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ABSTRACT

One of the most interesting topics of current physics is the study of
gravitational waves. It promises a wealth of fresh and vital knowledge
about the Universe as a relatively young observational field. Einstein
proposed the concept of gravitational waves early on, but eventually
concluded that they did not exist as a physical reality. A number of au-
thors discovered exact solutions to Einstein’s equations depicting waves,
resulting in their recognition as part of physics. The main objective of
this thesis is to study the solutions of gravitational waves using the linear
perturbations in Friedmann-Lemaitre-Robertson—-Walker metric which
describes a universe that is homogeneous, isotropic and expanding (or

contracting).
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Conventions

Certain mathematical conventions are used and a comprehension of Ein-

stein’s general theory of relativity is assumed.

e The majority of the metric signature will be positive, i.e. (-,4,+,+).

e The Gravitational constant (G) and the speed of light (c) are ex-

pressed in natural units, i.e. G=c=1.

e Spatial 3-vectors are denoted by Latin indices, such as x;, whereas
spacetime 4-vectors of the kind (¢,7) are denoted by Greek indices,
such as x,. Unless indicated otherwise, the Einstein summation

convention will be used.

e Conformal and cosmological time will be represented by 7 and ¢

respectively.
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Chapter 1

Introduction

1.1 Gravitational Waves

Newtonian gravity was the basis of research for about 200 years, and
it was acknowledged in its absolute perfection, but there was a funda-
mental concern regarding the concept of absoluteness of space, time,
and simultaneity, among other things. Albert Einstein was the first to
address such uncertainties with his special theory of relativity and gen-
eral theory of relativity, the latter of which included gravity. Gravity
is caused by the "warping” of space and time, according to Einstein.
On the premise of the equivalence principle, Einstein developed general
relativity. Gravitational waves that travel at the speed of light are an
unavoidable result of such a principle. These are oscillations in gravi-
tational fields, or "ripples” in spacetime, caused mostly by huge masses
moving. A tidal gravitational force acts perpendicular to the wave’s
propagation direction on each body in its path; these forces modify the

distance between points, and the magnitude of the changes is propor-



tional to the distance between the points.

Gravitational waves are produced by coherent bulk motions of matter
(such as the implosion of a star’s core during a supernova explosion)
or coherent oscillations in spacetime curvature, and serve as a probe
of these processes. The focus of this thesis will be on cosmological

gravitational waves from the early Universe.

1.2 Einstein’s Equations

For general relativity, Einstein’s field equation determines how the met-

ric responds to energy and momentum and is written as:

G;w I Ag,uu . T,uu (11)

where Gy, = Ry, — %gp,, R, T, is the energy-momentum tensor (7}, =
diag(p,p,p,p); p and p are density and pressure components respec-
tively) for perfect fluids, R, is the Ricci tensor and R is the Ricci
scalar.

Finding a solution to Einstein’s equations in a linearized regime is the

best way to comprehend the nature of gravitational waves.

1.3 Linearized gravity

When the spacetime metric, g,,, is viewed as only a slightly deviated

from a flat metric, 7),,, linearized gravity is an adequate approximation



to general relativity:
G = M + b B | <1 (1.2)

where h,, is a tensor expressing the variations caused in the spacetime
metric, and 7, is defined as diag(—1,1,1,1).
The linearized expression of the components of Christoffel symbols are
given by:

Iy, = %n’“ (huap + Bauy — huva) (1.3)
The derivatives of the I ’s, not the I'? terms, will be the only contri-

bution to the Riemann tensor, because the connection coefficients are

first-order quantities:

R:, =TV —T¢

vo,p vp,o

(BY ) + 0hype — B*huop — hby)  (1.4)

DN | =

From this, Ricci tensor can be written as

1
Ry = Rf,, =5 (B8 0 + 0hypy — Ohyy — b)) (1.5)

p

where h = hJ} is the trace of the metric perturbation, and the d’Alembertian
is simply the one from flat space, 0 = 9,0 = V* — §2. Contracting

again to obtain the Ricci scalar yields:
R= Rﬁ = T]le/w = 8'uhﬁ’p — 0Oh (16)
Putting it all together in (1.1) we obtain:

(R0 + 0Rup s — Ol — Ry 10 HE., + 1,,00) = 167T,,  (1.7)

Now, rather than working with the metric perturbation h,,, we use the

tracereversed perturbation (Eﬁ = — > :

— 1
h/w = h;w - Enuuh (18)
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Solving (1.7) for this new metric, we get:

1

> (EZW + 0Ty — Oy — n,waﬂﬁﬁ’p) = 1677}, (1.9)

To further simplify the above equation, Lorentz gauge condition is as-
sumed:

hyw =0 (1.10)

Thus, in Lorentz gauges, (1.9) simply reduces to:

Ohy = —167T), (1.11)

In vacuum, (1.11) reduces to:
ORy= 0 (1.12)

which is a three-dimensional wave equation and has a class of homoge-

neous solutions which are superposition of plane waves:
hu(z,t) = Re / dPkA,, (k)eFe=l (1.13)

Here, w = |k| and A,, (k) is the polarization tensor which contains the
information about the polarization of the wave.

By applying Hilbert gauge condition, we obtain:
i kP =0 (1.14)

kA" =0 (1.15)

with k* = (w, k).
If it is assumed that the wave moves in z-direction, and the gauge con-

ditions (1.14) and (1.15) are imposed, then:

A=A, =A,=A4,,=0 (1.16)



The equation (1.15) for the linear regime can be expressed as:
A,n =0 (1.17)

which implies:

A = — A (1.18)

From (1.16) and (1.18), the polarization tensor can be written as:

o0 0 o
0 Ap Ay O
A= (1.19)
0 Ay —Ag O
0 0 0 o0

In transverse traceless gauge, the polarisation tensor (1.19) suggests that
we reduce to only two degrees of freedom, which are intrinsically two

(plus and cross) modes of gravitational wave, i.e.

(00 0 0
01 0 0
00 -1 0

BN
+
|

(1.20)

00 0 0

(00 0 0]

0010
Ay = (1.21)
0100

0000

Every half period, the orientation of the field lines changes, resulting

in the distortions shown in Figure 1.1. Any point accelerates in the



+ Polarization X Polarization
y y

Figure 1.1: Force lines for a entirely plus GWs, and for a entirely cross GWsl®.

directions of the arrows; the stronger the acceleration, the denser the
lines. The force lines become denser as one moves away from the origin

because acceleration is proportional to distance from the centre of mass.



Outline

e In chapter 2, there is a very quick review of the stable solutions to
Einstein field equations for spherically symmetrical Schwarzschild

metric subjected to linear and odd type of perturbations.

e Schwarzschild’s original result is for a simple system close to a large
mass, generally a star, which is spherical, static, and vacuum. In
chapter 3, The Einstein equation will be used to develop a model
of the universe as a homogeneous, isotropic, perfect fluid composed

of particles that are galaxies (or galactic clusters or superclusters).

e In chapter 4, we have adapted Regge and Wheeler’s method to
obtain an axial mode propagation equation in Friedman-Lemaitre-

Robertson-Walker (FLRW) spacetimes.



Chapter 2

Literature Review

2.1 Stability of a Schwarzchild Singularity

Karl Schwarzschild discovered the solution to Einstein’s equations for
the metric centred on a definite spherically symmetrical centre of mass

in spherical coordinates (¢, 7,0, ¢):

ds? = — (1 —2m/r)dT*+ (1 — 2m/r) "' dr? -

+ 7% (d6® + sin® 0dp®) = g datda”, =
This explains the Schwarzschild Black Hole as a non-rotating spheri-
cally symmetric black hole. In the beginning, these metrics were not
recognized as black holes, but rather as mathematical singularities. It
was not known whether these characteristics were physical or if they
would be stable enough to be found in nature. As a result, prominent
physicist John Wheeler established the framework of stability research
for the Schwarzschild metric.

The equations are linear as in every other type of stability problem

8



in physics, and it is possible to break down the disturbance into proper
modes and determine the frequency, real or imaginary, for each. Because
imaginary frequencies would necessitate an unrealistic spatial behaviour
of initial perturbation, it is found that the Schwarzschild singularity
is mainly stable. As a result [12], we conclude that a typical distur-
bance from the equilibrium configuration will oscillate around equilib-

rium rather than growing with time.

2.2 Polar differential equations for small first-order

deviations from the Schwarzschild metric

2.2.1 General equations

Stability is determined by introducing a small perturbation into the
metric and computing the variation of the Einstein equation in vacuum.
The spacetime metric is denoted as g,,, and a small perturbation in it
can be denoted as h,,. Hence, if the new metric is g:“, = guv + hyy, then

RL,, = R,, + dR,,. From Eisenhart’s calculation:

B B
5R/u/ = 5F/U/36 - 5Fﬂ6§7/ (22)

where the semicolons refer to the covariant differentiation and where we
have used:

« 1 av
5F5», = 59 (hﬂlx;'y + hw:ﬁ - hBW;I/) (2-3)

Imposing dR,, = 0 implies that the perturbed metric also lacks any

distributed mass or energy (vacuum).



2.2.2 Spherical Harmonics Analysis

We can analyze the Einstein equation in vacuum to obtain a differ-
ential wave equation on h if we consider a linear perturbation to the
Schwarzschild metric to be a superposition of spherical harmonics. This
analysis begins with variable separation in polar coordinates.

The first step is to write the perturbation as the sum of spherical har-
monic modes, Y, where L is the angular momentum and M is the
projection of angular momentum on z-axis. Rotations on the two-
dimensional manifold 2° = T = constant and z' = r = constant are
used to analyse angular momentum. We can use partial and covariant
derivatives to contract the spherical harmonics and create quantities
that transform like scalars, vectors, and tensors, and then divide these
constructions into even parity (—)* and odd parity (—)*!, as defined
by the symmetry when reflected through the origin.

Scalar function can be formed as:
M — const YM (x4, 23) = const YM (8, p), parity (=)L (2.4)

Vector function:

Y, = const %Ylf\l (0,p), parity (=)~
(2.5)
¢, = const €, M(0,9), parity (=)
Tensors:
1/)L 4y = const YL ., Darity (—)L
¢V . = consty,, Y,  parity ()" (2.6)

’ 1
X%I;w ~ 9 COIlSt[Eﬂ wL)\u & wL)\u]

10



Y represent the quantities e? = €3 = 0;€® =

In these equations, €,
—1/sinf,e3? = sinf and ~,, = gu,/r* represent the quantities vy =
1,723 = 0 = 732; 33 = sin* 0.

Because our metric is spherically symmetric, hl‘ﬁd and hg; " can be con-
structed and examined independently because even and odd parity do
not combine in Einstein equations.

hzd,,d =

0 0 —ho(T,7)(0y/sinO)YM ho(T,r)(sin00p)Y;u
0 0  —h(T,7)(0,/sinO)YM hy(T,r)(sin0p)YM

Sym  Sym ho(T,7)(0,0¢/ sin 0 Sym
— cos 09,/ sin? )Y M
Sym  Sym  3ho(T,7)(8,0p/sin@  —hy(T,7)(sin 00,0,
+ cos 00y — sin 002)Y M —cos 00,) Y M

- (2.7)

Similar equation can be found for even perturbation. The angular com-
ponents and the radial-temporal components have now been separated in
perturbation matrix. Now, because our original metric is radially sym-
metric and time independent, the dispersion relation w = k¢ can be im-
posed, and thus h,, must have the dependence exp(—iwt) = exp(—ikT)
for T' = ct. Furthermore, L and M being constants of motion, M = 0
can be chosen, keeping the constant radial dependence. This will make

 vanish entirely from calculations.

11



2.2.3 Gauge or Coordinate Transformations

We consider an infinitesimal coordinate transformation:
Ila = 1 +§a; éa < (28)
where £% are transformed as a vector. In new frame:

g;w/ + h:u/ = g + Euw + v + Py (2.9)

where
h,luu = h;u/ e &u:u + fu:u (210)

This significant condition can now be used to simplify the perturbation

and make it unique.

2.2.4 Imposing Regge-Wheeler Gauge

ho, hi, and hy are three unknown radial functions in equation (2.7).
The Regge-Wheeler Gauge can be used to simplify these to an only one
radial wave equation. The transformation, known as the Regge-Wheeler
Gauge, was developed by Tullio Regge and John A. Wheeler in 1957 and

for odd wave, it is written as:

0=0, =0 ¢& =AT,r)(0/0z")YM(8,0),
(1, v =2,3)

(2.11)

where A is used to reduce the hy factor. The following is the canonical

form for an odd wave with total angular momentum L and projection

M = 0:

12



hyw = exp(—ikT)(sin 60p) Pr(cos 0)

0 0 0 hy(r)]
0 0 0 hr
x 1(r) (2.12)
0 0 0 0
| Sym Sym 0 0 |

Similar transformations and the canonical form for an even wave can be
constructed where the seven unknown radial functions to a single radial

wave equation can be reduced.

2.2.5 Radial Wave Equations

In the variation of Einstein field equations, we substitute (2.12) for the

first order perturbation:

or8 L — oI, =0 (2.13)

w3 upBiv

(5I‘§ﬂw is going to vanish for odd waves. Now, the variation of Ricci
tensor can be analyzed under the above mentioned simplified expression

of perturbation (2.12):

13



(1 —2m/r) *kho + (d/dr)(1 — 2m/r)h; = 0,

for 5R23 =0
1 —2m/r) k(dho/dr — khy — 2hg/T
( /r)""k(dho/ 1= 2ho/7) (2.14)
+ (L — 1)(L + 2)]7,1/7‘2 =0, for 5R13 =1
(d/dr)(khy — dho/dr) + 2khy /7 = r72(1 — 2m/r) ™"
X (4mh0/r — L(L + 1)h0), for (SRog =0
Defining the new quantity:
Q= (1-2m/r)hy/r, (2.15)

we eliminate hy and solve for the second order wave equation of Q:

d?Q/dr*® + keg?(r)Q = 0 (2.16)
where
5 = e [ = (2.17)
r* = exp 5 5 r .
and
k> = k? — L(L + 1)e” /r* + 6me” /7> (2.18)

Here, the new metric is defined in the terms of A and v:
ds? = —e’dT* + e dr® + r?(d6? + sin® 0dyp?) (2.19)

Hence,

e =er=1-2m/r (2.20)

14



2.2.6 Dynamic Modes

For the dynamic variation to be physical (k # 0), solutions of (2.16)
should have a regular behavior at both points of singularity, i.e. at

r = 2m and at infinity. Following is how the general solution behaves:

Q ~ c1e¥(r/2m — 1)2™ 4 cie¥(r/2m — 1)~ 2km
for r — 2m

Q ~ casin(kr +n) for r — oo
(2.21)

Now, if we look at the radial wave equation in these limits, we can see

three possibilities:

e The first case involves having a high frequency, £ >> 1/2m, which
remains constant through radius. For » >> 2m, these waves travel

into the black hole.

e The second case involves having a low frequency near r = 2m, i.e.
k < 1/2m that decreases as r — oo. These waves are caught up by

the effective potential as they propagate out of the black hole.

e The third case involves having a high frequency for » >> 2m which
decays as r — 2m. These waves travel towards the black hole before

reflecting off of the curved spacetime.

The analysis of such solutions’ space dependence reveals that the real
value of frequency is uniquely determined by the demand of not going

to infinity at large r. Because it drops off for large r, the solution is

15



adequate because it also drops off at the Schwarzschild radius. As a

result, we can conclude that no unstable solutions for odd waves exist.

16



Chapter 3

FLRW Metric

3.1 Introduction

The Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model,
also known as the hot big bang model, is the basis for our present un-
derstanding of the universe’s evolution. It is the metric that describes
a homogeneous, isotropic, expanding (or contracting) universe based on

the exact solution of Einstein’s general relativity field equations.

3.2 General Metric

The FLRW metric is based on the assumption of space homogeneity
and isotropy. It also makes the assumption that the metric’s spatial
component is time-dependent. The following is a generic metric that

meets these criteria (in spherical coordinates):
ds® = —dt? + a®(t)[dr?/(1 — kr?) + r2d6? + r?sin® d¢?] (3.1)

17



Here, a(t) is the cosmic scale factor; the increasing scale factor implies
that the universe is expanding. The curvature of the space, which can
be elliptical, Euclidean or hyperbolic, is represented by the constant
k. It’s values can be taken as +1, -1, or 0 for positive, negative and
zero curvature respectively. r is unitless, while a(t) has length units.
When k = 1, a(t) is the space’s radius of curvature, which can also be

sometimes written as R(t).

3.3 Curvature

3.3.1 Christoffel Symbols, Ricci tensor and Ricci Scalar

The surviving components of affine connection are:

i 14
it =59 l(@kgzj + 0jgix — O19jk) (3-2)

where 7, j and k are spatial components.

1
It = 5 9" (Oogtr + Org1o — Orgro)

_1 >  aa G
T 9 k2 1—kr? agrr

Iy and I, can similarly be calculated as:

a a
Ehi= —— Tt = —Zg4
66 agao, b agab@

Hence,
o = a 3.3
ij = T Y (3:3)
Also,
i a
Lf = ;5]. (3.4)

18



The non-vanishing components of Ricci tensor can be calculated as:

&
Ry = —3- 3.5
0 = —3° (35)
a a2k
Rij = — la + 2; + ?] Gij (36)

and so, the Ricci scalar will come out be:

a & kK
R=-6 |:a + e + ?:| 9ij (3.7)

3.4 Solutions

Einstein’s field equations, as well as a method of calculating the density,
p(t), such as a cosmological equation of state, are required to determine
the time evolution of a(t). Friedmann equation results after we put (3.6)

and (3.7) in the 0-0 component of (1.1):

a2 kK A p
— —— == 3.8
a®  a* 3 3 (38)
whereas, the i-i component will give:
a a® K
il e e ey e 3.9
R p (3.9)

When we subtract (3.8) from (3.9), we get the “acceleration equation”:

g:é_l(p+e) (3.10)

As intended, increasing the density slows the expansion in this equation.
From (3.8), (3.9) and (3.10), “fluid equation” can be derived which

explains how energy density changes as the universe expands:

p=3%p+p) (3.11)

19



3.5 Change of coordinates

We will substitute in FLRW metric:

dt
— =dn
a

For flat spacetimes (k = 0), FLRW metric can be written as:

ds® = a*(n)(—dn® + dr* + r*d6* + r* sin® 0d¢?)
We define the ‘conformal scale factor’ as:
C(n) =a’*(n) = *
and solve for a case when:

C(n) = A+ Btanhpyy; A> B

(3.12)

(3.13)

(3.14)

(3.15)

Here, A, B and py are some constants. The spacetimes then become

Minkowskian in the distant past and future, because:

C(n) A+ B, n— xo0

(Figure 3.1). We can write the fluid equation and the acceleration

equation respectively in this new coordinate system as:

Orp=—3(p+p)

a 1
- = —28,2]23
a a

3.6 Interpretation of p and p

In terms of A, B and py, (3.17) can be solved as:

20
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(3.17)



Out region

A+37=

In region

Figure 3.1: C(n) = A + Btanh pon represents a universe that is asymptotically static

and expands smoothly.

g = _B—’;%[e—‘“f(j}z4 — 2A2B? — 2AB? + A* + 24%)

+ e *(4AB® + 2B? — 4A% — 6A?)

+e’(—2B* + 6A% + 6A)

+ e*(—4A - 2) (3.18)
+e*(1)]

= ae™¥ 4 Be ™ 4 ve¥ 4 §e* + ee'*  (say)
A1

= 3
3 6(p+ D)

(from (3.10)). On comparing the sides of (3.18), we can write p and p
as:

-2z

p=pre~ " + pae™* + p3e + p1e®” + pset”

(3.19)
p =pie " + pre ™ + p3e’ + pee® + pse*”

where p = p(A, B, pp,x) and p = p(A, B, pp,x). Again comparing the

21



sides of (3.18), we can now write:

1 1
o= "6(,01 +3p1), B= —6(P2 + 3p2)
1 A
- = 3 -
4 6(p3+ p3) + 3
il 1
d= _6(/)4 +3ps), €= _5('05 + 3ps)

From (3.16):

. 4ple—41' . 2p2e—21‘ _+_2p4621 +4p5€4z —

—3(p1 4+ p1)e™ — 3(p2 + p2)e™>* — 3(p3 + p3)e€°

—3(ps + p4)€2I —3(ps + p5)€4x

Equating both sides of (3.21) gives:

P1 P2

p1:§7 p2:§7 P1 = —p3,
pa= 2P b
4 37 5 37

Putting this in (3.20), we find that:

pr=—-3a, p3=3y—A
3
p4_27 Ps =

Similarly,

pr=—-a, p3=—(3y—A)

300 Te

m="13 B="3

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

p2 and pso are arbitrary constants whose values can be taken to be zero.

22



Using (3.18) and (3.23), (3.19a) can be written as:

_3_/)(2)[(A2_B2)(A2_BZ_2A) —4x

AB?

— (64% — 2B? +6A + = )el (3.25)

P
+ (24 + 1)e* — %64””]

In the same way, using (3.18) and (3.24), we can write (3.19b) as:

_ 3_/0% 2 _ p2\(A2_ p2_ 4z
P [(A° — B*)(A® — B —2A)e

=
AB?
— (64% — 2B? + 64 + 3—p2-)60 (3.26)
0
20 7
—1an 1 2¢ _ © 4x
+ 13( +1e 9¢ ]

Finally, , since A > B, we observe that this system is physical because
p and p satisfy certain conditions known as the “Energy Conditions”,
namely Null energy condition, Weak energy condition, Dominant energy
condition and Strong energy condition (Appendiz A). Hence, we can find

the gravitational waves in this system.
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Chapter 4

Axial gravitational waves in FLRW

cosmology

4.1 Equations

We consider the metric defined in (3.13) and the conformal Hubble pa-

rameter as:

Oha

Hp) = 2 (@1)

For convenience, we use Y = Y (6) = Yjo(0) and Y’ = 9pY, where Y},
stands for spherical harmonics.
Considering the axial perturbation in the Regge-Wheeler guage, we

write:

v = @2 (M0 + (4.2)

where n,(,(,),) is the Minkowski metric and the sole nonzero components of
h,. can be given as:

hye = hosin@Y’ and h,4 = hysin Y’ (4.3)
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where hg = ho(n,r) and h; = hi(n,r), unlike in Regge-Wheeler for-
malism in which these components were the functions of radius only.

The stress-energy tensor that describes the material field is:

T;w = (P + p)u#ul, + PG — Ag/w (4-4)

Just two components of the four-velocity of matter appear to be affected

by axial modes of GWs. Up to terms linear in perturbations, we have:

S (4.5)

uy = sin - u(n,r)Y’

This guarantees that u,u* = —1 in linear terms of velocity:

Hence, the non-vanishing components of stress-energy tensor are:

Ty = —aX(p+p) — ®p+ oA
" (4.6)

Tys = —asin@Y'(p + p)u
Using (4.1), (3.8) can be written as:

and (3.10) becomes:
(4.8)



From (4.8) and (4.9), we can derive the relation:

dH a® [p 4\
Hy— =" (L _ i 4.
5 2<3 p+3> (&9)

Again using (4.1), (3.11) gives:
Oyp =3H(p+p) (4.10)

The linearized Einstein equations for (3.13) with the application of (4.6)

are:
0yhy = 0yhy (4.11)
2
0, 0yh1 — O2hg — 2HO, by + =0,y
4H Ui +1) ' (4.12)
— ——hi+ =—"ho = —2a°(p + p)u
r r
2
O2hy — 8,0,hy — 2H,hy + =0yho
a4 1)-2 (4.13)
——h+—h1=0
dn 12
Putting (4.11) in (4.13):
2
Oh1 — by — 2HO,h1 + —0, I
4.14)
dH  1(+1) -2 (
- _hl + ihl =0
dn P2
We define the new term Q(n,r), using which we can write h; as:
hi(n,r) = ra(n)Q(n,r) (4.15)

Finally, inserting (4.15) into (4.14) and using (4.9), one can arrive at

so-called ‘master equation’:

(1+1 a? 4A
85@—83624— (7'2 )Q—E(g—p+?>=0 (4.16)
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For our case (3.15), it becomes:

I(1+1) A+ Btanhpyn (p 4A
2 _ 2 _ SN —_— —
0,Q — ;@ + 3 Q 5 3 P + 3 0 (4.17)

4.2 Solving PDE

Let
A+ Btanh 4A
f(n) = L ] (4.18)
2 3 3
We focus on quadrupole (I = 2) modes only. Rearranging (4.17):
2 2 6
0,Q = f(n)Q@ =9,Q — 5Q (4.19)
By using the method of separation of variables:
Q = Q1(r)Q2(n) (4.20)
Therefore, (4.19) becomes:
6
Q02 - 1)@:] = @: |01 - 5]
82 _ 82 _ %
12— JWG & -l e oy @a2n)
Q2(n) Q1(r)
where K is some constant. (4.21) gives two wave equations as follows:
6
92Q1 — Q1= -K?Q, (4.22)
Q2 — f(N)Q2 = —K*Qs (4.23)
where:
fn) = — ptB%sech®pyn sech?pon 1) - 2 tanh pyn
L 2(A + B tanh pgn)?2 2 (A + B tanh pyn)3/2

(4.24)
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Figure 4.1: Variation of @Q;(r) with r
We find the solution for (4.22) to be:
2 3cos Kr . 3sin Kr
Qi) = e (R st + 25

3cos Kr B 3sin Kr
K22 Kr

(4.25)
+

2
WCQ (cos Kr —

where ¢ and ¢y are constants of integration. For outgoing real wave, we

have:

g W 3 2 3 1
= LD T RO B . 4.2
@ulr) = 5 ( Kr ' K22 Kol 3> 26)
For a case where A =4, B= -2, py = 10 and K =1 (say), Q1(r) can

be plotted with respect to r coordinate as in Figure 4.1.

We now analyse (4.23):

Q> = [f() — K*Q> = —@*Q5 (4.27)

Therefore, we can assume:

Qa(n) = " (4.28)
where:
o* = —f(77)+K2 >0
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Figure 4.2: Variation of Q2(n) with n

Hence, the condition:

K? > f(0)lnas (4.29)

should be satisfied. For the same case, where the values of A, B, py and
K were assumed earlier in this section, variation of Q5(n) with n can be

plotted as in Figure 4.2.

For asymptotic and flat space (A = 0) case, f(n) approximates to a

constant as:
2

f)=—5—%53s for n—o0
/2

(A;B) (4.30)

f(n) = —(A — By for n— —o0

Thus, from (4.29):
2
2

K-> m (4.31)

Finally, the gravitational wave can be written as:

Qln. 1) ghle=Kn) 3 n 2 3 1 (4.32)
r) = ——C — e ———l T = i .
7” VorK ! Kr K2 K4t 3
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Figure 4.3: Variation of Q(n,r) with  and r

for asymptotic limits for 7, i.e. 7 — 400 and the variation of Q(n,r)
with 7 and 7 (in accordance with Figure 4.1 and Figure 4.2) can be

plotted as in Figure 4.3.
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Chapter 5
Discussion

Wave vector is an important parameter of such wave which can be ex-
pressed as an integral over the stress energy tensor, 7),,:

TW(I b |? - |) 3
i =4 d’x (5.1)
/ ERrd

(Green’s function).

Many sources do not require complete relativistic treatment. If they are
moving slowly and the gravitational contribution to the total energy is
modest, this expression can be reduced to the known quadrupole formula

in the weak field limit:

2 ..
h/w — ;[/w(t = T‘) (52)

where j;w is the reduced (trace free) quadrupole moment tensor. The

power radiated in gravitational waves (luminosity) is given by:

dEGW 1
Ty [P .
O = (Fud™) (53)
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For our case,
Bigh®
(2/r)?

_ 9%900h0shos + 9" goolrohrs

fu =

(2/r)?
_ (M- hY"”
~ 4(A + Btanh pyn)?

Hence, (5.3) is given as:

dEqw 1 (h2 — h)Y"™
dt 5 \4(A+ Btanh pyn)?
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Chapter 6

Conclusion

Gravitational waves are produced by any heavy object that accelerates,
for example, automobiles. However, the masses and accelerations of
things on Earth are too weak to produce gravitational waves that our
equipment can detect. So we need to look far beyond our solar system
to locate large enough gravitational waves. It turns out that the Uni-
verse is packed with really huge objects that accelerate rapidly and, as
a result, emit gravitational waves that can actually be detected.

Change in vacuum is one of the major sources of gravitational waves as
we have seen in our intended case of C' = A + Btanh pgn, where the
space is Minkowski for asymptotic limits but shows a sudden change in
between. We then governed the expansion of space with the Friedmann
equations in a material field for different values of p and p of an homo-
geneous and isotropic universe, and solve the solution of gravitational
waves (frequency, @) for a linear axial mode perturbation, with the help
of “master equation” (4.17), where the time and azimuthal components

of 4-velocity, and Tyy and Tp, of stress-energy tensor are the only af-
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fected components due to such perturbation. Plotting of graphs for a
particular case shows the behavior of such waves. Finally, we see that a
physical quantities of such waves, like radiated power which is the time
derivative of energy of gravitational waves, is calculable which relates to
the average value of the relation of predefined quantities such as hy, hq,

Y’ and C(n).
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Appendix A

Energy Conditions

Energy condition in general relativity is a mathematical formulation
that generalises the statement “a region of space cannot have a negative
energy density”.
For perfect fluids (7%, = diag(—p,p,p,p)), these can be stipulated in
mathematical form as:

e Null energy condition: p+p >0

e Weak energy condition: p >0, p+p >0

e Dominant energy condition: p > [p|

e Strong energy condition: p+p >0, p+3p >0
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