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ABSTRACT

In real-world dynamical systems, partial information about the state of a

system is often only available, and predicting the future time evolution of the

system from partial time series leads to significant errors in the long term.

A correlation matrix of time series is a valuable measure in understanding a

system’s state. Learning the system’s state has many applications in brain

research and Earthquake prediction to set up warning systems. Machine

learning techniques are popular statistical tools used for prediction in all

analytical fields. Using these techniques to predict a system’s state from

limited time-series information of a few nodes is a novel way to study the

system. To this extent, we have devised a model to predict the correlation

matrices from limited time series information of a few nodes.
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Chapter 1

Introduction

Complex systems science studies how a large collection of components which

are locally interacting with each other at small scales can spontaneously self

organize to exhibit global structures and behaviours at larger scale which are

not trivial, and often without an intervention of external factors. The prop-

erties of the new system may not be understood or predicted from the full

knowledge of its constituents alone, such a system is called a complex sys-

tem, examples include ant hills billions of interacting neurons in the human

brain; computers communicating in the Internet; humans in multifaceted re-

lationships. The interaction between the individual components present in a

complex system may be of many types with sometimes just a few components

involved in the interactions. These interactions make the study of individual

components in isolation difficult which leads to difficulty in predicting their

future. The main challenge in the field of complexity science is not just to

study the individual components but also to understand how these connec-
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Figure 1.1: (a.)Ants forming a bridge without external stimuli (b.) Neurons
electrical signals firing in response to one another forming neuronal network

tions give rise to the whole. The phrase ”the whole is more than the sum of

its parts” is an ideal way to understand complex systems since the interac-

tions between components causes the system to generate novel information

and exhibits non-trivial collective structures and behaviors at larger scales.

Predicting the time series of a dynamical system has many limitations

over a long period of time. Since every time step in the time series is a

function of the previous time step the error in the prediction of the time

series compounds over large time span [4]. To avoid error in prediction we

can prefer the correlation matrix of the time series in place of directly trying

to predict the time series. A correlation matrix of the time series has several

useful applications in real world scenarios. These are discussed below.

There are various applications of constructing the correlation matrix of

the time series of nodes, Link prediction methods adopted by various re-

searchers use the correlation matrix of the time series of the nodes, e.g in the

field of brain research, MRI or MEG signals are taken from several regions of
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the brain and are used to form the correlation matrix which is then used to

extract the adjacency matrix(Network structure) by setting a threshold value

for the correlation [2]. Further more this simple method of link prediction

using correlation strength of time series data has been used to predict the

link between two nodes based on the strength of their correlation and then

applied to in the prediction of Earthquakes [21]. The correlation between

fMRI is used to extract functional states connecting correlated human brain

sites [3, 20].

The existing methods only calculate the average correlation matrix of the

time series over a fixed period of time. In reality, the correlation matrices

of time series vary depending on the length of time as well as the temporal

position of the observations. The two main methods for estimating the true

covariance matrices are the MLE, maximum likelihood estimation and the

GLASSO, graphical least absolute shrinkage and selection operator method.

The MLE method assumes a sample covariance matrix from a Gaussian dis-

tribution that is then iteratively corrected to estimate the actual covariance

matrix by maximizing the likelihood of observing the given time series data.

The GLASSO method [7] is an extension of the MLE, except when MLE

cannot be applied, for example in the cases where the dimensionality of

the Gaussian distribution is higher than the number of observation samples

available. This method involves maximizing a log-likelihood function with

a penalty term. In[10], the authors have extended GLASSO method to a

time-varying GLASSO method where they assume the covariance matrix to

be a function of time. Thus, the network structure changes over time with

slightly different edges in each time step. In [19], an effective connectivity
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network (EC) of the brain regions is formed using the EEG signals from

these regions and forming a partial correlation matrix using the GLASSO

method. Improving on the existing method, Ref [12] introduces two new es-

timations methods called P-GLASSO and DP-GLASSO.The prerequisite of

all the above techniques involves having knowledge of the time series of all

the nodes of the network, whereas in real-world networks, this information

is rarely available.

Traditional approaches like stacking of algorithms [6], collecting data from

a set of core nodes and then using traditional metrics such as common neigh-

bour score and optimizing the number of fringe nodes data required for the

best prediction[1] or developing other similar metrics[14] and using its score

as an indicator of links. Determining the most connected nodes is also a

difficult task in biological networks. Thus, these methods fail to model such

cases where the number of nodes is much higher than the number of time

series available. To this point, we hereby explore a machine learning-based

approach using the time series of a few nodes to reconstruct the correlation

matrix of the entire network. Thus, our method relies only on the time series

of a few nodes, which is available in the real-world networks.

1.1 Representation of a complex system

A dynamical system with N nodes can be represented in terms of a time

series matrix T in which the time evolution of each node in the system is

recorded in the rows of the matrix and each column representing the indi-
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vidual nodes/components of the system. In matrix terms

T =


t11 t12 . . . t1N

t21 t22 . . . t2N
...

...
. . .

...

tm1 tm2 . . . tmN


where Tij represents the time-series information of the jth node at the ith

time step. The amount of influence of one node on another in a complex

system can be represented in terms of the correlation between their time

series. A linear measure, Pearson correlation coefficient is used since it is the

most relevant one in our case. The Pearson correlation coefficient between

the time series of nodes is then given by an (N ∗ N) matrix R, where Rij

represents the correlation between the time series of ith node and jth node.

We predict the correlation matrix R of the entire time series T from a subset

δT of the original time series. The whole correlation matrix

R =


r11 r12 . . . r1N

r21 r22 . . . r2N
...

...
. . .

...

rN1 rN2
. . . rNN


The correlation measurement used is the linear the Pearson correlation coef-

ficient r [6] given as

r =

∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2(yi − ȳ)2

(1.1)

5



with xi and yi representing the time evolution data of each node, and tij is the

time evolution of a node at each time step. The number of input time steps

k is always less than the total time m step used for creating the correlation

matrix and a subset of the time series δT predicts the correlation matrix for

the entire system.
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Chapter 2

Methods and Techniques

The techniques used for preparing the synthetic data and the machine learn-

ing algorithm is discussed in details in this chapter.

2.1 MODEL

The model predicts the cross-correlation matrix of the entire time series from

limited time-series information of a few nodes. For this purpose, we use a

machine learning algorithm feed-forward neural network to predict the cor-

relation coefficients. The input given to the neural network is a subset of the

time-series matrix of the whole system, and the output is the upper triangu-

lar portion of the correlation matrix. The subset predicting the correlation

matrix is prepared in the shape of a column vector with information of each

7



Figure 2.1: Schematic diagram of model used to predict correlation matrix
from partial time series information

node used stacked one on top of each other to form the vector. The out-

put from the neural network is also a column vector of the upper triangular

portion of the correlation matrix. The output vector contains correlation

coefficients on top of each other row-wise. The entire correlation matrix is

computed using the symmetry of the matrix with diagonal elements equated

to 1 since they are self correlations.

The neural network used in the model is trained using time series and

correlation matrices similar to the ones used for prediction. The data set

used for training the neural network contains the time series and correlation

matrices generated from networks having the same number of nodes and

average degree as the test data. The split between training and testing data

is explained in detail in the result sections. The time series generating a

correlation matrix is divided into several time windows depending on the
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length of the time series intended to predict the correlation matrix. All the

time windows generated from a time series are used for training its respective

correlation matrix. The correlation matrix R is predicted from the matrix

δT with elements δtij but here i ∈ (1 . . . k) where k < m and j ∈ (1 . . . n)

where n < N .

δT =


δt11 δt12 . . . δt1n

δt21 δt22 . . . δt2n
...

...
. . .

...

δtk1 δtk2 . . . δtkn


The correlation matrix R̃ predicted from the machine learning algorithm

is compared to the true correlation matrix R and Mean Square Error(MSE)

is used as the measure of accuracy of the predicted correlation matrix(R̃ ≈

R).

2.2 Synthetic Data Generation

We use two random graph models, the Erdos-Renyi (ER) and Scale-Free

(SF) networks, to model the dynamical system. The coupled dynamics of

the nodes on these graph models generate the system’s times series. The

ER random network with N nodes and average degree ⟨k⟩ is generated by:

starting with N number of nodes, connecting all pairs of nodes with a prob-

ability p = N/⟨k⟩. The ER random network thus generated will have a

9



Gaussian degree distribution. The SF networks generated follows a power-

law degree distribution using the Barabasi-Albert model. The nodes model

chaotic Rössler oscillator with nodes that are parameter mismatched.

2.2.1 Networks

A network is a static representation of a complex system. The individual

components in a complex system are called nodes or vertices and if there is

a direct interaction between the components they are represented by links

or edges. Examples of networks include social networks, biological networks,

technological networks etc. The structural property used to create networks

for our purpose is the average degree which is defined as

Average degree : Degree of a node is the number of edge(E) connected

to a node. The average degree of a network is thus

⟨k⟩ = 2E
N

where N is the total number of nodes and E total number of edges.Based

on degree distribution networks can be classified into different types, the

two most popular models are Erdos-Renyi random(ER) and Scale Free(SF)

networks.

ER random networks:

ER random network coined by Erdos Renyi. We generate a random

network from ER model given two parameters for construction. The number

10



of nodes(N) present in a network and probability p that a given node is

connected to another node.

The average degree of the network will be ⟨k⟩=p*(N-1)

Scalefree networks

Albert Barabasi proposed the scalefree model, based on preferential at-

tachment algorithm. They are constructed using BA preferential method

where each node prefers to connect with higher degree nodes. The nodes

with higher degree has more chance to connect with incoming nodes. Most

real world networks are scale free in nature.

Scale free networks follow power-law degree distribution.

2.2.2 Rössler oscillator

The time evolution of the phase of each node in the network is modelled by

the x coordinate of the Rössler oscillator[18] in phase space whose equation

is given by:

ẋi = −ωiyi − zi + λ
N∑
j=1

Aij(xj − xi)

ẏi = ωixi + 0.15yi

żi = 0.2 + zi(xi − 10)

(2.1)

where i = 1, . . . , N andN is the number of nodes of the network, ωi is the nat-

ural frequency of ith node, the intrinsic frequency distribution for the nodes

11



Figure 2.2: 3-Dimensional Phase space diagram of a chaotic Rossler oscillator

in the oscillator is drawn from a normal degree distribution with mean 1 and

variance 0.03 this frequency is given by ω+∆ω here the ∆ω = 0.03∗k where

k is generated from a normal distribution. The frequency is the mismatched

parameter in the set of oscillators and λ denotes the overall coupling strength

between the connected nodes. The connectivity structure of the nodes is rep-

resented by an adjacency matrix Aij, where Aij = 0 represents there is no

connection between the nodes and Aij = 1 represents that the nodes i and j

are connected.

12



Figure 2.3: Time evolution of the x component of Rossler oscillator
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Figure 2.4: (a.)GSE vs λ 100 node ER network (b.)GSE vs λ 100 node SF
network
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2.2.3 Global Synchronization Error

The synchronization level of the system is measured using Global Synchro-

nization Error (∆E) of the time series of the nodes over the time window

of measurement . The ∆E of the time series matrix T of order m × N is

calculated using using the following formula

∆Ei =
1

m(N − 1)

N∑
j=1

t+m∑
t

||xj − xi|| (2.2)

gives the error of the ith node where ||x|| represents
√
x2 + y2 + z2 where

x,y,z are phase space coordinates of the Rössler oscillator. This error is com-

puted for all N nodes and their average value is the Global Synchronization

Error of the time series of a particular coupling strength (λ).

The graph of ∆E vs λ 2.4 shows that the system transitions towards

synchronization with increase in coupling strength between the nodes of the

networks. The semi-synchronous region of the system is determined from the

Fig.12.4 coupling strengths corresponding to the middle portion of the ∆E

vs λ plot is treated as the semi-synchronous region of the dynamical system,

for Rössler oscillator this corresponds to region with ∆E lying between 12-8

. The time series (phase evolution of the nodes with time) is then recorded

for a few values of such coupling strengths after an initial transient. We only

use one of the three phase space variables to represent the time series of one

of the nodes of the dynamical system.

The value of coupling strengths(λ) corresponding to semi-synchronous

15



region of the network of coupled chaotic oscillators is used to predict the cor-

relation matrix, we choose this region for the prediction of correlation matrix

since in the completely asynchronous region with high values of ∆E and low

coupling strength(λ) there would be no correlation between the time series

of the nodes to predict anything meaning full and in the highly synchronized

region the correlations would be 1 and there isn’t any need to predict the

correlations between the time series of the nodes. In the semi-synchronous

region after a limiting coupling strength(λ) coupled chaotic oscillators with

mismatched parameters reach the generalized synchronization regime this

corresponds to the region where the predictions for correlation matrix of the

time series show greater accuracy.

We solve the coupled Rössler oscillator equations using a 4th order Runge-

Kutta method with a step size of h = 0.01. The phase values x(t) in eq. (3.1)

of each node were recorded for selected values of coupling strength (λ) for

which the nodes were in semi-synchronous region as measured from the values

of Global Synchronization Error (∆E).

2.3 Machine Learning

When a computer learns anything without being explicitly coded it called as

machine learning. A range of mathematical algorithms learn from training

data to find an optimal relationship between the input variables and output

variable, The relationship acts as a function which maps the input to an

unknown output. There are many machine learning algorithms which can

16



be broadly divided into two categories (a.) Supervised machine learning

algorithms (b.) Unsupervised learning algorithms.

Supervised machine learning algorithms : These are algorithms in

which an output is expected from the input variables. The output expected

is first trained to the machine learning algorithm. Examples Support vector

machines, Linear Regression, Feed Forward Neural Networks.

Unsupervised machine learning algorithms : These are algorithms

which are not explicitly trained to give any output. They classify the input

data based on their properties. Examples are UMAPS, K-means clustering,

Hierarchial clusterring

In our survey we found that the Feed Forward neural network is most

appropriate for our purpose.

2.3.1 Feed-forward neural network

We use a feed-forward neural network (FNN) for predicting correlation ma-

trix from the time series of a few nodes. Our task is a supervised learning

with inputs of time series of a few nodes, and outputs of corresponding cor-

relation matrix. Thus, we assign (number of nodes× length of time series)

neurons for the input layer, and N2

2
− N nodes for the output layer. Note

that the input to the neural network is the small subset of the time

series data corresponding to the nodes and output layer is the pre-

dicted correlation matrix for the entire network. We adopt the SELU

(Scaled Exponential Linear Unit) as a basic activation function except for the

17



output layer[15]. For the output layer, we use sigmoid function, since correla-

tion value is between 0 and 1. We use Adam (Adaptive Moment Estimation

algorithm) for the neuranl netwok optimization [14]. We construct a model

through one input layer, two hidden layers, and one output layer. A layer is

composed of several neurons, and neurons in adjacent layers are connected

to each other. The relationship between the input(a
(l−1)
j ) and output(a

(l)
i ) of

a layer is as follows:

z
(ℓ)
i =

K∑
j=1

w
(ℓ−1)
j,i a

(ℓ−1)
j , (2.3)

a
(ℓ)
i = SELU(z

(ℓ)
i ). (2.4)

where ωi,j is a weighted connection between the jth neuron of (l−1)th layer

and ith neuron of (l)th layer and K is the number of neurons in the (l − 1)th

layer. The a
(l)
j indicate output of jth neuron in the lth layer. SELU(x) is

an activation function, introduced in [15]. The neural network receives an

input (a(1)) and generates an output (a(L)) through the above propagation

rule. Training a neural network means finding w that can give us the desired

output for the input. This is the same as the process of reducing the difference

between the neural network output a(L) and the desired output Y . We define

the difference as follows and call it the loss function.

Loss = −
NL∑
k=1

(Yklog(a
(L)
k ) + (1− Yk)log(1− a

(L)
k )), (2.5)

18



We use Adam algorithm [14] for the minimizing the loss function.
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Chapter 3

Results and Discussions

3.1 Results For the correlation matrix pre-

dicted using synthetic data generated

The results of correlation matrices predicted from the synthetic data gener-

ated using coupled Rossler oscillators are presented below. The success of

our model in predicting the correlation matrix from a subset of time series

is shown by splitting the data set used for training and testing in two ways.

In the first case, we split the data set by the coupling strength, and in the

second case, we split the data set using network structure. The training

and test data set is explained in detail, along with the results of each case.

Why the machine learning algorithm predicts correlations is exaplained using

an unsupervised machine learning algorithm called UMAP. Both cases are

tested on ER and SF networks.

20



3.1.1 Prediction of correlation matrix for varying cou-

pling strengths of same network structure.

The time-series data used to train and test the model differs by coupling

strength (λ). The subset of time series δT used to test the model is generated

from the network structure used to train the model with a different coupling

strength.

Data Set for Rössler oscillators : 75 different network structures

with the same average degree ⟨k⟩ = 10 and number of nodes NN = 100

is generated for both ER and SF networks. 5 coupling strengths, λ =

{0.012, 0, 013, 0.014, 0.015, 0.016} for ER and λ ={0.006, 0.007, 0.008, 0.009, 0.010}

in the semi synchronous region (Ref appendix) is selected for generating the

time series and their corresponding correlation matrix. Time series generated

from 4 of the coupling strengths is used to train the model. The time series

generated from the 5th coupling strength is used to test the model . The ER

and SF networks are trained and tested separately.

Training data set : The training data set used contains 300(75 ∗ 4)

different time series and its respective correlation matrix to train the model.

The 4 coupling strengths selected are varied. So that predictions can be

made for each coupling strength.

Test data set : The test data set used contains 75(75∗1) time series with

the same coupling strength corresponding to different network structures.

The predictions for the correlation matrix for NN = 100 ER and SF

with average degree ⟨k⟩ = 10, figure 3.1 shows the true correlation matrix

21



Figure 3.1: The True and predicted correlation matrix for N = 50, ⟨k⟩ =
10 network displayed for (a) ER network with coupling strength (λ) 0.014.
The True and predicted correlation matrix for N = 100, ⟨k⟩ = 10 network
displayed for (b) ER network with coupling strength(λ) 0.009 (c) SF network
with coupling strength(λ) 0.011
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Figure 3.2: Accuracy of prediction represented by Mean Square Error(MSE)
for the correlation matrix predicted, both are done for 100 Nodes with ¡k¿=10
,(a.)ER random network MSE of predicted correlation matrix versus the
length of the time series and number of top degree nodes are increased (b.)
ER network MSE of predicted correlation matrix plot for the length of the
time series versus number of bottom degree nodes are increased(c.) SF net-
work MSE of predicted correlation matrix plotted for time series length versus
the number of top degree nodes used for training (d.) SF network MSE of
predicted correlation matrix plotted for length of time series versus the num-
ber of bottom degree nodes used for training
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along with the predicted correlation matrix and the difference between the

predicted and the true correlation matrix.

The effect of number of nodes(NN) and length of time series used in pre-

dicting the correlation matrix is observed by systematically increasing both

and repeating the experiment. The accuracy of the prediction is measured by

the Mean Square Error(MSE) of the difference between the predicted corre-

lation matrix δR and the true correlation matrix R. The MSE of prediction

is calculated by averaging MSE from each coupling strength. A performance

array [Refer appendix]is by varying the NN and length of time series used in

prediction. The predictions are made for the time series of high degree nodes

and low degree nodes of the network. From observing the performance array

we see time series generated from ER networks high degree nodes perform

slightly better as compared to lower degree nodes. In SF networks the perfor-

mance of both high degree nodes and low degree nodes are similar. The NN

has more influence on the accuracy of prediction as compared to the length

of time series. The increase in accuracy of prediction with the increase in

NN and length of time series used reaches a saturation this is observed from

3.2. Since we consider higher degree as well as lower degree nodes we assume

the random nodes will also follow the same properties of convergence.

Performance array of the model for varying length of time series

and nodes used for prediction
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ER random Network with nodes with high degree distribution
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ER random Network with nodes with low degree distribution
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SF Network with nodes with high degree distribution
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SF Network with nodes with low degree distribution

3.1.2 Prediction of correlation matrix for varying net-

work structure

The same model is then applied to predict the correlation matrix when the in-

formation of the underlying network structure is not used for training model.

To train the model we use time series and correlation matrix data which

show close resemblance to the testing data, for this we generate data from
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Figure 3.3: Prediction of correlation matrix from 3 different time win-
dows(a,b,c) for 100 node SF network with coupling strength λ = 0.010 by
varying network structure
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different network structures with the same average degree as the test network

structure. We train the model for high degree nodes and low degree nodes for

both ER and SF networks. The number of nodes(NN) and the length of time

series used for predicting the correlation matrix is increased systematically

to understand their effects on prediction. The MSE vs NN(Number of Nodes

used for prediction) is is stored as a performance array. From the prediction

results we find that SF networks show good results for the varying network

structure. To explain the result we use an unsupervised learning algorithm

UMAP to explain the results of both the ER and SF network. The data set

used is the same as the previous case with the difference in the split between

training and testing data set.

Training Data Set: The Training Data set is the time series generated

by 74 different network structures the same average degree ⟨k⟩ and Number

of nodes for the same coupling strengths as the previous case

Testing Data Set: The test data set is the time series generated by the

75th network structure for the same coupling strengths.

Performance array of the model for varying length of time series

and nodes used for prediction
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SF Network with nodes with high degree distribution
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Figure 3.4: (a.) Dimension reduction of ER network time series labelled by
network structure (b.) Dimension reduction of SF network time series la-
belled by network structure (c.) Dimension reduction of ER network time
series labelled by coupling strength(λ) (d.) Dimension reduction of SF net-
work time series labelled by coupling strength(λ)
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3.2 CONCLUSION

3.2.1 UMAP-An Unsupervised Machine Learning al-

gorithm to understand the data set

We use an unsupervised machine learning approach to understand the in-

trinsic properties of the data set. The input to the UMAP is time series sub-

sets from one window of each coupling strength used in the model. UMAP

transforms the time series column vector used for prediction to points in a

2-dimensional space. The distance between the points in this 2-Dimensional

space represents the difference between the various subsets used for predic-

tion. The points forming clusters together are similar in property; in such

cases, a set of points which are part of the cluster, even if not included in

the training dataset, can be extrapolated from the cluster.

Time series generated by coupled Rössler Oscillator : The time

series subset from ER random network created using coupled Rössler oscilla-

tors clusters together by network structure, so the model predicts a missing

coupling strength from the same network structure from this data set. The

clusters formed by the different network structures are further away from

each other as compared to the subsets from coupling strengths of the same

network. The prediction of correlation matrices of different network structure

is more difficult in the case of time series generated from ER networks.

The time series subset from SF networks created using the same oscillator

clusters in a slightly different way. The low coupling strengths of the data
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set clusters similar to the ER network by network structure while the high

coupling strength of the data set clusters by coupling strength. The model

can predict a missing coupling strength from the same network for all the

coupling strengths used, it can predict for a different network structure for

high coupling strength values with better accuracy than low coupling strength

values.
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