
I 
  

Hardware Acceleration of 

Spoofing Speech Detection 
 

A PROJECT REPORT 

Submitted in partial fulfillment of the 

requirements for the award of the degrees 

 

of 

BACHELOR OF TECHNOLOGY 

in 

ELECTRICAL ENGINEERING 
 

 

Submitted by: 

Abhinav Himanshu 

 

Guided by: 

Supervisor: Dr. Vivek Kanhangad 

Co-supervisor: Dr. Santosh Kumar Vishvakarma 
 

 
 

 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 

December 2017 



  



III 
  

CANDIDATE’S DECLARATION 

 

I hereby declare that the project entitled “Hardware acceleration of spoofing 

speech detection” is submitted in partial fulfillment for the award of the degree of 

Bachelor of Technology in ‘Electrical Engineering’ completed under the supervision 

of Dr. Vivek Kanhangad, Associate Professor in Electrical Engineering 

department and Dr. Santosh Kumar Vishvakarma, Associate Professor in 

Electrical Engineering department at IIT Indore, is an authentic work. 

 Further, I declare that I have not submitted this work for the award of any 

other degree elsewhere. 

 

Abhinav Himanshu 

140002001 

Discipline of Electrical Engineering 

Indian Institute of Technology Indore 

_________________________________________________________________ 

CERTIFICATE by BTP Guides 

 It is certified that the above statement made by the student is correct to the best of 

my knowledge.  

 

Co-Supervisor                                                                                          Supervisor                                                       

Dr. Santosh Kumar Vishvakarma                                      Dr. Vivek Kanhangad 

Associate Professor                                                                   Associate Professor 

Discipline of Electrical Engineering            Discipline of Electrical Engineering       



  



V 
  

        

 Preface 

 

This report on “Hardware acceleration of spoofing speech detection" is prepared 

under the guidance of Dr. Vivek Kanhangad and Dr. Santosh Kumar Vishvakarma. 

 Through this report I have explained a machine learning algorithm for separating 

spoof speeches from human speeches. And later I have also presented an innovative 

approach to accelerate the feature extraction process of this machine learning 

algorithm by proposing a specific hardware architecture for the algorithm. In this 

report I have discussed other features of speech signals and Gaussian Mixture 

Models are also discussed in this report. The technological trend which has 

motivated me to use Field Programmable Gate Arrays (FPGAs) as the computational 

platform is also explained in details.  

 I have tried to the best of my abilities and knowledge to explain the content in a 

lucid manner. I have also added 3-D models and figures to make it more illustrative. 

 

 

Abhinav Himanshu 

B.Tech. IV Year 

Discipline of Electrical Engineering 

IIT Indore  

  



  



VII 
  

 

Acknowledgements 

I wish to thank my supervisor Dr. Vivek Kanhangad and co-supervisor Dr. Santosh 

Kumar Vishvakarma for their kind support and valuable guidance. 

It is their help and support, due to which I became able to complete the design and 

technical report. 

Without their support this report would not have been possible.  

 

 

Abhinav Himanshu 

B.Tech. IV Year 

Discipline of Electrical Engineering  

IIT Indore  

  



 

 

  



IX 
  

 

Abstract 

Speech is a very important biometric identity of an individual. Speech produced by a person carries 

various features of an individual which are either based on the amplitude or phase of the speech 

signal. These features perform a very important function in various speaker recognition and 

speaker verification systems which have become very popular these days. These systems are used 

in various applications like access control, biometric authentication, and telephone-based 

applications like phone banking and credit cards. 

However, weakness of such biometric systems to various spoofing attacks has recently been 

exposed.  Availability of different modern artificial techniques has facilitated this process of 

mimicking an individual's voice to fool such speech-driven biometric system. But even researchers 

have long understood the need to make these systems more robust by developing numerous 

countermeasure techniques against spoofing attacks. Although there has been a significant 

research in proposing different countermeasures against spoofing attacks, there is a very limited 

work done on accelerating these proposed countermeasures to make them more real-time.  

This thesis report proceeds in two stages, in the first stage, feature extraction process of Mel 

Frequency Cepstral Coefficients (MFCCs), is defined and Matlab algorithm is developed for the 

same. Gaussian Mixture Models (GMM) are trained using these features. The trained GMM model 

is used for classification of speeches as either human or spoof speech. GMMs are used as they are 

very popular with speech signals and provide a soft classification very effective in case of 

speeches. This method is evaluated on ASVspoof 2015 (Automatic spoofing and countermeasures) 

Challenge dataset. The scepticism surrounding Moore's Law, the breakdown of Dennard Scaling, 

the dark silicon phenomena and wide scope of making approximation while working with speech 

processing and machine learning based algorithm together motivates us to choose Field 

Programmable Gate Arrays (FPGAs) as our hardware platform. During the second stage, we use 

Xilinx System Generator to develop a hardware architecture for FPGAs to accelerate the MFCC 

feature extraction process for classification of speeches. 

 



 

  



XI 
  

Table of Contents 

 

 Candidate’s Declaration   

 Supervisor’s Certificate  

 Preface  

 Acknowledgements  

 Abstract  

   

 1. Introduction                                                                                    1 

1.1 Background                                                                              2 

1.2 Why FPGAs?                                                                           3 

1.3 Objectives                                                                                7 

2. Literature Review                                                                          9 

2.1 Human Speech Production                                                      9 

2.2 Different Speech Features                                                      10 

2.2.1 Log Magnitude Spectrum                                             10 

2.2.2 Mel Frequency Cepstral Coefficients                           10 

2.2.3 Cosine Phase                                                                 10 

2.2.4 Relative Phase Shift                                                      11 

2.3 Gaussian Mixture Models                                                      11 

2.4 Dataset                                                                                    12 

2.5 Xilinx System Generator                                                        13 

3. Software Implementation                                                             15                             

3.1 Mel Frequency Cepstral Coefficients                                     15 

3.1.1 Feature Extraction Process                                            16 

3.2 Gaussian Mixture Models as a classifier                                19 

 



XII 
 

3.3 Results of Software Implementation                                      20 

4. Hardware Implementation                                                            21 

4.1 Approximation made for hardware implementation              21 

4.2 Back to software                                                                     22 

4.3 Hardware Architecture                                                           25                           

4.3.1 Pre-Emphasis Module                                                   26 

4.3.2 Framing and Windowing Module                                 27 

4.3.3 Silent Removal Module                                                28 

4.3.4 Fast Fourier Transform V9.0 Module                           29 

4.3.5 Magnitude Square Module                                            30 

4.3.6 Mel-Filter Bank Energy Control Module                     31 

4.3.7 Mel-Filter Bank Module                                               31 

4.3.8 DCT Module                                                                 33 

5. Experimental Results and Analysis                                              35 

5.1 Observation from Hardware Implementation                        35 

5.2 Accuracy Comparison                                                            37 

5.3 Performance Comparison                                                       38 

Future Work                                                                                      39 

Bibliography                  40 

 

 

 

  

  

  

  



XIII 
  

List of Figures 

 

1.1 Graph showing Moore’s Law                                                                              3 

1.2 Trend of no. of transistors, frequency, cores of CPU                                          4 

1.3 Relation between flexibility and efficiency of computing platforms                  5 

1.4 Pareto efficiency frontier                                                                                     6 

2.1 Human vocal apparatus                                                                                       9 

3.1 Flowchart of MFCC feature extraction process                                                16 

3.2 Triangular Mel Filter Banks                                                                              18 

3.3 Classifier system structure                                                                                20 

4.1 Input speech for software implementation                                                        22 

4.2 Pre-emphasis speech for software implementation                                           22 

4.3 STFT for software implementation                                                                   23 

4.4 Mel Filter Bank Energy Values for software implementation                          23 

4.5 DCT result of software implementation                                                            24 

4.6 Final MFCC feature from software implementation                                         24 

4.7 Hardware architecture                                                                                        25 

4.8 Circuit for Pre-Emphasis stage                                                                          26 

4.9 Waveform for Pre-Emphasis stage                                                                    26 

4.10 Circuit for Framing and Windowing stage                                                      27 

4.11 Waveform for Framing and Windowing stage                                                27 

4.12 Circuit for silent removal stage                                                                       28 

4.13 Waveform for silent removal stage                                                                 28 

4.14 Circuit for FFT module                                                                                   29 

4.15 Waveform for FFT module                                                                             29 

4.16 Circuit for magnitude square module                                                              30 

4.17 Waveform for magnitude square module                                                        30 

4.18 Mel filter bank control module                                                                        31 

4.19 Circuit for Mel filter bank module                                                                  32 

4.20 Waveform for Mel filter bank module                                                          32 

4.21 Circuit for DCT module                                                                                  33 

4.22 Internal circuit for DCT module                                                                      33 



XIV 
 

5.1 Pre-Emphasis speech signal from hardware                                                      35 

5.2 STFT from hardware                                                                                         35 

5.3 Mel Filter bank energy values from hardware implementation                        36 

5.4 MFCC result from hardware implementation                                                   36 

5.5 Comparison for MFCC results from both hardware                                         37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



 

1 | P a g e  
 

Chapter 1 

Introduction 

This chapter highlights the background and motivation for the project. The problem statement has 

been described for the project and the importance of the results is also clearly portrayed. During 

the second section of this chapter we will discuss the need to use FPGA as the hardware platform. 

Towards the end, we will discuss the objectives and expectations to solve the problem statement. 

1.1 Background 

Speech is one of the most important biometric parameter for identifying individuals.  Speech 

produced by a person carry the features of the source. These features play an essential role in 

Speaker Recognition Systems and Speaker Verification Systems [1] [2]. Speaker recognition 

system allows one to identify a person from the properties of a person's voice (voice biometrics). 

While speaker verification system involves the process of verifying the claimed identity of an 

individual based on the speech signal from the speaker (voiceprint). Speaker recognition and 

speaker verification systems have increasingly become popular and are used for various 

applications like access control, biometric authentication, and telephone-based applications such 

as in phone banking and credit cards. 

However, recently weakness of these systems to spoofing attacks has been exposed. Various new 

artificial methods are now available which has made this process of mimicking an individual's 

voice to deceive speech-driven biometric systems even easier. These spoofing attack methods are 

broadly classified into two categories. 

Firstly, Voice Conversion Methods (VC) [3][4] has a goal to modify a speech signal spoken by a 

source speaker to sound as if it was spoken by a targeted speaker, but still keeping the linguistic 

contents same. The voice of the source speaker is modified to that of a target speaker by the help 

of previously collected speech features of targeted speaker. Secondly, Speech Synthesis 

Techniques (SS) [5], in this method artificial voice of the targeted speaker is directly produced. 

Voice of the targeted speaker is mimicked from the text. 

However, researchers have long noticed the need to ensure the robustness of various Speaker 

recognition and Speaker verification system and has developed various countermeasures against 



   I n t r o d u c t i o n  

  

2 | P a g e  
 

these spoofing techniques. All these countermeasures use speech features which incorporates the 

source speaker characteristics. These features capture two characteristics, 1) Amplitude-based and 

2) Phase-based. Amplitude-based features as the name suggest deals with an amplitude of the 

speech signal. Some common amplitude-based features include Log Magnitude Spectrum and Mel 

Frequency Cepstral Coefficients which will be discussed in more detail in this report. Phase-based 

countermeasure includes features such as Cosine Phase, Relative Phase and Modified Group delay 

[6]. Most of the successful spoofing countermeasures reported in the literature are based on phase. 

 

Although there has been a significant research in proposing different countermeasures against 

spoofing attacks, there is very limited research on accelerating these proposed countermeasures to 

make them more real-time. So thesis is done in two stages, In the first stage, MFCC feature is 

defined and Matlab algorithm is developed for the same. Gaussian Mixture Models (GMM) are 

used as the classifier, as they are very popular with speech signals and provide soft classification 

very effective in case of speeches [7]. In the second stage, we propose the Field Programmable 

Gate Arrays (FPGAs) based hardware architecture for the earlier explained MFCC feature 

extraction process and its GMM based classification. This method is evaluated on ASVspoof 2015: 

Automatic spoofing and countermeasures challenge dataset. 

1.2 Why FPGAs? 

For so long, to improve the computational speed of various digital hardware platforms we were 

relying on prediction made by Gordon Moore, who said that no. of transistors will double every 

next two year. However, workloads offered to computers have always been increasing, consider 

multimedia Industry for an example, back during the time of World War we had only black-white 

images and videos. During 90’s colored images and videos were popular and now, modern 

computers deal with workloads of processing 3D colored images and videos. Even many Neural 

Networks based tasks today, has computational requirements which are not fulfilled by traditional 

multicore-CPU. And relying on a prediction made by studying the trends of industry to keep up 

with pressing demands of the workloads does not seems like a right option. Moore’s law is 

presented in a very interesting way by the graph shown below. 



C h a p t e r  1  

 

3 | P a g e  
 

 

 

 

But it's not only the Moore’s Law we need to worry about. Until 2005, Dennard Scaling provided 

a way to shrink the transistor size by scaling the threshold and supply voltages by about the same 

factor as the feature size, while keeping the power density roughly constant. Consequently, clock 

speeds of transistors increased and also due to this the computational speed of computers 

improved. This shrink in size also allowed to put more transistors on a single chip thereby keeping 

the Moore’s Law alive and fit. 

However, After 2005 or roughly when Pentium 4 came out, the transistor size was so small already 

that it was not possible to shrink it anymore, at least by the popular traditional method of Dennard 

Scaling . Greater challenges faced in preventing current leakages in such small transistors lead to 

breakdown of Dennard Scaling. And many researchers started to doubt if Moore’s Law will even 

continue to work. 

Figure 1.1:  A plot of CPU transistor counts against dates of introduction; note the logarithmic vertical 

scale; the line corresponds to exponential growth with transistor count doubling every two years. 



   I n t r o d u c t i o n  

  

4 | P a g e  
 

But the need to fulfil the demands of ever increasing workloads motivated researchers to come up 

with idea of increasing the number of cores in the processors instead of focusing on better clock 

speeds. This lead to the beginning of the era of a multi-core CPU. Putting more cores on the single 

chip not only allowed computational speed gains but also the number of transistors on single chip 

increased thereby still keeping the Moore’s Law valid. Everyone thought that as long as we know 

how to program the multi-core CPU we can always increase the computational speeds by 

increasing the number of cores on a chip and thus can easily keep up with workloads. 

Even though, due to multi core CPU researchers started placing more transistors on a single chip, 

switching power-per-transistor did not scale proportionately, this lead to increase in power density 

of chips and thermal hotspots. Researchers soon realized that although they can increase the 

number of transistors on the single chip, but if they were to make a CPU rather than a barbecue of 

that chip, then they can only keep  some of those transistors running at a time, and thus keeping 

the other transistors off or dark. This led to rise of phenomena called “Dark silicon phenomena”[8], 

due to which only a proportion of transistors can be allowed to run on a single chip. And since all 

transistors were not running at the same time, the rate of increase of computational speeds started 

to decrease. And currently there is pressing need to look for platforms that can provide better 

computational gains. 

 Source: Data collected and plotted by Prof. at Stanford Univ., M. Horowitz, F. Labonte, O. Shacham, K. 

Olukton,L Hammod and C. Batten 

Figure 1.2 Graph showing the trend of no. of transistors, cores and frequency of CPU’s 

 

 

 



C h a p t e r  1  

 

5 | P a g e  
 

The Fig 1.2 is taken from the research work of Professors at Stanford University which clearly 

represents this trend 

 

The graph shown above provides a relation between flexibility and efficiency of different 

Hardware Platforms. Microprocessors can compute almost everything comparatively easily, but 

inefficiently. Digital signal processors are 10X efficient than Microprocessors. While ASICs 

(Application Specific Integrated Circuits) are even 100X faster than DSP’s but they have almost 

no flexibility. Once a circuit for ASIC is designed to perform a particular task it cannot be 

reconfigured, if one is even interested in making slightest changes to the earlier design they will 

have to start with completely new one again, and also amount of time to come up with such designs 

is way longer than programming normal computers. That’s what makes Field Programmable Gate 

Arrays a platform of our interest. FPGAs provides sufficient flexibility to reconfigure the logic, in 

some cases even on the fly and at the same time also provides a very high gains in computation 

speed in comparison to traditional multicore CPU and DSP’s. But their popularity as a 

computational platform has been restricted because of the time, patience, and level knowledge 

required to work at lower levels of programming, and write codes in hardware description 

Figure 1.3: Relation between Flexibility and efficiency of different Computing platforms. 



   I n t r o d u c t i o n  

  

6 | P a g e  
 

languages and directly deal with digital circuits. Also lack of availability of widespread platforms, 

unavailability of easy to use compilers, very time consuming debugging methods makes them very 

unpopular among programmers, even though the computational gains offered by them are 

considerably high. 

 

 

 

 

 

 

 

 

 

 

 

Another reason why we are motivated to use FPGAs is the wide scope of making approximations 

when working with speech processing and machine learning algorithms. Hardware 

implementation of such algorithm on FPGA also results in some loss of accuracy, but fortunately, 

applications dealing with ‘noisy’ real word signals like speeches always have a scope of 

approximations. Making these approximations further provides more computational gains in 

speed. Modern computers are devised to compute accurate results even when it is not required. 

Approximate Computing [9] can help computers by providing an ability similar to a human brain 

to scale the degree of accuracy needed for a given task. 

 

Figure 1.4: Pareto Efficiency frontier that shows trade-off between performances, error, and 

energy of computing platforms. 

Source: By Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, Doug Burger, Communications of the 

ACM, Vol. 58 No. 1, Pages 105-115 



C h a p t e r  1  

 

7 | P a g e  
 

1.3  Objectives:  

The project is divide into two parts. In first, we develop an algorithm for MFCC feature extraction 

process and train the Gaussian Mixture Models using the collected features both for spoof and 

human speeches. Once we have an algorithm for the complete feature extraction process on 

software, we breakdown the algorithm into parts that can be put on digital circuits. And thus during 

the second stage, we develop the hardware architecture to accelerate the MFCC feature extraction 

process. So, we have the following objectives. 

1. Write an algorithm for MFCC feature extraction process on Matlab. 

2. Train the Gaussian Mixture Models for both human and spoof dataset. 

3. Experiment to choose better parameters for the feature extraction process, to improve 

EER. 

4. Propose hardware architecture for feature extraction process. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   9 | P a g e  
 

Chapter 2 

Literature Review  

In this chapter we discuss the various terminologies and pre-requisite knowledge required to 

understand the thesis. First section has concise information of how human speech is produced. 

Then we will discuss different feature of human speech. Later, this chapter covers Gaussian 

Mixture Models. In the end, we will discuss about the dataset of speeches that we have used for 

experimentation, and concise information about of Xlinx System Generator, which is a tool that 

eases the method of implementing Simulink based DSP algorithm on FPGA boards.   

2.1 Human speech production 

Speech production is the means by which ideas are converted into speech. This involves choosing 

the words, the framework of different grammatical forms, and then the converting them into 

sounds using the vocal system. Speech production can be sometime instantaneous for example 

when someone is reading a particular content from a paper, here the speaker doesn’t think or frame 

his sentences or make choices between different words. Speech production and language 

production are different. Language are collection of symbols which represent information, like 

hand signals and actual speech production is not necessary. Usually production of speech happens 

due to the pulmonary pressure which is generated by the lungs. This pressure produces sounds by 

phonation by the glottis in the larynx, which is transformed by the vocal tract into different types 

of vowels and consonants. Speech production can sometimes also, happen without the aid of the 

lungs and glottis in an alaryngeal speech by utilizing the parts of the vocal tract. Physical 

framework of the throat, human nose, and vocal chords helps in production of various sounds.  

 

 

 

 

 

Figure 2.1: Human vocal apparatus 

used to produce speech 

source: Wikipedia 

 



   L i t e r a t u r e  R e v i e w  

 

10 | P a g e  
 

2.2 Different Speech features 

The speech produced by an individual carry the features of the source of production with it, these 

features are broadly classified into two categories i.e. Amplitude based or Phase based features. 

These features helps in identifying the individual. 

2.2.1 Log Magnitude Spectrum 

It is an amplitude based feature of speeches. Log magnitude spectrum feature directly takes the 

logarithm of the magnitude part of the signal's Fourier transform X(t, ω)ejθ(t,ω): 

L (t,ω)=log(|X(t,ω)|) 

This feature contains a lot of details about the speech signal. It constitutes of details regarding 

harmonic structure, pitch and formant. The logarithm here helps in reducing the dynamic 

expanse of the magnitude spectrum, which makes it fit to use as a feature. 

2.2.2 Mel-Frequency Cepstral Coefficients (MFCCs) 

It is an amplitude based feature of the speech. It is the most commonly used feature in automatic 

speech recognition (ASR). MFCC tries to relate to the logarithmic judgment of the pitch and 

loudness of human auditory system and attempts to remove speaker-dependent characteristics. It 

tries to correlate the spectrum of speech signal on logarithmic scale. This feature is discussed in 

further details, later in this report. 

2.2.3 Cosine Phase 

It is a phase based feature of speech, which is specifically is used for detecting artificial speech 

detection. It uses very direct relation with phase transformation. After the Short Time Fourier 

Transform 

𝑋(𝜔, 𝑡) = |𝑋(𝜔, 𝑡)|𝑒𝑗𝜃(𝜔,𝑡) 

 is calculated  for each of the speech frame, the short-time phase spectrum θ(ω,t) is then unwrapped 

to eliminate any discontinuity. After this normalization is done by limiting the resultant in range 

of [-1, 1]. Later, a DCT is applied to this normalized result to obtain the final result [10].   

 



` C h a p t e r  2  

 

11 | P a g e  
 

2.2.4 Relative Phase Shift 

Relative Phase Shift [11] features are used to identify artificial speech by the harmonic phase 

difference between human and artificial speech. To calculate this feature, first calculate the 

instantaneous phase of fundamental frequency by the following formula. 

𝑥(𝑡) = ∑ 𝐴𝑘𝑐𝑜𝑠(𝜙𝑘(𝑡)), 𝜙𝑘(𝑡) = 2𝜋𝐹0𝑘𝑡 + 𝜃𝑘

𝐾

𝑘=1

 

Here x(t) is the Fourier transform of instantaneous phase ϕk(t) at the kth harmonic order of 

fundamental frequency F0 and θk is the initial phase shift of the kth component. RPS values Rk for 

harmonic order k can be calculated as follows: 

Rk = ϕk(t0) = ϕk(t) − kϕ1(t) = ϕk − kϕ1 

For normalizing the RPS in normalized in interval of [-π, π]. 

2.3 Gaussian Mixture Models 

A Gaussian mixture model is a probabilistic model of a dataset, that is based on the principle that 

that all points of a data belongs to a finite number of Gaussian distributions.  Mixture models don't 

require an understanding of which subpopulation a data point belongs to, allowing the model to 

determine the subpopulations by itself. The Gaussian mixture model for speech representation 

assumes that a M component mixture model with component weights P(wm) and  parameters θm 

can represent the spectral shape. The formula form any mixture model is  

𝑝(𝑥|𝜃) =  ∑ 𝑃(𝑤𝑚)

𝑀

𝑚=1

𝑝(𝑥|𝑤𝑚, 𝜃𝑚) 

 

where P(wm) is prior probability of a components. For GMM the formula is changed to, 

   𝑝(𝑥|𝑤𝑚, 𝜃𝑚) = (
1

(2𝜋𝜎𝑚
2  )

1
2 

 ) ∗ exp [−
(𝑥−𝑢𝑚)2

2𝜎𝑚
2 ]  

Where um  is the mean and 𝜎𝑚the standard deviation for component wm.. In case of speeches, GMM 

helps by providing a soft classification [12]. Soft classification is very much necessary when 

dealing with highly random signals like speeches. 



   L i t e r a t u r e  R e v i e w  

 

12 | P a g e  
 

2.4 Dataset 

The dataset taken from the Automatic Speaker Verification Spoofing and Countermeasures 

Challenge (ASVSpoof2015) database. Genuine speech is collected from 106 speakers (45 male, 

61 female). Collected speeches contains no background noise. Different spoofing algorithms are 

used for generating artificial voices. The dataset is divided into three groups training, development 

and evaluation. 

The spoof data is generated using following methods: 

 S1: The spoof data that belongs to this set uses very fundamental voice conversion 

technique of frame selection [13]. 

 S2: It is another VC technique that modifies the first coefficient of MFCC feature while 

keeping the other details of voice same. 

 S3: It is SS method, Hidden Markov Model based speaker adapted speech synthesis is 

[14] built by using HTS toolkit. System requires 20 utterances of targeted speaker. 

 S4: It works very similar to S3 but requires 20 more utterances than S3. 

  S5: I is VC technique which uses publicly available tool kit called Festvox system. It 

uses the principle of maximum likelihood estimation to get better result in VC [15]. 

 

 

 

 

Types of Subsets Number of Speakers 

  # of Male            # of  Female 

        # Number of Utterances 

     # of   Male         # of  Female 

Training dataset 10 15 3750 12625 

Development 

dataset 

15 20 3497 49875 

Evaluation dataset 20 26 9404  200000 

Table 2.1: Distribution of ASVspoof 2015 challenge 

database. 

 



` C h a p t e r  2  

 

13 | P a g e  
 

2.5 Xilinx System Generator 

System Generator for DSP™ is the best high-level software from Xilinx for developing high 

performance DSP systems using Xilinx All Programmable devices. System Generator provides a 

method to develop to complex DSP system with minimal time in comparison to traditional RTL 

methods. 

 It allows to develop DSP algorithms compatible with different FPGA boards. 

 It provides system modeling and code generation for Simulink models and Matlab.  

 It very efficiently integrates different DSP hardware components, embedded IPs, RTL 

and Matlab. 

That is why we have chosen Xilinx System Generator as the tool for implementing the algorithm 

on hardware. 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 | P a g e  
 

Chapter 3 

Software Implementation 

In this chapter, we start by discussing Mel-Frequency Cepstral Coefficients, and their complete 

feature extraction process. With each stage, we also discuss various parameter that we have 

adopted in the system. During the middle of this chapter we have discussed how Gaussian Mixture 

Models are used as a classifier. In the end, results obtained by the software implementation are 

discussed. 

3.1 Mel Frequency Cepstral Coefficients  

MFCC is the most widely used amplitude-based feature for the speaker or speech recognition [16] 

[17]. MFCC is based on this principle that human ear is sensitive to frequency of audio signal on 

logarithmic scale. So, if the actual frequency is changed 10X times human ear still senses as if the 

there is only twice increase in frequency. And this quality is essentially captured in MFCC feature, 

this helps in differentiating human speech from spoof on the basis of how human ear must have 

been by correlating spectrum on log scale. Moreover, this feature carries the vocal tract dynamics 

and pulse train associated with the glottal motor control. 

The MFCC is defined as 

 

Ci = √
2

N
∗ ∑ Lj ∗ cos (

πi

N(j − 0.5)
)

𝑁

𝑗=1

 

 

where N is the number of Mel-frequency bins of log spectrum L and i is the number of cepstral 

coefficients. 

 

 

 

 

 

 



          S o f t w a r e  I m p l e m e n t a t i o n  

16 | P a g e  
 

3.2 Feature Extraction Process 

The flowchart of MFCC feature extraction process is shown in the following figure.  

 

 

   

 

 

 

 

 

 

 

 

3.2.1 Pre-Emphasis 

Pre-processing of a signal has a major impact on the MFCC feature extraction process. Pre-

processing helps in enhancing the amplitude of high frequency signal in comparison to lower the 

frequency and thus helps in preserving more information present in high frequency signals. This 

further helps in smoothening of silent regions.  

𝑦(𝑛) = 𝑥(𝑛) −  𝛼 ∗ 𝑥(𝑛 − 1) 

Where α is 0.97 and x(n) is the input speech signal and y(n) is the output of Pre-Emphasis Filter. 

3.2.2 Framing and Windowing 

Speech signal is divided in windows of 25ms per frame and each frame is shifted from the other 

by 10ms. Since the sampling frequency of each signal in our dataset 16Khz so each window 

consists of 400 samples and with a shift of 80 samples. Each frames is multiplied with Hanning 

Figure 3.1: Flowchart of MFCC feature extraction process adopted. 



C h a p t e r  3  

 

17 | P a g e  
 

window to preserve the continuity of complete signal while doing STFT. In this stage, we also 

mark the silent regions of the speeches as they do not contain any speech information and only 

disturb the pattern of features collected from voiced part, features belonging to these marked 

frames is discarded in the end.  If a frame contains even a single sample greater than a particular 

threshold than the frames is marked as voice frame otherwise non-voiced or silent. 

3.2.3 Short Time Fourier Transform 

From past research results and after different trials it has been observed that 512 point FFT is 

sufficient enough to preserve the required information in Frequency domain.  So in order to obtain 

512 points 112 zeros are appended in each frame. And in the next stage magnitude of spectrum is 

calculated. 

3.2.4 Mel-Filter Bank Integration 

The human ear perceives frequency on non-linear scale across the audio spectrum. So instead of 

linear spectrum analysis there is a need of non-linear analysis of spectrum and filter-bank analysis 

provides a solution to this problem. The filters used are triangular and they are equally spaced 

along the Mel-scale. Mel scale relates perceived frequency or pitch, of pure tone to its actual 

measured frequency.  Conversion from linear frequency to Mel Scale is given by this formula:     

M(f) =  1125 ∗ ln (1 +
f

700
) 

Conversion from Mel scale to frequency:     

M−1(m) = 700 (exp (
m

1125
) − 1) 

 20 triangular Mel filter banks are created from 30Hz to 8000Hz and energy of audio signal in each 

such triangular filter bank is calculated. Then we create our filter-banks. The first filter-bank will 

start at the first point, reach its peak at the second point, then return to zero at the 3rd point. The 

second filter-bank will start at the 2nd point, reach its max at the 3rd, then be zero at the 4th etc. 

A formula for calculating these is as follows: 



          S o f t w a r e  I m p l e m e n t a t i o n  

18 | P a g e  
 

  

 

 

 

Where  is the number of filters we want, and  is the list of M+2 Mel-spaced frequencies. 

Further Log of these 20 coefficients is calculated to transform the multiplication into addition, this 

step is a part of cepstral computation. Only initial 12 coefficients are enough to preserve the 

characteristic. 

 

 

 

 

 

 

 

 

 

 

3.2.5 Append ∆, ∆∆ MFCC and Energy 

In this stage we append the ∆, ∆∆ and energy coefficients in the previously extracted feature of 

MFCC. Formula for calculating ∆ of function is given by: 

                          

  

 

Where  is a delta coefficient, from frame  computed in terms of the static coefficients  to

Figure 3.2: Triangular Mel Filter banks  



C h a p t e r  3  

 

19 | P a g e  
 

. A typical value for  is 2. ∆∆ (Acceleration) coefficients are calculated in the same way, 

only difference is that they are calculated from ∆ coefficients and not static coefficients. 

These ∆ and ∆∆ coefficients retains the temporal characteristics of the speech signal. Energy of 

each frame is also added to feature vector to give further details about the intensity of the frames. 

So finally we obtain a feature vector of size 37 i.e. 12 MFCC coefficients, 12 ∆ MFCC, 12 

∆∆MFCC coefficients and 1 Energy coefficient. In the next stage we remove all the features which 

belong to silent regions in the speech signal. It is essential to remove the features belonging to 

silent regions in the end because otherwise we will not receive the accurate temporal details for 

few frames by ∆ functions. 

3.3 Gaussian Mixture Models 

We use GMM for classifying the speech signal as either spoof or human. GMM provides a method 

of soft classification, which is very essential when dealing with random signals like speeches. 

These feature vector obtained from the training data-set of ASVspoof challenge is used to train the 

GMM. From experimentation it has been observed that, 10 Gaussian distributions are sufficiently 

good for both spoof and human dataset. If we increase the number of Gaussian Distributions in 

GMM than EER usually decreases  

GMM for both natural (λhuman) and synthetic (λspoof) speeches are developed. P(Y/λhuman) this gives 

the likelihood of feature to belong to human and similarly for spoof speech.  

𝑃 (
𝑌

λ
) = (

1

𝑁
) ∗ ∑ 𝑃 (

𝑌𝑛

λ
)

𝑁

𝑛=1

 

To perform the synthetic speech classification of an utterance, the system tests likelihood values 

P(Y/λhuman) against P(Y/λspoof), where Y is feature vector of the test utterance. 

Λ(Y) = log (
𝑌

𝜆ℎ𝑢𝑚𝑎𝑛
) − log (

𝑌

𝜆𝑠𝑝𝑜𝑜𝑓
) 

Then according to the log-likelihood ratio (Λ) the utterance is classified as human or spoof by 

comparing against a pre-set threshold value θ, this θ is obtained corresponding the EER for 



          S o f t w a r e  I m p l e m e n t a t i o n  

20 | P a g e  
 

evaluation dataset. If Λ  is greater than θ it is human otherwise the speech is spoof. The obtained 

value for θ in our system is 2.37. 

 

 

  

 

 

 

 

 

 

 

3.4 Results of Software Implementation 

The results obtained from the feature of size 37 (12 MFCC, 12 ∆ MFCC, 12 ∆∆ MFCC, 1 Frame-

Energy) for test dataset of ASVspoof 2015 challenge is  

 

                                                      Equal Error Rate = 6.37% 

This result is obtained for 10 Gaussian distributions for both human and spoof GMMs. 

 

 

 

 

 

 

Figure 3.3: Classifier system structure 

source: [6] 



 

21 | P a g e  
 

Chapter 4 

Hardware Implementation 

In this chapter we will discuss the hardware implementation of the above discussed algorithm. The 

extraction process of MFCC has previously once built on FPGA [18] but this architecture doesn’t 

take account of many steps involved in our proposed MFCC feature extraction process. In the 

beginning this chapter covers the need to make the approximations in the previously discussed 

algorithm to implement it on the hardware. Then I will make similar approximation in the software 

and will analyze the modified features. In the end we will propose our hardware architecture and 

discuss in detail. 

4.1   Approximation made for hardware implementation 

Approximate computing is the idea that computer systems can let applications trade off accuracy 

for efficiency. It is a method in which the system deliberately exposes error to the application layer 

in order to save some resource. Approximate Computing also enhances computational speed. 

Developing applications using HDL's is always very time-consuming method, so it is always 

advisable to make suitable approximations when implementing an application on digital circuits. 

The Approximations made in our circuit are the following. 

In the hardware implementation, there is no sliding of the window by 10ms. Instead, each frame 

for FFT has a size of 512 points and directly 512 point DFT is taken for each frame. This is done 

to keep the data flow continuously running with time. In the current architecture, samples are not 

stored anywhere this allows it to work in any real-time conditions. 

Since there is no sliding of each window, each adjacent window is not close enough to carry 

sufficient temporal details of each frame. Hence, keeping ∆, ∆∆ MFCC and energy in features will 

only disturb the pattern created by 12 MFCC vector. So, ∆, ∆∆, and energy vector are removed 

from the feature vector.  

Even though logarithm is an important stage for complete feature extraction process, but the 

unavailability of accurate digital IP for the same as forced us to remove this stage from feature 

extraction process. Since most data in each stage is within a fixed range, so fixed point 

computations are used at all stages of this feature extraction process. Moreover, using fixed-point 



         H a r d w a r e  I m p l e m e n t a t i o n  

22 | P a g e  
 

computations over floating-point computations provide an advantage in computational speeds. All 

fixed points data sizes are computed by attempting different trials and making a proper trade-off 

between speed and accuracy. 

Finally, we obtain a feature vector of size 12 which only corresponds to 12 MFCC feature 

coefficients.  

4.2 Back to Software 

Since we have made previously mentioned approximations in the hardware implementation of the 

algorithm it will be wise to make similar approximations in the software implementations of the 

same. 

So, after making the approximations, following are the observations obtained from the new 

software implementation after each stage. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Input 

speech to the 

modified system 

Figure 4.2: 

Signal after Pre-

Emphasis 



C h a p t e r  4  

 

23 | P a g e  
 

The result of Short Time Fourier Transform of the speech signal 

 

 

 

 

 

 

 

 

 

 

 

The result of each Filter Bank Energy values with time 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Short 

Time Fourier 

transform of 

Speech signal 

Figure 4.4: 

Output of Mel-

Filter Bank stage 



         H a r d w a r e  I m p l e m e n t a t i o n  

24 | P a g e  
 

Result of 12 DCT coefficients with time. 

 

 

 

 

 

 

 

 

 

 

 

Final, MFCC feature is shown for a speech signal is shown with time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: 

Output of DCT 

stage of feature 

extraction 

process 

Figure 4.6: Final 

MFCC feature 

extracted from 

software 

implementation 



C h a p t e r  4  

 

25 | P a g e  
 

4.3 Hardware Architecture  

The above algorithm is broken down into individual stages, and digital circuit for each stage is 

designed and converted into a digital module. For the purpose of implementing the algorithm in 

form of a hardware architecture we have used Xilinx System Generator as a tool. Each block in 

the circuit uses fundamental digital Xilinx blocks which can be connected together to perform a 

particular task. These fundamental blocks can be easily realized on the reconfigurable fabric of 

FPGA. The features of each frame are concatenated in the final block. And at the end of the input 

speech signal, a particular signal is raised which triggers to send the features collected back to 

Matlab for further classification. So, Xilinx system generator very easily allows to do Hardware 

in loop co-simulation of the designed hardware architecture. 

 
Figure 4.7: Figure of our designed Hardware architecture for MFCC feature extraction process. 



         H a r d w a r e  I m p l e m e n t a t i o n  

26 | P a g e  
 

4.3.1 Pre-Emphasis Module: 

As the name suggests this module is designed for pre-emphasis of raw speech signal. The input 

pin (1) receives a signed fixed point samples of size 26 bits with 25 binary points at each clock 

from the source speaker. The digital circuit shown in the figure 4.8 implements the following 

function. 

     

 

 

 

 

 

 

 

The lagging sample is multiplied by a coefficient constant7 (α), which is stored in a register of size 

32 bits with 31 binary point, and resultant is subtracted from the preceding sample. For each input 

sample, output sample of size 32bits with 31 binary points is received after required pre-emphasis, 

thus the circuit takes one clock duration for processing each sample. 

 

 

Figure 4.8: 

Digital circuit of 

Pre-Emphasis 

stage 

Figure 4.9: Input speech (Green) and Pre-Emphasis (Red) speech signals 

obtained from Pre-Emphasis module from Xilinx waveforms generator. 



C h a p t e r  4  

 

27 | P a g e  
 

4.3.2 Framing and Windowing Module 

Function of this module is to frame the speech signal into a window of 512 samples and multiply 

each singal with a Hanning Window to preserve the continuity of the signal.  The ROM used in 

this module is configured with a depth of 512, and all hanning coeffecients are stored in each of 

the 512 registers of the ROM. The counter present in module assists in synchronously changing 

the address of the ROM, thus giving different hanning coeffecients at each clock tick.  

 

 

 

 

 

 

 

The “Out1” port of this module gives the signal samples after multiplication with hanning window. 

Similar to last module, this also produces a new output at each clock tick. “Frame_sample_index” 

output of this module gives the information of the index of current sample in a particular frame. 

Reset and Enable are hold at LOW and HIGH respectively. 

 

 

 

 

 

 

 

Figure 4.10:  

Digital circuit of 

Framing and 

Windowing stage 

Figure 4.11:  

Waveform of 

Framing and 

Windowing 

stage. 



         H a r d w a r e  I m p l e m e n t a t i o n  

28 | P a g e  
 

4.3.3 Silent Removal Module 

Function of this module is to mark if a particular frame is silent or not. If a particular frame contains 

any sample which has a magnitude greater than 0.03 then the output of the module is HIGH during 

the next window, this allows FFT9 module to receive both the signal sample frame and signal 

which identifies whether the frame is silent or not at the same time. 

 

 

 

 

 

 

 

 

At input 2 i.e. “Frame_index” signal receives the current index of the sample in a particular frame. 

If even a single sample frame is more than the threshold then the “en” pin of register is pulled 

HIGH, and this register allows the module to memorize that this frame is not silent and should 

give a HIGH output, while at the end of the frame the value of register is transferred to register1. 

 

Figure 4.12:  

Digital circuit of 

Silent Removal 

Stage 

Figure 4.13 Input Speech Signal. Pre-emphasis Signal and Silent or Not output of this module.  



C h a p t e r  4  

 

29 | P a g e  
 

4.3.4 Fast Fourier Transform V9.0 module 

This IP is already available from Xilinx. Function of this module in the circuit is to take each frame 

as real and imaginary numbers in input and return FFT of those samples as real and imaginary 

numbers. This module uses AXI Interface for handshaking or proper communication of data with 

other modules. This module is configured to use Xtreme DSP slices on the board for butterfly 

arithmetic, which further accelerates the computation process. Module is configured to calculate 

the 512 point FFT. 

 

 

 

 

 

 

 

 

 

Figure 4.14: 

Fast Fourier 

Transform 9 

Module 

Figure 4.15 Input and output Signal of FFT 9 Module  



         H a r d w a r e  I m p l e m e n t a t i o n  

30 | P a g e  
 

4.3.5 Magnitude Square Module  

As the name suggests this module, takes real and imaginary samples from FFT9 module and 

calculates the magnitude square of those samples. Output of this module is 32 bit unsigned fixed 

point number with 25 binary points.  

 

 

 

 

 

 

 

 

 

Figure 4.16:  

Magnitude 

Square 

Module 

Figure 4.17: Waveforms framing & windowing stage, Real and Imaginary values of FFT, and 

Magnitude square of signal. 



C h a p t e r  4  

 

31 | P a g e  
 

4.3.6 Mel Filter Bank Energy Control Module 

Function of this module is to provide control signals to Mel Filter Bank Energy Module. It takes 

“data_tvalid” and “data_tlast” as signals in “tvalid” and “tlast” ports respectively, according to 

these signal this module produces two output signals. “Done MFCC” output is high whenever a 

particular frame is complete and new frame is about to start. “Rising_Done_MFCC” gives pulse 

at rising edge of “Done MFCC”. 

 

 

 

 

 

 

 

 

 

 

4.3.7 Mel Filter bank Energy 

Function of this module is to take FFT of each frame as an input and give 20 coefficient each one 

corresponding to energy stored in each Mel filter bank. The ROM is configured with a depth of 

512, each register stores coefficients of triangular filter banks. These coefficients are multiplied 

with frame samples one by one and stored in the accumulator.  At the end of each window, the 

data stored in accumulator is transferred to the register and the accumulator is cleared to store data 

for next frame. This happens for all 20 coefficients at the same time. This simultaneous 

computations of all coefficients at same time also adds to better computational speeds for FPGA 

implementation. 

 

Figure 4.18:  

Mel Filter 

Bank Energy 

Control 

Module 



         H a r d w a r e  I m p l e m e n t a t i o n  

32 | P a g e  
 

 

 

 

 

 

 

Figure 4.19 Left shows the complete Mel Filter bank Energy Module; on right, 

zoomed in version of the same module. 

Figure 4.20: Waveforms of STFT, FFT index, Output of Accumulator and Final MFFC2 signal 

register 



C h a p t e r  4  

 

33 | P a g e  
 

4.3.7 DCT Module  

The function of this module is to take 20 coefficients from the Mel filter bank module and find 

the DCT of those coefficients, later only initial 12 DCT coefficients are preserved.  20*1 mux 

helps in converting the parallel data into serial.  This serial data is then transferred to the green 

module in this figure which computes the DCT. 

 

 

 

 

 

 

 

The ROM designed for this circuit has depth of 20, which stores coefficients for computing the 

DCT for 20 Mel filter bank energy coefficients obtained from the last stage. Similar to last module, 

all 12 DCT coefficients are computed.

Fig 4.21 

DCT Module 

Figure 4.22: on left, internal circuit of DCT transform module shown in Figure 4.21; 

on right, internal Circuit of each of the blue module in left. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

35 | P a g e  
 

Chapter 5 

Experimental Results and Analysis 

In this chapter, we discuss and compare the results obtained from both the implementation. 

5.1 Observations made by Hardware implementation 

The result of pre-processed speech from our designed hardware architecture. 

 

 

 

 

In the hardware implementation the FFT module is connected, so that it doesn’t accept data if the 

frame is silent. Consequently, the STFT generated doesn’t have Fourier Transform belonging to 

silent regions.  

 

 

 

 

 

Figure 5.1: Pre-

emphasis stage 

output from 

hardware 

Figure 5.2: 

STFT, from 

hardware  



                                 E x p e r i m e n t a l  R e s u l t s  a n d  A n a l y s i s  

36 | P a g e  
 

Mel-Filter bank energy values of the speech signal obtained from designed hardware architecture.  

 

 

 

 

 

 

 

 

 

 

 

Final MFCC vector which obtained from our designed Hardware architecture. 

  

Figure 5.3: Filter 

bank energy 

output from 

Hardware 

Figure 5.4: Final 

MFCC feature 

obtained from 

Hardware 



C h a p t e r  5  

 

37 | P a g e  
 

5.2 Accuracy Comparison 

As a consequence of the approximations made for the hardware implementation of the initially 

discussed algorithm the EER has increased. 

EER for this new approximated algorithm is 15.24%. 

Features obtained from both spoof and human dataset has 10 Gaussian distributions in their 

Gaussian mixture model. Each of the software and hardware architecture produces MFCC 

feature vector of size 12. 

  

 

 

 

 

Even though each of the results obtained from software and hardware looks very similar, the 

final MFCC feature obtained from the hardware differs from that of software by less than 7.06%. 

Figure 5.5 Final MFCC feature obtained from both software (Left) and hardware 

(Right). 



                                 E x p e r i m e n t a l  R e s u l t s  a n d  A n a l y s i s  

38 | P a g e  
 

  5.3 Performance Comparison 

Software algorithm was written in Matlab, and was running on a system with 1.7 GHz clock speed 

and 4 GB RAM. While the specific hardware architecture is designed to run with any clock speeds 

less than 250 MHz The bottleneck of 250 MHz is created by the FFT9 module in the hardware 

architecture. There is no direct general matrix to make the time comparison or time complexity of 

both the methods.  

Since all stages of hardware design are pipelined, each stage process one sample in each clock 

cycle. And each stage is designed to execute the algorithm in parallel. For example consider the 

FFT9 module which uses Radix 2 burst I/O architecture on FPGA performs the algorithm in 

parallel, Mel filter Bank Energy Module also computes all 20 coefficients which belongs to each 

filter bank at the same time, while in software implementation each stage of algorithm runs 

sequentially. This difference obviously provide major computational gains in hardware 

implementation  

In order to extract features from an audio sample the designed hardware architecture takes 324 

more clock ticks than the number of samples in the audio signal. So for example, if an audio sample 

is 3.44 seconds long or if it has 55120 samples than our proposed hardware architecture will takes 

55444 (55120+324) clocks to extract the MFCC feature from the audio sample. 

So, if the designed hardware architecture is made to run on clock speed of 34.68Mhz, which is 

easily available in middle range FPGA boards, and also possible on Nexys DDR 4 board present 

with us. Then the time it takes to extract MFCC from 1000 such audio files which constitutes to 

55120000 on our designed hardware architecture is 1.613128 seconds. While the same amount of 

processing of MFCC feature extraction process on Matlab implementation takes 21.86 seconds. 

 So clearly the designed hardware architecture provides around 13.55X speed improvements if the 

clock speed is chosen to be 34.68 MHz and software algorithm runs on the given system (1.7 Ghz 

and 4 GB RAM). Clearly, if we increase the clock speeds we can achieve even better computational 

gains. 

 



F u t u r e  W o r k  

 

39 | P a g e  
 

Future Work 

In order to improve the performance and efficiency of hardware architecture, we will be focusing 

on the following points as part of our future work:   

 Preform more experiments for choosing better fixed point data paths to improve the 

accuracy of the designed hardware architecture. 

 Look for methods to implement Logarithm function accurately on digital circuits. 

 Incorporating sliding based STFT approach in hardware implementation of the MFCC 

feature extraction process. 

 Developing hardware architecture for ∆MFCC and ∆∆MFCC in current proposed 

architecture. 

 Making this hardware compatible for direct audio input (real time) via a microphone and 

pulse delta modulation of received signal on FPGA board. 

 

 

 

 

 

 

 

 

 

 

 

 



B i b l i o g r a p h y  

 

40 | P a g e  
 

Bibliography  

 [1] J. P. Campbell, “Speaker Recognition a tutorial”, in Proceedings of IEEE, 1997, vol. 85, pp. 

1437-1462. 

[2] T. Kinnunen and H. Li. (2010). An overview of text-independent speaker recognition: From 

features to supervectors. Journal of Speech Communication, vol. 52, no. 1, pp. 12-40, 2010. 

[3] S. H. Mohammadi and A. Kain. (2017). An overview of voice conversion systems. Journal of 

Speech Communication, vol. 88, pp. 65-82. 

[4] T. Kinnunen, Z. Wu, K. A. Lee, F. Sedlak, E. S. Chng and H. Li, “Vulnerability of speaker 

verification systems against voice conversion spoofing attacks: The case of telephone speech", 

presented at the Conf. of the IEEE ICASSP, Kyoto, Japan, March 25-30, 2012. 

[5] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata andJ. Isogai. (2009). Analysis of speaker 

adaptation algorithms for HMM-based speech synthesis and a constrained SMAPLR adaptation 

algorithm. Journal of IEEE Transactions on Audio, Speech and Language Processing, vol. 17, 

no. 1, pp. 66-83. 

[6] L. Wang, S. Nakagawa, Z. Zhang, Y. Yoshida, Y. Kawakami. (2017). Spoofing Speech 

Detection Using Modified Relative Phase Information. Journal of IEEE Selected Topics in Signal 

Processing, vol. 11, no. 4, pp. 660-670. 

[7] D. A. Reynolds. (1995). Speaker Identification and verification using Gaussian mixture 

speaker models. Journal of Speech Communication, vol. 17, no. 1-2, pp. 91-108. 

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant,  K. Sankaralingam and D. Burger, “Dark silicon 

and the end of multicore scaling”, in Proceedings of  Computer Architecture (ISCA), 2011, vol. 

39, no. 3, pp. 365-376. 

[9] C. Li, D. Sengupta, F. S. Snigdha, W. Xu, J. Hu and S. S. Sapatnekar, “Special session: a 

quantifiable approach to approximate computing”, presented at the Conf. of IEEE CASES, 

Seoul, South Korea, October 15-20, 2017 



B i b l i o g r a p h y  

 

41 | P a g e  
 

[10] Z. Wu, E. S. Chng and H. Li, "Detecting converted speech and natural speech for anti-

spoofing attack in speaker recognition", presented at the Conf. of International Speech 

Communication Association, INTERSPEECH, 2012.  

 [11] I. Saratxaga, I. Hernaez, D. Erro, E. Navas, and J. Sanchez. (2009). Simple representation 

of signal phase for harmonic speech models. Journal of Electronic Letters, vol. 45, no. 7, pp. 

381-383. 

[12] L. Wang, N. Kitaoka and S. Nakagawa. (2007). Robust distant speaker recognition based on 

position-dependent CMN by combining speaker-specific GMM with speaker-adapted HMM. 

Journal of Speech Communication, vol. 49, no. 6, pp. 501-513. 

[13] Z. Wu, T. Virtanen, T. Kinnunen, E. S. Chng and H. Li, "Exemplar-based unit selection for 

voice conversion utilizing temporal information", in Proceedings of the ISCA, INTERSPEECH. 

Interspeech, 2013, pp. 3057-3061.  

[14] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata and J. Isogai. (2009). Analysis of Speaker 

Adaptation Algorithms for HMM-based Speech Synthesis and a Constrained SMAPLR 

Adaptation Algorithm. Journal of IEEE Audio, Speech and Language Processing, vol.17, no.1, 

pp. 66-83. 

[15] T. Toda, A. W. Black, and K. Tokuda. (2007). Voice conversion based on maximum 

likelihood estimation of spectral parameter trajectory. Journal of IEEE Transactions on Audio, 

Speech and Language Processing, vol. 15, no. 8, pp. 2222–2235. 

[16] S. Furui. (1981). Cepstral analysis technique for automatic speaker verification.  Journal of 

IEEE Transactions on Audio, Speech and Signal Processing, vol. 29, no. 2, pp. 254-272 .  

[17] J. Deller, J. Hansen and J. Proakis. Discrete-Time Processing of Speech Signals, New York, 

NY, USA: Wiley-IEEE Press, 2000. 

[18] M. Bahoura and H. Ezzaidi, “Hardware implementation of MFCC feature extraction for 

respiratory sounds analysis”, presented at the Conf. of WoSSPA, Algiers, Algeria, May 12-15, 

2013. 


