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Abstract
Quantum computing is based on quantummechanics and its phenomena. It promises
to provide high computational power, high speed compare to classical computers
and solve unsolvable problems of classical computers. Starting with the basics
of quantum computing and its advantages, application of quantum computing in
physics is the focus of this thesis. As application of computers, Machine learning
systems are increasingly reaching the boundaries of classical computational models
as the amount of data continues to grow. In this way, quantum computing power
can help with machine learning problems. Quantum machine learning is the study
of how to design and deploy quantum software to enable machine learning that is
faster than that of classical computers. Many body problem can be better under-
stood by simulating on computers. Classical computers are not that e�cient for
this task. Quantum simulators would allow researchers to investigate new physical
phenomena by tackling this issues. This thesis describes our work of using quan-
tum computing for experimental high energy physics data analysis and simulation
of atomic nuclei.
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Chapter 1

Introduction

The classical computer works on the laws of classical physics and mathematical

logic and the advancement of classical computer is connected with miniaturization

of integrated circuit. For more processing power, the number density of transis-

tors in integrated circuit increases. As stated in Moore’s law, the number density

of transistors on an integrated circuit doubles in every 18 months or two years.

Increasing number density will take the size too small and spacing between two

component will go to atomic dimension where classical physics will not operate.

Also because of this spacing between components keep on decreasing, there will be

a heating problem and it may a↵ect and damage the nearby components. Then

Richard Feynman published an article entitled “Simulating Physics with Comput-

ers” [1], where he asked if quantum physics can be simulated on computer, and

proposed a idea of using quantum computers to simulate quantum system. The

principles of quantum physics inspired the concept of quantum computers.

Obtaining a factor of a large number on classical computers is computationally

expensive. In 1994, Peter Shor developed a quantum mechanics-based factoring

algorithm for quickly determining the prime factor of a large number. To speed up

the process, the principle of quantum mechanics is used and it has started the era

of quantum computers.

Information in classical computers is stored in bits. A classical bit can be in

any two of the states, either in 0 or in 1, at a given time. However the quantum bit

can be in 0 or 1 or both simultaneously. For 2 bits registers in classical computers,

there are four combinations of states 00,01,10 and 11 in which a two bit register

can be, whereas in quantum computers, a two bits register can be in any of these
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four states and simultaneously in linear combination of these four states. So, the

advantage of having more bits will speed up the process.

Classical computers work in a serial fashion. It completes a task and then

moves on to the next one. If there is a problem with set of independent logics

that need to be executed simultaneously. The mechanism called parallel computing

is used to solve such types of problems, where n-bits are used to do n number

of jobs simultaneously. However quantum computers allows us to use multiple

bit in inherent parallelism. The reason to use quantum computing rather than

parallel computing is that while using n-qubits in quantum computers, the linear

combination gives us a quantum advantage to speeds up the process. This linear

combination can use all the possible states in quantum registers.

Classical computers use logic gates as operation. These operations are irre-

versible processes and according to Landauer principle, operations transform energy

into heat. But in quantum computers, the gate we use as operations are reversible,

so the energy loss in the quantum process is negligible as compared to classical.

The major problem in quantum computers is that in qubit measurement the result

will be probabilistic in nature because a state in quantum mechanics is a linear

combination of certain states. So during the measurement, it can measure any of

the state out of them. To overcome this problem, measurements were done multiple

times and statistics has been used.

Building a hardware of quantum computers is also a challenging task. Due to

the heat and light, the stored information can be destroyed as well as quantum bit

can lost their quantum properties. Longer coherence time and number of quan-

tum bit are also challenging. Quantum errors like quantum bit flipping and extra

added phase are also a challenging part. The error part has to be reduced and head

towards the fault tolerant quantum computer. Till now 127-qubit quantum com-

puter [2] has been made and there is a road-map to achieve the 1000-qubit in next

10 years with less error or noise. IBM had developed first quantum computer using

superconductivity. IBM has provided a platform named IBM Quantum Experience

where one can work with quantum simulator and quantum real hardware. In this

thesis work, IBM Quantum Experience has been used to execute our code.

In high energy physics there is a large amount of data for particle identification.

Classical computers are used to analyse this data using machine learning techniques.

However classical computers do it e�ciently, but Quantum computers can be used

for this analysis. Quantum computers and machine learning can tackle the large
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data in high energy physics and intersection of machine learning and quantum com-

puting is known as quantum machine learning. In this thesis we try to implement

quantum machine learning on high energy physics data to improve the results.

Many body problem in physics has many interactions and complex structures.

Simulation of many body on classical computers is di�cult task but Quantum com-

puters may provide a way to simulate it. Simulating a system using quantum

computers will provide more computational power than classical simulation. Quan-

tum simulation is a type of simulation that uses quantum computing. In this thesis

we try to simulate deuteron as two body system and it will lead to simulate few

body and then many body system on quantum computers.

This thesis is organised as follows: first we introduce the basics of quantum

computing and the methodology to create a quantum circuit and it’s measurement.

In next chapter, we discuss about quantum machine learning and its implementation

on experimental high energy physics data. Then in next chapter, we introduce

a quantum simulation and discuss how it can be useful for many body physics

problems. Finally, we discuss the results of quantum computations preformed on

IBM Quantum.
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Chapter 2

Basics of Quantum Computing

Every computation requires three basic elements: data, operation, and results. Data

is stored in binary digits (0 and 1) in classical computers. In classical computers,

the operation is followed by the well known logic gates, and the results are stored

in binary digits. These binary numbers can be translated to a language that can

be displayed on a computer screen. In the case of quantum computer, the input

data for quantum computing is in the form of qubits. Quantum gates are used

for operations, and results are in the form of measurements. In this chapter, we’ll

talk about these aspects of quantum computing and quantum mechanical properties

such as : superposition, entanglement and interference, which are used for quantum

advantages.

2.1 Qubit

As we have discussed, that classical computers work on classical bits. These bits

store information based on voltage (high or low voltage) or charge (plus and minus)

or spin (up and down), but in quantum computers we use quantum bits (qubit).

These quantum bits stores information based on direction of electron spin. In

classical, the bits can be in any state either 0 or 1, whereas in quantum the qubit

can be in state of |0i or |1i or a linear combination these state | i = ↵|0i + �|1i

with the condition that ↵ and � are such that |↵|2 + |�|
2 = 1. This representation

of qubit is in Dirac notation form and we can write a vector in a matrix form. So
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the state |0i and |1i can be written as

|0i =

"
1

0

#
and |1i =

"
0

1

#

| i can be written as

| i = ↵

"
1

0

#
+ �

"
0

1

#
=

"
↵

�

#
.

The linear combination of state |0i and |1i is called the superposition state, where

a qubit can be in both of the state simultaneously.

There are di↵erent ways to represent a qubit, one of them is Bloch sphere. A

Bloch sphere is a unit radius sphere and a qubit lies on the surface of this sphere.

North pole of this sphere is represented as |0i and south pole is represented as |1i.

A superposition state can be represented in between of these poles. In Bloch sphere,

poles are in the z direction and diameter of sphere is in xy-plane. A state | i can

be represented on Bloch sphere as

| i = cos
✓

2
|0i+ e

◆�sin
✓

2
|1i

Here angle ✓ is along with the z-axis (polar angle) and � is angle from x-axis formed

when state is projected onto xy-plane (azimuthal angle).

Figure 2.1: Bloch Sphere representation

Two qubits register in quantum computers can be in |00i, |01i, |10i and |11i

states and in linear combination of these four states. We can write first four possible
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states in the matrix form as

|00i =

2

66664

1

0

0

0

3

77775
, |01i =

2

66664

0

1

0

0

3

77775
, |10i =

2

66664

0

0

1

0

3

77775
, |11i =

2

66664

0

0

0

1

3

77775

and the linear combination of these four state can be written as in generalised way

to represent two qubits as

| i = ↵|00i+ �|01i+ �|10i+ �|11i

The condition for these four complex coe�cients is given as |↵|
2 + |�|

2 + |�|
2 +

|�|
2 = 1. All of these states come from the basis states |0i and |1i, and higher

number of qubits can be represented in terms of cross product (kronecker product)

of these basis states |0i and |1i and their superposition state. Two qubits system

has entanglement property that will discussed in next section as it requires the

knowledge of quantum gates as well. A more generalized way to represent a n-qubit

system is

| i = ↵0|0i+ ↵1|1i+ ↵2|2i+ ...+ ↵2n�1|2
n
� 1i.

Here
P

i
|↵i|

2 = 1 and state we have written in decimals instead of binary. When we

use this form of qubit, we need to use binary numbers inside bra-ket notation. For

n bits, classical computers can have only one value out of 2n possible permutations,

while for n qubits, quantum computers can have all 2n possible permutations.
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2.2 Quantum Gates

The processing of these information in classical computers is carried out by logic

gates. As classical computers use binary codes (bits), so the operations are defined

by Boolean algebra. We are familiar with these logic gate operations. Whereas in

quantum computers information processing is carried out by quantum logic gates.

In quantum computers, quantum bits are used so operations are defined by linear

algebra and can be represented by unitary matrices with complex elements [3].

For an operation in quantum computing, we use unitary transformation. Classical

computers have AND, OR, NOT gate, whereas in quantum computers we have X,

Z, H and other rotation gates which are unitary matrices. Quantum gates are qubit

dependent like single qubit gate and two qubits gate. We can create multi-qubit

quantum gates using single qubit gates. First let us talk about single qubit gate, it

is 2⇥2 matrix. We have pauli operators (�x, �y, �z) as gates in quantum computing

and their matrix representation is given as,

X =

"
0 1

1 0

#
Y =

"
0 �◆

◆ 0

#
Z =

"
1 0

0 �1

#

It can also be written as Dirac notation form

X = |0ih1|+ |1ih0|

Y = �◆|0ih1|+ ◆|1ih0|

Z = |0ih0|� |1ih1|

These gates are nothing but a representation of rotation around the Bloch sphere,

X gate is rotation on Bloch sphere around x-axis by angle ⇡ and similarly Y and

Z gates are also rotation around y- and z-axes respectively by an angle ⇡. If we

talk about there operations on qubit, we can see from matrix multiplication that

X|0i = |1i and X|1i = |0i. These quantum gates basically flip our qubits and

it is obvious as the qubits (0 and 1) are separated by an angle ⇡ and rotation of

these gates are also by an angle ⇡. This X gate is like NOT gate for quantum

computing when working on z basis. Y and Z gate add extra phase on these basis

states of qubit. This phase is global phase and we can not measure it. Now we talk

about the most important, Hadamard gate. It is represented by H and creates a
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superposition of qubit in single qubit system. H gate is rotation around y-axis by

angle ⇡/2 followed by rotation around x-axis by an angle ⇡. Matrix representation

and Dirac notation form of H gate is

H =
1
p
2

"
1 1

1 �1

#

H =
1
p
2
|0ih0|+

1
p
2
|0ih1|+

1
p
2
|1ih0|�

1
p
2
|1ih1|

If H gate is applied on basis state then

H|0i =
|0i+ |1i

p
2

= |+i

H|1i =
|0i � |1i

p
2

= |�i

|+i and |�i are x basis states and these are eigenstates of pauli matrix. If H gate

is applied on z basis state then we get H|+i = |0i and H|�i = |1i, so this H gate

changes the basis like from x basis to z basis and vice-versa. |+i is superposition

state of |0i and |1i, and if H is applied then it will collapse into |0i state as con-

structive interference whereas probability of measuring |1i is zero now, it is known

as destructive interference. Interference allow us to bias measurement of qubit to-

wards desired state. There are rotational gates also in quantum computing which

describe the rotation around the axis by an angle ✓, named as Rx, Ry and Rz. For

fix rotation around z-axis we have S and T gate for rotation by ⇡/2 and ⇡/4 re-

spectively. There is a generalized way to write a quantum gate in terms of unitary

matrix with three parameters.

U(✓,�,�) =

"
cos(✓/2) �e

◆�sin(✓/2)

e
◆�sin(✓/2) e

◆(�+�)cos(✓/2)

#

Here ✓,� and � are angles. By adjustment of these parameters we can create any

quantum gate, for example U(⇡/2, 0, ⇡) = H. For 2 qubit, the famous Controlled-

NOT (CNOT) gate which uses two qubits (one is control qubit and another is target
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qubit) has matrix form as

CNOT =

2

66664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

77775

As if we control 0 state then it will not a↵ect target qubit but if we control 1 state

then it will apply X gate on target qubit and control qubit does not change for it.

This can be shown as,

CNOT|00i = |00i and CNOT|01i = |01i

CNOT|10i = |11i and CNOT|11i = |10i

Other control rotation gates are also there in two qubit system. For n-qubit, quan-

tum gate is 2n⇥2n matrix. Now we can talk about entanglement. Entanglement of

qubit happens when two qubits are entangled in such a way that one can not write

it as combination of two separate qubit state and measurement of one qubit will

collapse the other one in same state. Entangled qubit has to be measured together,

it destroys the information while measured independently. Entangled state can be

created by applying hadamard gate on first qubit followed by CNOT gate on second

qubit (control on first qubit). A sample quantum entanglement circuit of two qubits

is shown in figure 2.2. We have initialized both quantum bits register at |0i state.

|00i
H
�!

(|0i+ |1i)|0i
p
2

=
|00i+ |10i

p
2

CNOT
���!

|00i+ |11i
p
2

This is one of the bell state out of four and state after CNOT in this quantum

circuit (figure 2.2) is bell state that has derived above.

Figure 2.2: Quantum Entanglement circuit
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2.3 Measurement

The concept of measurement is one of the factors that distinguishes quantum com-

puting from classical computing. Measurement is an operator in quantummechanics

and when we take such measurements of system, then the system will collapse to

one of its eigenstate. After measurement the quantum state will drop down to the

definite single value. Measurement is an irreversible process because it to assigns

measured quantum state into a single value. Since, measurement is probabilistic in

nature so, if the numerical value is a then it should be 1 � |a|
2
� 0. Measurement

of 0 and 1 in matrix form can be written as

M0 =

"
1 0

0 0

#
M1 =

"
0 0

0 1

#

. When we take a measurement of state | i in |0i state then it can be written as

h |M0| i and measurement of state | i in state |1i written as h |M1| i. measure-

ment of single qubit | i = ↵|0i+ �|1i in |0i state is

h |M0| i =
h
↵
⇤
�
⇤
i "1 0

0 0

#"
↵

�

#

This will give numerical value |↵|2 or probability of measuring | i in state |0i. Simi-

larly for measurement of | i in state |1i have probability of |�|2. From completeness

property h | i = 1, so |↵|
2 + |�|

2 = 1 indicates that the sum of all probability is

1. Measurement is basis dependent and we measure in z basis as we are working

on z basis. Measurement of one register of entangled state is not possible because

a entangled state can not be described as a tensor product of two qubit. If we take

the measurement of one register of entangled state then it will a↵ect the state of

other register. When the measurement of all register that was entangled is taken,

then by the a↵ect of entanglement the other register collapse one register’s state.

Bell state will measured as if we measure one of the qubit to be |1i, then the other

qubit must also be |1i because combined state is |11i.
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Chapter 3

Quantum Machine Learning

Machine learning (ML) involves computer to learn without being explicitly pro-

grammed. ML is an ability of computer to learn. We have to feed sample data,

the ML algorithm will learn the pattern from this data and predict the output. In

experimental high energy physics, we have a large amount of data, here ML comes

into picture. ML can be used for particle identification and regression. Classical

machine learning is giving satisfactorily results in high energy physics data and is

e�cient to handle the data as of now. We are trying to use Quantum Machine

Learning (QML) in high energy physics to check if it is better in comparison to

classical ML or not. Most of the time we use Quantum Machine Learning as anal-

ysis of classical data on quantum computers. We use hybrid method that involve

both classical and quantum computers. For quantum information processing, we

have to encode a given classical dataset into a quantum state. This can be done by

Feature Map. A feature map can transform data into a space where it is easier to

process [4]. In general it transforms data into Hilbert space. The workflow of QML

is shown in figure 3.1. In classical machine learning we have input features whereas

in quantum machine learning features are encoded into quantum state and each

feature is equal to a qubit. Then we can use quantum algorithms on encoded data

and after the operations we have a final state. Results of quantum computation are

read out by measuring.

To use these quantum machine learning algorithms, we are using a Compressed

Baryonic Matter (CBM) experiment dataset which is about the muon identification

from hadrons. We have to find rare signal events from the background with machine

learning process. If the particle is muon then it is a signal event or if it is other
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particle than muon then it will be a background event.

Figure 3.1: Quantum Machine Learning Workflow [4]

3.1 Classical Machine Learning

Before going into quantum machine learning let us first briefly introduce with clas-

sical machine learning. The Machine learning algorithms create a mathematical

model with the use of sample historical data, known as training data, that helps in

making predictions without being explicitly programmed. Machine learning com-

bines computer science and statistics to create models. Algorithms that learn from

past data are used in machine learning. We feed training data into a machine learn-

ing model as input, and the algorithm learns the pattern and characteristics from

this data. Following this training, we will feed our model with new data, which we

will refer to as testing data. Our model will predict the label of this new data based

on previous data learning. The more information or training data we supply, the

better our model performance will be. The model we’ve picked has an impact on

this prediction. There are two types of machine learning models: supervised and

unsupervised. In supervised learning, sample labeled data is provided to the model,

and the algorithm operates with the supervision of this data, whereas in unsuper-

vised learning, the data is not labeled or categorized, and the algorithm operates

without supervision. There are two types of algorithms in supervised learning: clas-

sification and regression. Classification predicts the desecrate class labels as true

and false whereas regression predicts continuous quantity or value such as price and

18



age. In our experimental dataset, We need to identify whether the particle is a

muon or not, so this dataset is binary classification data, and we apply a binary

classification machine learning algorithm to this data. Support Vector Machine

(SVM) has provided us the excellent results in classification tasks in HEP in recent

years [5]. For classification, we will use SVM in our work

The goal of SVM is to find the optimal separation hyperplane to separate two

distinct classes. SVM selects the hyperplane with the help of extreme points and

these points or vectors, support the hyperplane. That is why we call them as sup-

port vectors and algorithm is named after them as the Support Vector Machine.

The margin of separation between two classes is determined by support vectors and

maximized by the algorithm. The dimension of hyperplane depends on the number

of features, if there are 3 features then there will be a 2-dimensional plane. A sep-

arating hyperplane in linear separation problem can be described in mathematical

form as wT
.x + b = 0. Training data points are either above or below this plane

and w and b can be chosen for a support vectors as wT
.x k + b = ±1. An equality

will be satisfied for correctly classified testing points or vectors when we multiply

it by y as : yi(wT
.x i+ b)� 1 � 0 and the separation margin given by ⇢ as : ⇢ = 2

|w |

as shown in figure 3.2.

Figure 3.2: Support vector machine

By minimizing |w 2
|, we can maximize the margin of hyperplane from support

vectors. This problem can be solved using Lagrange multipliers ↵i as

w =
X

i

↵iyix i
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and from this relation, we can estimate the boundary condition

wT
.x + b =

X

i

↵iyi(x
T

i
.x ) + b

and the prediction can be make as +1 and -1 or into two classes using signum

function for new data x as

y = sgn

"
X

i

↵iyi(x
T

i
.x ) + b

#

The dual representation of our problem is

L =
1

2

X

i

↵i �
1

2

X

i,j

↵i↵jyiyjx
T

i
.x j

We have to find Lagrange multipliers to maximize this Lagrangian. There are

conditions that ↵i � 0 and
P

i
↵iyi = 0. After getting the Lagrange multiplier we

can use the above mention formula to get w and decision boundary. This is the

solution for linear separation problem. The problems in which the distributions

are overlapping are solved by the kernel trick. We go for higher dimensions to find

the separating hyperplane with maximum margin easily, this is known as kernel

trick. This kernel trick is useful to reduce calculation for non-linear separation

problems. We transom our data into higher dimensional feature space and maps

data points from x to �(x) here � is the basis function. But it is computationally

expensive to calculate in higher dimension. So we will use the kernel function

k(x,z) which is inner product of �T (x) and �(z) in transformed space, we can skip

the complex calculation part and use Lagrange multipliers to maximize the margin

for hyperplane. Now the dual representation in this problem is

L =
1

2

X

i

↵i �
1

2

X

i,j

↵i↵jyiyj�
T (x i).�(x j)

Here the dot product of mapped data is verified as kernel function k = �
T (xi).�(xj)

The decision boundary can be estimated from

X

i

↵iyi�
T (xi).�(x) + b
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and the prediction for classification is given by

y = sgn

"
X

i

↵iyi(�
T (xi).�(x)) + b

#

In SVM, di↵erent types of kernels are presented depending on the kernel function.

Polynomial, Sigmoid, Radial basis function (RBF), and other kernel functions are

there in SVM. As from accuracy point of view we have observed that RBF kernel

gives best results. Accuracy in ML can be calculated by dividing the number of

correct prediction by the total number of samples. So, RBF kernel gives best results

and it is not easy to beat but we try to achieve the best we can from quantum

computing.

3.2 Feature Map

Before going into the quantum machine learning we should know that we have to

use data as in quantum state form and mapping this data from classical to quantum

states is called preprocessing of quantum machine learning. This process is more

important because we can not feed classical data directly to our quantum model.

This can be done by feature map that has ability to encode data into quantum state.

There are di↵erent methods to encode the data points into a quantum state. Basis

encoding and amplitude encoding are two forms of encoding that will be discussed

here and other methods of encoding can be found in [4]. In basis encoding, we use

basis and superposition of basis state, we firstly convert the data into binary digits

and arrange it in binary sequence. Using Dirac notation the binary sequence can

used as qubit. For example, we have to encode data point x(0.1,�0.6, 1.0). At first

we convert decimal number into binary digits

0.1 ⌘ 0 0001

�0.6 ⌘ 1 1001

1.0 ⌘ 0 1111

Binary sequence of them is 00001 11001 01111 and a quantum state can be written

as

|00001 11001 01111i
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As it requires more number of qubits, so we approach amplitude encoding which is

most commonly used. Amplitude encoding encodes the information as amplitude

of a quantum state. For example if we encode the same data point x(0.1,�0.6, 1.0).

Firstly the points value has to be normalized in 2n values, here n=2. The normalized

point x
0 = (0.073,�0.438, 0.730, 0.000). These values are used as amplitude of

quantum states and can be represented by 2 qubit as

0.073|00i � 0.438|01i+ 0.730|10i+ 0.00|11i

Feature map transform data point x ! |�(x)i by unitary transformation U�(x). A

feature map is an arrangement of quantum gates in such a way that it can create

desired quantum states and it is variational circuit whose parameter is dependent

on input data. A simple model of feature map is presented in figure 3.3 where H

gate creates superposition of every qubit then U�(x) encodes classical variables to

quantum states by applying a rotational gates (Rz, Ry) of an angle xi and CNOT

gate uses for entanglement of qubits. Depth of a feature map is a repetition of

quantum circuits (operation gates). We also have predefined feature maps and

we can create it too. There are di↵erent types of predefined feature maps available

named as Z Feature Map, ZZ Feature Map, Pauli Feature Map, Raw Feature Vector.

In our work we have used Pauli Feature map. We have chosen this feature map

from hyper-parameter tuning which is a method of trying di↵erent approach with

variables and selecting the best one out of them.Encoding the data points is not

the only work that feature maps do. As in classical ML, we use the dot product

of feature vectors. We use feature map to compute the kernel function in quantum

circuit.

Figure 3.3: Feature Map [6]
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3.3 Variational Quantum Classifier

Variational Quantum Classifier (VQC) is a classification algorithm in quantum com-

puting. It has analogy from classical SVM and we use variational quantum circuit

to find the hyperplane. As from its name it use variational parameterized circuit

and use optimization for optimum results. Like classical machine learning, VQC

also has a training stage where the training data points are provided and learning

takes place. On testing stage where the data points without labels are provided

which are then classified. VQC has a four stage process as in figure 3.4. First we

use a feature map to load the data into a quantum system that allows e↵ective

embedding of classical data into the quantum system. After this in the second step

we have a variational circuit parameterized by angle ✓. The parameters of this vari-

ational circuit are then trained in the classical optimization loop until it classifies

the data points correctly. This is the classical loop that trains our parameters until

the cost function’s value decreases. It is essential to choose a variational circuit

of shorter depth to make it executable on real quantum hardware and number of

parameterized quantum circuits (PQC) is depth here. In PQC we use rotation gates

like parameterized Ry gates and CNOT gates. In the third step we take measure-

ment of the quantum circuit. An n bit classification string is obtained. Once we

measure the variational quantum circuit using the Measurement operator, the n

bit string is now assigned values of the classification classes. This is done with the

help of a boolean function f : 0, 1n ! 0, 1, the analogy from svm is used here as

with PQC, and the boolean function, which is the diagonal operator, is measured,

giving us the value of w.x, which is then utilized to label [6]. In the fourth step we

use the classical optimization loop. The parameters of the quantum variational cir-

cuit are updated using a classical optimization routine once the measurements are

ready. We change the number of iterations to find global minima with optimizer.

There are types of di↵erent optimizer there each with di↵erent method, here we use

COBYLA optimizer from hyperparameter tuning. After all iterations we have the

final output and we can get accuracy score and metric from here.
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Figure 3.4: Block diagram of Variational Quantum classifier [7]

3.4 Quantum Support Vector Classifier

Classical machine learning has support vector classifier that use kernel trick to

classification task. It is not e�cient to computing kernel classically for some types

of problem, so now we use quantum computing to estimate the kernel using feature

map. Taking analogy from SVM, Quantum support vector machine (classifier) in

quantum computers has created that is hybrid method using both classical and

quantum computers. quantum computers only used to estimate the kernel. We use

feature maps to embed our data points and to build the kernel of the svm out of

these quantum states [8, 9]. The idea of the quantum kernel is exactly the same as

in the classical case. The classical data x encoded into quantum state as |�(x)i We

take the inner product of these quantum state as k(~xi, ~xj) = |h�(~xi)|�(~xj)i|2 with

the quantum feature maps. This k(~xi, ~xj) is the quantum kernel. After calculating

the kernel matrix on the quantum computers we can train the quantum svm the

same way as classical svm and Then we use dual optimization problem as it is in

classical SVM to obtain lagrange multiplier ↵ and decision boundary and maximum

margin hyperplane. An example of using a feature map for kernel is in figure 3.5.

For the feature maps we use the U(�(~x))Hn. Where H
n is the Hadamard gate

applied to each qubit, where n is the number of qubits. Now we need to extract

the information about the quantum kernel from the quantum circuit to feed it into

the classical SVM algorithm. This is actually a non-trivial task, because we want

to measure the overlap of two states k(~x, ~z) = |h�(~x)|�(~z)i|2. The frequency of the
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measurement string gives us an estimate of the overlap [6].

Figure 3.5: Quantum Support Vector Classifier [6]

3.5 CBM Experiment

Compressed Baryonic Matter (CBM) detector is a part of Facility of Antiproton

and Ion Research (FAIR) collaboration that operates in the region of transition

between hadrons and quark-gluon plasma states. The goal of CBM is to create and

characterize super dense nuclei matter in the laboratory. The CBM experimental

programme includes a thorough strategy for measuring J/ mesons. The produced

J/ mesons decay into muons, and the CBM detector is utilized in this study. For

more details see the CBM physics book [11].

Figure 3.6: CBM Experimental Setup

CBM experimental setup is shown in figure 3.6. After the collision, Silicon

Tracking System (STS) is inside the dipole magnet and it is for charged particle
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tracking and determine momentum in magnetic field. STS consist of 8 tracking layer

of silicon detector at distance of 30 cm to 100 cm from target. After STS , Muon

Chamber (MuCh) is placed to identify low momentum muon in environment of

high particle densities. hadron absorbers with increasing thickness is placed. There

are 12 layers in MuCh. Transition Radiation Detector (TRD) consist 4 layers for

particle tracking. TRD is placed Between MuCh and time of flight (TOF) wall. At

last the PSD will be used to determine the collision centrality and the orientation

of the reaction plane.

In each of the detector, number of layers hit by a track noted down and by

path tracking the �2 value for particle that is the deviation of particle from its

actual position is estimated. There is a cut based method by a linear cut on

variables. In this method, if hits are greater than the threshold that is fixed,

then the particle is signal or 1 otherwise it will be considered as background or

0. Here machine learning comes into picture to use this method for large amount

of data, and various variables are used as machine learning features. Using these

values as features, machine learning algorithms predicts weather it is muon rest

of the other particles(hadron). The classical Support Vector Machine (SVM) is

used for this classification task. In quantum machine learning, Quantum Support

Vector Classifier and Variational Quantum Classifier are used. 10 features have been

choosen according to their dependency on each other and impact on measurements.

They are as : four detectors hits (STS, MuCh, TRD, TOF) and three �2 value of

detectors (STS, MuCh, TRD) and a one �2 value of prime vertex. Rest of the two

features are the energy (E) and the momentum (p) of particle.
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3.6 Machine Learning Results

Quantum algorithms have been successfully applied to the CBM experiment data.

QSVC has been used for classification and got the accuracy and confusion matrix

from its output. VQC has also been used with the COBYLA optimizer [10]. There

are di↵erent types of optimizer and each of them has di↵erent method. Pauli feature

map with ↵ = 0.5, which is an angle and Y-Pauli gate with single repetition were

used in both cases. IBM provides backends such as the Statevector simulator, the

Aer simulator, and the Qasm simulator. The statevector simulator has been used

to simulate our quantum circuit as it is noise-less, and cloud quantum computing

has been utilized to run it on real hardware. Ibmq-manila is chosen from among the

available backends because it has the most qubits, quantum volume, and clops. This

backend supports quantum computing with up to 5 qubits. Creating a simulator on

traditional computers is equally challenging, and the number of events is limited to

40000. Figure 3.7 shows the results of QSVC on the statevector simulator, where

increasing the number of events increases the amount of training data, and our

quantum model learns and predicts more precisely. That is why there is fluctuation

with a small number of events, but when enough events have been utilised to train

our model, the accuracy score settles around a modest variation.
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Figure 3.7: Accuracy and AUC score with changing number of events of Quantum
Support Vector Classifier on simulator

Figure 3.8 shows the results of VQC on the statevector simulator. With a small

number of events, VQC results fluctuate but with a su�cient number of events, it

becomes more stable.

Implementing quantum model on real hardware using cloud quantum computing

restrict number of feature as it support only 5 qubits. 10 features were used on

quantum simulator that discussed in section [3.5]. 5 features that has more impact
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Figure 3.8: Accuracy and AUC score with changing number of events of Variational
Quantum Classifier on simulator

on this experiment or they are not related to any other feature have been selected

out of 10 features. The selected features are : MuCH hits, STS hits, TRD hits,

�
2-vertex and �

2-MuCh. For classification, 2000 events were used on Quantum

real hardware. With more processing power accessible from quantum computers,

more events may be exploited. Quantum machine learning results fluctuate due to

the small number of events. When comparing quantum simulator results to real
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hardware results, quantum simulation performs better, and the reason for this is

that real hardware includes noise, but the simulator we used has no noise. The

quantum real hardware results will have an error component, which will a↵ect

performance. The results of QSVC running on quantum real hardware are shown
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Figure 3.9: Accuracy and AUC score with changing number of events of Quantum
Support Vector Classifier on real hardware

in figure 3.9. This shows that the quantum simulator developed is accurate and

similar to real hardware with noise. the results of VQC executing on quantum real
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hardware are shown in figure 3.10. The results of quantum machine learning were
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Figure 3.10: Accuracy and AUC score with changing number of events of Variational
Quantum Classifier on real hardware

used to compare quantum simulators to real hardware. As SVM has been executed

on classical computers with the same features, classical machine learning results
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Figure 3.11: Accuracy with changing number of events on SVM, QSVC and VQC

have now been added. SVM is used with a rbf kernel in this instance. Figure 3.11

shows the results of quantum and classical machine learning. When compared to

VQC, QSVC produces better results, while classical SVM produces results that

are similar to QSVC. VQC’s accuracy score is 0.657 or 65.7% when 40000 events

are used with 10 features, and it takes around 11 hours to execute on the quantum

simulator, whereas QSVC’s accuracy score is 0.932 or 93.2% when 40000 events and

the same features are used, and it takes around 11 hours to execute on the quantum

simulator. Classical SVM with 40000 events and the same 10 characteristics runs

in 22 seconds on classical computers and has an accuracy score of 0.936, or 93.6%.

The time gap between classical and quantum machine learning is due to the time it

takes to create a simulator model on classical processors. In real hardware, based

on quantum models that have been developed, data points are splitted into jobs

and send it to real hardware. There is a queue to execute this job. We must wait

until all of the jobs have been execute successfully.

32



Chapter 4

Quantum Simulation

Many body system has various types of particle and their interaction terms are also

di↵erent. Due to many interactions, it is a di�cult task to simulate a many body

system on classical computers. However classical computers has able to simulate

a certain limit of few body system. Here quantum computers may provide a way

to simulate these system as it has more processing power. As of an kick start

of this field, two body system has simulated on quantum computers and further

many body system will simulated. In this thesis, we start with deuteron as two

body system and try to simulate it. For quantum simulation, variational quantum

eigensolver (VQE) technique has been proposed. This VQE takes input as particle

and its hamiltonian, and by using a optimizer it try to get minimum energy which

is the ground state energy of this hamiltonian.

4.1 Variational Quantum Eigensolver

Variational Quantum Eigensolver (VQE) is a hybrid algorithm, and as input it needs

Hamiltonian of the system. VQE is designed to find the ground state energy of the

system by estimating the eigenvalue (energy) of this hamiltonian. After eigenvalue

calculation an optimizer is used to get it’s lowest value (ground state energy). The

Hamiltonian we have is in fermionic operator (creation and annihilation operator)

form, to use this Hamiltonian in VQE, it needs to be encoded the hamiltonian

into pauli operators form. Why we chooses to get hamiltonian into pauli operator

form has simple answer that quantum computers has gates as pauli matrices, so we

can easily calculate hamiltonian expectation value using quantum computing. To
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encode these fermionic operators into spin or pauli operators, there are methods

for encoding i.e., Gray Code, Bravyi-Kitaev and One-Hot encoding [12]. One-Hot

encoding will be used in our work through Jordan-Wigner transformation. After

encoding this hamiltonian into pauli operators form or into qubit form, we take

an arbitrary state  and take expectation value of hamiltonian in this state. In

quantum mechanics the expectation value of a operator with respect to a state

is always greater then or equal to its lowest eigenvalue and the state should be

normalized.

a0 = h |H| i

a0 � amin, here amin is lowest eigenvalue of operator and a0 is the expectation value

of operator with respect to | i state . The arbitrary state has variational parameter

✓, and using classical optimizer we try to get minimum value of this expectation

value. This process repeated until we achieved lowest eigenvalue. a✓ is expectation

value of parameterized state.

a✓ = h (✓)|H| (✓)i

The parameterized state | (✓)i in quantum circuit has been created by applying

unitary transformation on initial state |0i as U(✓)|0i = | (✓)i, this unitary trans-

formation has combination of quantum gates. Rotational gates around y axis (Ry),

controlled not gates, and X gates have been used here and the quantum circuit

diagram of state preparation is in figure 4.1 according to number of qubit.

(a) (b) (c)

Figure 4.1: Quantum circuit for variational ansatz for N = 2, 3, 4

The hamiltonian in pauli operator form is used in quantum circuit by applying

pauli gates. We take expectation values of all pauli strings in the hamiltonian that

is measured. For measurement of pauli strings in hamiltonian, we have to choose
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what value of measured quantities we should accept and which one we should not.

for single qubit, the expectation value of Z in measurement is taken in arbitrary

state | i. Since the Z is a form of hamiltonian, so this expectation value is in the

form of energy and written as:

E (Z) = h |Z| i = h |(|0ih0|� |1ih1|)| i

= h |0ih0| i � h |1ih1| i

= |h0| i|2 � |h1| i|2

= P| i(0)� P| i(1)

Here P| i(0) is the probability that state | i is measured to be |0i, So if 0 measured

C0 times and 1 measured C1 times out of total measurements. Expectation value

of Z is

E (Z) =
C0 � C1

C0 + C1

now for expectation value of X

E (X) = h |X| i = h |HZH| i

= hH
†
 |Z|H i = hH |Z|H i

= EH (Z)

= PH| i(0)� PH| i(1)

Here PH| i(0) is probability that state H| i is measured to be |0i, here we have

prepare state | i and apply hadamard gate on it.

For expectation value of Y it can be written as Y = SXS
† = SHZHS

†

E (Y ) = h |SHZHS
†
| i

= hH
†
S
†
 |Z|HS

†
 i

= hHS
†
 |Z|HS

†
 i = EHS†| i(Z)

= PHS†| i(0)� PHS†| i(0)

Here we have to prepare a state | i and apply hadamard and S
† gate. For 2 qubit
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XX expectation value is

E (XX) = h |XX| i = h |(HZH)⌦ (HZH)| i

= hH
†
H

†
 |Z ⌦ Z|HH i

= hHH |(|0ih0|� |1ih1|)⌦ (|0ih0|� |1ih1|)|HH i

= hHH |(|00ih00|� |01ih01|� |10ih10|+ |11ih11|)|HH i

= PHH| i(00)� PHH| i(01)� PHH| i(10) + PHH| i(11)

Other combination of XY and ZZ can be calculated same way and for more number

of qubit we can use this calculation and choose the results that we have to take.

This results are used by classical optimizer to choose a set of parameters for which

eigenvalue is minimized. for better optimization, the state should be close to ground

state. This parameterized state is also called variational ansatz and it depends on

encoding and corresponding transformation.

4.2 Deuteron Problem

Deuteron as two body system consist a proton and a neutron. Ground state energy

calculation of deuteron will establish the concept of quantum simulation and it

can be used to simulate heavier nuclei. For VQE input, we use a Hamiltonian

from pionless e↵ective field theory [15, 16] and have to work on discrete variable

representation. For more detail one can look appendix A. Hamiltonian for deuteron

is,

HN =
N�1X

n,n0=0

hn
0
|T + V|nia†

n0an

Kinetic energy matrix element and potential energy matrix element from [14] are

hn
0
|T|ni =

h̄!

2

"✓
2n+

3

2

◆
�
n
0

n
�

s

n

✓
n+

1

2

◆
�
n
0+1

n
�

s

(n+ 1)

✓
n+

3

2

◆
�
n
0�1

n

#
,

hn
0
|V|ni = V0�

0
n
�
n
0

n
.

Here, V0 = �5.68658111 MeV, a†
n0 and an is creation and annihilation operator and

n0 and n are state of harmonic oscillator and N is dimension of oscillator. Values
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of T and V can be directly use from above equations of energy matrix elements.

This harmonic oscillator hamiltonian operator is fermionic as is consists fermionic

creation and annihilation operator. In second quantization form the hamiltonian is

H =
X

ij

hija
†
i
aj

here this hij is :

hij = hi|T + V |ji =

Z
�i(r)


h̄
2

2m
r

2 + V (r)

�
�j(r)dr

here �i(r) or |ii represent the basis of system. So we calculate hij manually and a
†
a

will be evaluated by quantum computing. But a†a can not be directly calculate by

quantum computing. Basis state and operator has to be mapped into qubit’s basis

state and qubit operations. Qubit basis states are |0i and |1i and a state can be

represented as  q = a|0i+ b|1i and for n-qubit system

 
n

q
= ⌦

n�1Y

j=0

(aj|0i+ bj|1i)

For quantum computing we have to map  f into  q and mapping decide some factor

of computing as number of qubits, number of operations and circuit depth. In JW

transformation a single qubit will be assign of one basis state |ii.

The quantum spin with S = 1/2 can describe by fermions as | #i = f
†
|0i and

| "i = |0i. Spin up and down states of single spin corresponds to empty fermion

states and single occupied state. We can take the analogy from fermionic operator

and spin-1/2 Pauli operators can transform as �+
⌘ f and �

�
⌘ f

† [17]. The

spin-1/2 Pauli operator is �x
, �

y and �
z and representation of spin lowering and

raising operator is

�
+ =

"
0 1

0 0

#

�
� =

"
0 0

1 0

#

�j defined as Pauli spin operator acting on state j or site j, spin raising and lowering
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operator �+
j
and ��

j
in terms of x and y component of spin operator is

�
+
j
= (�x

j
+ ◆�

y

j
)/2

�
�
j
= (�x

j
� ◆�

y

j
)/2

The anti-commutator relation of �+
j
and ��

j
is {�+

j
, �

�
j
} = 1, which is expected as

from fermionic operator follows the same relation for same site, but on di↵erent site

fermionic operator has [f †
j
, fk] = 0 for j 6= k and spins are unlike the fermions on

di↵erent site anti-commutation. To have the analogy from fermions, we have to get

fermion commutation relations from spin operators. This can be done by taking a

new set of operators which is a transformation of fermionic operator defined as :

a
†
j
= e

(+◆⇡
Pj�1

k=1 f
†
kfk).f †

j

aj = e
(�◆⇡

Pj�1
k=1 f

†
kfk).fj

a
†
j
aj = f

†
j
fj

We just added a phase factor called string which is determined by number of occu-

pied fermionic modes in k = 1, ..., j � 1 and phase factor can be written as

e
(+◆⇡

Pj�1
k=1 f

†
kfk) =

j�1Y

k=1

e
+◆⇡f†

kfk =
j�1Y

k=1

(1� 2f †
k
fk) =

j�1Y

k=1

(�z

k
)

Here �z

k
= 1 � 2f †

k
fk. The canonical anti-commutation relation is {a

†
j
, aj} = 1,

{a
†
j
, a

†
k
} = 0 and {aj, ak} = 0 and followed by spin operator, So now we can take

the analogy

�
+
j
= e

(�◆⇡
Pj�1

k=1 f
†
kfk).aj

�
�
j
= e

(+◆⇡
Pj�1

k=1 f
†
kfk).a†

j

�
z

j
= 1� 2a†

j
aj

Here a†
j
aj = f

†
j
fj is number operator which can have value of 0 and 1. Now to map

fermionic operator in spin operator we use these above transformation as from �
z,

a
†
j
aj =

(1� �
z

j
)

2
=

(I � Zj)

2
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We will use the notations �x

j
, �

y

j
and �z

j
asXj, Yj and Zj respectively which represent

the X, Y and Z quantum gate on j-qubit.

a
†
j
ak =

1

4
(�x

j
� ◆�

y

j
)(�x

k
+ ◆�

y

k
)

aja
†
k
=

1

4
(�x

j
+ ◆�

y

j
)(�x

k
� ◆�

y

k
)

adding these two terms

a
†
j
ak + aja

†
k
=

1

2
(�x

j
�
x

k
+ �

y

j
�
y

k
) =

1

2
(XjXk + YjYk)

we can simply write that the Jordan-Wigner transformation of fermionic operators

to quantum computing as :

a
†
j
!

1

2

"
j�1Y

k=0

Zk

#
(Xj � ◆Yj)

aj !
1

2

"
j�1Y

k=0

Zk

#
(Xj + ◆Yj)

In our fermionic hamiltonian there are two types of terms according to operators

and we can transform it into spin operator suitable for quantum computing by

hjja
†
j
aj =

X

j

hjj

2
(1� Zj)

hjk(a
†
j
ak + a

†
k
aj) =

hjk

2

 
j�1Y

p=k+1

Zp

!
(XjXk + YjYk)

where hjj and hjk are from fermionic hamiltonian mention above.

for N=1, We calculate spin operator Hamiltonian H1 :

H1 = h0|T + V|0ia†0a0

= (h0|T|0i+ h0|V|0i)a†0a0

=
h0|T|0i

2
(I � Z0) +

h0|V|0i

2
(I � Z0)
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taking value of h0|T|0i and h0|V |0i from kinetic and potential energy matrix

H1 =
3h̄!

8
(I � Z0) +

V0

2
(I � Z0)

taking the value of h̄! = 7 MeV, the reason for taking this value will be discussed

in next section on variational calculation.

H1 = 2.625(I � Z0)� 2.48432(I � Z0) = 0.218291(Z0 � I)

For N=2

H2 = h0|T + V |0ia†0a0 + h0|T + V |1ia†0a1 + h1|T + V |0ia†1a0 + h1|T + V |1ia†1a1

= h0|T |0ia†0a0 + h0|V |0ia†0a0 + h0|T |1ia†0a1 + h1|T |0ia†1a0 + h1|T |1ia†1a1

=
3h̄!

8
(I � Z0) +

V0

2
(I � Z0)�

h̄!

4

r
3

2
(X0X1 + Y0Y1) +

7h̄!

8
(I � Z1)

H2 = 5.9067I + 0.218291Z0 � 6.125Z1 � 2.143304(X0X1 + Y0Y1)

From similar way we can transform for N=3,4, and so on and value of

H3 = 15.531709I + 0.218291Z0 � 6.125Z1 � 9.625Z2 � 2.143304(X0X1 + Y0Y1)

� 3.9133119(X1X2 + Y1Y2)

H4 = 28.656709I + 0.218291Z0 � 6.125Z1 � 9.625Z2 � 13.125Z3

�2.143304(X0X1+Y0Y1)�3.9133119(X1X2+Y1Y2)�5.670648(X2X3+Y2Y3)

Now we can use this hamiltonian in VQE and can estimate the expectation value

and optimize it for ground state energy. Results from VQE is in table 4.1 .
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HN Energy

H1 �0.436 MeV

H2 �1.749 MeV

H3 �2.045 MeV

H4 �2.143 MeV

Table 4.1: Ground state energy of deuteron for increasing the dimension of harmonic
oscillator

Since this is for only N=4, for higher number of N our results are more better,

but we have limitation in number of qubit. Extrapolation technique is used here

for this problem, however if more number of qubits is available then results would

be more precise without extrapolating. In next section we talk about extrapolation

and required parameters for it.

4.3 Variational Calculation in Harmonic Oscilla-

tor Basis

The harmonic oscillator basis o↵ers an expansion basis that is widely used in nuclear

structure computations, but due to restricted computational resources, the basis

must be truncated before computation. An extrapolation result to an infinite basis

size is required in this computation. Truncating a harmonic oscillator basis has

two variables, dimension of harmonic oscillator basis N and harmonic oscillator

energy parameter h̄!. Variational calculation utilize to estimate these variables,

so we can define the size of expansion basis or model space. These two variables

are associated with two momentum cuto↵ known as Ultraviolet momentum cuto↵

and Infrared momentum cuto↵. Ultraviolet momentum cuto↵ related to the energy

of the highest harmonic oscillator level in harmonic oscillators, whereas infrared

cuto↵ (�) corresponds to the lowest allowable momentum di↵erence between single

particle orbitals.

The truncated space defined by N and h̄! can now be considered a model space

characterised by two momentum. The Ultraviolet momentum

⇤ =
p
mN(N + 3/2)h̄!
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here mN is nucleon mass and taken mN = 938.2 MeV. To obtain this expression of

UV momentum, establish kinetic energy to one-half of total energy at the highest

harmonic oscillator level, then solve the non-relativistic dispersion relation for ⇤.

Energy levels of harmonic oscillator is quantized in units of h̄! and momentum

di↵erence is taken as infrared cuto↵ that is low momentum cuto↵

� =
p

mN h̄! = h̄/b

here b =
p
h̄/mN! postulated as oscillator length. Influence of the infrared cuto↵

is removed by extrapolating to the continuum limit, where h̄! ! 0 with N ! 1

so that ⇤ is fixed. We can not achieve both the ultraviolate limit and infrared limit

by taking h̄! to zero in a fixed N model space as this procedure take ultraviolate

cuto↵ to zero.

Another definition of infrared momentum is the maximal radial extent needed

to envelop the system we attempt to describe by finite basis space. it is defined as

�sc =
p

(mN h̄!)/(N + 3/2)

To distinguish between two notation, � stands for first definition and �sc stands

for second definition because of its scaling properties. When oscillator length b is

large enough (frequency is small enough) the ultraviolate correction are negligible

in compared to infrared corrections with fixed ⇤. Controlled extrapolation to the

results for the full model space can be made if UV and IR corrections can be un-

derstood formally.

We fix one cuto↵ and vary the other one; the ultraviolet cuto↵ value ⇤ is fixed

in this scenario, whereas the infrared cuto↵ value �sc is varied. As from [20], the

IR regulator is a function of �sc and not �. The IR cuto↵, as previously stated,

is the lower cuto↵, and we try to change it for low values. Figure 4.2 shows that

for larger value of ⇤, |�E/E| converges to zero and if we decrease the value of

�sc, |�E/E| starts converging towards zero. We can see the changes for ⇤ = 140

MeV/c and ⇤ = 150 MeV/c. This suggests that there should be some cuto↵ for UV

momentum, below that |�E/E| dose not converge towards zero. We can describe

it as ⇤ � ⇤NN where ⇤NN is ultraviolate regulator scale of NN interaction. From

the figure 4.2 we can say that ⇤NN
⇠ 150 MeV/c. This suggest that �sc could be
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Figure 4.2: Dependency of ground state energy of deuteron upon Infrared cuto↵
(�sc) for fixed ⇤

used for extrapolation to the IR limit (�sc ! 0) provided that ⇤ is large enough to

capture the UV region of the calculation by taking ⇤ � ⇤NN
.

Lowering the IR cuto↵ will include more of the IR region in the calculation, thus

|�E/E| does not go to zero for smaller ⇤. Now we fix the IR cuto↵ for running

|�E/E| upon the UV cuto↵ ⇤. As in figure 4.3 at small value of ⇤,|�E/E| does

not converged to zero but increasing the value of ⇤ will start converging it to zero.

From the figure 4.3 the curves above �sc = 38 MeV/c has high �sc value and the

curves is not converging above this value. �sc have some cuto↵ value, below this

our results will converge �sc  �
NN

sc
. Here �NN

sc
is second characteristic IR regulator

scale. For increasing the value of ⇤, our results for |�E/E| will not close to zero this

indicates that we have more of UV physics and when ⇤ is low and �sc is also below

the cuto↵ value then it has more of IR physics. From the figure 4.4, the line coming
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Figure 4.3: Dependency of ground state energy of deuteron upon infrared momen-
tum cuto↵ (⇤) for fixed �sc

out from the rest of the curves has the �sc value at the cuto↵. So by increasing the

⇤ we just add more of the uv physics and IR physics is already there. so on these

value we have the best extrapolated results and now we can apply leading order

extrapolation formula.

The first definition of infrared momentum cuto↵ � =
p
mN h̄! has to be fit in

such a way that the |�E/E| tends to zero. Then by varying the � value close to

zero, we try to get best fit value of h̄! for increasing value of ⇤. As it can be seen

from figure 4.5 that for increasing value of ⇤, our curves start to converge on � = 81

MeV/c. This indicates that the value for h̄! is 7 MeV and on this particular value,

increasing the UV cuto↵ ⇤, will tend our |�E/E| to zero. In this way, we have

used both UV and IR region of correction. Lowering the IR cuto↵ and raising the
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UV cuto↵, leads to more exact results, however h̄! also lowers the IR cuto↵, thus

losing UV physics and boosting IR physics leads to worse extrapolation results.

As a consequence, we determine the h̄! = 7 MeV, on which increasing the UV

momentum yields the optimal extrapolated results.
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4.4 Quantum Simulation Results

As discussed in variational calculation that we have to choose a fit value for IR cuto↵

and then can increase the value of UV cuto↵ to have best results in extrapolation.

For deuteron problem h̄! = 7 MeV has taken and use leading order extrapolation,

here Luscher formula [18] for extrapolation can be used.

E(L) = E1 + Ae
�2k1L +O(e�4k1L)

This is L dependent which is e↵ective Dirichlet boundary condition [18] and k1 =q
�2mE1/h̄

2 is binding momentum defined from separation energy E1. Harmonic

oscillator variant of Luscher formula for finite size correction is

EN = �
h̄
2
k
2

2m

✓
1� 2

�
2

k
e
�2kL

� 4
�
4
L

k
e
�4kL

◆

Here finite basis energy EN in term of infinity basis energy E1 and small extrap-

olation correction terms. Finite basis energy has been calculated by computing

and using above formula, infinity basis energy estimated. Here k is bound state

momentum and � is asymptotic normalization coe�cient and N is dimension of os-

cillator basis. For N = 2, ⇤ = 150 MeV/c while h̄! = 7 MeV. quantum computing

has been used to calculate ground state energy for N = 2 and estimate value for

EN = �1.749 MeV, this allows one to fit correction by adjusting k and � [14]. After

the correction we get the extrapolated ground state energy for N = 2 is -2.20 MeV

which is about 1% away from deuteron’s ground state energy of -2.224 MeV
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Chapter 5

Conclusion

We have successfully applied the quantum machine learning on high energy physics

data and the results from quantum machine learning are satisfactory. If we compare

the results with classical machine learning results then QSVC is able to achieve the

bench marked set value of SVM. Results from VQE is not that good as compare

to QSVC. This is an early stage of quantum computing and we have showed a way

to use it in high energy physics, so when we have a near-term quantum computer

device, we can implement quantum algorithms on it. The complexity of data and

amount is increasing day by day and quantum computers has ability to handle it.

In some of the work it has shown that it perform better than classical on complex

data.

Simulating an atom using quantum computers is not a novelty work but this is

the first step towards the quantum simulation where we can use all the physics. As

the potential and kinetic terms in hamiltonian is increasing with the size and num-

ber of nuclei, it becomes computationally expensive task, here quantum computers

comes into picture. As we have more processing power in compare to classical com-

puters. At this time we are bound with limited number of qubit processor but in

next few years we will be able to use quantum computers for non-trivial problems

that classical can not do and all this work will help the mankind to explore new

things.
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Appendix A

Deuteron Problem

As nucleons are not fundamental particles but a composition of quarks and gluons.

So, to understand its complicated structure formed by strong interaction between

sub-particles and its dynamics, we study Quantum Chromodynamics (QCD). It’s

not easy to compute nuclear observables from QCD as the nucleus contains multiple

complex states of quarks and gluons that interact with each other. The problem

can be solved by Lattice QCD [21] computational technique if nuclear interaction

among nucleons is expressed in terms of quarks and gluons. It’s computationally

expensive since the problem is highly non-perturbative because of strong coupling

between quarks and gluons. As a result, we try to connect lattice QCD data to

heavier nuclei using low energy e↵ective field theory. In nuclear physics, e↵ective

field theory makes use of the hierarchy of energy scales. So, interaction between

quarks and gluons are governed by QCD at nucleon mass(1 GeV) or heavy mesons

mass (⇠ 800 MeV). When we go for low energy our resolution scale is decreases

and for nucleon interaction it is done at lightest meson (pion) mass ⇡ 140 MeV.

Deuteron is in 3
S1 partial wave state and its scattering length in triplet S channel

is np
at = 5.42 fm [22] and corresponding momentum scale is 1/npat ⇠ 36 MeV.

Scattering length is greater then pions physical range of potential (1.4 fm). So

for this interaction we have to lower the energy and integrated out the pions from

interaction to be in scattering length. When our energy scale is below pions mass, it

is called pionless e↵ective field theory. The reason for disparity of S-wave scattering

length and QCD scale is not yet understood. We take advantages of separation of

scale in pionless EFT as nucleons are slow to resolve pions, we can describe low

energy NN potential. Our scale is in range of 30-50 MeV.
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[6] Havĺıček, Vojtěch, et al. “Supervised learning with quantum-enhanced feature

spaces.” Nature 567.7747 (2019): 209-212.

[7] Sierra-Sosa, Daniel, et al. “Dementia prediction applying variational quantum

classifier.” arXiv preprint arXiv:2007.08653 (2020).

[8] Wu, Sau Lan, et al. “Application of quantum machine learning using the quan-

tum variational classifier method to high energy physics analysis at the LHC

on IBM quantum computer simulator and hardware with 10 qubits.” Journal of

Physics G: Nuclear and Particle Physics 48.12 (2021): 125003.

51



[9] Chan, Jay, et al. “SISSA: Application of Quantum Machine Learning to High

Energy Physics Analysis at LHC using IBM Quantum Computer Simulators

and IBM Quantum Computer Hardware.” PoS (2021): 930.

[10] Joshi, Nisheeth, Pragya Katyayan, and Syed Afroz Ahmed. “Evaluating the

Performance of Some Local Optimizers for Variational Quantum Classifiers.”

Journal of Physics: Conference Series. Vol. 1817. No. 1. IOP Publishing, 2021.

[11] Friman, Bengt, et al., eds. The CBM physics book: Compressed baryonic

matter in laboratory experiments. Vol. 814. Springer, 2011.

[12] Siwach, Pooja, and Paramasivan Arumugam. “Quantum simulation of nuclear

Hamiltonian with a generalized transformation for Gray code encoding.” Phys-

ical Review C 104.3 (2021): 034301.

[13] Stetcu, I., et al. “E↵ective theory for trapped few-fermion systems.” Physical

Review A 76.6 (2007): 063613.

[14] Dumitrescu, Eugene F., et al. “Cloud quantum computing of an atomic nu-

cleus.” Physical review letters 120.21 (2018): 210501.

[15] Binder, Sven, et al. “E↵ective field theory in the harmonic oscillator basis.”

Physical Review C 93.4 (2016): 044332.

[16] Bansal, Aaina, et al. “Pion-less e↵ective field theory for atomic nuclei and

lattice nuclei.” Physical Review C 98.5 (2018): 054301.

[17] Mbeng, Glen Bigan, Angelo Russomanno, and Giuseppe E. Santoro. “The

quantum Ising chain for beginners.” arXiv preprint arXiv:2009.09208 (2020).

[18] Furnstahl, R. J., S. N. More, and T. Papenbrock. “Systematic expansion for

infrared oscillator basis extrapolations.” Physical Review C 89.4 (2014): 044301.

[19] More, S. N., et al. “Universal properties of infrared oscillator basis extrapola-

tions.” Physical Review C 87.4 (2013): 044326.

[20] Coon, Sidney A., and Michael KG Kruse.“Properties of infrared extrapolations

in a harmonic oscillator basis.” International Journal of Modern Physics E 25.05

(2016): 1641011.

52



[21] Gupta, Rajan. “Introduction to lattice QCD.” arXiv preprint hep-lat/9807028

(1998).

[22] Bansal, Aaina. “Medium Mass Nuclei Using Pionless E↵ective Field Theory in

Harmonic Oscillator Basis.” (2019).

53


	List of Figures
	Introduction
	Basics of Quantum Computing
	Qubit
	Quantum Gates
	Measurement

	Quantum Machine Learning
	Classical Machine Learning
	Feature Map
	Variational Quantum Classifier
	Quantum Support Vector Classifier
	CBM Experiment
	Machine Learning Results

	Quantum Simulation
	Variational Quantum Eigensolver
	Deuteron Problem
	Variational Calculation in Harmonic Oscillator Basis
	Quantum Simulation Results

	Conclusion
	Appendices
	Deuteron Problem



