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ABSTRACT

We study the Page curve and the information paradox for the rotating

black hole. For this purpose, we apply the island prescription to the Kerr

black hole near the horizon limit and analyze the behavior of the entan-

glement entropy at early and late times. The results demonstrate that the

Page curve is consistent with the unitarity principle: without the island,

the entanglement entropy grows linearly in time, and in the presence of the

island, it is saturated twice the Bekenstein Hawking entropy. We observe

the Page time is universal for all di↵erent models studied by our method:

tPage =
3SBH

⇡THc
. However, for extremal rotating black holes, the Page time be-

comes divergent or vanishing, which the semi-classical theory needs further

investigation.
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Chapter 1

Introduction

From the Einstein equations, one intuitively searches for the solutions with

the maximum radial symmetry. Less symmetric solutions to the equations

were later found. However, some physical problems have occurred as a

result of these solutions, such as singularities, which were di�cult to un-

derstand and we got a new object known as a black hole by John Archibald

Wheeler [24]. Initially, Einstein, like many other scientists, suspected that

the emergence of black holes from his theory was due to an incomplete

physical description. Nonetheless, our interpretation of the black hole so-

lution is much more comprehensive today, and the presence of black holes

is widely recognized. Furthermore, we now have stronger insight into how

black holes form. Above all, from Einstein’s theory of general relativity,

the existence of black holes is one of the most exciting predictions.

Many years later, in the 1970s Jacob Bekenstein [5] introduced that a

black hole has finite entropy that is proportional to the area of its event

horizon. Not long after, in 1974, Stephen Hawking made a remarkable dis-

covery: black holes behave as thermal objects, emitting thermal radiation
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known as ”Hawking radiation.” As a result, black holes are not completely

”black.” Hawking’s discovery of black hole evaporation has raised numer-

ous questions in general relativity, quantum mechanics, and, most notably,

quantum information theory. According to Hawking’s argument, black

hole evaporation appears to violate unitarity, a fundamental property of

quantum mechanics that states that quantum information in a system is

preserved over time. Black holes may not store information, unlike quan-

tum and classical systems. Undoubtedly, Hawking initially concluded that

information from black holes would be lost. Many physicists, however,

were not pleased with the idea of information loss, and much research has

been devoted to finding the solution to the paradox due to Hawking’s dis-

covery. To solve the problem, it was quickly proposed that a full theory

of quantum gravity, combining general relativity and quantum mechanics,

be developed. Nonetheless, some scientists speculated that, as Hawking

proposed [12], this theory must be non-unitary. Many ideas and solutions

to the problem have been proposed in the years after Hawking’s discovery.

These ideas initially provided some new insights, but they did not fully

solve the problem, researchers were still sticking with many unanswered

questions. For example, the concept of black hole complementarity pro-

vided radical insights. Although this study provided a better knowledge of

the paradox, all scientists were not convinced.

In the 1990s, results from string theory with quantum gravity suggested

that information must indeed escape. The AdS/CFT correspondence dis-

covered by Juan Maldacena resulted in significant progress. The entropy of

a black hole in d+2-dimensional anti-de Sitter (AdS) spacetime can be com-

puted using AdS/CFT, which involves a dual d+1-dimensional conformal

field theory (CFT) on the AdS boundary. In particular, unitarity on the

CFT boundary implies that information is preserved. As a result, Malda-
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cena demonstrated that information can escape the black hole. However,

boundary unitarity is insu�cient to resolve the paradox; a wider under-

standing is required. After all, recent research [1] [22] suggests that we

have discovered a definite, more general solution to the information para-

dox, which is based on AdS/CFT findings. The new understanding, how-

ever, is much broader: the results apply to asymptotically flat Minkowski

space, and anti-de Sitter spacetime is not required.

According to the new proposal, Hawking did not use the correct for-

mula to calculate the black hole entropy. The correct formula is the gravi-

tational fine-grained entropy, which was first studied in AdS/CFT by Ryu

and Takayanagi [25] but has now been extended and generalized by new

research. The new formula produces spatially disconnected regions in the

black hole’s interior, which we refer to as islands. The formula is commonly

referred to as the island formula, and it can be obtained using a mathe-

matical method called the replica trick [21]. The island formula eventually

yields a unitary Page curve [19], which denotes the black hole’s unitary

behavior. The fact that unitarity is preserved by the computation of the

Page curve, however, is only one aspect of the paradox because it would

like to know how information ended up in the outgoing Hawking radiation.

In this thesis, My goal is to draw the Page curve for the Kerr metric near

the horizon limit. Before that, we will start with some theoretical back-

ground that needs to be mentioned. Firstly, we will discuss Hawking radi-

ation, evaporation of black holes, and Page curves, and afterward, discuss

AdS/CFT correspondence in chapter 2. In chapter 3, we encounter gravita-

tional entropy where we argue that the gravitational fine-grained entropy,

which was originally studied by Ryu and Takayanagi [14] in AdS/CFT. In

chapter 4, we describe the entanglement entropy, and island prescription

for general black holes and draw the Page curve for that. In chapter 5, we
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discover the island prescription and calculate the generalized entropy for

the Kerr black hole near the horizon limit. Furthermore, we calculate the

Page time and scrambling time for our case.
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Chapter 2

Preliminaries

2.1 Hawking Radiation

Hawking’s seminal paper [13] led to the obvious conclusion that black holes

are inherently thermal objects: The QFT vacuum is unstable, resulting in

entangled modes of radiation at the horizon, implying that black holes

should evaporate and have a temperature. Consider the simplistic descrip-

tion of a particle/antiparticle pair being formed, with one ingoing and the

other outgoing. The one that comes in is absorbed by the black hole, which

reduces its energy, mass, and size, which is defined by the Schwarzschild

radius of rs = 2GNM . The emitted particle, on the other hand, leaves the

black hole and can be recorded as radiation by a viewer. Hawking provided

a great formula for the temperature of a black hole summarizing the unifi-

cation of the concepts it relates to gravity, thermodynamics, and quantum

mechanics in a very comprehensible way. It is given by

TH =
h̄c

3

8⇡GNMkB
(2.1)
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All units are natural. We meaningfully reintroduced the universal constants

to make this unity manifest. The radiation emitted is identical to the radi-

ation emitted by a black body at the same temperature. Surprisingly, the

higher the mass, the lower the temperature according to this formula. This

is the temperature as measured by a distant observer. The temperature

rises dramatically as one gets closer to the black hole. In QFT, we assume

that information is defined as being located in a region of space. Quan-

tum gravity, on the other hand, maybe di↵erent, and information may be

available somewhere, non-locally, around the black hole.

2.2 Entropy

There are two types of entropy that we use generally in physics. The fine-

grained entropy of a system, which is sometimes known as Von-Neumann

entropy, describes the system’s specific microstate. Apart from that other

one is the coarse-grained entropy, which describes the system’s macrostate

and can be calculated by maximizing the fine-grained entropy over all pos-

sible density matrices that produce the same expectation values for the ob-

servables of interest [2]. The coarse-grained entropy always increases with

time for an isolated system that obeys the second law of thermodynamics.

2.2.1 Von Neumann Entropy and coarse-grained en-

tropy

Let us consider a quantum state | i which is pure at zero temperature.

Then density matrix is defined as [19]

⇢ = h | i
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Now if we have the density matrix for quantum systems that follow the

von Neumann equation. Then we can define von Neumann entropy which

obeys S � 0 only for the pure quantum state, von Neumann is also known

as the fine-grained entropy written as [26]

S = �Tr(⇢ ln ⇢) (2.2)

Obtaining the von Neumann entropy is practically unachievable, but we

have a set of system observables. The idea is to find a set of density matrices

that all produce the same set of macroscopic observables, and then choose

the density matrix that maximizes von Neumann entropy. The thermody-

namic entropy is then calculated using the coarse-grained entropy. This

also ensures that the fine-grained entropy is always less than or equal to

the coarse-grained entropy. When the temperature is non-zero, the coarse-

grained entropy which is also known as thermodynamic entropy, will always

be in a mixed state.Then we again define density matrix [18] for mixed state

as

⇢ =
e
��H

Tr(e��H)
(2.3)

Where H is the Hamiltonian of the system. to find a pure state again we

just take T ! 0 or � ! 1. The second law of thermodynamics holds to

coarse-grained entropy. It increases during unitary time evolution.

2.3 Bekenstein-Hawking entropy

Hawking demonstrated that distant observers computing the thermody-

namic entropy of radiation would exceed the classical bound for entropy,

known as the Bekenstein bound and can be written as [27]

SBH =
Bc

3
A

4GN h̄
(2.4)

7



Where A is the area of the horizon. 1/4 factor comes from Hawking’s cal-

culation. This formula gives us a suitable relation between the entropy and

the area of the horizon. According to the second law of thermodynamics,

SBH �S > 0, where SBH is the entropy of a black hole and S is the sum of

the ordinary entropy.

For a holographic description of gravity, we consider a sphere in flat space,

and its volume is denoted as V. We distribute the interior space into very

small boxes, each the size of a Planck length denoted as lp. There is a

fermionic oscillator field in each of these boxes, resulting in two degrees

of freedom. As a result, the total number of states associated with this

system is

N = 2
V

l
3
P

So maximum entropy of the system obtain as

Smaximum =
V

l3
P

ln 2

We can excite the quantum oscillators of the fermionic field in the boxes by

adding energy to the confined system. With enough energy, the system’s

Schwarzschild radius will equal the radius of the sphere, and the entire

system will collapse into a black hole. On the other hand, by eq.(2.4) we

can see entropy is proportional to the area of the sphere (horizon area).

Because the degrees of freedom required to describe a region of space are

proportional to the area rather than the volume which is an indication for

a holographic description of gravity.

2.4 Unitarity and Page curve

The Page curve is the curve of the von Neumann entropy of the Hawking

radiation [20]. Page claimed that the entropy of a black hole must follow
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a curve known as the Page curve [3]. However, according to Hawking, the

entropy of a black hole increases until it completely evaporates. But on

the other hand, Page argued that the maximum entropy is obtained at the

Page time. This period occurs when approximately half of the total radi-

ation is emitted. The entropy decreases to zero after the Page time. We

consider the black hole and radiation two subsystems as a bipartite system.

According to the Schmidt decomposition, the entanglement entropy of the

radiation equals the entanglement entropy of the black hole because we

begin with a pure state. Radiation and black holes must produce a pure

state, we know that the fine-grained entanglement entropy must be less

than the Bekenstein-Hawking entropy, the coarse-grained entropy. This is

also why, after the Page time, the Page curve should bend down. The Page

time is precisely at SBH = SRad and Sblackhole < SBH [2].

If the black hole entropy follows the Hawking curve [12], we will en-

counter a contradiction because entropy can be thought of as the number of

microstates in comparison to the black hole macrostate, the coarse-grained

entropy must be greater than the entanglement entropy. We expect that

the black hole should follow Hawking’s predicted curve before the Page

time. After the Page time, the curve must bend down and go to zero be-

cause the coarse-grained entropy is less than the radiation entropy. This

must occur to achieve a pure state.

A key question in developing a solution is how to bend the curve down

while maintaining unitarity. This is sometimes referred to as the true in-

formation puzzle because it is di�cult to prove that entropy follows this

curve. After all such discussions, there have been recent studies that claim

to solve the paradox which is known as the ”island formula”.
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Figure 2.1: Left side figure show the Penrose diagram for the formation

and evaporation of a black hole. Right side figure represent the Page curve

for Hawking radiation.

2.5 Conformal field theory

In the study of the AdS/CFT-duality, the conformal field theory (CFT)

plays a crucial role. A CFT is defined as a relativistic quantum field theory

that is invariant under a large set of Poincare transformation-generated

spacetime transformations [10]. This is accomplished through the use of a

coordinate transformation

x
0µ = �x

µ (2.5)

x
0µ =

x
µ + a

µ
x
2

1 + 2x⌫a
⌫ + a2x2

(2.6)

Angles in the conformal group are preserved due to this transformation.

The conformal group for d dimensional theory is isomorphic to the group

SO(d, 2). CFT’s are often studied on a cylinder (R ⇥ S
d�1). CFTs have
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many nice properties, but some are more important than others. First,

for all CFTs, a set of primary operators that transform under conformal

transformations with a conformal dimension � of the primary operator O

can be found as

O
0(x0) = �

��
O(x) (2.7)

This quantity obeys d �
d�2
2 if it is real and positive, and O is a scalar field.

Such primary operators usually lack complex correlation functions. For

instance for a CFT,a scalar primary O with dimension � has a correlation

function

h |TO(x, t)O(0, 0)| i =
1

[x2 � t2 + i✏]�
(2.8)
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Holographic principle

Originally Susskind and t’Hooft [16] gave the ideas about holography

which is inspired by black hole entropy. According to the principle, degrees

of freedom in a region of space is proportional to the area of its boundary

rather than to its volume. In a quantum gravity theory, a copy of all the

information available on a Cauchy slice is also available near the Cauchy

slice’s boundary.

2.5.1 AdS/CFT correspondence statement

Now we introduce the most successful part or can say the realization of

the holographic principle which is known as the anti-de Sitter / conformal

field theory (AdS/CFT) correspondence. The AdS/CFT correspondence,

in summary, demonstrates a close relationship between theories of gravity

in D-dimensional asymptotically AdS spacetimes and the CFTs living far in

the D-1 dimensional conformal boundaries of spacetime [14]. The boundary

theory is a conformal field theory, which means that it is invariant under

Lorentz symmetries, dilatation symmetry, and special conformal transfor-

mations which are examples of conformal transformations. There are no

propagating gravitational degrees of freedom at the boundary. Gravity

emerges along with the AdS space’s radial direction.

In the framework of black holes, it strongly suggests that any black

hole living in such AdS spacetimes would have to obey unitarity, as its

behavior could be directly mapped to a QFT that is manifestly unitary.

However, the glory of the AdS/CFT correspondence is that by analyzing

the toy models, one can derive general conclusions about gravity theories

that are not dependent on such environments, as has been the case with
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gravitational entropy formulas. By exciting degrees of freedom associated

with the quantum fields that live on the boundary, a black hole can be

created within AdS. Because the boundary theory has a unitary evolution,

information must be preserved. To preserve information, the quantum state

of the black hole must evolve unitarity.
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Chapter 3

Gravitational Entropy

Bekenstein Hawking (BH) entropy has performed a fundamentally impor-

tant role in understanding degrees of freedom and unitarity in black holes;

however, it must be reconciled with the von-Neumann entropy prescription

to be fully understood. There are substantial corrections to the BH entropy

that result from the full quantum treatment that leads to the fine-grained

version.

This is an important consideration to take into account in a unitary

treatment of black holes that would solve the information problem. At

face value, the BH entropy expression cannot account for the appearance

degrees of freedom arising from Hawking radiation to external observers.

The general expression of the entropy is obtained from AdS/CFT. By the

key application of AdS/CFT, we can see the entanglement entropy of a pure

CFT region corresponds to the entanglement entropy of a corresponding

region in the AdS bulk.
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3.1 Ryu-Takayanagi Formula

Ryu and Takayanagi [25] surprised the world with their hypothesized rela-

tionship between entanglement in a CFT and the minimal surface in the

dual bulk. Surprisingly, the formula is identical to Bekenstein’s entropy

expression, with the exception that the area of interest is not always a

black hole horizon. Later on, this hypothesis was eventually proved. One

was to apply its generalized formula to black holes and gradually be able

to reproduce the Page curve for an evaporating black hole. Briefly, we

can take a Cauchy slice of the cylinder (which has a disk-like topology)

and divide it into two regions, then compute the von Neumann entropy of

one region for an observer in the other. Consider AdS/CFT and the BH

entropy-area relationship. It proposed the definition of entropy. Now if

we consider a system A in a d-dimensional Cauchy slice of AdSd+1 whose

entropy is defined by that of a (d-1) dimensional boundary section �A of

the R⇥S
d�1 conformal boundary. Then the formula for entropy should be

written as [25] [? ]

SA =
Area of�A
4Gd+1

N

(3.1)

Here, A is the static minimal surface for d-1 dimensions that traverses

the Cauchy slice and shares its boundary with A. We can measure the

fine-grained or von-Neumann entropy by an extremal surface in the bulk

using the Ryu-Takayanagi entropy formula. If the extremal surface is a

co-dimensional two extremal area, which means it has two dimensions less

than the entire spacetime. Furthermore, the surface must follow ��A = �A.

If there are more than two such surfaces, choose the smallest.

Figure 3.1 well shows the correspondence between AdS3 and CFT2

which is most simpler example for AdS/CFT duality.
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Figure 3.1: Left side figure show AdS3 and CFT2 living on its boundary.

Right side figure represent a geodesics �A as a holographic screen.

3.2 Quantum Extremal Surface

The QES explanation is a generalized version of the Ryu-Takayanagi def-

inition, which, as previously stated, takes into account the von Neumann

entropy of a subsystem in holographic quantum field theory [25] [17]. When

computing the gravitational fine-grained entropy, one can come across two

QES. one is a new QES which is a Ryu-Takayanagi surface that Hawking

did not include in his calculations, and an already accepted QES. Thus,

in comparison to Hawking’s calculations, a significant finding is the exis-

tence of the new QES, which is found close to the shrinking black hole

horizon. Furthermore, the calculated entropy will behave similarly to the

Bekenstein-Hawking entropy and the area of the evaporating black hole

under the new QES. After the black hole completely evaporates, the en-

tropy reaches a final value of zero and we see the final state as a pure state.

Furthermore, the QES connects entanglement to the area, a geometrical

property that may hint at the properties of a quantum gravity theory.
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According to the new research, the Page curve can be computed using

the island formalism, which analyses a region inside the black hole defined

by the QES. The replica trick, a mathematical tool, can be used to derive

the island formula. We will study island formulation in the next chapter.
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Chapter 4

Islands formula

The information paradox is a big challenge in quantum gravity. Because

Hawking radiation reacts like thermal radiation and the entanglement en-

tropy outside the black hole appears to increase indefinitely. A key problem

in the information problem is how to obtain the Page curve from the Hawk-

ing radiation’s entanglement entropy. It has been discovered from recent

developments, techniques from AdS/CFT, and holography that the entropy

of a black hole or its Hawking radiation, can be calculated using Quantum

Extremal Surfaces (QES), and this explanation incorporates the general

relativity and quantum field theory. The Page curve has been suggested

to be estimated using the island formalism, which analyses a region inside

of the black hole described by the QES. The replica trick [23] which is a

mathematical tool, can be used to obtain the island formula.

18



4.1 Gravitational fine-grained entropy

In recent years, researchers have gained extensive knowledge of a gravita-

tional version of the von-Neumann entropy. The structure relies on a sur-

face area ( not the horizon). The recent explanation of the von-Neumann

entropy in gravitational systems is more abstract than the Ryu-Takayanagi

formula [25]. The most interesting fact is that there is no need for anti-

de Sitter space or holography in this description. It is a broad formula

that yields a fine-grained entropy formula for the quantum system linked

to gravity. The gravitational von-Neumann entropy is made up of a gener-

alized entropy that describes the black hole area as well as the entropy of

fields that lie outside the black hole. Somehow the complete formula looks

complex because we want a surface that minimizes the generalized entropy

in the spatial direction for the gravitational interpretation of entropy. It

should, however, maximize the generalized entropy in the time direction.

We search for specific extremal surfaces by moving the surfaces in space

and time. When there are multiple extremal surfaces, we should take the

global minimum. So one can write the generalized entropy as

Sgen =
Area(�)

4GN

+ Ssemi�classical(⌃�) (4.1)

Therefore, the complete formula for entropy can write as [2]

S = min�

"
ext�

 
Area(�)

4GN

+ Ssemi�classical(⌃�)

!#
(4.2)

where ⌃� is a region bounded by � and a cut-o↵ surface. Ssemi�classical(⌃�)

is the von-Neumann entropy of the quantum fields in ⌃� which is derived

from the semi-classical description.
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Figure 4.1: Figure shows two di↵erent region which are island and radiation

region

4.2 The fine-grained entropy of Hawking ra-

diation

Now, we shall shift our gaze to areas of space outside the black hole thus

outside the cut-o↵ surface. The gravitational entropy formula is also ap-

plicable for radiation. The semi-classical entropy occurrence of radiation

can be reduced by including the black hole interior in an extra area term.

This extra space inside the black hole is referred to as an island. Because

the disconnected island region is included within the black hole, the island

eventually causes the entropy to decrease [2] [11].

The gravitational fine-grained entropy approach for radiation does not

require complete knowledge of the radiation’s quantum state: the formula

does not provide a full quantum explanation of the state. The fine-grained
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entropy for radiation can write as

SRad = min�

"
ext�

 
Area(�)

4GN

+ Ssemi�classical(⌃Rad [ ⌃Island)

!#
(4.3)

The min/ext function is based on the island’s location and appearance.

In the semi-classical description, the term ⌃Rad[⌃Island represents the von-

Neumann entropy of the entire radiation as well as the island state, which

di↵ers from the exact quantum state of radiation. The ’island formula’,

which is used to calculate the entropy of radiation, is simply a more gen-

eralized form for the gravitational entropy of black holes. The formula has

the significant advantage of not requiring any complicated theories from

holography or higher-dimensional AdS spacetime. we do not require many

ideas which come from AdS/CFT. To calculate the entropy, we extrem-

ize the equation, which is dependent on �’s position. Following that, the

equation is minimized for each available extreme position and probable

island.

4.3 Island prescription for general black hole

We can define an asymptotically flat spherically symmetric eternal black

hole metric as

ds2 = �f(r)dt2 +
1

f(r)
dr2 + r

2 d⌦2 (4.4)

Here, f(r) is a function with two horizons r+and r�. The metric in

Kruskal coordinates can be obtained as

ds2 = �e
2⇢dUdV + r

2 d⌦2

where U = +e
(t+r⇤), V = �e

�(t�r⇤) and r⇤ is defined as radial
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tortoise coordinate which can be written as

r⇤ =

Z
r

(1/f(r))dr (4.5)

and,

e
2⇢ = f(r)/

�
�

2
UV

�

The Hawking temperature is define as

TH = �
�1
H

=
H

2⇡
(4.6)

where H is surface gravity and TH is the on shell temperature.

The von-Neumann entropy of subsystem with an interval of length `

was obtained some time ago [15], in the framework of black hole physics,

where it was referred to as ‘geometric’ entropy. Using methods of conformal

field theory, based in part on earlier work of Cardy and Peschel[6], it was

found that if an infinite system consists of two semi-infinite pieces at a

certain point then we ensure that entanglement entropy should be finite

and obtain the universal formula with any constant ↵, as [7] [9]

Smatter =
c

3
log

 
`

↵

!
(4.7)

where c is the central charge for a 2-D massless scalar field.

Without an island, one can write approximately the generalized entropy

for the matter part. it is represented by the entanglement region between

the boundaries b+ and b� as

Smatter =
c

3
log d (b+, b�) (4.8)

where b+ = (tb, b) and b� = (�tb � i⇡/+, b) denotes the cut-o↵ surface of

the left and right wedges. where d is define as

d
2(x, y) = (U(x)� U(y)) (V (y)� V (x)) e⇢(x)e⇢(y)
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Now, with the island we have the set of disjoint intervals represented as

R[ I = R+[ I [R�, where the finite boundaries of R� and R+ are defined

as b� and b+, respectively. The island is located between two di↵erent

radiation wedges with boundaries of a� and a+. If we construct a single

island then the expression for the entanglement entropy of matter part with

a single island is defined as [9]

Smatter =
c

3
log


d (a+, a�) d (b+, b�) d (a+, b+) d (a�, b�)

d (a+, b�) d (a�, b+)

�
(4.9)

where a+ = (ta, a) and a� = (�ta � i⇡/+, a) is the boundary of the island.

If, once Smatter calculated then to determine the fine-grained entropy of

Hawking radiation, we use the so-called ”island formula” by eq.(4.2)

S = min {extSgen } = min

⇢
ext


A(@I)

4GN

+ Smatter (R [ I)

��
(4.10)

Here, the first term of generalized entropy will vanish for the case without

constructing an island only contribution will come from the second term.

D.Page made a simple argument that, early on, when the subsystem

is significantly smaller than the total system, the entanglement entropy

can be estimated by the subsystem’s thermal entropy. Using this logic,

we should expect fine-grained entropy to increase linearly at the start of

the radiation. We can use this statement again later in the evaporation

process, with the small subsystem replaced by the black hole. The black

hole’s fine-grained entropy should then decrease linearly.(2,12)

Now, one can calculate the location of the island by extremizing the eq.(4.9)

for a.
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Chapter 5

Recovering the Page curve for

Kerr black hole

5.1 Kerr spacetime

The Kerr metric, in Boyer-Lindquist coordinates discribe by

ds
2 = �

⇢
2

⌃2
�dt

2 +
⇢
2

�
dr

2 + ⇢
2
d✓

2 +
⌃2

⇢2
sin

2
✓(d��!dt)2,! =

2aMr

⌃2
, (5.1)

� = r
2
� 2Mr + a

2
, ⇢

2 = r
2 + a

2
cos✓ > 0,

⌃2 = (r2 + a
2)⇢2 + 2Ma

2
rsin

2
✓ > 0,

The total mass is M, and the angular momentum is J = Ma which we will

assume is positive.

The extremal limit corresponds to a
2 = M

2, so � = (r � M)2 and the

event horizon is at r = M. The area of the extremal horizon is

A = 8⇡M2 = 8⇡J

The value of ! at the horizon is called the angular velocity of the horizon

and, in the extremal case, is simply ! = 1
2M Since grr =

⇢
2

� , In a constant t
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surface, the spatial distance to the extremal horizon is clearly infinite. As

one moves down this throat, we want to extract the limiting geometry in

the same way that extreme charged black holes do.

5.2 Kerr Metric near horizon limit

To describe this near horizon geometry, we set

r = M + �r, t = t

�
, � = �+ t

2M�

and takes the limit � ! 0, the shifting of � makes @

@t
tangent to the

horizon. In simple way, the coordinates corotate with the horizon. The

matric is [4]

ds
2 =

 
1 + cos

2
✓

2

!"
�r

2

2M2
dt

2+
2M2

r2
dr

2+2M2
d✓

2

#
+
4M2

sin
2
✓

1 + cos2✓

 
d�+

r

2M2
dt

!2

(5.2)

This spacetime is no longer asymptotically flat. It is similar to AdS2⇥

S
2 in many respects. Likewise for ✓ = 0 and ⇡. one can see that the

spacetime along the axis is precisely AdS2. The factor of 2M2 appears as

an overall factor in front of the metric while doing rescaling of t. eq.(5.2)

is invariant under r ! ↵r, t ! t/↵ with any constant ↵. So the dilation

symmetry of AdS2 is present in the above metric. There is also less obvious

asymmetry, but still true, called the global time translation in AdS2.

For product spacetimes like AdS2 ⇥ S
2, one can omit the angular di-

rection, and conformally rescale AdS2 to view infinity as a finite boundary.

one can remove the angular directions, and conformally rescale AdS2 to

view infinity as a finite boundary. Then the Killing fields of AdS2 become

conformal symmetries of the boundary. To bring infinity to finite distance
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the good way is to rescale the whole metric, although the conformal metric

is no longer smooth at the boundary. therefore we start with the metric

in Poincare coordinates (5.2) and set 2M2 = 1. Multiplying by 1/r2and

considering x = 1/r the metric becomes [4]

ds
2 =

 
1 + cos

2
✓

2

!
[�dt

2 + dx
2 + x

2
d✓

2] +
2sin2

✓

1 + cos2✓
(xd�+ dt)2 (5.3)

5.2.1 Entanglement entropy

By (5.3) the metric is given by

ds
2 =

 
1 + cos

2
✓

2

!
[�dt

2 + dx
2 + x

2
d✓

2] +
2sin2

✓

1 + cos2✓
(xd�+ dt)2 (5.4)

Define the Kruskal coordinates U and V

U = t� x, V = t+ x

dU = dt� dx, dV = dt+ dx

(5.5)

Under the Kruskal transformation, the metric becomes

ds
2 = �

 
1 + cos

2
✓

2

!
dUdV +

 
V � U

2

!2 
1 + cos

2
✓

2

!
d✓

2

+
2sin2

✓

1 + cos2✓

" 
V � U

2

!
d�+

dU + dV

2

#2

(5.6)

Now we define the conformal factor as

g(✓) =

"
1 + cos

2
✓

2

#1/2

(5.7)
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one can define the Kruskal coordinate

Right Wedge : U = �e
�(t�r

⇤)
, V = e

+(t+r
⇤)
,

Left Wedge : U = e
�(t�r

⇤)
, V = �e

+(t+r
⇤)
,

(5.8)

where + is the surface gravity of the event horizon and r
⇤(a, b) denotes

the tortoise coordinate as

r
⇤(r) =

R
f
�1(r)dr

f(r) = g(✓)r2
(5.9)

f(r) is given by metric (5.2).

Entanglement without island

The geodesic distance d (x1, x2) between two points in the whole space-

time can be written as follows

d (x, y) =
p
g (x) g (y) [U (y)� U (x)] [V (x)� V (y)] (5.10)

In four or high dimensions, the entanglement entropy is normally unknown.

we assume at an initial time, the system is a pure quantum state. Therefore

the entanglement entropy of region [b+, b�] is the same as the entanglement

entropy of the radiation. The matter entropy per unit area in two- dimen-

sions is given by

SR(without island) = Smatter =
c

3
log [d (b+, b�)] (5.11)

where c is centeral charge in CFT and d (b+, b�) is the distance between

b+ and b� in Kerr geometry. the spacetime coordinates are defined as

b± = (±tb, b). Therefore, following the conformal mapping and by using

eq.(5.3), the matter entropy in Kerr geometry is obtained to be

SR(without island) =
c

6
log[g2(b)2e2+b(1 + cosh(2+tb)] (5.12)
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Figure 5.1: Left side figure show the Penrose diagram without island. Right

side Penrose with island.

At late times, we assume tb >> b, we can write

cosh(+tb) '
1

2
e
+tb

Therefore Smatter is reduced to

SR(without island) ⇠
c

6
log[e2+tb ] '

c

3
+tb (5.13)

Entropy varies linearly with time and eventually becomes infinite. In-

stead, we expect that the growth of entanglement entropy will finish in a

finite time. As a result, in the absence of an island, there is no Page curve

and no information runs away from the black hole. The entanglement

entropy will be vastly higher than the black hole’s Bekenstein-Hawking

entropy, which contradicts unitarity. In the following section, we will cal-

culate the entanglement entropy of construction with an island, and the

unitary Page curve will be reproduced as long as this construction is con-

sidered.

Entropy with island

Now, we construct the island and set the boundary of the island located

at a± = (±ta, a), We highlight two mathematical tricks before getting into
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specific calculations.

In higher-dimensional spacetime, the entanglement entropy has an area-

like UV divergent that varies on the cut-o↵ ✏ and can be absorbed by

renormalizing the Newton constant G(r)
N
.

Sfield (R [ I) =
Area(@I)

✏
+ S

(fin )
field (R [ I),

1

4G(r)
N

=
1

4GN

+
1

✏
.

In disconnected intervals, we can calculate the entanglement entropy of

the QFT. In two-dimensional geometry, there is a reduced QFT of massless

fermions. In the theory of free Dirac fermions, the formula of non-universal

entropy is written by [8]

Sfield (R [ I) =
c

3
log


d (a�, a+) d (b�, b+) d (a�, b�) d (a+, b+)

d (a�, b+) d (a+, b�)

�
, (5.14)

One can find the value of d (x�, x+) by using eq.(5.11) and we can

obtain

Sfield (R [ I) =
c

6
log

⇥
g
4(✓)16e2+(a+b) cosh2(+ta) cosh

2(+tb)
⇤

+
c

3
log


e
2+a + e

2+b
� e

+(a+b) cosh[+(ta � tb)]

e2+a + e2+b + e+(a+b) cosh[+(ta + tb)]

�
.

(5.15)

One can define the generalized entropy by eq(4.1) as [28]

Sgen =
⇡a

GN

+ Smatter (R [ I) (5.16)

Where first term corresponds to the contribution from the area of island.

Bekenstein-Hawking entropy of the Kerr black hole read as [28]

SBH =
⇡r

2GN

(5.17)

We can obtain the full expression of generalized entropy by using (5.15)
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and (5.16) as

Sgen =
⇡a

GN

+
c

6
log

"
g
4(✓)16e2+(a+b) cosh2(+ta) cosh

2(+tb)

+
c

3
log


cosh [+(a� b)]� cosh[+(ta � tb)]

cosh [+(a� b)] + cosh[+(ta + tb)]

#
.

(5.18)

The fine-grained entropy of Hawking radiation can be found by ex-

tremizing generalized entropy all over the extremal surface and selecting

the minimal value. In the next section, we will see the behaviors of entan-

glement entropy at early and late time limits.

5.2.2 Island absent at early times

Our last expression of generalized entropy eq.(5.17) looks complex and

few appropriate approximations are needed. At early times, we assume

ta, tb ⌧ a, b and choose the boundaries of radiation regions beyond the

event horizon. Therefore, the last term of eq.(5.17) can be neglected, i.e.

c

3
log


cosh [+(a� b)]� cosh[+(ta � tb)]

cosh [+(a� b)] + cosh[+(ta + tb)]

�
! 0

And we can write as

cosh2 [+ (ta, tb)] ' 1

Therefore, expression can be recast as

Sgen ( early times ) '
⇡a

GN

+
c

6
log

⇥
g
4(✓)

⇤
+

2c

3
log

⇥
2e2+(a+b)

⇤

=
⇡a

GN

+
2c

3
log

⇥
2g4(✓)e2+(a+b)

⇤ (5.19)

We can see g(✓) is only for ✓. We extremize the eq.(5.18) for a. This

equation has no real extreme point which means the quantum extremal
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surface is nonvanishing which makes the generalized entropy its extremal

value. Therefore, the island is absent at early times and all contributions

came from radiation. Finally, it increases linearly with time and follows eq

(5.13).

5.2.3 Island present at late times

Now, we shift our attention to the behavior of the entropy at late times.

Because of the growing amount of radiation at the end stage of evaporation,

the entanglement entropy comes from the matter part also goes up. A phase

transition occurs when the second term in eq.(5.16) grows older to O
�
G

�1
N

�

(same as the order of the first term in eq.(5.16) ). As a result, the fine-

grained entropy of Hawking radiation started to decrease, and the behavior

of the entanglement entropy, as expected, is constrained by unitarity. At

late times, we draw the structure with an island and assume ta, tb � b).

Firstly we focus on the time component of eq.(5.17)

Sgen ( time ) =
c

3
log

⇢
cosh (+ta) cosh (+tb)

cosh[+(a� b)]� cosh[+(ta � tb)]

cosh[+(a� b)] + cosh[+(ta + tb)]

�

(5.20)

we can use some approximations

cosh+ta '
1

2
e
+ta , cosh+tb '

1

2
e
+tb (5.21)

and

cosh[+(ta + tb)] � cosh [+(a� b)] (5.22)

Then expression of Eq.(5.16) tends to

Sgen(time) '
c

3
log{cosh [+(a� b)]� cosh [+(ta � tb)} (5.23)
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we can notice that at tb = ta last term reach at its minimum value. If

we set the value of tb = ta = t then eq.(5.20) can be reduced to

Sgen(time) '
c

3
log{cosh [+(a� b)]� 1} (5.24)

We noticed here that the entanglement entropy does not depend on

time and it converges at late time. Now, we calculate the expression of the

generalized entropy at late time and also taking the approximation

cosh [+(a� b)] '
1

2
e
+(b�a) (5.25)

Therefore, the generalized entropy by eq.(5.17) is obtained as

Sgen =
⇡a

GN

+
c

3
log

�
g
2(✓)4 cosh(+ta) cosh(+tb)

 
+

c

3
+(a+ b)

+
c

3
log


cosh [+(a� b)]� cosh[+(ta � tb)]

cosh [+(a� b)] + cosh[+(ta + tb)]

�
.

by taking ta = tb = t and using eq.(5.20), (5.21), (5.24). one can obtain

Sgen '
⇡a

GN

+
c

3
log

�
g
2(✓)e2+t

 
+

c

3
+(a+ b)

+
c

3
log

1
2e

+(b�a)
� 1

1
2e

+(b�a) + 1
2e

2+t

Sgen =
⇡a

GN

+
c

3
log

�
g
2(✓)e2+t

 
+

c

3
+(a+ b) +

c

3
log

[e+(b�a)
� 2]e�2+t

e+[b�a�2t] + 1

=
⇡a

GN

+
c

3
log[g2(✓)] +

2c

3
+b+

c

3
log

1� 2e+(a�b)

1 + e+[b�a�2t]

=
⇡a

GN

+
c

3
log[g2(✓)] +

2c

3
+b+

c

3
log[1� 2e+(a�b)] +

c

3
log[1 + e

+(b�a�2t)]

Now, we assume the first order expansion, i.e limx!0 log(1 + x) ' x. We

can obtain

Sgen '
⇡a

GN

+
c

3
log[g2(✓)] +

2c

3
+b�

2c

3
e
+(a�b) +

c

3
e
+(b�a�2t) (5.26)

Here one interesting thing is that the last term of eq.(5.25) is time de-

pendence. However, with time it decays too fast because it is a subleading
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term. Hence at late time the location of the island is constant and indepen-

dent from time. To find the location of the island we extremize eq.(5.25)

with respect to a.
@Sgen

@a
= 0

Because time dependent term decays quickly so we neglect it and near

horizon limit b ! r (The event horizon). We can obtain

a ' r +
1

+
logBigg[

3⇡

2cGN+

#
(5.27)

one can directly see that boundary of the island lies outside the event hori-

zon. Now we put this value of a in our general formula for the generalized

entropy i.e. eq.(5.18), the real fine grained entropy for Hawking radiation

is obtained as

SEE =
⇡r

GN

+
c

6
logO(c) + ...... ' 2SBH (5.28)

The Bekenstein-Hawking entropy is a leading order term, which results

from the island’s contribution. The quantum e↵ects from matter fields are

represented by the subleading order and other terms, which can be omitted

in comparison to the first term. As a result, the entropy of radiation

approaches an asymptotic constant, implying that the island construction

is correct.

Now we are going to discuss the behavior of generalized entropy. There

is no island in the beginning; the generalized entropy is driven by the

contribution from the matter part and increases over time. We are now

considering the construction of an island outside the event horizon. The

presence of the island is required for generalized entropy to achieve the

minimal value. The generalized entropy is now saturated and asymptot-

ically becomes a constant, where the Bekenstein-Hawking entropy is the

leading order.
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Figure 5.2: Red dash line shows EE entropy without island, blue solid line

represents the saturation value for EE entropy with island

5.2.4 Page time and scrambling time

Page time is the time when the entropy of the radiation approaches its

maximum. In an evaporating black hole, when the entropy of the radiation

begins to decrease and the black hole has lost nearly half of its initial mass.

After the Page time, the entropy of an eternal black hole will be constant.

By eq.(5.13) and eq.(5.27), the Page time can be obtained as

tPage =
3SBH

⇡THc
(5.29)

where TH is Hawking temperature which is define as + = 2⇡TH . The

scrambling time is defined as the shortest time during which the infor-

mation can be recovered from Hawking radiation by the Hayden-Preskill

experiment [60]. Because the degree of freedom of the island corresponds

to radiation, the scrambling time corresponds to the time for information

to enter the island. At time t1,let us consider that an observer on the cut

o↵ surface (r = b) sends a light signal. It reaches the island (r = a) at time

t2. Then distance in the null direction is defined as

V (t1, b)� V (t2), a = (t1 + r
⇤(b))� (t2 + r

⇤(a))

t2 � t1 = [r⇤(b)� r
⇤(a)] + [V (t2, a)� V (t1, b)]
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For shortest time

[V (t2, a)� V (t1, b)] ! 0

Therefore, the scrambling time can be written as

tscr ⌘ r
⇤(b)� r

⇤(a) (5.30)

By eq.(5.9), we can write

r
⇤(r) = �

1

g(✓)r
(5.31)

Finally, we obtain

tscr '
1

g(✓)

 
b� a

ab

!
(5.32)

Here, we can see the scrambling time depends on the conformal factor

which depends on ✓.
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Chapter 6

Discussion

we have studied the information paradox and later we generated the Page

curve for the Kerr black hole near the horizon limit. If we start with a

pure state at the initial time so Hawking radiation goes up to infinity at

the end-stage for evaporation. At the end stage of evaporation entropy of

Hawking radiation should be less than BH entropy and follow the unitarity.

Due to this new research, the Page curve can now be reproduced. As a

result, unitarity is preserved, and the paradox appears to be resolved. On

the other hand, the fact that the island formula’s derivation is dependent

on the Euclidean path integral is a source of contention. We also used a

cuto↵ surface to derive the island formula. There are significant arguments

that appear to support the use of the cuto↵ surface.

We have talked about results that only involve gravity. String theory

and holography have been critical in ensuring that these results are correct.

The island formula research provides important insights into how funda-

mental quantum degrees of freedom can be used to construct the geometry

of spacetime. The island formula has been developed as a result of recent
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research. Though the researchers attempted to present a comprehensive

solution, it is unclear whether the findings are correct.

37



Chapter 7

Conclusion

In this thesis, we calculated the Page time and the scrambling time for

the Kerr metric near the horizon limit and reproduced the corresponding

Page curve. We see that near the horizon limit our original Kerr metric

tends to be a little bit simpler metric with some symmetry. As a result of

that, we can check our result with some old calculations which have been

done already. we have calculated the Page time tPage =
3SBH

⇡THc
and later the

scrambling time tscr '
1

g(✓)
(b�a)
ab

. Where it depends somehow on ✓ but for

the fixed value of ✓ our results tend to be independent from ✓.

We analyze that early the entanglement entropy of a system is con-

tributed from and no island is formed but at a late time, we construct an

island outside the event horizon. Its consequence is that the entanglement

entropy is dominated by the island area. As a result, we got a Page curve

where at starting the entanglement entropy follows Hawking radiation, and

after Page time entanglement entropy goes to zero as expected for a pure

state.
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Appendix A

Null geodesic of Kerr metric

Kerr metric near event horizon given by eq.(5.4)

ds
2 =

 
1 + cos

2
✓

2

!
[�dt

2 + dx
2 + x

2
d✓

2] +
2sin2

✓

1 + cos2✓
(xd�+ dt)2

Now, we see di↵erent case for ✓ for ✓= 0, d✓2 ! 0, our metric can be obtain

as

ds
2 = �dt

2 + dx
2 (A.1)

For ✓ = 0, metric tends to

ds
2 =

1

2
(�3dt2 + dx

2) + x
2
d�

2 + 2xd�dt (A.2)

Here, we can see in eq.(A.1) our resulting metric is quite simpler. Now

in order to calculate null geodesic we firstly take original Kerr metric by

eq.(5.1) with metric component gµ⌫

gtt =

"
1�

2Mr

⇢2

#

gt� = g�t = �
2Marsin

2
✓

⇢2
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grr =
⇢
2

�

g✓✓ = ⇢
2

g�� =

"
r
2 + a

2 +
2Ma

2
rsin

2
✓

⇢2

#
sin2

✓

where � = r
2
� 2Mr + a

2, ⇢2 = r
2 + a

2 cos2 ✓ Hence, for null geodesic

ẍµ + �µ

⇢�
ẋ⇢ẋ� = 0

For µ = 1, 2, 3 equation can obtained as

r̈ + �r

⇢�
ẋ⇢ẋ� = 0 (A.3)

✓̈ + �✓

⇢�
ẋ⇢ẋ� = 0 (A.4)
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we obtain this using eq.(A.3), (A.4), and all values of Christo↵el
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(A.7)

and remaining equation can written as

ẗ = 0, �̈ = 0 (A.8)

For the di↵erent case for ✓ and non-extremal limit, all equation tends to

be Solvable.
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