.008 (4.3)

LFU holds in the limit of mass-less leptons as mass enters the phase-space

factor. In reality, corrections due to non-zero lepton masses have to be
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applied. Usually, these corrections are minor for electrons and muons,

which are light but can be large for the heavy tau lepton. LFU can be tested

not only directly by studying couplings of leptons to the gauge bosons but

also in the decays of hadrons. For example, a charged pion decay, mediated

by a weak charged current, can be used to measure the following ratio:

⌥⇧⇥⌅e+⇥e

⌥⇧⇥⌅µ+⇥µ

= (1.230± 0.004)◊ 10�4 (4.4)

which is in a good agreement with the SM prediction of (1.2352±0.0001)◊

10�4.It should be noted that LFU does not imply the ratio to be equal to

unity in this particular case.

LFV may insist there is some part of SM we still didn’t discover, or the

standard model is not a complete theory; we look for BSM to resolve issues

with SM. Recent rare decay experimental results show deviation from SM

predictions maybe suggest physics beyond SM.
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Chapter 5

RK ⇥RK⇤ (b � s�+�⇥)

In SM, di⇤erent leptons have the same interaction strength except for the

lepton-Higgs interaction, which gives leptons di⇤erent masses. In the stan-

dard model, strong force doesn’t couple with lepton; therefore, B+ �
K+e+e� and B+ � K+µ+µ� decays identically, giving Rk nearly equal

to 1. Beyond SM predicts new virtual particles which can interact non

universally with leptons which can explain experimentally found branching

fraction of B+ � K+�+��. Based on data collected in LHCb, CERN, there

is lepton universality violation in beauty-quark decays.

RH =
Br(B � Hµ+µ�)

Br(B � He+e�)
(5.1)

For H = K+ ,ratio denotes Rk and for H = K⇥0 ratio called Rk�0

Measured Rk values

Rk(1.1 < q2 < 6.0 GeV 2/c4) = 0.846+0.042+0.013
�0.039�0.012 [3]

SM expectation is Rk = 1.00±0.01. [3]

The discrepancy of 3.1⇥ with SM, gives evidence of a violation of lepton

universality.
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Figure 5.1: Rk measurements. [3]
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Chapter 6

Standard Model Calculation

6.1 E⇥ective Hamiltonian

The basic starting point to do phenomenology of weak decays of hadrons

is the e⇤ective Hamiltonian which has the following generic structure [11],

Heff =
GF⌅
2

X

i

VCKMCi(µ)Oi(µ) (6.1)

Here GF is the Fermi coupling constant, VCKM are the Cabibo-Kobayashi

and Maskawa(CKM) matrix elements, Oi(µ) are the four-quark operators,

and Ci(µ) are the corresponding Wilson coe⇥cients at the energy scale µ.

Now the amplitude for the decay of meson M to a final state meson F can

be written as

A(M � F ) = ⌥F |Heff |M� (6.2)

=
GF⌅
2

X

i

V i

CKM
Ci(µ) ⌥F |Oi(µ)|M� (6.3)

Wilson coe⇥cients give the short distance e⇤ects, whereas the long-distance

e⇤ects involve the matrix elements of the operators in Eq.(6.2) between

initial and final state mesons. The explicit form of the operators, which

are sandwiched between the initial and final state meson, can be written

as
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Current Current Operators

O1 = (c̄⌃b⌥)V�A
(s̄⌥c⌃)V�A

(6.4)

O2 = (c̄b)V�A(s̄c)V�A (6.5)

QCD-Penguins

O3 = (s̄b)V�A

X

q=i,d,s,c,b

(q̄q)V�A (6.6)

O4 = (s̄⌃b⌥)V�A

X

q=i,d,s,c,b

(q̄⌥q⌃)V�A
(6.7)

O5 = (s̄b)V�A

X

q=i,d,s,c,b

(q̄q)V+A (6.8)

O6 = (s̄⌃b⌥)V�A

X

q=i,d,s,c,b

(q̄⌥q⌃)V+A
(6.9)

Electroweak penguins

O7 = 3
2(s̄)V�A

P
q=u,d,s,c,b

eq(q̄q)V+A (6.10)

Og = 3
2 (s̄⌃b⌥)V�A

P
q�u,d,s,c,b

(q̄⌥q⌃)V+A
(6.11)

O9 = 3
2(s̄b)V�A

P
q=u,d,s,cb

eq(q̄q)V�A (6.12)

O10 = 3
2 (s̄⌃b⌥)V�A

P
q�i,d,s,c,b

(q̄↵q⌃)V�A
(6.13)

Magnetic Penguins

O7⇤ = e

8⇧2mbs̄⌃⇥µ⇥ (1 + ⇧5) b⌃Fµ⇥ (6.14)

O3G = g

8⇧2mbs̄⌃⇥µ⇥ (1 + ⇧5)T a

⌃⌥b⌥G
a

µ⇥ (6.15)

Semileptonic Operators

O9 = (s̄b)V�A(�̄�)V (6.16)

O10 = (s̄b)V�A(�̄�)A (6.17)

OLQ = (s̄b)V�A( ̄ )V�A (6.18)

O�� = (s̄b)V�A(�̄)V�A (6.19)

The above set of operators characterizes the interplay of QCD and elec-

31



troweak e⇤ects. As already mentioned earlier, this thesis deals with rare

decays of B mesons into a final state hadron with lepton-antilepton pair,

so the operators responsible for these decays are electromagnetic penguin

operator O7⇤ given in Eq.(6.14) and the semileptonic operators given in

Eq.(6.16).

6.2 Calculation

Figure 6.1: Feynman Diagram

E⇤ective Lagrangian is

L = C7Rs⇥
µ⇥PRbFµ⇥ + C7Ls⇥

µ⇥PLbFµ⇥ (6.20)

+C⇥
7Rb⇥

µ⇥PLsFµ⇥ + C⇥
7Rb⇥

µ⇥PRsFµ⇥ + ie�⇧µ�Aµ ,

L1 = C7Rs⇥
µ⇥PRb (⌃µA⇥ ⇥ ⌃⇥Aµ) , (6.21)

L1 = C7Rs⇥
µ⇥PRb (⌃µg⇥⌃ ⇥ ⌃⇥gµ⌃)A

⌃ (6.22)

Using Feynman Convention , we can derive the vertex term for vertex � in

?? and other vertex is QED vertex therefore, we can write the Feynman

Amplitude as follow,

M = us1(p1)(⇥i⌥⌃)us(p)
⇥ig⌃⌥

(p⇥ p1)2
us3(p3)(⇥ie⇧⌥)vs2(p2) , (6.23)

where vertex term for vertex � is ,

(⇥i⌥⌃) = ⇥i
n
{C7R⇥

µ⇥PR + C7L⇥
µ⇥PL}{ikµg⇥⌃ ⇥ ik⇥gµ⌃}

o
.(6.24)
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then Feynman Amplitude be,

M = ieus1(p1)⌥⌃us(p)
g⌃⌥

(p⇥ p1)2
us3(p3)⇧⌥vs2(p2) , (6.25)

Reduction of ↵ index by g⌃⌥ gives

M = ie[us1(p1)⌥⌃us(p)]
1

(p⇥ p1)2
[us3(p3)⇧

⌃vs2(p2)] . (6.26)

Now we find the value of M⇥ (Introducing ↵, �, ✏ as indices so we can not

confuse it with indices of M)

M⇥ = ⇥ie[vs2(p2)⇧
⌥us3(p3)]

1

(p⇥ p1)2
[us1(p1)⌥⌥us(p)]

⇥ . (6.27)

It is easier to calculate complex conjugate of QED vertex; now we find

[us1(p1)⌥⌥us(p)]⇥

[us1(p1)⌥⌥us(p)]
⇥ = (us(p))

†(⌥⌥)
†(⇧0)†((u†

s1
(p1))

† ,

= (us(p))
†({C7R⇥

 ⌅PR + C7L⇥
 ⌅PL}{ik g⌅⌥ ⇥ ik⌅g ⌥})

†(⇧0)†((u†
s1
(p1))

† ,

= u†
s
(p)({C7R⇥

 ⌅PR + C7L⇥
 ⌅PL}{ik g⌅⌥ ⇥ ik⌅g ⌥})

†(⇧0)†us1(p1) ,

= u†
s
(p)({⇥ik g⌅⌥ + ik⌅g ⌥}{C

⇥
7RP

†
R
⇥ ⌅† + C⇥

7LP
†
L
⇥ ⌅†

})(⇧0)†us1(p1)

Projection operator and Sigma matrices

PR = (1 + ⇧5)/2 (6.28a)

PL = (1⇥ ⇧5)/2 (6.28b)

⇧5† = ⇧5 (6.28c)

P †
R

= PR (6.28d)

P †
L

= PL (6.28e)

(⇥µ⇥)† = ⇧0⇥µ⇥⇧0 (6.28f)

Using definition of Projection operator and Sigma matrices, we get

[us1(p1)⌥⌥us(p)]
⇥ = u†

s
(p)({⇥ik g⌅⌥ + ik⌅g ⌥}{C

⇥
7RPR⇧

0⇥ ⌅⇧0 + C⇥
7LPL⇧

0⇥ ⌅⇧0
})(⇧0)†us1(p1)

= us(p)({⇥ik g⌅⌥ + ik⌅g ⌥}{C
⇥
7RPL⇥

 ⌅ + C⇥
7LPR⇥

 ⌅
})us1(p1)
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We used following gamma matrices relation to solve above equation ;

⇧0† = ⇧0 , (6.29a)

(⇧0)2 = 1 , (6.29b)

{⇧5, ⇧µ
} = 0 . (6.29c)

Now,|M |2 is absolute square of the Feynman amplitude suitably summed

and averaged;

|M |2 =
1

2

X

spin

 M 2 =
1

2

X

spin

M⇥M , (6.30)

Using ⌥⌃,⌥
†
⌥ we can simplify,

1

2

X

spin

 M 2 =
e2

2(p⇥ p1)4
◊

X

s2,s3

[us3(p3)⇧
⌃vs2(p2)][vs2(p2)⇧

⌥us3(p3)]

◊

X

s1,s

h
us(p)⌥

†
⌥us1(p1)

i
[us1(p1)⌥⌃us(p)] , (6.31)

where,

⌥⌃ = {C7R⇥
µ⇥PR + C7L⇥

µ⇥PL}{ikµg⇥⌃ ⇥ ik⇥gµ⌃} (6.32a)

⌥†
⌥ = {⇥ik g⌅⌥ + ik⌅g ⌥}{C

⇥
7RPL⇥

 ⌅ + C⇥
7LPR⇥

 ⌅
} . (6.32b)

Doing spin sum ,

X

s2,s3

[us3(p3)⇧
⌃vs2(p2)][vs2(p2)⇧

⌥us3(p3)] =
X

s3

[us3(p3)⇧
⌃]
X

s2

[vs2(p2)vs2(p2)][⇧
⌥us3(p3)] ,
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Using Spin sum of Dirac Spinors ,

X

s2

[vs2(p2)vs2(p2)] = (/p2 ⇥ml+) . (6.33)

X

s2,s3

[us3(p3)⇧
⌃vs2(p2)][vs2(p2)⇧

⌥us3(p3)] =
X

s3

[us3(p3)⇧
⌃](/p2 ⇥ml+)[⇧

⌥us3(p3)]

⇧⌃(/p2 ⇥ml+)⇧
⌥ = Q . (6.34)

X

s2,s3

[us3(p3)⇧
⌃vs2(p2)][vs2(p2)⇧

⌥us3(p3)] =
X

s3

[us3(p3)]iQij[us3(p3)]j ,

= Qij

X

s3

[us3(p3)us3(p3)]ji ,

X

s3

[us3(p3)us3(p3)] = (/p3 +ml⇥) . (6.35)

X

s2,s3

[us3(p3)⇧
⌃vs2(p2)][vs2(p2)⇧

⌥us3(p3)] = Qij(/p3 +ml⇥)ji ,

= Tr[Q(/p3 +ml⇥)] ,

= Tr[⇧⌃(/p2 ⇥ml+)⇧
⌥(/p3 +ml⇥)] .(6.36)

After doing the above calculation now problem finding spin sum change to

calculation of trace,

X

s2,s3

[us3(p3)⇧
⌃vs2(p2)][vs2(p2)⇧

⌥us3(p3)] = Tr[⇧⌃(/p2 ⇥ml+)⇧
⌥(/p3 +ml⇥)] .(6.37)

Similarly as above we can solve and find the following equation,

X

s1,s

h
us(p)⌥

†
⌥us1(p1)

i
[us1(p1)⌥⌃us(p)] = Tr[⌥†

⌥(/p1 +ms)⌥⌃(/p+mb)] .(6.38)

Now solving eq.6.37,

Tr[⇧⌃(/p2 ⇥ml+)⇧
⌥(/p3 +ml⇥)] = Tr[⇧⌃(⇧µp2µ ⇥ml+)⇧

⌥(⇧⇥p3⇥ +ml⇥)] , ,(6.39a)

= Tr[⇧⌃⇧µp2µ⇧
⌥⇧⇥p3⇥ ⇥ ⇧⌃⇧⌥(ml+)(ml⇥)] ,(6.39b)

= p2µp3⇥Tr[⇧
⌃⇧µ⇧⌥⇧⇥ ]⇥ Tr[⇧⌃⇧⌥](ml)

2 . (6.39c)

Used above trace of odd gamma matrices is zero.
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Using Trace of gamma matrices as following,

Tr[⇧⌃⇧µ⇧⌥⇧⇥ ] = 4(g⌃µg⌥⇥ ⇥ g⌃⌥gµ⇥ + g⌃⇥gµ⌥) , (6.40a)

Tr[⇧⌃⇧⌥] = 4g⌃⌥ . (6.40b)

eq.6.39c becomes,

Tr[⇧⌃(/p2 ⇥ml+)⇧
⌥(/p3 +ml⇥)] = 4p2µp3⇥(g

⌃µg⌥⇥ ⇥ g⌃⌥gµ⇥ + g⌃⇥gµ⌥)⇥ 4g⌃⌥(ml)
2

= 4(p⌃2p
⌥
3 + p⌃3p

⌥
2 ⇥ g⌃⌥[p2.p3 +m2

l
])

We can find trace of gamma matrices using FeynCalc in Mathematica (A.1).

To solve Tr of eq.6.38 , first we simplify the ⌥⌃ and ⌥†
⌥

⌥⌃ =
n
{C7R⇥

µ⇥PR + C7L⇥
µ⇥PL}{ikµg⇥⌃ ⇥ ik⇥gµ⌃}

o
, (6.41)

Using definition of ⇥µ⇥ ,

⇥µ⇥ =
i

2
{⇧µ⇧⇥ ⇥ ⇧⇥⇧µ

} . (6.42)

⌥⌃ becomes,

⌥⌃ =
⇥1

2

n
{C7R{⇧

µ⇧⇥ ⇥ ⇧⇥⇧µ
}PR + C7L{⇧

µ⇧⇥ ⇥ ⇧⇥⇧µ
}PL}{kµg⇥⌃ ⇥ k⇥gµ⌃}

o
, ,

=
⇥1

2

n
[C7R(⇧

µ⇧⇥kµg⇥⌃ ⇥ ⇧⇥⇧µkµg⇥⌃)PR ⇥ C7R(⇧
µ⇧⇥k⇥gµ⌃ ⇥ ⇧⇥⇧µk⇥gµ⌃)PR]

+[C7L(⇧
µ⇧⇥kµg⇥⌃ ⇥ ⇧⇥⇧µkµg⇥⌃)PL ⇥ C7L(⇧

µ⇧⇥k⇥gµ⌃ ⇥ ⇧⇥⇧µk⇥gµ⌃)PL]
o
,

=
⇥1

2

n
C7R(/k⇧⌃ ⇥ ⇧⌃/k)PR ⇥ C7R(⇧⌃/k ⇥ /k⇧⌃)PR + C7L(/k⇧⌃ ⇥ ⇧⌃/k)PL

⇥C7R(⇧⌃/k ⇥ /k⇧⌃)PL

o
,

=
⇥1

2

n
2C7R(/k⇧⌃ ⇥ ⇧⌃/k)PR + 2C7L(/k⇧⌃ ⇥ ⇧⌃/k)PL

o
,

⌥⌃ = (C7RPR + C7LPL)[⇧⌃/k ⇥ /k⇧⌃] ,
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Using eq.6.28a,6.28b;

⌥⌃ =
nhC7R + C7L

2

i
+
hC7R ⇥ C7L

2

i
⇧5
o
(⇧⌃/k ⇥ /k⇧⌃) ,

⌥⌃ = (A+ B⇧5)(⇧⌃/k ⇥ /k⇧⌃) .

where,A =
hC7R + C7L

2

i
,

B =
hC7R ⇥ C7L

2

i
.

Similarly,

⌥†
⌥ = ({⇥ik g⌅⌥ + ik⌅g ⌥}{C

⇥
7RPL⇥

 ⌅ + C⇥
7LPR⇥

 ⌅
}) ,

=
⇥1

2
({⇥k g⌅⌥ + k⌅g ⌥})

�
C⇥

7RPL{⇧
 ⇧⌅ ⇥ ⇧⌅⇧ }+ C⇥

7LPR{⇧
 ⇧⌅ ⇥ ⇧⌅⇧ }

�
, .

=
⇥1

2

�
k⌅g ⌥ C

⇥
7R PL{⇧

 ⇧⌅ ⇥ ⇧⌅⇧ }⇥ k g⌅⌥ C
⇥
7R PL{⇧

 ⇧⌅ ⇥ ⇧⌅⇧ }

+k⌅g ⌥ C
⇥
7L PR{⇧

 ⇧⌅ ⇥ ⇧⌅⇧ }⇥ k g⌅⌥ C
⇥
7L PR{⇧

 ⇧⌅ ⇥ ⇧⌅⇧ }
�
,

=
⇥1

2
[C⇥

7RPL(⇧⌥/k ⇥ /k⇧⌥)⇥ C⇥
7RPL(/k⇧⌥ ⇥ ⇧⌥/k) + C⇥

7LPR(⇧⌥/k ⇥ /k⇧⌥)

⇥C⇥
7LPR(/k⇧⌥ ⇥ ⇧⌥/k)] ,

=
⇥1

2

n
2C⇥

7RPL(⇧⌥/k ⇥ /k⇧⌥) + 2C⇥
7LPR(⇧⌥/k ⇥ /k⇧⌥)

o
,

= (C⇥
7RPL + C⇥

7LPR)(/k⇧⌥ ⇥ ⇧⌥/k) ,

⌥†
⌥ =

n ↵C⇥
7R + C⇥

7L

2

�
+

↵
C⇥

7L ⇥ C⇥
7R

2

�
⇧5
o
(/k⇧⌥ ⇥ ⇧⌥/k)

⌥†
⌥ = (M +N⇧5)(/k⇧⌥ ⇥ ⇧⌥/k) (6.43)

where,

M =
hC⇥

7R + C⇥
7L

2

i
, (6.44)

N =
hC⇥

7L ⇥ C⇥
7R

2

i
. (6.45)
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Tr of eq.6.38 becomes,

Tr[⌥†
⌥(/p1 +ms)⌥⌃(/p+mb)] = Tr[(M +N⇧5)(/k⇧⌥ ⇥ ⇧⌥/k)(/p1 +ms)

◊(A+ B⇧5)(⇧⌃/k ⇥ /k⇧⌃)(/p+mb)] .(6.46)

Tr of eq.6.46 from FeynCalc (A.2),

Detour:- Muon Decay

Using Decay calculation of Muon Decay , we need to solve

|M |2 =
G2

F

4

n
Tr[( /k2 +me)⇧

⌃(1⇥ ⇧5) /q1⇧
⌥(1⇥ ⇧5)]

◊Tr[ /q2⇧⌃(1⇥ ⇧5)( /k1 +mµ)⇧⌥(1⇥ ⇧5)]
o

(6.47)

Comparing from Sec.(7.2.2) of A First Book of Quantum Field Theory by

Amitabha Lahiri, Palash B. Pal [2] where ,

k1 = p, k2 = p⇧, q1 = k⇧, q2 = k. (6.48)
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Using FeynCalc we find the solution of eq.6.47,

We get

|M |2 = 64G2
F
(k1.q1)(k2.q2) (6.49)

Above result is same as eq.(7.49) of A First Book of Quantum Field Theory

2nd Edition by Amitabha Lahiri, Palash B. Pal [2] .

Now coming back to our problem,

1

2

X

spin

 M 2 =
e2

2(p⇥ p1)4
◊ Tr[(M +N⇧5)(/k⇧⌥ ⇥ ⇧⌥/k)(/p1 +ms)

◊(A+ B⇧5)(⇧⌃/k ⇥ /k⇧⌃)(/p+mb)]

◊Tr[⇧⌃(/p2 ⇥ml+)⇧
⌥(/p3 +ml⇥)] (6.50)

Mass of particle and antiparticle is same ( ml+ = ml⇥ = ml ).

We can directly solve the following eq.(6.51) in FeynCalc (A.4),

Tr[(M +N⇧5)(/k⇧⌥ ⇥ ⇧⌥/k)(/p1 +ms)(A+ B⇧5)(⇧⌃/k ⇥ /k⇧⌃)(/p+mb)]

◊Tr[⇧⌃(/p2 ⇥m�+)⇧
⌥(/p3 +m�⇥)] .(6.51)

We get,
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Now to calculate decay width , we put value of |M |2 in decay width

formula

⌥ =
1

2Ei

Z Y

f

d3pf
(2⇣)32Ef

(2⇣)4✏4
 
pi ⇥

X

f

pf

!
|M |2

⌥ =
1

2Eb

Z
d3p1

(2⇣)32E1

Z
d3p2

(2⇣)32E2

Z
d3p3

(2⇣)32E3
(2⇣)4✏4 (p⇥ (p1 + p2 + p3)) |M |2 .

After doing the phase space integral, we should get

⌥(b � s�+��) ⌦ |C7R|
2 + |C7L|

2 (6.52)

which is same as seen in literature ,

⌥(b � s�+��) ⌦ |C7|
2 (6.53)

Phase space [16] integration could not be done so far. I am still working

on phase integration and further calculations. So right now, I assume the

ratio Rk is one as stated in the literature; on completing the math, I can

clearly say that this is true.
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Chapter 7

Understanding the data

The statistical analysis of data is important part of research. In here we

discuss the data from [4] to get the value of Rk and Rk� . We extract the

data using https://automeris.io/WebPlotDigitizer of fractions of can-

didate to the value of q2. Below are the plots from which data is extracted.

7.1 �⇤2
analysis in Mathematica

RK =
Br(B � Kµ+µ�)

Br(B � Ke+e�)
(7.1)

Taking RK as z and B � Kµ+µ� , B � Ke+e� as x,y respectively.

z = f(x, y) =
x

y
(7.2)

Propagation of Error be

⇥2
z

=

✏
⌃f

⌃x

⇣2

⇥2
x
+

✏
⌃f

⌃y

⇣2

⇥2
y

(7.3)

fx =
⌃f

⌃x
=

1

y
(7.4)

fy =
⌃f

⌃y
= ⇥ x

y2
(7.5)

We here discuss ⌅⇤2 graphs of data and then compare our results with the

research paper [4].
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First we define ⇤2 function;

⇤2(R) =
|R⇥R1|2

⇥2
1

+
|R⇥R2|2

⇥2
2

+
|R⇥R3|2

⇥2
3

+
|R⇥R4|2

⇥2
4

+
|R⇥R5|2

⇥2
5

+
|R⇥R6|2

⇥2
6

+
|R⇥R7|2

⇥2
7

+
|R⇥R8|2

⇥2
8

+
|R⇥R9|2

⇥2
9

+
|R⇥R10|2

⇥2
10

(7.6)

here, R1,R2.... represents the values RK we get from data, ⇥ represents

the uncertainty in values of RK .

⌅⇤2(R) = ⇤2(R)⇥ ⇤2
min

(R) (7.7)

.
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We perform all the calculations and plot the data with the help of mathe-

matica.

7.1.1 For low-q2 value
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.

Table for RK and ⇥R

Values of RK
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Values of ⇥R

⇤2 function
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⌅⇤2 graph
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Extracting values of 1⇥ and 2⇥ region using https://automeris.io/
WebPlotDigitizer

1⇥ points (R = 0.6713483146067415,⌅⇤2 = 0.9874326750448787)

and (R = 0.8792134831460675,⌅⇤2 = 0.9874326750448787)

2⇥ points (R = 0.5674157303370786,⌅⇤2 = 4.075403949730699)

and (R = 0.9803370786516853,⌅⇤2 = 4.003590664272885)
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7.1.2 For central-q2 value
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Table for RK and ⇥R

Values of RK

.

.
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Values of ⇥R

⇤2 function

.
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⌅⇤2 graph
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Extracting values of 1⇥ and 2⇥ region using https://automeris.io/
WebPlotDigitizer

1⇥ points (R = 0.638176638176638,⌅⇤2 = 1.0579345088161176)

and (R = 0.8148148148148148,⌅⇤2 = 1.0579345088161176)

2⇥ points (R = 0.5498575498575498,⌅⇤2 = 4.080604534005033)

and (R = 0.9031339031339031,⌅⇤2 = 4.080604534005033) .
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RK� value for low-q2 value found to be 0.77+0.10
�0.10 from ⌅⇤2(R) data anal-

ysis which is in region of 1⇥ of stated value 0.66+0.11
�0.07 ± 0.03 [4] in research

paper.

Similarly for RK� value for central-q2 value found to be 0.72+0.09
�0.08 which is

nearly same to the stated value 0.69+0.11
�0.07 ± 0.05 [4].

The given data from [4]

low- q2 central- q2

RK�0 0.66+0.11
�0.07 ± 0.03 0.69+0.11

�0.07 ± 0.05

95.4%CL [0.52, 0.89] [0.53, 0.94]

99.7%CL [0.45, 1.04] [0.46, 1.10]

.

.

Calculated data from ⌅⇤2(R) graphs (7.1.1,7.1.2)

low- q2 central- q2

RK�0 0.77+0.10
�0.10 0.72+0.09

�0.08

95.4%CL [0.67, 0.87] [0.63, 0.81]

99.7%CL [0.56, 0.98] [0.55, 0.90]
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Chapter 8

Conclusion and Future Plan

Recent experimental results encourage us to look more closely at rare decay.

Significance deviation of 3.1⇥ with SM of current data leads us to look for

BSM interactions to explain this discrepancy. In this thesis, we look closely

at the Standard Model, its flavor structure, and the RK experiment, which

help us to get to the result that SM may not give us the complete picture

of nature. We will try to complete the missing calculations and look for a

new kind of interaction that can describe the Lepton Flavour Violation.
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Appendix A

FeynCalc in Mathematica

A.1 Trace of gamma matrices

[13]
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A.2 Trace of eq.6.46
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A.3 Muon Decay

We can also directly find traces of matrices and contract them in FeynCalc

, here shown the trace contraction of muon decay,

57



A.4 M 2
of b � s�+�⇥
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After above simplification we change back to previous convection,

A =
(C7R + C7L)

2
(A.1a)

B =
(C7R ⇥ C7L)

2
(A.1b)

M =
(C⇥

7R + C⇥
7L)

2
(A.1c)

N =
(C⇥

7L ⇥ C⇥
7R)

2
(A.1d)

Now,

AM ⇥ BN =
(|C7R|

2 + |C7L|
2)

2
, (A.2a)

BN ⇥ AM =
⇥(|C7R|

2 + |C7L|
2)

2
, (A.2b)

AM + BN =
(C7RC⇥

7L + C7LC⇥
7R)

2
(A.2c)

AM =
(|C7R|

2 + |C7L|
2 + C7RC⇥

7L + C7LC⇥
7R)

4
(A.2d)

BN =
(⇥ |C7R|

2 ⇥ |C7L|
2 + C7RC⇥

7L + C7LC⇥
7R)

4
(A.2e)

New notations used for,

|C7R|
2 = C7R (A.3a)

|C7L|
2 = C7L (A.3b)

C7RC
⇥
7L = C7RL (A.3c)

C7LC
⇥
7R = C7LR (A.3d)

59



In all the calculation we didn’t put the value of k , from vertex � we

can see k = (p⇥ p1) Here we substituting value of k ,
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