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Abstract

The goal of relativistic heavy-ion collision program is to create and study a
hot and dense thermalized state of matter known as the quark-gluon plasma
(QGP). Several indirect probes are available to study the formation and prop-
erties of QGP in such collisions as direct measurements are not possible due
to the very transient nature of the medium. In heavy-ion collisions, the
anisotropic flow is one such probes which refers to the final state momen-
tum anisotropy caused by the initial spatial anisotropy. It can be very helpful
to study the medium evolution in heavy-ion collisions. Elliptic flow is defined
as the second order Fourier coefficient of azimuthal momentum distribution.
In this work, we use Deep Neural Network (DNN) to estimate event-by-event
elliptic flow coefficient (v9) and flow vector (¢gz). The DNN is trained on Pb-Pb
collisions at /snx = 5.02 TeV minimum bias events simulated with a multi-
phase transport (AMPT) model. We find that, the DNN is efficient to learn
from minimum bias events and predict v, and ¢, simultaneously for minimium

bias events as well as for events with different centralities.
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Chapter 1

Introduction

1.1 Relativistic Heavy-ion Collisions and

Quark-Gluon Plasma

Around a hundred years ago, atoms were thought to be impenetrable and
resemble fundamental objects like miniature versions of billiard balls. Atoms
were considered as the smallest pieces of matter. From Rutherford’s a-particle
scattering experiment, we now know that atoms do have inner structures. At
the center of each atom, there is a very high dense nucleus which accounts
for almost all of its mass and have a net positive charge. In the outer region
of the atom, there are tiny light weight particles known as electrons, carrying
negative charge which makes an atom charge-neutral.

The central nucleus is made up of hadrons, known as protons and neu-
trons each carrying positive and neutral charges, respectively. Among these
three, proton, neutron and electron, electron appears to be a true fundamen-
tal particle having no inner structure. But proton and neutron do have inner
structures. They are found to be clusters of smaller fundamental particles
called as the quarks and gluons bound under the strong force. The force
carrier particles of strong force are known as gluons.

It is believed that just after the Big Bang, the universe was filled with a

very hot and dense state of quarks and gluons [1]. Quarks and gluons form a



very hot and dense thermally equilibrated state of matter, known as quark-
gluon plasma (QGP), which is extremely short-lived (lifetime of the order of
fm/c). Under regular conditions of temperature and energy density, quarks
and gluons are confined inside hadrons. This phenomena is well understood
in QCD, known as the Color Confinement and is attributed to the asymptotic
freedom. It tells that, free quarks and gluons can not exist beyond hadronic
dimensions as the strong coupling constant (c) increases sharply as one tries
to separate the quark pairs. In other way, it also tells that, with increasing
energy density, the strength of strong interaction becomes weaker (i.e. ay
decreases at larger energy) [2]. Such high energy density can be achieved
in experiments of heavy-ion collisions in which two nuclei are accelerated up
to relativistic speeds and then are smashed into each other. As a result,
large number of particles are produced in the final state. Figure 1.1 shows a
typical heavy-ion collision inside a cylindrical barrel shaped detector with the
colored tracks showing the produced particles as they interact with the detector
materials. The goal of heavy-ion collision programs such as the Large Hadron
Collider (LHC), CERN, Switzerland and the Relativistic Heavy Ion Collider
(RHIC), BNL, USA is to produce and study the properties of this primordial
state of matter known as the quark-gluon plasma (QGP) and recreate similar

conditions as of the Big Bang in a miniature scale in the labs.

Figure 1.1: Production of large number of particles in heavy-ion collision [3]

Under the extreme conditions of pressure and energy during the ultra-

relativistic collisions of nuclear matter, the hadrons melt down and exhibit a



free state of its constituent particles, quarks and gluons, which upon thermal-

ization produce the QGP medium for a very short duration. Figure 1.2 shows

Figure 1.2: Different stages of heavy-ion collisions [4]

the various stages of a heavy-on collision event. In heavy-ion collisions, QGP
is formed by colliding the heavy nuclei at very high speeds (approximately
99.999% of the speed of light, ¢). At such high speeds, the nuclei are Lorentz
contracted and the energy per nucleon in the center of mass frame is very high
(of the order of a few GeV). The contraction of nuclei causes them to interact
during the collisions only. Due to Lorentz contraction of nuclei, the energy
deposition is maximum during the collision. The transverse area of the over-
lap region is different for each collision. A large overlap corresponds to a large
number of participant particles, while a small overlap takes a small number of
participants particles. After the collision of heavy nuclei at the center of mass
energy of the order of TeV, the constituent particles of proton and neutron
which are quarks and gluons (also known as partons) are deconfined. But they
are not in thermal equilibrium. The partons collide inelastically and thermal
equilibrium is achieved as the system expands and cools down. The mixture
of quarks and gluons in thermal equilibrium is the quark-gluon plasma. As
the system expands and cools down further, the hadronization process begins.
Hadronization is a complex mechanism in which quarks and gluons combine
to form hadrons. After a specific temperature known as the chemical freeze-
out temperature, Ty, the inelastic collisions inside the medium cease and the
chemical equilibrium is achieved. At this point, the formation of new hadrons
is ceased. All the particles remain in the hadron gas phase thereafter and

undergo elastic collisions only. Eventually, as the system expands further, the



system size becomes larger than the mean free path of the particles in the
hadron gas and hence no further exchange of momentum could occur. This
process is called the kinetic freeze-out and the temperature is called as the ki-
netic freeze-out temperature (7},). Particles carrying fixed momentum travel
towards the detector. An event is denoted by a single collision between a pair
of nuclei. Each event can produce thousands of charged particles depending
upon the type of colliding nuclei and their center of mass energy.

We can not observe any evidence of the possible formation of the QGP
medium directly due to its very short lifetime. But we observe some indirect
signatures of QGP such as jet-quenching [5], J/1 suppression [6], strangeness
enhancement, etc [7]. These signatures suggest that the formation of the QGP
medium is highly probable in heavy-ion collisions at LHC and RHIC energies.

Every event in heavy-ion collisions can generally be classified by the im-
pact parameter (b) between two colliding nuclei. It is defined as the distance
between their centers in the plane transverse to the initial beam axis. The
impact parameter defines the overlap region of the colliding nuclei. For small
b, the overlap between the nuclei is large and vice versa. Impact parameter is
also related to the number of participant nucleons (/N,,+) in the collision. For
small b, Npa,¢ is large and for large b, Npe,¢ is small. The impact parameter can
not be measured directly in the experiments. So experimentally, the events
are classified using the centrality of collisions as a proxy to impact parameter.
Centrality of the collision can be defined using the multiplicity of an event or
the energy of the spectators (forward energy). The event multiplicity distribu-
tion is sliced in segments in such a way that the 0-5% centrality class indicates
those five percent events which have the highest multiplicity.

In the next section, we will discuss about the anisotropic flow which is
an important observable in heavy-ion collisions and tells us more about the

medium formation and its evolution.



1.2 Anisotropic Flow:

In nucleus-nucleus collisions, the reaction plane is defined by the beam direc-
tion (z) and the impact parameter direction (b). The x — y plane is defined
as the transverse plane or the azimuthal plane (Fig. 1.3). Here, z-axis is the
beam direction, ¢ is the azimuthal angle of the produced particles and 9gp is

the reaction plane angle.

Ejected particles

40, y A
Beam line Reaction
Participants A d Plane
Spectators e \
\
‘| \‘I’RI'
|
X

Impact parameter

Colliding nuclei

Figure 1.3: Initial collisional geometry of two nuclei

The collective expansion of the final state particles is called flow. In a
non-central collision, the overlap region of the nuclei is like an almond-shaped.
During the system evolution, if the system is reached to thermal equilibrium,
then it can be described in terms of thermodynamic quantities like 7" and P.
Due to the spatial anisotropy of the overlap region, a strong pressure gradient
is created. The pressure gradients ensures the anisotropy in the momentum of
the final state outgoing particles in the transverse plane. So, the initial spatial
anisotropy is converted into the momentum space anisotropy (Fig. 1.4). The
non-zero finite azimuthal anisotropy in momentum space can be expressed as

the Fourier series expansion in the azimuthal angle ¢ [8, 9, 10]:



P,

Figure 1.4: Conversion of spatial anisotropy into momentum anisotropy in
Pb-Pb collision

d*N >N i
FE = 142 v, cos|n(¢ — 1, 1.1
dp3 27TppoTdy ( ; [ (¢ w )]) ( )

Here, ¢ is the azimuthal angle of outgoing particles and 1, is the n'*
order harmonic event plane angle determined by the initial geometry of the
system [11]. The Fourier coefficient v, is called the flow coefficient and can be

written as:

vp, = (cos[n(d — ¥n)]) (1.2)

The angle brackets indicate an average over particles in all events. v, is
the magnitude of the anisotropic flow of different order n. The coefficients v,
corresponding to n = 1 is often called the directed flow, v2 corresponding to
n = 2 is called the elliptic flow and v3 corresponding to n = 3 is called the
triangular flow and so on.

The flow vectors of order n, @, are defined as [11, 12, 13]:

Qnz = Qncos(nyy,) = Z cos(ng) (1.3)

Qny = Qnsin(ni,) = Z sin(ng;) (1.4)



Here, 1, is the event plane angle of order n. We can write @, as:

M
0. = Z oo (1.5)

The reduced flow vector can also be defined as ¢,,, where:

Qn _ i
Gn = N i

where M is the multiplicity of an event and ¢; is the azimuthal angle of i

(1.6)

particle. The flow coefficients v,, and the flow vector ¢, are observed to be
almost correlated linearly [12].

1.3 Motivation

In every heavy-ion collisions, very large number of particles are generated
depending upon the initial geometry. Each final state particle has various
observables associated to it, such as charge (¢), mass (m), transverse momen-
tum (pr), azimuthal angle (¢), polar angle (), etc. So in every collisions, a
very large dataset is generated. In recent times, the machine learning (ML)
algorithms have become very popular to handle such large amount of data and
extract the useful information from it [14, 15, 16, 17]. One of very popular ML
techniques is neural network (NN). In this project, we have tried to implement
deep neural network (DNN) based regression technique to predict the elliptic
flow coefficient (vy) and flow vector (¢2) using the final state particle properties
such as event-by-event transverse momentum (pr) spectra, pseudorapidity (7)
spectra and azimuthal angle (¢) spectra for Pb-Pb collisions at \/syny = 5.02
TeV.

In next section, we discuss about machine learning and deep neural network
(DNN) architecture. Then we will see the methodology of this project in which
we will see the input observables, output observables and the DNN model

structure used. At the end, the results are presented in chapter 4.



Chapter 2

Deep Learning

2.1 Machine Learning

Machine Learning (ML), data science and statistics are very important fields
that are related to large data. They describe how to learn from training data
and make predictions. Machine learning is the study of computer algorithms
that improve through experience. It involves the computer discovering how it
can perform tasks without being programmed explicitly to do so. It is about
making computers adapt or learn the actions (whether these are classifying
objects, or predicting an output for a given input) so that these actions get
more accurate. The accuracy is the measure of how the machine can perform
a task correctly.

There are different types of problems in machine learning: Regression,
classification, time-series forecasting etc. When there in only one numerical
output value for every given input, the problem is of regression type. For
example, prediction of house prize. If the input needs to be classified in one
of the different classes, then it is classification type of problem. For example,
classifying the animal into dog or cat. If the output of any input is dependent
on time-series data, the it is the time-series forecasting type of problem. For
example, prediction of temperature of a region.

There are mainly three types of machine learning algorithms: Supervised,

Unsupervised and Reinforcement. In supervised learning, a training set of

8



examples with labeled outputs is given to machine, and based on the train-
ing set, the machine tries to recognize the relation pattern between input and
output, and generalises to give output correctly to all possible inputs. In un-
supervised learning, the training set is provided to machine without labeled
output. The machine tries to recognize the pattern and grouping of data on its
own and predicts the output. Reinforcement learning can be seen as a combi-
nation of supervised and unsupervised learning. The machine learns through
the method of reward and punishments. The machine gets rewards (positive
feedback) for the desired actions and punishments (negative feedback) for the
undesired actions.

The general work flow of a supervised machine learning algorithm can be
shown as Fig. (2.1). In every such problem, the first thing we do is to convert
the data into a suitable form so that the machine can recognize and learn
patterns in the input data. A machine learning model is prepared. Then this
data is split into training and test sets. The training data set is given as input
to machine. At every input of the input set, the model predicts some output.
For every deviated output from the true output, the model is modified via
feedback process in which model takes feedback from the amount of error in
predicting the output and gets modified. After the feedback, the model is
re-trained for the next input. In such a way, model learns the hidden data
patterns between input and output and the model is said to be fully trained
at the end if it can predict the correct output for any suitable input. This
trained model can now predict output for the test set. If the loss function
continues to decrease, then model is called to be underfitted or if the loss
function starts increasing after several epochs of training, then the model is
said to be overfitted. In case of underfitting of model, the number of training
epochs are increased and model can be made more complex. While in case of
overfiiting of model, the number of training epochs are reduced and model can
be made simpler.

There are different machine learning techniques, but two are the most used
in high energy physics which are decision tree (DT) and neural network (NN).

They are widely used for classification, regression and pattern recognition. A
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PREPARATION TRAINING OF OUTPUT

Re-training
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Figure 2.1: General workflow of a machine learning algorithm

PREDICTIVE

MODEL

decision tree takes a set of input features and splits input data recursively
based on those features [14, 18]. The decision trees are usually built from top

to bottom. Figure 2.2 shows the general architecture of a decision tree. NN

Decision Node ——)»Root Node

------ e

Sub-Tree

{
|
: Decision Node | Decision Node
|
|
I I I
Y v oy v
: Leaf Node Leaf Node | Leaf Node Decision Node
)
N o B e e e I

Leaf Node Leaf Node

Figure 2.2: General architecture of decision tree

is a computational model which is made up of several interconnected groups
of nodes similar to the human brain [16, 19, 20]. Figure 2.3 shows the basic
architecture of NN.

10



hidden layer

output layer

Figure 2.3: General architecture of neural network

2.2 Deep Neural Network (DNN)

Deep Learning is a subset of machine learning, where deep neural network is
used for training and predicting the outputs. Deep Neural Network (DNN)
means a neural network having several number of hidden layers. So the word
‘Deep’ in deep learning indicates several number of hidden layers in a neural
network. Figure 2.3 shows a simple deep neural network having only one
hidden layer. The smallest element of a neural network is a neuron which
works in a similar way of neuron in human brain. It is also called a node.
Several neurons together make different layers of neural network. Every layers
are interconnected fully or partially depending upon the requirements. We

will see different important components of a deep neural network

2.2.1 Layers

There are three types of layers in a neural network: Input layer, Hidden layers
and Output layer. The input data we give to neural network is loaded to the
first layer of neural network which is called the input layer. The complete input
information is passed to next layer without any type of transformation. Hidden
layers lie between input layer and output layer. They are called hidden in a

sense that they can not be communicated directly. Most of the processes on the

11



input data are done by these layers and they extract the hidden pattern and
features of the data. The last hidden is connected to the output layer. Output
layer gives the output predicted by the network. Output layer has different
number of neurons depending upon the type of problem. For regression type
of problems with one output variable, output layer has only one neuron; while

for classification type of problems, output layer has at least two neurons.

2.2.2 Neurons

Neurons are the elemental component of a neural network. A neuron and

various processes associated to it are shown in fig. 2.4.

w1

Figure 2.4: A neuron in a neural network

Every neuron takes input from different neurons of previous layer connected
with it, transforms the input and gives the output to next layer. In fig. 2.4,
{1, 2, 23, ..., 2, } is a set of inputs to this neuron. Weights are the coefficients
associated each input and their main job is to prioritize the inputs which help
our network in learning. {wy, wsy, w3, ...,w,} is a set of weights. The bias (b)
is a constant similar to the constant in any linear function y = mx + c¢. It just
shifts the output value. Activation function (f) is a very important part of
each layer. Any neuron should be activated or not is decided by the activation
function so that the network can learn as rapidly as possible. There are many
different activation functions available: Linear, Sigmoid, softmax, ReLU, etc.

So, the output at each layer, in general, can be written in the form of a matrix

12



multiplication as Y = f(Wx +b), where Y is a output column matrix, W is a
coefficient matrix, z is an input column matrix and b is a bias matrix.
Linear activation function gives the output which is linearly proportional

to input (Fig. 2.5). The equation of function it has is:
fx)y=mz+c (2.1)

The activation function of the output layer in a regression type of problems

Linear Function

o N » O ©

linear(x)
| |
& 0N

1
o

|
|
|

= -3 -2 0 2 [ 6
X

Figure 2.5: Linear activation function

is always the linear activation function. It introduces the non-linearity for the
non-linear mapping of output from input because (Wz + b) is just a linear
expression which cannot map the input non-linearly into output. Sigmoid
activation function ensures to give output value between 0 and 1 (Fig. 2.6)

and its equation is:
1
#2) =

The activation function of the output layer in a binary classification type

(2.2)

of problems is always the sigmoid activation function. Softmax activation
function also guarantees to give output value between 0 and 1 and its equation

is:
exp(y;)
> i1 exp(y;)

The activation function of the output layer in multiclass classification (logistic

S(y)i = (2:3)

regression) type of problems is always the softmax activation function. ReL.U

stands for the rectified linear unit activation function (Fig. 2.7). Its equation

13
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0.0
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- ]

Figure 2.6: Sigmoid activation function

R(z) = max(0, z) (2.4)

. RelU

i R(z) =max(0, z)

-10 -5 0 5 10

Figure 2.7: ReLU activation function

2.2.3 Loss function and Optimizer

Loss function defines a measure of error in predicted output values compared
to true output values. There are different loss functions each having its own
importance in a particular type of problem. Mean squared error (MSE) is
used for regression type of problems, binary crossentropy is used for binary
classification type of problems and categorical crossentropy is used for logistic
regression type of problems. Optimizer function helps to improve the weight

matrix and consequently the learning of a neural network and reduces the loss.

14



Examples of optimizer are stochastic gradient descent (SDG), Adam, rmsprop,
etc.
These are some of the important components of a DNN. The next section

is the methodology part in which we will see the workflow of this project.

15



Chapter 3

Methodology

In this chapter, we discuss the various stages of work done in this project. The
events data used in this project is generated using AMPT. AMPT (A multi-
phase transport model) is a Monte Carlo event generator for simulating the
collision events of p-A and A-A at very high energies from 5 GeV to 5.5 TeV.
We have used 150K minimum bias events for Pb-Pb collisions at y/sxy = 5.02
TeV.

3.1 Input observables

As proposed, we try to use the final state particle properties pr spectra, n
spectra and ¢ spectra to predict vy and ¢2. So the input to DNN would be
these three observables. If the initial direction of motion of colliding particle

is z-axis, then the transverse momentum of any final state particle is defined

pr =\/p3+ D3 (3.1)

where p, and p, are the momenta of particle in x and y direction, respectively.

as:

The rapidity of any particle having Lorentz boost along z-direction can be

written in terms of F and p. as:

1 E+p.
=-1 2
4 2 n(‘E_pz) (3 )
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If a final state particle is emitted making an angle § with the initial beam axis,

then the rapidity of particle is:

1 E 1 - 2 6
- —ln< -{—pL) _ 1, | V/m?+p*+peos (3.3)
2 E —pL 2 v/m?2+ p2 —pcosf

At very high energy, p >> m, so

y:lln ptpeosd = —In tang =1 (3.4)
2 p— pcost 2

Here, we call n the pseudorapidity. The outgoing direction making an angle ¢
with the preferred x-direction in the detector is called the azimuthal angle ¢
of the emitted particle.

We are taking these three event-by-event observable spectra as input. Each
of these spectra is divided into 40 bins and given as input to DNN. The input
for each event contains 40 bins of 7-spectra, 40 bins of ¢-spectra and 40 bins
of pr-spectra, making it total 120 bins. Figure 3.1, 3.2 and 3.3 show the input
for a random event. In the input dataset, pr € [0.2,5.0] GeV/c, n € [-0.8,0.8]
(mid-rapidity region) and ¢ € [0, 27].

3.2 Output observables

The output for DNN would be to predict the elliptic flow coefficient (v5) and

flow vector (¢2). From equation 1.2 & 1.6, we can write

vy = (cos[2(¢ — 4)]) (3.5)

and -
Zi 612¢

17
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Figure 3.1: Event-by-event n-spectra of a random event of Pb-Pb collisions at

VSnn = 5.02 TeV generated using AMPT

700
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Figure 3.2: Event-by-event ¢-spectra of a random event of Pb-Pb collisions at

Vsnn = 5.02 TeV generated using AMPT
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Figure 3.3: Event-by-event pr-spectra of a random event of Pb-Pb collisions
at \/snn = 5.02 TeV generated using AMPT

3.3 Model definition

The deep neural network (DNN) we have used has an architecture as shown in
fig. 3.4. All the layers are dense layers. The input layer takes input of 120 bins
for one event at a time. This layer is connected to the first hidden layer. The
model has four hidden layers having 128, 256, 256 and 256 number of nodes
respectively. The last hidden layer is connected to the output layer which
predicts the two outputs simultaneously namely v, and ¢,. For each layer
except the output layer, the ReLU (Eq. 2.4) activation function is used. For
output layer, the linear activation function is used. The DNN has the adam
optimizer for the optimization of weights and loss; and the mean-squared-error

(MSE) as a measure of loss function.

19



dense_input | input:

[(None, 120)] | [(None, 120)]
InputLayer | output:

dense | input:

(None, 120) | (None, 128)

Dense | output:

dense_1 | input:

(None, 128) | (None, 256)
Dense | output:

dense_2 | input:

(None, 256) | (None, 256)
Dense | output:

dense_3 | input:

(None, 256) | (None, 256)
Dense | output:

dense_4 | input:

(None, 256) | (None, 2)

Dense | output:

Figure 3.4: DNN architecture
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Chapter 4

Results and Discussion

4.1 Training of network

We have about 150K minimum bias events for Pb-Pb collisions. We split it
into training set and test set. Out of 150K events, 80% events have been used
for training of the model specified in figure 3.4 and the remaining events have
used for testing and validation purpose. The model has been trained for 156
epochs. The loss function as a function of epochs is shown in figure 4.1.
After the training process, the model uses the test set to predict the outputs
which are vy and ¢o. Figure 4.2 shows the prediction of vy by the DNN vs the
true values of vy. Similarly, fig. 4.3 shows the prediction of ¢, by the DNN vs
the true value of go. We can see that the network gives very good predictions

for test set.

4.2 Prediction

After training and testing the DNN using the minimum bias events for Pb-Pb
collisions, we tried to use this trained DNN to predict vy and ¢» for events
having different centralities. We can see that the DNN gives very good pre-
dictions of v, and ¢, for different centralities also as shown in fig. 4.4, 4.5. We

can see that the predicted outputs of v, and ¢y are almost coinciding with the
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Figure 4.1: Loss function vs Epoch during the training process

actual values of vy and ¢, generated using AMPT. We have also compared the
predicted and true values of vy with the ALICE data for Pb-Pb collisions at
VSN = 5.02 TeV [9]. And we observe that the predicted and true values of
vy deviates from the ALICE data points at higher centralities.

4.3 vy VS @

We can see that we have almost a linear correlation between the elliptic flow
coefficient (v2) and flow vector (¢2) [12] as shown in figure 4.6. So we drew the
same histogram of vy vs ¢y for predicted values of v, and ¢, by the DNN for
different centralities shown. We see that the histograms for predicted values
and for true values both are almost coinciding with each other for centralities

shown.
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Figure 4.3: Predicted ¢, vs true ¢, for test dataset
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Figure 4.4: vy vs. centrality for Pb-Pb collisions, /sy = 5.02 TeV for AMPT

simulation and DNN prediction. The ALICE results are shown for comparison.
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Figure 4.5: ¢ vs centrality for Pb-Pb collisions, /sxy = 5.02 TeV for AMPT
simulation and DNN prediction.
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collisions, /syn = 5.02 TeV for AMPT simulation and DNN prediction.

25



Chapter 5
Summary and Outlook

We started with making the input dataset using the track properties of final
state particles as shown in fig. 3.1, 3.2, 3.3, generated in the minimum bias
Pb-Pb collisions at /sy = 5.02 TeV energy and used them to train our DNN
as defined in figure 3.4. The model was trained using 80% of 150K events
and was tested and validated by using the remaining events. The model gives
pretty good training accuracy to predict the elliptic flow coefficient (v2) and
elliptic flow vector (go) for minimum which can be seen from figure 4.2 &
4.3. The model can not only predict v, and ¢, for minimum bias events, but
can also predict vy and ¢ for different centrality classes as shown in fig. 4.4,
4.5. The linear correlation between vy and ¢, can also be seen preserved while

predicting v, and ¢, from fig. 4.6.
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