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Abstract

Employing latest technologies from industrial paradigms such as Smart Manufacturing,

a Multi-Agent System architecture has been designed and developed in this project. The

architecture has further been implemented on three distinct industrial systems, each em-

ploying di↵erent algorithms and objectives. Relevant literature was thoroughly reviewed

during the course of this project to gain newer perspectives and keep in pace with modern

trends in the Manufacturing sector. The promising results obtained from the implemen-

tation of our architecture and algorithms serve as evidence of the applicability of our work

for the real-world industries.

This report aims to give a detailed explanation of the motivation for the objective

of the project, research done, challenges faced, novelty of the algorithms developed and

the impressive results obtained.
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Chapter 1

Introduction

1.1 Social Internet of Things

Accuracy, precision and cost-e↵ectiveness of sensing technologies have improved in re-

cent years, leading to extensive instrumentation of industrial assets and emergence of

Big Data. Computers have become smart, compact, powerful and capable of operating

over cloud servers. With advancement in communication technologies, low-cost transfer

of significant amount of data over the internet is now possible [Ganchev et al., 2016]. In-

tegrating all these developments with the objects of everyday use has led to a network of

connected objects called the ‘Internet of Things’ (IoT). [Li et al., 2015]

Thanks to these technological advancements, up to date industrial assets are able to

generate extensive data that reflects the system performance. Also, technologies such

as RFID, smart cards, embedded systems, Wi-Fi, and Bluetooth communication have

enabled automatised machine to machine communications to take place [Unland, 2015].

Such technologies make it possible to harness the benefits of the data generated in in-

dustrial environments. This extension of the notion of IoT is termed as the ‘Industrial

Internet of Things’ (IIoT) [Evans and Annunziata, 2012, Xu et al., 2014].

In the IIoT, each asset has a Digital Twin, which is its cyber model/ replica, contain-

ing the asset data acquired from various sources. This Digital Twin is part of a network

of several other twins with their corresponding assets, together forming a network of in-

dustrial assets. It is the Digital Twins where the local analytics are implemented over the

asset-data. The streams of data flowing into the twins are analysed by human experts

or computational algorithms to get a perception about the surroundings, performance,

and the health conditions of the assets [GE Digital, 2017]. Embedded computers moni-

tor and control the physical processes, usually with feedback loops. This way, physical

processes shape the computations and vice-versa [Lee, 2008]. The integration of com-

putation with physical processes described above forms a Cyber-Physical System (CPS)

[Jeschke et al., 2017].

Further benefits can be harnessed by integrating human-like social networking ca-
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pabilities into IoT. This notion of SIoT (Social Internet of Things), has been gaining

momentum in the areas of product life-cycle management, tra�c routing, and workplace

help and support. The integration of social networks and IoT can be extended to im-

prove system-level performance in an asset fleet. In this project, a quantitative method

to identify groups of similar assets, or ‘friends’ is proposed. Subsequently, condition data,

and the diagnostics or the prognostics knowledge shared among these assets can improve

the accuracy of the asset’s computations [Li et al., 2018]. Several projects like the Toyota

Friend, Nike+, Xlively, Social Web of Things, Evrythng, etc. have aimed at integrating

IoT with a social-networking framework [Atzori et al., 2014].

1.2 Smart Manufacturing

Although the benefits of connected social assets can be harnessed across several sectors

such as health care, tra�c routing, sports, etc. the manufacturing sector provides su�-

cient complexity, possesses immense potential to impact human lifestyle and environment,

and employs maximum resources. It thus encompasses significant scope to benefit from

this wave of innovation and transform into a smarter version. The broad aim of the Smart

Manufacturing project we have worked on is to deploy Digital Twins and IoT to create a

social network of assets to enable intelligent decision making and operations planning in

manufacturing enterprises.

The National Institute of Standards and Technology (NIST) defines Smart Manu-

facturing as the systems that are ”fully integrated, collaborative manufacturing systems

that respond in real time to meet changing demands and conditions in the factory, in the

supply network, and in customer needs.”

The future of manufacturing is a blend of digital machines, industry-ready software

and customer interfaces. It is now shifting from personalised production to manufacturing

by mass, and the next wave of technological breakthroughs like mass-scale 3D printing

of small components, super critical spares and safety equipment is likely to arrive soon.

Smart factories of future are a marriage of versatile manufacturing paradigms and tech-

nologies such as cloud computing, the internet, real-time analytics, advanced robotics,

Machine Learning, etc. to enable the production of large scale customised items, without

an increase in the cost of production. Industries in future will plan operations auto-

matically, and the only role a human manager would play would be to pick models and

algorithms from a store of pre-developed tools that best suit a need.

1.3 Manufacturing sector in India and future scope

The scope of contribution of Smart Manufacturing is significant especially for the de-

veloping economies like India, where the manufacturing sector forms a huge share of
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Gross Domestic Product (GDP) and plays a major role in employment generation for

both skilled and semi-skilled labour. In the case of India, the manufacturing sector is

the second largest employer, accounts for about 16% of the GDP, and can thus transform

the lifestyles of its populace. In the near future, the Indian manufacturing sector would

face the responsibility to absorb a significant demographic growth and disproportionate

expansion of working age population. The Government of India has appreciated this and

has taken several initiatives, such as the ambitious target to make the manufacturing

sector account for 25% of India’s GDP by the year 2025. The Prime Minister of India,

Mr. Narendra Modi, has pitched India as a manufacturing destination at the World In-

ternational Fair in Germany’s Hannover in 2015. Campaigns such as Make in India, for

attracting foreign investors in the country, further strengthen the Indian Government’s

vision to transform India into a global hi-tech manufacturing hub. With these continuous

e↵orts to boost the Indian manufacturing sector, India is set to become the world’s fifth

largest manufacturer by 2020. Global giants such as GE, Siemens, HTC, Toshiba, and

Boeing are attracted by India’s market of more than a billion consumers and increasing

purchasing power, and have either set up or are in the process of setting up manufactur-

ing plants in India. The implementation of the Goods and Services Tax (GST) has made

India a common market with a GDP of US$ 2 trillion along with a population of 1.2

billion people, which is a big draw for the investors. Apart from these, Government of In-

dia has also launched Digital India campaign to develop an advanced digital countrywide

infrastructure[INDIA BRAND EQUITY FOUNDATION, 2015, Fut, 2015, Now, 2017].

Clearly, there is immense scope, need and support for promoting the manufacturing

sector in India. Manufacturing, in short, is key to India’s future. However, there haven’t

been many e↵orts by the Indian industries for development and innovation towards smart

manufacturing. Little e↵orts by a few companies are in their infant stage and have not

produced any significant results.

Another challenge faced by the Indian manufacturing sector is the amateur state of its

sensor technologies and embedded computing power. The ages old machines used in most

of the manufacturing shop floors of India show no signs of intelligence and are unable to

produce the required extensive data for realisation of Smart Manufacturing.

While India struggles with modernising its manufacturing facilities, many government

and non-government organisations around the world, especially Europe, are taking steps

to promote the rise of smart manufacturing practices. ‘Horizon 2020’ is the European

Commission’s initiative under which multiple smart manufacturing projects are being

funded. UK government has been funding companies who’re working on development of

smart manufacturing platforms. The German government has also marked smart manu-

facturing in its ’High Tech Strategy’ projects by the name Industrie 4.0.

Staying in tune with the latest developments, and making sure that India gets to the

forefront of manufacturing technologies both in the region and worldwide, is what this

project promises.
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1.4 Contribution of this project towards the next

wave of innovation

A sincere intention of making a valuable contribution in the global technological con-

sortium has encouraged us and driven us to design a novel MAS architecture and develop

optimised algorithms for the three industrial problems targeted. Our e↵orts have primar-

ily gone to solve the major problems being faced in the industrial systems at present,

using latest technologies and deriving from concepts related to Industrie 4.0.

With our MAS architecture proposing newer implementations of collaborative learn-

ing, we are confident that it can serve as a radical innovation for Operations Planning,

and Prognostics and Health Management (PHM) in manufacturing scenarios. Having

developed a new method for calculation of IF and devised a novel distributed algorithm

for operations planning, integration of the same with large-scale interactive systems can

provide drastic reduction in processing times for job scheduling. Adaptation of a latest

Long Short-Term Memory (LSTM) based prognostics algorithm to real-time, censored as

well as uncensored, data, promises vital changes in the approaches in use today. Adding

to these, the research done in this project for PHM of 3D Printers and development of a

fundamental diagnostics model for the same, has allowed us to explore new pathways in

this previously unchartered territory.

Social Internet of Things and Smart Manufacturing being the primary drivers of the

next technological revolution, employment of various techniques from these concepts give

our work a highly optimistic scope in the near future.
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Chapter 2

A Multi-Agent Systems architecture

for Social Industrial assets

2.1 Literature Review

Many paradigms have emerged to satisfy the requirements, and the challenges, of “new

manufacturing” practices. Among which, agent-based manufacturing systems (Multi

Agent Systems (MAS)), and Holonic Manufacturing Systems (HMSs) have received a

lot of attention in academia and industry. MASs enable social behaviour of intelligent

entities, through the capabilities of the agents forming the System. They are a broad

software approach, unlike the manufacturing-specific approach of HMSs, focused on dis-

tributed control [Giret and Botti, 2004].

Decentralised architectures allow complex tasks to be divided into sub-tasks, allotted

to the best suited agents. Decentralisation presents advantages like system robustness

and agility, and elimination of data transfer lags. Enabled by MAS, these architectures

have been used to tackle industrial problems. For example, [Giordani et al., 2013] make

use of a MAS approach to tackle the problem of production planning and scheduling. A

two-layer hierarchical approach is employed by [Mönch and Drießel, 2005] to decompose

the scheduling problem into simpler sub-problems. [Christensen, 2003] proposed an archi-

tecture where agents focus on deliberative tasks on a higher level, while lower-level agents

focus on real-time constrained control tasks.

[Bagheri et al., 2015] presented a step-wise approach to design a CPS architecture for

an Industry 4.0 environment, and an adaptive clustering method for self-aware machines.

[Bagheri et al., 2015] discussed how one should progress from the smart-connection level

to the configuration level while designing an architecture. Drawing from Bagheri’s ideas,

in this paper we present an architecture which can be implemented for any industrial

system inspired by the Social Internet of Things paradigm. We also introduce the concept

of ‘Virtual Assets’, an additional agent layer aimed to standardise the data flowing into

the asset’s Digital Twins. This standardisation of data makes it possible for us to have
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a generic model of Digital Twins, thus eradicating the need to tailor di↵erent Twins for

every other asset in the industrial system.

2.2 Learning in Multi-Agent Systems

Agents in an MAS need to keep learning in order to adapt to a dynamic environment. It

has been shown that multi-agent learning can be reduced to single agent learning by con-

sidering the other agents in the system as part of the agent’s environment. However, this

may not always lead to an optimal solution and coordinated machine multi-agent learning

becomes more important [Alonso et al., 2001]. An e�cient way to achieve collaboration

is to integrate social networking concepts into the Internet of Things. The assets in such a

“Social Internet of Things” behave like social entities, sharing data and collaborating with

one another to generate an optimal enterprise level solution. This paradigm, achieved by

developing trust among assets which are “friends” with one another, permits navigability

even after the point when number of nodes increase above those encountered in the tra-

ditional internet [Atzori et al., 2014]. Collaboration among assets in a system not only

increases the responsiveness of the system, but also allows unseen events of importance

to be broadcasted within a group of friends. This improves the accuracy of underlying

algorithms by making a richer data-set available for training and prediction purposes.

[Ning and Wang, 2011] describe an analogy of such systems with the social organisation

of humans as: “each ‘unit’ human has its nervous systems made up of the same physi-

cal components and operating laws, but individuals possess their own sophisticated and

unique consciousness and behaviour”.

Multi-agent collaborative learning can be implemented through several kinds of algo-

rithms: social algorithms, swarm intelligence, etc. An example of social algorithms is evo-

lutionary computation, a kind of Stochastic Search method among reward-based learning

techniques [Alonso et al., 2001]. Other approaches that incorporate collaboration between

agents are swarm intelligence techniques, that try to emulate the e�ciency of foraging seen

in natural systems such as those of bees or ant colonies. [Panait and Luke, 2005]’s sur-

vey provides an interesting example about cooperative foraging, where agents are robots

whose objective is to discover rock samples in an area and bring them to a specified

location.

A relevant part of current research focuses on harnessing the technology capabilities by

merging collaborative learning and Multi Agent Systems for the IIoT. However promis-

ing this idea may seem, there is a lack of an industrial-system architecture capable of

integrating the social networking concepts with the IIoT. Our architecture addresses this

gap by providing clearly organised levels, each suited for di↵erent analytics algorithms.

Ours is a MAS architecture based on the SIoT paradigm, capable of being implemented

on various industrial systems.
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2.3 The Architecture

The objective of the MAS architecture developed in this project, which consists of

three layers, is to implement Collaborative Learning for social industrial assets. The

first layer is formed by Virtual Assets, software components that ensure that the data

originating from machines is pushed to digital agents in a standardised format, and at

regular intervals. The second layer consists of Digital Twins, digital agents that run the

algorithms of interest for the asset manager using the standardised data from the Virtual

Assets. The third layer of our architecture is the Social Platform, that can be hosted in

a central server or in the cloud. All the communications to and from an agent, and the

interactions with the external world, happen via the Social Platform (see figure 2.1).

Figure 2.1: Schematic layout of the MAS architecture.

2.3.1 First Layer: assets, Virtual Assets and standardisation of

data

In our architecture, the data originating from a physical asset is standardised by a

Virtual Asset before being sent to the Digital Twin.

The motivation for the introduction of Virtual Assets is the heterogeneous nature of

industrial asset fleets. A manufacturing facility, for instance, may have a milling machine,

a packaging machine, and a lathe among many other kinds of machines. They might also

come from di↵erent manufacturers, serve di↵erent purposes, and have di↵erent specifica-

tions. In another example, an automobile company produces di↵erent models of vehicles,

which are suitable for di↵erent terrains or performances required. The number and types

of sensors, or operating conditions, may vary among the vehicles. Virtual Assets are de-

signed to standardise the data coming from these vehicles in a format that is conducive
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to a generic Digital Twin.

Virtual Assets

A Virtual Asset is a software component present for each corresponding physical ma-

chine. It is responsible for standardising the asset data before it reaches the Digital Twin.

The data from Virtual Assets consists of three main parameters: the Machine Identifier,

the Features (with time at which they were recorded), and the Events (kind of event, and

time of event). The ‘Machine Identifier’ gives the asset a specific identity in the asset

fleet, and includes information of the asset make, location and operator. ‘Features’ here

refer to sensor generated values. ‘Events’ can be failures, warnings, user messages, etc.

figure 2.2 describes how the data is made into a standardised format after passing through

a Virtual Asset.

Similar enterprise-level solutions exist. For example, MTConnect

[Vijayaraghavan et al., 2008], which standardises the data being transferred across the

entire system. Our approach di↵ers from MTConnect, as here the data from each asset

is standardised individually by the Virtual Assets and not at fleet-level.

Figure 2.2: Virtual Assets and Data Transfer to Digital Twin

2.3.2 Second Layer: generic Digital Twins

Extensive instrumentation, increased digitisation and the heterogeneity of manufac-

turing systems make the design of industrial agents a di�cult task. Even in relatively

homogeneous asset fleets the make of the assets varies, and so does the nature of the as-

set’s data. Addressing this challenge, the concept of a Virtual Asset presented in section

2.3.1 enables the development of a generic Digital Twin. These generic Twins are capable

of working with standardised data provided from a variety of assets. This is aimed to free
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the asset manager from the cumbersome task of designing a specific Digital Twin for each

of the many kinds of asset present in a typical industrial environment.

A Generic Digital Twin

The layout of the Digital Twin proposed here is generic, which means, it can be adapted

to practically every type of asset and industrial problem. Figure 2.1 shows the layout

of the proposed Digital Twin. Data flows into the Digital Twin from two sources: its

corresponding asset, and the Social Platform; and is stored in a data repository. This

data is then used to run a diverse set of analytic algorithms. These form the Analytic

Engine of the Digital Twin. Typically for each kind of asset, their associated Digital Twins

may run di↵erent kind of algorithms. Which algorithms will the Twins run is determined

by the needs of the asset manager and conveyed by the Social Platform. An output

manager monitors the streams of data flowing out of the twin, and is thus responsible for

data sharing and collaboration with its friends in the asset fleet.

Figure 2.3: Role and working of the Digital Twin

The algorithms run by the analytic engine of the Digital Twin may address tasks like

health management, performance optimisation, and other optional features which may be

particular to that asset type. The figure 2.3 shows how prognostics and diagnostics are

performed for all the assets, but certain tasks like load management and path determina-

tion are performed for the transportation assets only. Additionally, algorithms supporting

a hypothetical centralised clustering performed by the Social Platform can be implemented

in the analytics engine here. For example, a secondary hand-shake distributed clustering

algorithm can be implemented on agents to reinforce centralised clustering.

The computing capabilities of the agents allow for a flexible heterarchy of the system.

For instance, when a system is in operating state, the algorithms in the Digital Twins
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keep processing data both from themselves and from collaborating assets. This allows the

algorithms (often designed to infer empirically-based models) to learn in real-time. This

automatised heterarchy can be stopped at any time by request of the Social Platform.

2.3.3 Third Layer: the Social Platform

The Social Platform forms the third layer of the proposed architecture. Hosted in a

single or multiple servers in the cloud, the Social Platform is both a gateway for human-

Digital Twin interaction, and also an enabler for asset to asset communications. The

primary capabilities of the Platform are shown in figure 2.1. These are running enterprise

level algorithms which are implemented using data provided by the whole asset network,

and storing the relevant system data in a repository. Algorithms implemented on the

Platform are focused on performing enterprise level optimisation, and extracting fleet

performance trends.

Collaboration among assets becomes e�cient when an asset prioritises the data orig-

inating from its friends (similar assets). To enable this in our architecture, a matrix

comprising of distances (similarities) between assets is formed and stored in the Social

Platform. We call it the ‘friendship matrix’. As the system operates, inter-asset simi-

larities are calculated at regular intervals, subsequently updating the friendship matrix.

Similarity may be calculated based on a variety of indicators such as feature data, ma-

chine type, environmental data, etc. Since it is a common channel for the data flowing

in the MAS, the Platform theoretically is best informed to calculate similarity metrics.

This is done through Enterprise level algorithms such as k-means clustering. Otherwise,

decentralised clustering can also be run in the analytics engine of the Digital Twin. The

information regarding the asset’s clusters will in any case be in stored in the Platform’s

data repository, in form of a friendship matrix.

For each asset, its cohort of collaborating assets is given by the N closest assets in the

friendship matrix. Collaborative learning is then implemented by sharing data between

pairs of “friends”. The data received by an asset from a friend may be weighted in the

algorithms running in the analytics engine of the Digital Twin according to their estimated

similarity.
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Figure 2.4: A Social Network of Assets

2.3.4 Collaborative Learning among Assets in a Multi-Agent

System

In a fleet of assets a rare catastrophic failure may occur only to a small subset of assets.

In this case, it would be beneficial to convey the information regarding this failure to the

other similar assets in the fleet. If this is not done, we might face a scenario where an

event, although already known to the fleet, would be unknown to machines which have

not encountered it yet. Thus their algorithms will fail to predict it. This example becomes

especially relevant for new machines being added to a fleet of old ones. In a collaborative

MAS architecture, the trajectories corresponding to a newly registered event can be shared

among similar assets and other agents can thus be made aware of such circumstances in

future.

To make this inter-asset collaboration e�cient, it is crucial to ensure that the data

being shared covers all relevant information, and at the same time, is not bulky. To

achieve this, the assets keep sharing certain pre-defined performance parameters at regular

intervals while the asset is in normal condition. As soon as an asset encounters a certain

new event of interest, the data corresponding to that time frame, i.e. a trajectory to that

event, is shared as a ‘new training data-set’ for other assets. Subsequently, specific causes

and analysis of the event are shared among Digital Twins too.

Apart from making the system more robust, collaborative learning makes a system

agile and more e�cient. For instance, through collaboration, machines of a manufacturing

unit can actively manage their load, by continuously evaluating their health condition

and comparing with that of other similar machines. A healthy machine is capable of
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producing more output, thus reducing the production load of deteriorated machines and

the maintenance downtime.

2.4 An Illustrative Example: clustering and prognos-

tics in the C-MAPPS data-set

We demonstrate the use of the above described architecture to determine the Remaining

Useful Life (RUL) for a fleet of turbofan engines. Due to its link to Condition Monitoring,

calculating an asset’s RUL is a problem that combines asset management and IIoT tech-

nologies. Here, we use the C-MAPSS ([Saxena and Goebel, 2008]) data-set to showcase

collaborative RUL estimation. The data-set consists of four fleets of engines, which are la-

belled as FD001-4. For our example we’ll be using fleets FD001 and FD003 only. Engines

within FD001 and FD003 share the same operating conditions, with the di↵erence being

that engines in FD003 fail due to High Pressure Compressor degradation and fan degrada-

tion while engines in FD001 only present the first kind of failure. The data-set employed

here consist of multi variate time-series in the form of rows of sensor data recorded after

fixed time-steps. Each machine starts normally, develops fault during operation, this fault

grows in magnitude and the machine eventually fails. Both FD001 and FD003 feature

100 independent trajectories to failure. We group 20 trajectories to failure together, in

each fleet, to simulate multiple machines. This is not ideal, but since all the machines in

a fleet are identical, it is su�cient to serve as an example. Collaboration is implemented

simply by sharing failure trajectories among clusters of machine ‘friends’.

Sensor1 0.9 0.7 0.55 0.99 1 0.3 0.9 0.71
Sensor2 0.87 0.77 0.99 1 1 0.2 0.88 0.77
Sensor3 1 0.2 1 0 1 0.1 1 0
RUL 5 4 3 2 1 0 ? ?
Class 2 2 1 1 0 0 2 2

Table 2.1: Example of a fixed-window classification for Remaining Useful Lfe. In green,
classes assigned a posteriori of the known failure (marked in red). In blue, classes pre-
dicted by the classification algorithm.

For our case, Virtual Machines directly read the data of their corresponding engines

from csv sheets, instead of receiving data from a real asset. To simulate real-time oper-

ation, the VMs read the data at fix time intervals, and are unaware of what lies ahead.

The data, after being pushed to the Digital Twins using the ‘socket’ library, is processed

by a naive prognostics algorithm, based on a fixed window K-Neighbours classifier from

the ‘sklearn’ machine learning library. In short, the data coming from the asset’s sensors
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is classified according to its known remaining useful life based on the width of a prede-

fined time window (see Table 3.4). This classification algorithm is then used to make

approximate predictions about the RUL of new trajectories.
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Chapter 3

Operations Planning in a

Manufacturing Shop Floor

3.1 Introduction

With the rise of Internet of Things (IoT) and surge in the number of disruptive in-

novations in embedded technologies in the past decade, it only feels apt to revise the

conventional approaches being applied in Manufacturing and Industrial scenarios to en-

able them to employ these latest technologies and benefit from their advantages. Today,

we have at our disposal tremendous amount of computational power, greatly improved

sensing technologies along with fast and reliable storage facilities. Combined application

of these to real-world problems in recent years is what has led to the popular technolog-

ical paradigm known as Big Data. The growing need for data-dependent solutions and

self-prudent assets in Manufacturing shop floors, to counter the ine�ciencies in current

approaches, and the possible utilisation of Big Data and IoT technologies for the same,

is what serves as our motivation to test our MAS architecture in a Manufacturing shop

floor environment.

After a comprehensive review of existing literature, we identify the Operations Plan-

ning and Job Scheduling problem as the most suitable to obtain evidential results to

bolster our architecture. For parallel machines manufacturing shop floor scenarios, the

planning algorithms implemented today face limitations in terms of the vast deluge of

data and processing times. The reason for such issues can be understood after realising

that these algorithms employ a centralised approach and are based on hierarchical archi-

tectures. Our emphasis on distributed computing and decentralised systems arises after

finding the significant improvements for the same, described in the following subsection.
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3.1.1 Centralised v/s Decentralised Systems

Where conventional systems reply on a single computing server, which processes data

being pushed from assets across the network, the distributed systems harness the benefits

of modern computing capabilities. With the powerful and miniature microprocessors

available today, each asset in an industrial system can be provided with its own computing

capability, responsible for analysing the data generated from the corresponding asset.

Following are the benefits of decentralised systems over the centralised systems:

Agility

In a distributed system, the local agents analyse the data arising from the corresponding

assets. This makes the system way more agile than the conventional centralised approach

where the asset data is sent to the central server which is solely responsible for processing

data from every asset.

Data Transfer Lag

Another advantage of processing the data at its source is the elimination of time lag

encountered while transferring large amount of data from the assets to the central server.

Owing to this ability of quickly responding to environmental changes, an asset can inde-

pendently respond in an emergency situation, such as that of a sudden failure of some

critical component, rather than waiting for a decision from the central server.

Flexible distribution of decision making power

Since the distributed systems have computational power at every level- machines, de-

partments and the central levels, the decision making power can be assigned to the agents

best suited for it.

Robustness

Lastly, distributed systems are significantly more robust than the centralised systems.

In a distributed system, the failure of any single asset does not a↵ect the functioning of

other assets, unlike the centralised systems where the failure in the central server can

disrupt the entire system.

We feel our architecture is best suitable here, for being implemented on a manufactur-

ing shop floor, and would be an upgrade from the existing centralised approaches. Figure

3.1 is a diagrammatic representation of how we basically implemented it. Section 3.2

describes the problem statement and the sections following it are devoted to a numerical

example and results obtained for this particular implementation of the architecture.
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Figure 3.1: Distributed Sequencing

3.2 Problem Statement

In our implementation, we have simulated a parallel machine system for which sequenc-

ing of jobs is to be optimised. We’ll be relying on distributed computations to achieve

this. The problem is described as follows:

Consider a shop floor with M parallel machines (single component machines) and a

demand of N jobs. Initial age of machines is assumed to be di↵erent and the time to

failure is calculated by assuming a 2-parameter Weibull probability distribution function.

Machine failure is of only one type: immediate breakdown. Each job requires its process

to be done by a single operation on a single machine only, and all machines are assumed to

be capable of performing all kinds of operations required. Hence a job, while sequencing,

can be sent to any machine without compromising its processing time, or quality.

Since we are focusing on sequencing, we do not consider any unplanned failures. How-

ever, we do consider Preventive Maintenance while formulating the sequence. Preventive

Maintenance (PM) is seen as a job (PMJob) having a constant processing time which is

added when the reliability of the machine falls below a specified threshold. After a job is

sequenced on a machine, we calculate the machine’s reliability (from Weibull distribution)

and compare it with the threshold set for PM. Threshold we consider here for adding a

PMJob is at a reliability value of 0.5.

Preventive maintenance (PMJob) has associated with it, a restoration factor (↵) and
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maintenance downtime for that machine. Restoration factor implies restoration of ↵ per-

cent of that machine’s age. We describe the distributed sequencing approach with the

help of a pseudo-code (Figure 3.2). A flow-chart (Figure 3.3) is also attached to explain

the algorithm in a lucid manner. The complete environment including the PPC depart-

ment and the machines, is developed on Java platform.

Figure 3.2: Pseudo code for distributed sequencing of jobs
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3.3 Calculation of IF

When a job demand reaches the machines, the machines generate all possible job se-

quences for their shift duration and send them back to the PPC. But how does the PPC

know which sequence is best suitable for a particular machine?

To address this, we have developed an Intensity Factor (IF), which is an indicator to

the priority which must be given to a particular sequence. IF is calculated based on the

lateness of production for the sequence. When a machine sends a list of all possible job

sequences to the PPC, it also calculates an IF corresponding to each of the sequence and

sends it together with the list of job sequences.

IF is calculated according to the following equation:

IF =
Lmax � Lseq

Lmax
(3.1)

where Lmax is the maximum lateness encountered, i.e. when no job is processed for

the entire shift duration, and Lseq is the lateness encountered for the particular sequence

considered. Calculation of Lmax and Lseq is as shown below, where td is the due tine for

the job, tc is the time of completion of that job, and ts is the machine shift duration. N =

total number of jobs

Lmax =
NX

n=1

(ts � td) (3.2)

Lseq =
NX

n=1

(tc � td); (3.3)

tc = ts for jobs which are not processed in the considered sequence
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Figure 3.3: A flow-chart describing the proposed approach for distributed sequencing in
a Manufacturing shop-floor
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3.4 Numerical Example

To illustrate the proposed approach, a numerical example is shown, which involves

sequencing 9 jobs into 5 machines. The machines we use here are all di↵erent, in terms

of health/ initial machine age. However, all are identical, when it comes to the ability to

process jobs. We take the Weibull parameters for time to failure of machines as � = 2

and ⌘ = 1000h. time to carry out PM is 8h and the restoration factor is 0.6.

Jobs to be scheduled are also of varying processing times, but as mentioned above, any

job can be sequenced to any machine, without a compromise in job quality or processing

time. Processing times for the jobs are constant. All parameters defining machines used

and the jobs to be sequenced are shown in tabular form below:

PMJob Time 8 h
Restoration Factor 0.6

Table 3.1: PMJob Details

Jobs Processing Time (in Hours) Due Time (in Hours)
J1 55 260
J2 85 260
J3 205 260
J4 105 260
J5 155 260
J6 185 260
J7 225 260
J8 135 260
J9 225 260

Table 3.2: Jobs Description

Machine No. Age eta (⌘) (in Hours) beta (�)
M1 0 1000 2
M2 973 1000 2
M3 1969 1000 2
M4 2319 1000 2
M5 2497 1000 2

Table 3.3: Machine Data/ Parameters

Our approach here relies on distributed computing for generating an optimised solu-

tion. Job list, or the customer requirement is first received at the PPC. PPC initiates the

job scheduling process by first sending the job list to machines in an increasing order of

their processing times. This is done in order to eliminate the unnecessary iterations later

while generating all possible sequences at machine stage. Subsequent steps are clearly

explained in the flow-chart (figure 3.3)
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3.5 Results

The graph in figure 3.4 shows the final results of our experiment. Di↵erent cases on the

horizontal axis are the di↵erent combinations of jobs and machines we had considered.

Case 1 is the most basic 2 Machines-2 Jobs, and the Case 9 is 5 Machines-9 Jobs. Cases

2 to 8 are with intermediate complexity. Figure 3.5 shows the optimal job schedule for

the Case 9 (5 Machines-9 Jobs) with the corresponding IF values for each sequence

Upon quantitative comparison of the processing times taken by the centralised and de-

centralised approaches for assigning job schedules to machines, we observe only a marginal

increase in the processing times for our approach, countering the exponential increase in

conventional centralised approaches, as the problem complexity increases (figure 3.4).

Alongwith this, the scheduled job sequences are the most optimal for the data used, with

newer machines taking up more jobs. This proves the e�ciency and correctness of the

algorithm developed by us.

Figure 3.4: Comparison of conventional centralised and decentralised approach

Figure 3.5: Result for the case of 9 Jobs and 5 Machines
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Chapter 4

Prognosis of NASA Turbofans

(C-MAPSS data-set)

When we talk about Smart Manufacturing and a collaborative learning environment, we

certainly imply providing the assets with intelligence. When referring to di↵erent physical

assets such as gas turbines, jet engines etc., the concept of “smart” assets is necessarily

intertwined with the prevention of asset failure and prediction of events for the near

future. Over their lifespan, assets su↵er deterioration both in their intrinsic operational

capabilities and their e�ciency compared with newly designed assets. Thus, in order to

optimise maintenance policies, one requires some knowledge of the time to failure of the

particular assets under scrutiny. This can be obtained by individual or fleet statistics

and by measurement of the current state of the asset either though inspection or through

continuous monitoring by digital sensors. In our work, we adapt a latest Deep Neural

Networks based prognostics algorithm known as WTTE-RNN (Weibull Time to Event -

Recurrent Neural Network) and implement it in a distributed manner. A fundamental

test is then done for collaborative learning in this approach.

This part of the project was done at the Distributed Information and Automation

Laboratory (DIAL), Cambridge under the guidance of Ajith Kumar Parlikad.

4.1 Problem Statement, Data-set and Network Setup

We define the problem by considering a fleet of related assets, jet engines here, and

implementing the WTTE-RNN algorithm [Martinsson, 2016] on the censored as well as

uncensored data obtained from these assets in a distributed manner. Once this is done

successfully, similar assets from the fleet should collaborate with each other and this

should result in better accuracy of the predicted times. The description of the problem

here is very simple: given the readings of hundreds of sensors, predict when a fault event

would occur.

To simulate the same, we have used the standard NASA C-MAPSS jet engine failure
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data set, and built di↵erent types of assets from chunks of trajectories from the 4 distinct

types of data (FD001, FD002, FD003, FD004), as shown in the figure 4.1.

For building a network of such machines, we have implemented socket programming

and used the resources at DIAL, Cambridge, to develop the Virtual Assets and the Dig-

ital Twins for several machines. The complete architecture is developed on Python 3.5

platform.

Figure 4.1: C-Mapss data-set used and simulation of machine fleet

4.2 The Algorithm

Egil Martinsson, a Swedish researcher from the Chalmers’ University [Martinsson, 2016]

recently proposed a novel prognostics algorithm that combines deep neural networks and

Weibull distributions, known as the Weibull Time to Event - Recurrent Neural Network

(WTTE-RNN) algorithm. After realising the novelty of this approach and use of latest

algorithmic techniques, we decided on this as the best for event prediction for the NASA

data-set. This uses a recurrent neural network in order to maximise the following log-

likelihood function:

log
⇣
L
⌘
=

NX

n=1

TnX

t=0

h
un
t log[Pr(Y n

t = ynt |xn
0:t)] + (1� un

t )log[Pr(Y n
t > ynt |xn

0:t)]
i

(4.1)

This choice for the log likelihood may appear obscure but in fact it is easy to un-

derstand. Let’s first take a look on the two probabilities that are to each other for each

summation term. The first probability to appear is un
t log[Pr(Y n

t = ynt |xn
0:t)] which simply

means: in case of uncensored data, where we are aware of the real time to failure (un
t = 1),

maximise the probability of our predicted time to failure Y t
n being equal to the real time to
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failure ytn given the known values of the time series before time t, xn
0:t. The second term,

(1� un
t )log[Pr(Y n

t > ynt |xn
0:t)] means: if we are dealing with censored data, and have not

yet observed the real time to failure (un
t = 0), maximise instead the probability of the

predicted time to failure Y t
n being bigger than the current time spent without failures ytn.PN

n=1

PTn

t=0 account for the summation over all the recorded failure trajectories and over

all the time-steps of each trajectory. [Salvador Palau, 2017]

A Long Short-Term Memory (LSTM) Neural Network is employed for optimising the

above function. The LSTM model is trained using sample data to obtain a function

that essentially converts multi sensor time series data to parameters of the time to event

Weibull distribution:

f~w

⇣
x0:t

⌘
=

⇣
a
�
t
�
, b
�
t
�⌘

(4.2)

Where x0 : t is a matrix containing the sensor values in the first t time-steps and ~w

indicates the weights of the LSTM Neural Network, which determine the function f . The

↵ and � values obtained form a Weibull probability distribution function for the time to

event.

The same function can be used to obtain the expected time to event, by simply using

the mean of the Weibull distribution:

E[tte(t)] = ↵(t)�(1 +
1

�(t)
) (4.3)

The design of the LSTM Network used here is a 5 layer architecture as shown:
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Figure 4.2: Internal schema of LSTM Network

4.3 Our Implementation

For the validation of our MAS architecture, we developed a network of assets similar to

that in section 2.4. Figure 4.1 shows the division of the data-set into groups of trajectories

to simulate engines. With the objective of imitating a real-time environment, we made

the Virtual Assets send data to the corresponding twin at a rate of 10 time steps in an

instant. At each instance of data, we first predict the time to failure corresponding to the

complete data till that point, then re-train the neural network including this data. The

correlation plots obtained here (figure 4.3) show the highly optimistic results obtained

with a correlation of 85.2%. The real-time graph (figure 4.4) plots predicted times to

failure at each instant and compares it to the actual times to failure. The failures here,

as defined in the NASA Run to Failure data-set, can be of two types, with HPC degrada-

tion occurring in both FD001 and FD003 kinds, and fan degradation in only FD003 kind

machines.
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Figure 4.3: Correlation graph

Figure 4.4: Real-time event prediction

Apart from the prognostics algorithm implemented in the Digital Twins, a basic K-

Means clustering algorithm is implemented on the Social Platform, aimed to determine

the friendship matrix. This algorithm, identifies and clusters similar engines based on

Euclidean distances between the sensor values. This has been implemented to illustrate

the role of the Social Platform and the Digital Twin’s output manager. The output

managers share the average of the data points received from their corresponding VMs in

a time-step, with the Social Platform, which serves as a statistical indicator of the status

of the asset. Then, the Social Platform uses these points to determine the Friendship

Matrix of the assets using the centroid based clustering approach (figure 4.5). Once the

clusters are stable, in each time step, the Social Platform then shares every asset’s data

with its friends, enabling every asset with large amount of data from its cluster.
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Figure 4.5: Clustering Convergence by the Social Platform

Figure 4.6: Accuracy of the fixed-window predictive algorithm for a machine of Cluster
1 in the Collaborative (red) and Non-collaborative (blue) cases.

After implementing the example described above and quantifying the results obtained

for collaborative and non-collaborative approaches, we find the significantly higher accu-

racy of Collaborative approach as evidence for the e�ciency of our architecture and proof

of the advantages of collaborative learning (figure 4.6).

28



Chapter 5

Diagnosis of 3D Printers

5.1 Additive Manufacturing

With increasing global competitiveness and demand for mass customisation, the man-

ufacturers today look out for di↵erent ways to produce custom goods at lowest possible

costs. Having been refined over a hundred years, modern manufacturing practices have

been revolutionised with technologies like automation, robotics, advanced computer-aided

design, sensing and diagnostic technologies. The factories today are at a pinnacle of ef-

ficient mass production- producing items for mass consumption at lowest possible cost.

However owing to numerous alterations involved, like setting up of new moulds or re-

configuring the equipment involved, the task of setting up the assembly line for producing

a new item is cumbersome. This posts a serious impediment to producing small batches

of intricate parts, or to item customisation and thus a major challenge faced by the

manufacturing enterprises.

The additive techniques not only address the aforementioned challenge to mass cus-

tomisation, but also put forth a plethora of added advantages- reduced production costs,

greater control over the internal structure, geometry or the materials used, etc. and has

thus seen rising trends in manufacturing practices all over the globe. In contrast to cutting

down or moulding metals to the required shapes and sizes, the additive manufacturing

techniques fuse together layers of materials using high temperatures and produce complex

parts directly from a computer file.

The technology first came into existence when a group of engineers at MIT patented

the “three-dimensional printing techniques” in the early 1990s, and has seen early uses

for rapid prototyping and people producing tchotchkes as hobbies using their personal

small-scale 3D Printers. But owing to the benefits it o↵ers and the possibility of use

in industries, 3D Printing has seen increasing use in modern manufacturing shop floors

also. A classic example is the use of laser-based additive manufacturing to produce the

engine fuel nozzles of one of the GE’s best-selling LEAP jet engines. In contrast to

the conventional techniques which involved welding 20 di↵erent parts together, this 3D
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printed nozzle is now a single unit. It o↵ers a 25% reduction in weight, is 5 times more

durable, and has 15% increased fuel e�ciency.

This nozzle is a pioneer to the plethora of 3D Printed components in future. However,

the real cause of excitement today is possibility of manufacturers to use this additive man-

ufacturing practice in combination with the technologies like cloud computing, Internet of

Things, the internet, real-time analytics, machine learning, etc. to transform conventional

manufacturing shop floors into Smart Manufacturing and produce customised products

on a large scale, cheaply and e�ciently.

5.2 Health Management for 3D printers

In this part of the project, an attempt has been done to implement aforementioned

architecture for collaborative prognosis of 3D printers in a laboratory environment, re-

sembling a Smart Manufacturing shop floor. By deploying numerous sensors on the 3D

Printer, we have simulated a smart machine which is able to see, feel and hear like hu-

mans. The data generated is in a way indicator to the events that might occur over next

time-steps, and health of the printer. Further, we have successfully done a basic diagnosis

experiment for comparing a healthy printer and a deteriorated printer. The diagnosis

is done for 3 di↵erent components, the deterioration of which is gauged using the data

acquired from the sensors we have installed.

The 3D printer used for experiments is the Prusa i3 single-filament model. The printers

are all connected on a single server and are each assigned a Digital Twin, which processes

the local data generated by implementing various analytic algorithms. The approach

employed in this part of the project is further explained in the subsequent sections.

5.2.1 Sensors and Instrumentation

In the first step of our implementation, we conducted a Failure Mode and E↵ect Analysis

(FMEA) for the printer at hand and identified the most critical components:

1. The extruder nozzle

2. The guiding rod and belt

3. The extruder spur gears

Figure 5.1 is the FMEA conducted and the proposed approaches.
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Figure 5.1: Failure Modes and E↵ects Analysis for 3D Printers

After identifying the critical components and the relevant health indicators, the next

step was to identify the suitable sensors. Selection of sensors includes a lot of consider-

ations like their range, working environment, the sampling frequency, etc. After a lot of

research, the following sensors were identified to be the best suited for our experiment:

1. Temperature: LM35 (For Nozzle temp.) and DHT (For Heat-bed temp.)

2. Proximity: Sharp 2Y0A21

3. Vibration: MEAS Piezoelectric sensor

Figure 5.2 shows our data acquisition setup, with exact positioning of each sensor

marked.
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Figure 5.2: Data Acquisition Setup

5.2.2 Diagnostics model

Where the current diagnostics models are more focused and dependant on the quality

and type of print, we have tried a model to gain information from the sensors during its

run to identify the causes of the di↵erent faults occurring in the printer operation. After

the deployment of sensors and data acquisition from the setup, the data obtained from

the five sensors is used to design a diagnosis model for defining the state of the printer.

We take 20 data points in a single subset and take the Root-Mean Square (RMS) values

of each subset to form the data for Condition Indicator (CI) of the printer [Yoon et al., 2014].

Once the CI table is computed, we use the ‘sklearn’ library of the Python 3.5 platform

and develop a 10-fold Cross Validation Classification model, making use of the Support

Vector Classifier (SVC) to classify the state of the printer, based on a data instance, as

healthy or faulty.
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Figure 5.3: Diagnostic classification of healthy and faulty 3D Printers

After analysis of the data from the 5 sensors, we can infer that the temperature,

vibration and current sensors are vital indicators of the trends regarding faults in the

printers, in our setup. Upon training the classifier model with this data, predictions

made on further data obtain a good accuracy score of 88.65%.

After some further validations, we hope to put forth a model that successfully deter-

mines the health state of the 3D Printer, and has a scope in prognosis of failures of its

components.
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Chapter 6

Conclusion

The problem identified and the corresponding architectures and algorithms designed,

along with the extensive research done on the existing literature, as part of the B. Tech.

Project can be successfully realised from the highly accurate and impressive results ob-

tained upon validation of the architecture and the algorithms in the three di↵erent im-

plementations.

6.1 Brief Summary

1. Novel MAS Architecture developed

2. Implementation on Operations Planning problem for a Manufacturing shop floor -

New Distributed algorithm devised and e�cient results obtained

3. Implementation on NASA Turbofans data-set for Prognostics - Adapted a latest

prognostics algorithm and significant improvements observed on doing distributed

and collaborative prognostics

4. Implementation on 3D Printers for PHM - set up the 3D printer for proper data

analysis after deployment of sensors and developed a diagnostics model which ob-

tained valuable results

6.2 Concluding Remarks

To conclude the entire work done as part of the project, our major emphasis on novelty

and originality of work has aided us to develop a very promising MAS architecture with

great scope in the future to alter the conventional design of industrial systems for the

better. The implementations and all the promising results bolster the applicability of our

architecture for the real-world industries.

A research paper on our project, in collaboration with the people at Institute for

Manufacturing, University of Cambridge, has been submitted for the Special Session at
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the 16th IFAC Symposium on Information Control Problems in Manufacturing (INCOM)

to be held in Bergamo, Italy in 2018.
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