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ABSTRACT

Since the early 2000s, complex systems have been explored in

depth and have been an important topic of research due to

tremendous discoveries in real-world networks such as computer,

biological, brain, climate, and social networks. Exploring a net-

work and exploiting its dynamics to generate predictions is sim-

ple as long as we have information for all of the network’s under-

lying nodes. But, what if this comprehensive knowledge about

the network and its nodes is unavailable, as is the case with real

work phenomena? Hereby, employing machine learning tech-

niques, we offer a collective research of working just with a lim-

ited number of nodes in a network and using restricted time se-

ries of these few available nodes to predict correlation matrices.

Feed Forward Neural Network is the machine learning algorithm

we implemented in this study. Fitzhugh-Nagumo oscillators con-

trol the network’s dynamics, and the coupled dynamics of these

oscillators are utilised to generate synthetic data i.e. time series

of the underlying nodes of the network.
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Chapter 1

Introduction

Networks are to be found EVERYWHERE! Whether we talk

about our social groups, our working-areas or most importantly

in nature like biological areas and climate. A network is a sys-

tem or a collection of certain entities and is characterised by the

type of interaction/connection between those entities. A com-

plex network, in of network theory, is a graph containing certain

additional significant traits that are not clearly traceable in sim-

ple networks such as lattices but are regularly found in networks

reflecting actual real-world systems.. Since the 2000s, the study

of complex systems has emerged as a young and hot-spot area

of scientific research, partly motivated by the pragmatic results

of real-world networks such as computer, biological, brain, cli-
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mate, and social networks, among others..The problems related

to complex systems are in abundance around us, and such sys-

tems are deliberated and fathomed by constructing networks.

The dynamical behaviour of a node is either observed to be in

a synchronised or in a desynchronised state i.e. either all the

nodes will have the same behaviour or the nodes will act inde-

pendently from each other.

Neurons are the basic information processing units of a living be-

ing that generate electrical impulses, known as action potentials,

in response to chemical and other inputs and send them to neigh-

bouring cells via synaptic connections (points where two neurons

link). As a result, neurons interact directly via ion diffusion and

indirectly via their shared environment. Neurons do not exist

in isolation. They form intricate networks that cover the en-

tire body, and communication between neurons is accomplished

through travelling electrical signals known as action potentials,

which are determined by the cell’s electrophysiological proper-

ties. Typical neurons can make up to 10,000 synaptic contacts

with neighbouring neurons and up to 100,000 synaptic contacts

on rare occasions [13]. Understanding the linked behaviour of

the neural system is therefore crucial from both an academic

and practical standpoint. Excitability is a characteristic shared
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by many physical and biological systems[5]. Since the pioneer-

ing work of Hodgkin and Huxley and the emergence of the basic

mathematical models by various authors reported research on

the subject has grown enormously. A single neuron, for exam-

ple, is excitable in the sense that a tiny disturbance from its

immobile state, i.e. a steady stationery value of the cross mem-

brane potential, can result in a considerable surge of its potential

before reverting to its inactive state. Aside from neurons, sev-

eral other cells are known to generate potential spikes across

their membrane. Excitable units are often hardwired parts of

complex systems that may transmit excitation between them.

Machine learning (ML) is a fundamental subfield of artificial

intelligence (AI). Machine learning applications tend to be ac-

curate by learning from the experience like the humans do with-

out direct programming. When unveiled to new data, these ML

applications learn, grow, change and evolve by themselves. In

other words of explanation, machine learning learning involves

computers detecting intuitive information from the data without

actually being told where to look. Instead, ML application do

this by leveraging the power of algorithms that learn from the

data in an iterative process.Machine learning techniques have

been applied in diverse areas for predicting and understanding

3



the behaviour of complex systems and also in understanding

the important parameters that aid effective predictions. In real

world phenomenons, it is often observed that the limited time

series of a dynamical process is available only for a small number

of nodes of the system.

Due to availability of information of only a few number of nodes

present of the system, predicting any results from such a lim-

ited amount of data becomes a tedious job.There are various

applications of constructing the correlation matrix of the time

series of nodes, for example, in the field of brain research, MRI

or MEG signals are taken from several regions of the brain and

are used to form the correlation matrix which is then used to

extract the adjacency matrix by setting a threshold value for

the correlation[3]. Further more this simple method of link pre-

diction using cross correlation of time series data has been used

to predict the link between two nodes based on the strength

of their cross correlation and then applied to various real world

problems like prediction of Earthquakes[19]. The correlation be-

tween fMRI is used to extract functional states connecting corre-

lated human brain sites[17][7].These methods only calculate the

average correlation matrix of the time series over a fixed period

of time. In reality, the correlation matrices of time series vary
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depending on the length of time as well as the temporal position

of the observations.

There are a number of methods for estimating the true covari-

ance matrices like the MLE, Maximum Likelihood Estimation

and the GLASSO, Graphical Least Absolute Shrinkage and Se-

lection Operator Method[9], and the evolved versions of GLASSO

such as P-GLASSO and DP-GLASSO[11] but the prerequisite of

all these methods is that they require the information of all the

nodes present in the system, but as we look upon the real world

phenomenons this complete information is rarely available and

distinguishing between the most connected nodes is a difficult

task. As a result, these approaches flounder to depict scenar-

ios where the size of the network is significantly more than the

number of time series available. And thus, we aim our study at

investigating a machine learning-based strategy for reconstruct-

ing the correlation matrix of the complete network using the

limited time series of a few nodes.
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Chapter 2

Model and Techniques

2.1 Network

To have a comprehensive understanding of a complex system, we

need to perceive how the underlying components of the network

interact with each other. A system might be made up of various

kinds of networks and that network consists of the nodes and

these nodes are connected to each other via edges. N represents

the number of nodes and it is often referred to as the size of the

network.

6



(a) (b)

Figure 2.1: (a) Undirected Graph consisting of 5− nodes and 6− edges, (b)

Directed Graph consisting of 7− nodes and 6− edges.

2.1.1 Degree

The degree of a network is measured by the number of connec-

tions a node has with every other node present in the network.

It is denoted by k, the degree of the ith node is ki

2.1.2 Average Degree

The average degree of a network is denoted by < k > and is

given as :

< k >=

∑N
i=1 ki
N

(2.1)
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2.2 Time series Data

Time series data is a sequence of data points catalogued in

chronological order. These data points are used to track change

over time and generally consist of sequential measurements taken

from the same source across a time interval. Time series data

is abundant and present everywhere in our technological era,

because time is an integral part of every observable quantity.

As the world is increasingly getting instrumented, sensors and

systems are constantly venting unabated stream of time series

data. Such enormous of data has applications in various fields

and industries, some of the examples are :

• Electrical activity in the brain

• Rainfall measurements

• Stock prices

• Annual retail sales

• Monthly subscribers

• Heartbeats per minute
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2.3 Correlation Matrices

For describing a relationship between M variables, we opt to

use correlation matrices. The diagonal elements of an MxM

square symmetrical matrix correlation matrix, are always equal

to 1 owing to the fact that they self-correlated and off-diagonal

ijth elements equal to the correlation coefficient between the ith

and jth variables

2.4 Theoretical Model

It was in 1952 that Hodgkin and Huxley[10] constructed a model

of excitable nerve membrane on the basis of a series of exper-

iments on a giant squid axon. In this landmark study, a four-

dimensional (V,m, h, n) model of ionic processes governing cur-

rent conduction and action potential excitation in nerve was

developed, ushering in a new age of electrophysiological investi-

gations. The Hodgkin and Huxley equations (abbreviated HH

equations) were initially developed under voltage-clamp conditions[16].

However, numerical solutions to the equations have been ob-

tained under various situations. Hodgkin and Huxley (1952)

determined the equations’ responses to an abrupt shift in the

9



membrane potential. Under space-clamp conditions, Cole et

al. calculated the membrane potential to step-current stim-

uli. Derived from the pioneer works of Hodgkin and Huxley,

R.FitzHugh(1961) examined the excitation process of the Hodgkin-

Huxley equations to a sudden displacement of membrane po-

tential using the phase-plane analysis and the following next

year, J. Nagumo developed the analogous circuit, describing

a sample model of an excitable system (e.g., a neuron).The

FHN model’s enormous success is owed not only to its clear

mathematical structure and affluence in system dynamics, but

also to its correspondance to the Hodgkin-Huxley (HH) model..

Figure 2.2: Chaotic time series

of FitzHugh-Nagumo oscillator for

a = 0.42.

In actuality, the four-dimensional

HH model may be subdivided

into two parts: (V,m) represents

v in the FHN model, with rapid

dynamics reflecting excitability

and (h, n) represents w, with slow

dynamics representing accommo-

dation and refractoriness[22]. As

a consequence of these properties

present in the FHN model can be

approximated as other ionic mod-

10



els. These certainities make FHN model one of the most stud-

ied models in analytical neuroscience/electrocardiology[8][15].

Around six decades have passed since the FitzHugh-Nagumo

model was initially published, and a variety of variants of the

original model have been produced since then. The following

two-dimensional, nonlinear ordinary differential equations[18]

represent the dynamical system of a single, solitary neuron:

v̇ =
1

δ
[v(v − a)(1− v)− w]

ẇ = v − w − b+ S(t)

(2.2)

where, v is the membrane potential, w is the recovery variable

and S(t) is the sinusoidal driving signal: S(t)=rsinωot. The

other parameters are a = 0.42, b = 0.15, δ = 0.005, r = 0.2,

ωo = 15.0.

2.5 Pearson Correlation

The world is a loud place from the standpoint of signalling. We

must be careful with our attention in order to make sense of any-

thing. We as humans have gotten rather proficient at filtering

11



Figure 2.3: Phase portrait of FitzHugh-Nagumo oscillators for different cou-

pling strengths, (a) λ = 0.280, (b) λ = 0.300, (c) λ = 0.320, (d) = 0.340
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out background signals over millions of years of natural selec-

tion. We have developed the ability to link certain signals to

specific occurrences. For instance, if someone is playing cricket

and they are trying to a catch the ball. Now, your brain must

repeatedly sample the ball’s present position and estimate its

future trajectory in order to predict its motion. Advanced play-

ers will additionally consider any spin provided to the shot by

their opponent. All of this necessitates a significant amount of

implicit differential calculus.We take it for granted that our ner-

vous system can do this automatically in most cases.

This may seem so self-evident as to be unworthy of mention-

ing, yet it demonstrates how adept humans are at learning to

generate correct predictions from noisy evidence. Given a con-

stant stream of audiovisual input, a blank-state machine would

undoubtedly struggle to figure out which signals best indicate

the appropriate course of action. Fortunately, statistical and

computational approaches exist for detecting patterns in com-

plicated data.

When we talk about the “correlation” of two variables, we gen-

erally mean their “relatedness” in some sense. Correlated vari-

ables share information about one another.The stronger the link

between the variables, the more information one variable may

13



provide about the other. “Correlation does not imply causation”.

This is unquestionably true, there are numerous reasons why

even a large correlation between two variables does not imply

causation. The apparent association might be attributable to

the impacts of a third variable that isn’t visible, or it could sim-

ply be due to chance.However, correlation allows one to make

predictions about one variable based on another.For both linear

and non-linear data, there are numerous approaches for estimat-

ing correlated-ness, one of which we have considered[4].

We have used the most widely considered correlation coefficient

i.e. the Pearson’s Correlation Coefficient or Pearson’s r. Math-

ematically, it is defined as ”the covariance of two vectors, nor-

malised by the product of their standard deviations”. It is given

as :

r =

∑
(vi − v̄)(wi − w̄)√∑
(vi − v̄)2(wi − w̄)2

(2.3)
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Chapter 3

Methodology

Wemanoeuvre a machine learning technique to predict the cross-

correlation matrix for the whole network given a subset of time

series for a few nodes. We take a network with N number of

nodes and m time steps of the used to calculate the true cross-

correlation matrix R of the time series of the network. Then the

entire time series information of the dynamical system can be

expressed by a matrix T where Tij represents the time-series in-

formation of the ith node at the jth time step. The corresponding

Pearson’s r, between the time series of nodes given by a matrix

R, where Rij represents the correlation between the time series

of ith node and jth node. We predict the entire correlation ma-

15



trix from a subset δT of the original time series T

R =


r11 r12 . . . r1N

r21 r22 . . . r2N
...

... . . .
...

rN1 rN2
. . . rNN


is predicted from the matrix δT with elements δtij but here

i ∈ (1 . . . k) where k < m and j ∈ (1 . . . n) where n < N .

T =


T11 T12 . . . T1N

T21 T22 . . . T2N

...
... . . .

...

Tm1 Tm2 . . . TmN



δT =


T11 T12 . . . T1n

T21 T22 . . . T2n

...
... . . .

...

Tk1 Tk2 . . . Tkn


we compare the predicted correlation matrix R̃ to the true cor-

relation matrix R (R̃ ≈ R) and use mean square error as a

measure of similarity between the predicted and true correla-

tion matrices. The correlation used is the linear the Pearson

correlation coefficient r (same as section 3) where r is given as

r =

∑
(vi − v̄)(wi − w̄)√∑
(vi − v̄)2(wi − w̄)2

(3.1)

16



with xi and yi representing the time evolution data of each node

after the initial transient, and tij is the time evolution of a node

at each time step. The number of input time steps k is less than

the total time m step used for creating the correlation matrix

and a subset of the time series δT predicts the correlation matrix

for the entire system.

3.1 Synthetic Data Generation

The dynamical system is modelled using two most established

random graph models, the Erdos-Renyi (ER) and Scale-Free

(SF) networks. The system’s time series is generated by the

coupled dynamics of the nodes on these graph models.

3.1.1 Erdos-Renyi Network

Erdos-Renyi (ER) network by definition can be explained as

G(N, p) being a random graph with N number of nodes where

each possible edge has probability p = N/⟨k⟩ of existing[2]. ER

random graphs do not follow the power law of degree distribu-

tion. The number of edges in G(N, p) graph is random variable

17



with expected value

N
2

p.

3.1.2 Scale-Free Network

Debating about the real-world networks they are an outcome of

a phenomenon called growth and preferential attachment that

continuously increases the number of nodes and is thereby con-

trary to the random graphs, as they assume the number of nodes

to be fixed. New nodes in a real-world network prefer to link to

more connected nodes, but nodes in random networks pick their

interaction partners haphazardly. Recognizing that growth and

preferred attachment coexist in actual networks resulted in the

Barabasi-Albert (BA) model, which is used to build Scale-Free

networks[2]. In the BA or Scale-Free model, we begin with no

nodes, the ties between which are chosen at random, given that

one node has at least one edge.e. The network develops in the

following steps:

• Growth : A new node no(≤ n) is added at each time-step.

• Preferential Attachment : The degree ki determines the

likelihood pi(k) that a link of the new node links to node i:

18



π(ki) =
ki∑
j kj

(3.2)

The time evolution of the phase of each node is geared by the

v coordinate of the FitzHugh-Nagumo oscillator in phase space

whose equation is given by the following equations[14] :

v̇i =
1

δ
[vi(vi − a)(1− vi)− wi] +

N∑
i=1

λij(vj − vi)

ẇi = vi − wi − b+ S(t)

(3.3)

where , i = 1, . . . , N , v is the membrane potential, w is the re-

covery variable, λij is the coupling strength between the ith and

the jth neurons (nodes), S(t): S(t)=rsinωt. The frequency of the

driving signal has been derived from a normal degree distribu-

tion having mean 1 and variance 0.03 this frequency is given by

ω+ ∆ω here the ∆ω = 0.001k where k is generated from a nor-

mal distribution. The frequency is the mismatched parameter in

the set of oscillator and λ denotes the overall coupling strength

between the connected nodes.The other parameters of the oscil-

lators are : a = 0.42 and the other parameters are b=0.15, δ

=0.005, r=0.2, ω=15.0.
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3.2 Global Synchronisation Error

The Global Synchronization Error (∆E) of the time series of

the nodes over the measurement window is used to determine

the system’s level of synchronisation. The following formula is

used to determine the (∆E) of the time series matrix T of order

m×N :

∆Ei =
1

m(N − 1)

N∑
j=1

t+m∑
t

||vj − vi|| (3.4)

The absolute difference between the phase of each oscillator cor-

responding to a node is computed with every other nodes for the

full length of the time series, for each phase space coordinates v,

w gives the error of the ith node where ||v|| represents
√
v2 + w2

where v,w are phase space coordinates of the FitzHugh-Nagumo

oscillator. This procedure is followed for all N nodes and their

average value gives the Global Synchronization Error of the

time series for a particular coupling strength (λ). The tran-

sitioning of the system of oscillators towards the synchronisa-

tion is depicted by the ∆E vs. λ curve. We want to locate a

semi-synchronous zone where the nodes are neither entirely un-

synchronized nor completely synchronised, i.e. a region where

neither strongly correlated nodes nor weak correlations exist.

20



The semi-synchronous region of the dynamical system is deter-

mined from the coupling strengths corresponding to the middle

portion of the E vs λ plot in Fig.4. For the FitzHugh-Nagumo

oscillator, this corresponds to the region with E lying between

0.16-0.18 for Erdos-Renyi network and 0.11-0.13 for Scale-Free

network. After leaving a considerate initial transient, the time

series (phase development of the nodes with time) is recorded for

a few values of such coupling strengths. To represent the time

series of one of the dynamical system’s nodes, we only utilise

one of the two phase space variables, over here we have used

variable v of eq.(3.2).

Figure 3.1: Global Synchronisation Error (GSE) vs. λ (a) GSE for ER-

network with N=100, < k >= 10, (b) GSE for SF-network with N=100,

< k >= 10

21



3.3 Machine Learning Algorithm

Artificial neural networks (ANNs) are the networks of basic pro-

cessing units (referred to as ”neurons”) that operate on local

data while connecting with other elements. The structure of a

real brain inspired the construction of ANNs, however the pro-

cessing components and architectures employed in ANNs have

diverged significantly from their biological inspiration.

Although, due to the technological advancements there are many

different forms of neural networks that exist today, but the fun-

damental concepts are relatively similar. Each neuron in the

network has the ability to accept, analyse, and transmit input

signals. No neuron in the network is is isolated, i.e. each neuron

is linked to at least one other neuron, and the significance of that

connection in the neural network is determined by assigning a

weight coefficient to each connection present in the network. In

theory, a neural network has the power of being compared to

a universal approximator[12] , elucidating to the fact that it

can perform any arbitrary mapping from one vector space to

another. The major benefit of neural networks is that they may

make use of previously undiscovered information concealed in

data (but they are not able to unsheathe it). The process of
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capturing this hidden information or the unknown facts within

the data is the Learning of neural networks or Training of

neural networks. In mathematical formalism, learning entails

adjusting the weight coefficients such that certain requirements

are met for better applications of neural networks.

Mainly there are two types of training processes which exist and

they are as follows :

• Supervised Learning : As the name implies, supervised

learning entails working under supervision. Supervised learn-

ing, as the name indicates, entails the presence of a supervi-

sor who simultaneously functions as a teacher. In essence,

supervised learning is the use of well-labeled data to guide

or train a computer. This indicates that some information

has already been tagged with the right answer. The com-

puter is then given a fresh collection of examples (data),

which the supervised learning algorithm analyses and de-

livers a proper result from labelled data. Some forms of

Supervised learning are :-

– Regression

– Logistic Regression

– Classification
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– Naive Bayes Classifiers

– K-NN (k nearest neighbors)

– Decision Trees

– Support Vector Machine

• Unsupervised Learning : Unsupervised learning is the

process of teaching a machine to operate on data that hasn’t

been classed or labelled and letting the algorithm to act on

it without supervision. Without any prior data training,

the machine’s mission here is to sort unsorted data into

categories based on similarities, patterns, and differences.

Unlike supervised learning, no teacher is present, which im-

plies that the machine will not be trained. As a result, the

machine is left on its ability to discover hidden structure in

unlabeled data on its own.

– Clustering

– Association

– Dimensionality Reduction
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3.3.1 Feed Forward Neural Network

In our study, for predicting correlation matrix from the time

series of a few nodes, we employ a Feed-Forward Neural Net-

work (FNN). Our challenge involves supervised learning using

time series inputs from a few nodes and correlation matrix out-

puts.Thus, we assign (number of nodes× length of time series)

neurons for the input layer, and N2

2 − N nodes for the output

layer. The neural network’s input is the samllest sub-

set of the time series data corresponding to the nodes,

and the network’s output is the predicted correlation

matrix. Except for the output layer, we use the SELU (Scaled

Exponential Linear Unit) as a fundamental activation function.

We choose the sigmoid function[6] for the output layer since

the correlation value lies between 0 and 1. For neural network

optimization, we employ Adam (Adaptive Moment Estimation

method). A multi-layer perceptron (MLP) is another term for

a feed-forward neural network[21]. A model was built with one

input layer, two hidden layers, and one output layer. A layer

is made up of numerous neurons, and neurons in neighbour-

ing layers are linked together. The relationship between the

input(a
(l−1)
j ) and output(a

(l)
i ) of a layer is as follows:
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z
(ℓ)
i =

K∑
j=1

w
(ℓ−1)
j,i a

(ℓ−1)
j , (3.5)

a
(ℓ)
i = SELU(z

(ℓ)
i ). (3.6)

where ωi,j is a weighted connection between the jth neuron of

(l− 1)th layer and ith neuron of (l)th layer and K is the number

of neurons in the (l − 1)th layer. The a
(l)
j indicate output of

jth neuron in the lth layer. SELU(x) is an activation function,

introduced in[14]. The neural network receives an input (a(1))

and generates an output (a(L)) through the above propagation

rule. Training a neural network means finding w that can give

us the desired output for the input. This is the same as the

process of reducing the difference between the neural network

output a(L) and the desired output Y . We define the difference

as follows and call it the loss function.

Loss = −
NL∑
k=1

(Yklog(a
(L)
k ) + (1− Yk)log(1− a

(L)
k )), (3.7)

We use Adam algorithm[14] for the minimizing the loss function.

Feedforward networks (FFN), Convolution neural networks (CNN),

and Recurrent neural networks (RNN) are the three major types

of neural networks. RNNs are effective for time series predic-
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tion. It is, for example, appropriate for the task of forecasting

tn given data ranging from t0 to t(n − 1). As a result, it is

beneficial for learning consecutive facts. CNNs are also effective

for learning 2D and 3D data characteristics. For example, con-

sider the difficulty of locating a certain object in a photograph

or identifying photographs of dogs and cats. Because CNN is

extensively used for learning 2D and 3D form of data, it is ap-

propriate for our challenge. However, the random network data

that we use is difficult to characterise neighbouring nodes, un-

like the image, thus CNN was not an appropriate choice either.

CNN performs well when nearby pixels have a connection, such

as in a photograph.Finally, the Feed-Forward Neural Network,

also known as the Fully-connected Network (FCN). FCN, as the

name implies, is linked to all nodes. As a result, it was suitable

for creating graph-type data such as random networks. There

are also Graph Neural Networks (GNN) that learn graph-type

data effectively. However, because our aim is to learn and pre-

dict data that represents the graph’s features, GNN, which are

used to learn the graph itself, were not appropriate for our ap-

plication.
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3.3.2 UMAP

We aim to explain why a machine learning algorithm may pre-

dict correlation matrices using an unsupervised learning tech-

nique called UMAP (UniformManifold Approximation and Projection)[1],

which demonstrates the specific qualities of time series data that

can be learnt so that the neural network can gain something use-

ful. Dimensionality reduction can help machine learning practi-

tioners view and understand huge, high-dimensional datasets. t-

SNE[20] is a popular visualisation approach, although its perfor-

mance decreases with large datasets, and utilising it effectively

may be difficult. UMAPs help to comprehend the inherent qual-

ities of the data set. A subset of the time series corresponding

to all the coupling strengths used to create the data set is fed

into the UMAP algorithm for one time window. UMAP then

converts the time series column vector used for prediction into

points in a two-dimensional space. The difference between the

various subsets utilised for prediction is represented by the dis-

tance between the points in this 2-Dimensional space. Only the

points which have similar properties, make up a cluster, a collec-

tion of points that are part of such clusters can be extrapolated

from it even if they aren’t in the training dataset.
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Figure 3.2: Components and Steps of UMAP in brief.
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Chapter 4

Results and Discussion

The results presented in this study are for the correlation matrix

predicted using synthetic time series data generated through the

coupled dynamics FitzHugh-Nagumo oscillator on Erdos-Renyi

and Scale-Free networks. Feed Forward Neural Network is The

correlation matrix is predicted using synthetic time series data

created by coupled FitzHugh-Nagumo oscillator networks, and

the findings of this study are shown in this section. The upper

triangular section of the correlation matrix is predicted using the

machine learning technique-Feed forward neural network. Lower

triangular elements are determined by equating to the equiva-

lent upper triangular elements by symmetry using the formula

R̃ij = R̃ji, and diagonal elements of the projected correlation
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matrix R̃ are equated to 1 as they are self correlated. The

symmetry in the correlation matrix is then used to derive the

whole correlation matrix. By altering the training and testing

data, the model’s ability to predict the correlation matrix is

proven.The various types of training and testing data are dis-

cussed in depth below. We have considerable information of

how well the model performs since the complexity of the exam-

ples investigated rises systematically when the limitations in the

training data are reduced. The case that we attempt to predict

a correlation matrix for is when the network realization is kept

the same and the coupling strength is varied. A network of size

N = 100 with average degree < k >= 10 was considered, both

for Erdos-Renyi and Scale-Free networks respectively.

• Training and Testing Data : The training data for alter-

ing coupling strengths(λ) consists of restricted time series

information δT of the number of nodes utilised for pre-

dicting the correlation matrix as input and their matching

real correlation matrix R as training output. To generate

the δT for variable coupling strengths(λ) with their genuine

correlation matrixR, 75 distinct network architectures with

the same average degree were employed. In order to min-
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imise over-fitting, the coupling strength used to evaluate

the prediction is not included in the training data for all

75 network configurations. the training data consists of the

time series of a few nodes with different coupling strengths,

say λ1, λ2, . . . , λk−1, λk+1, . . . , λl for a network realization

we predict the correlation matrix for λk in this particular

case.

Now, it becomes very important to comprehend how well our

technique works and how well are the predictions made by it.

Thus, to determine the accuracy of the prediction, we gradu-

ally increase the number of nodes employed in the correlation

matrix prediction, this is done for both ER and SF networks.

We calculated the Mean Square Error (MSE), between the true

correlation matrix R and the predicted correlation matrix δR

to measure the accuracy of the predictions. It’s crucial to un-

derstand not just the accuracy of the predictions, but also the

threshold value of the minimum nodes necessary to create a

decent prediction. For serving this purpose we formulate a per-

formance array matrix, which shows convergence of the MSE of

the predicted correlation matrix with the number of nodes and

by varying the length of the time series.
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Figure 4.1: (a)The True and predicted correlation matrix for N = 100,

⟨k⟩ = 10 network displayed for ER network for λ = 0.320, (b) The True and

predicted correlation matrix for N = 100, ⟨k⟩ = 10 network displayed for SF

network for λ = 0.280

4.1 Predictions For ER-Random Network

We used NetworkX library for generating 75 different realisa-

tions of the same network. The erdos-renyi-graph graph gen-

erator function of NetworkX library returns a graph, G(N, p)

which has N number of nodes, for our case the network size is

N = 100 and p is the probability of possible edges and the av-

erage degree of the network is < k >= 10 for every realisation.

The time series of the nodes was created by using the dynamics
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of FitzHugh-Nagumo oscillators and the coupling strengths λ

used for creating time series and the true correlation matrices

are λ = 0.280, λ = 0.300, λ = 0.320, λ = 0.340. The machine is

trained for coupling strengths λ = 0.280, λ = 0.300, λ = 0.340

and tested for λ = 0.320. Figure 4.1 (a) shows the true correla-

tion matrix, the predicted correlated matrix and MSE matrix as

measure of how close is the prediction to the true value.Figure

4.2 (a) illustrates the performance array matrix, which shows

the convergence of the MSE of the predicted correlation matrix

with the increase in the number of nodes.

Next, we bid to determine the minimum number of nodes

required for a good prediction as well as we also try to focus

onto limiting the length of the time series being used for the

prediction. Figure 4.3 (a) depicts saturation point, threshold

value for the minimum number of nodes required corresponding

to the limited time series for a decent prediction to be made

by the machine. The time series generated using FHN oscil-

lators for the ER-Random network shows the clustering using

UMAPs. As shown in figure(a) and figure(c), even though the

different network realisations form separate clusters, yet they lie

very close to each other, which is a consequence of the fact that

the time series generated by FitzHugh-Nagumo Oscillators have
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Figure 4.2: Performance array matrix depicting accuracy of the prediction

with increasing number of nodes and length of limited time series for SF-

network with N = 100 and < k >= 10.
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Figure 4.3: MSE vs. NN (Number of Nodes) plot showing the saturation with

increase in the number of nodes with corresponding time series for (a) ER-

network N = 100 and < k >= 10, (b) SF-network N = 100 and < k >= 10.

very similar properties. Similarly, in figure(b) and figure(d) the

clustering is formed using UMAPs corresponding to the vari-

ous coupling strengths(λ) used for creating the time series data

set.Further, figures (e), (f), (g), and (h) show the UMAP clus-

tering predictions for the correlation matrices calculated using

all the network realisations and all the coupling strengths(λ).
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Figure 4.4: Results of dimensionality reduction using UMAP (a)UMAP la-

belled by network realisations for nodes = 10 and length of time series =

100, (b)UMAP labelled by coupling strenths(λ) for nodes = 10 and length of

time series = 100, (c)UMAP labelled by network realisations for nodes = 40

and length of time series = 100, (d)UMAP labelled by coupling strenths(λ)

for nodes = 40 and length of time series = 100
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Figure 4.5: Results of dimensionality reduction using UMAP nodes = 10 and

lengthoftimeseries = 100 (e) Predicted(white) and True(red) correlation

matrices for nodes = 10 and length of time series = 100 and, (f)Prediction

of correlation matrices labelled by network realisations for nodes = 10 and

length of time series = 100, (g) Predicted(white) and True(red) correlation

matrices for nodes = 40 and length of time series = 100 and, (h)Prediction

of correlation matrices labelled by network realisations for nodes = 40 and

length of time series = 100
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4.2 Predictions For SF Network

Scale-Free network for the prediction has been created using

NetworkX library’s barabasi-albert-graph function, which re-

turns a graph with N nodes with m being the number of edges

to be connected from the new node to existing nodes. 75 dif-

ferent network realisations with N = 100 and < k >= 10 for

each one of them. FHN oscillators were used to create the time

series for the coupling strength λ used for creating time series

and the true correlation matrices are λ = 0.240, λ = 0.260,

λ = 0.280, λ = 0.300. The machine is trained for coupling

strengths λ = 0.240, λ = 0.260, λ = 0.300 and tested for

λ = 0.280. Figure 4.1 (b) shows the true correlation matrix,

the predicted correlated matrix and MSE matrix as measure of

how close is the prediction to the true value. Figure 4.3 (b) de-

picts saturation point, threshold value for the minimum number

of nodes required corresponding to the limited time series for

a decent prediction to be made by the machine. Figure 4.6 is

the illustration of the performance array matrix, which shows

the convergence of the MSE of the predicted correlation matrix

with the increase in the number of nodes.
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Figure 4.6: Performance array matrix depicting accuracy of the prediction

with increasing number of nodes and length of limited time series for SF-

network with N = 100 and < k >= 10.
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Chapter 5

Conclusion

We worked on a really novel and distinct topic in this study the-

sis. Each technique has been reduced in a step-by-step manner.

The paper demonstrates the use of a machine learning tech-

nique called Feed Forward Neural Network (FFNN) to predict

correlation matrices using restricted time series of a few network

nodes, in the following research we used exploited Erdós-Renyi

and Scale-Free Networks, to illustrate the problem. The net-

work dynamics, i.e. the creation of time series data for each

node in the network, were performed using FitzHugh-Nagumo

oscillators.

FitzHugh-Nagumo oscillators have very definitely never been

employed for the production of network correlation matrices in
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conjunction with the ML technique, making our approach highly

novel.

Machine-Learning algorithm predictions produced by FFNN were

validated by comparing the Mean Square Error (MSE) between

the true correlation matrix and the predicted correlation ma-

trix. The calculation of the threshold value for the number of

nodes and the length of time series necessary to produce effec-

tive predictions has also been demonstrated by showing a graph

between MSE and the number of nodes utilised for prediction

with increasing time series.

UMAPS (Uniform Mani- fold Approximation and Projection),

an unsupervised learning approach has also been used for de-

termining similarity in time series data obtained on the basis

of network realisations and coupling strengths(λ). Time series

and correlations with comparable features are shown as single

coloured clusters. Finally, the work given in this study demon-

strates the capability of utilising our model to predict correlation

matrices not only for synthetic data but also for real-world data

such as stock market, EEG data, and so on.
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