
Ensembles of decision tree and random
vector functional link neural network for

classification problems

Ph.D. Thesis

by

Mudasir Ahmad Ganaie

Department of Mathematics

INDIAN INSTITUTE OF TECHNOLOGY INDORE

January 2022

Ensembles of decision tree and random
vector functional link neural network for

classification problems

A THESIS

submitted to the

INDIAN INSTITUTE OF TECHNOLOGY INDORE

in partial fulfillment of the requirements for

the award of the degree

of

DOCTOR OF PHILOSOPHY

by

Mudasir Ahmad Ganaie

Department of Mathematics

INDIAN INSTITUTE OF TECHNOLOGY INDORE

January 2022

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled Ensembles

of decision tree and random vector functional link neural network for classifica-

tion problems in the partial fulfillment of the requirements for the award of the degree of

Doctor of Philosophy and submitted in the Department of Mathematics, Indian In-

stitute of Technology Indore, is an authentic record of my own work carried out during

the time period from July 2019 to January 2022 under the supervision of Dr. M. Tanveer,

Associate Professor, Indian Institute of Technology Indore, Indore, India.

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

Signature of the Student with Date

(Mudasir Ahmad Ganaie)

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

Signature of Thesis Supervisor with Date

(Dr. M. Tanveer)

Mudasir Ahmad Ganaie has successfully given his Ph.D. Oral Examination held on

Signature of Thesis Supervisor with Date

(Dr. M. Tanveer)

Mudasir
Typewriter
14-June-2022

M. Tanveer
14/06/2022

M. Tanveer
10/06/2022

M. Tanveer
14/06/2022

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my heartfelt gratitude to a number

of persons who in one or the other way contributed by making this time as learnable,

enjoyable, and bearable. At first, I would like to thank my supervisor Dr. M.

Tanveer, who was a constant source of inspiration during my work. Without his

constant guidance and research directions, this research work could not be completed.

His continuous support and encouragement has motivated me to remain streamlined

in my research work.

I am also thankful to Dr. Md. Aquil Khan and Prof. Ram Bilas Pachori, my

research progress committee members for their valuable feedback and comments which

made significant improvements in my research work. I am also thankful to the Head,

Department of Mathematics, for his continuous support and encouragement.

My sincere gratitude and respect to the worthy Director, Indian Institute of Tech-

nology Indore for providing the research facilities and support.

I would like to acknowledge the Indian Institute of Technology Indore for the

institute fellowship during my PhD programme.

I am thankful to the lab members for the healthy discussion especially Ashwani

Malik, M. Tabish, Bharat Richhariya, R.U. Khan, S. Sharma and Anuradha. I am also

thankful to Dr Mohammed Wasid for his continuous support and assistance, whenever

required. Moreover, I would like to thank the Department sta↵ especially Jitendra

for his support and assistance. I am also thankful to administrative and other sta↵

members of the institute for their support and assistance during the PhD programme.

I would like to express my heartfelt respect to my parents for their love, care and

support they have provided to me throughout my life. Special thanks to my parents,

wife (Sumaira), daughter (Ayesha), brother (Aaqib), sister (Rubeena), brother-in-law

(M. Tayub) and friends (Rasik, Abass, Anwer) as this thesis would not have been

possible without their support and encouragements. Finally, I am thankful to all who

directly or indirectly contributed, helped and supported me.

Mudasir Ahmad Ganaie

To my family and friends

Abstract

Decision tree, neural network and support vector machine are the powerful machine

learning models widely used in classification problems. Decision tree is composed of

terminal and non-terminal nodes. Each non-terminal node evaluates a series of deci-

sions and optimizes the best split. The terminal nodes represent di↵erent class labels

or their distributions. Intuitively, decision tree is a sequence of If-Then rules which

are mostly understood by humans and are easy to implement. Neural network (NN)

is another category of machine learning algorithms. It is composed of several inter-

connected computational units known as neurons. The neurons are interconnected

via weights learned usually via back propagation algorithms. However, in randomized

neural networks like random vector functional link network (RVFL) some weights are

initialized randomly (fixed while training) and other weights are optimized via closed

form solution or iterative algorithm. On the other hand, support vector machine

(SVM) is an algorithm based on the concept of margin maximization. SVM imple-

ments the structural risk minimization and is a stable classifier. However, SVM is

computationally ine�cient and hence, twin SVMs (TWSVMs) have been formulated.

Ensemble learning is a well known approach in machine learning. Ensemble learn-

ing trains multiple base learners and collaborates them in a manner that the combined

model is better compared to the individual models. Decision trees, neural networks,

support vector machines and their combinations have been typically used in ensemble

approach for better generalization performance.

An ensemble of decision trees, known as random forest (RaF), is a successful model

widely used in the classification problems, and is considered as the best algorithm.

Similarly, RVFL model is gaining its popularity across multiple domains due to its

universal approximation capability. Moreover, it is faster compared to the networks

trained via back-propagation. On the other hand, TWSVM have shown impressive

performance and is faster compared to the SVM based models. TWSVM based models

formulate the convex optimization problems, hence, guarantee the existence of global

minima. The first part of the thesis is based on ensemble of decision trees i.e., RaF

i

and double RaF. The second part is based on shallow and deep ensembles of RVFL

and the last part of this thesis is based on the ensemble of TWSVM based models

with random projections.

Decision trees of standard RaF employ axis parallel splits at each non-terminal

node. Oblique decision trees use oblique (linear) hyperplane for data partitioning

at each non-terminal node. We present several variants of oblique RaF by using

twin bounded SVM (TBSVM) at each non-terminal node to get the best separating

hyperplane. Also, we present oblique rotation forest via TBSVM and oblique random

subspace rotation forest via TBSVM. Moreover, recent study of double RaF showed

that bootstrapping of the data at each non-terminal node results in better performance

compared to standard RaF model which uses bootstrapping at the root node only.

However, both standard RaF and standard double RaF use axis parallel decisions

which ignore the geometric structure of the data. We propose oblique and rotation

double RaF to improve the performance of the classification models.

Random vector functional link network is an e�cient randomized neural network.

Unlike back-propagation trained networks which su↵er from local minima problem,

slow convergence and learning rate sensitivity, RVFL overcomes these hurdles via

closed form solution. We present minimum variance embedded RVFL and co-trained

RVFL models. The former exploits the intra-class/total variance while as the later uses

correlation concept to improve the generalization performance. Recently, deep learning

models have been of great interest due to better feature representation. We present

deep RVFL and ensemble deep RVFL with learning using privileged information.

TWSVM model use kernel functions for classification of non-linear data. However,

as the size of the data increases, the kernel function leads to memory issues and also

increase the complexity of the models. We present models wherein randomization

based approach is used to project the data into non-linear space, this results in better

control over complexity and the memory issues.

Keywords: Random forest, random vector functional link network, classification,

randomization algorithms, ensemble learning, ensemble deep learning.

ii

List of Publications

A. Published

A1. In Refereed Journals

1. M. A. Ganaie, M. Tanveer, P.N. Suganthan and V. Snasel “Oblique and rotation

double random forest” Neural Networks, Elsevier (SCI Indexed Impact Factor:

8.05, Q1)

2. M. A. Ganaie, M. Tanveer “Ensemble of deep random vector functional link net-

work using privileged information for Alzheimer’s disease diagnosis” IEEE/ACM

Transactions on Computational Biology and Bioinformatics (SCI Indexed Im-

pact Factor: 3.71, Q1)

3. M. A. Ganaie, M. Tanveer, and P. N. Suganthan “Oblique decision tree ensemble

via twin bounded SVM.” Expert Systems with Applications, Elsevier, 143 (2020):

113072. (SCI Indexed Impact Factor: 6.954, Q1)

4. M. A. Ganaie, and M. Tanveer “LSTSVM classifier with enhanced features from

pre-trained functional link network.” Applied Soft Computing, Elsevier, 93 (2020):

106305. (SCI Indexed Impact Factor: 6.725, Q1)

5. M. Tanveer, M. A. Ganaie, and P. N. Suganthan “Ensemble of classification

models with weighted functional link network.” Applied Soft Computing, Elsevier,

107 (2021): 107322. (SCI Indexed Impact Factor: 6.725, Q1)

6. M. Tanveer, T. Rajani, R. Rastogi, Y. H. Shao, M. A. Ganaie “Comprehensive

review on twin support vector machines” Annals of Operations Research, Springer

(SCI Indexed Impact Factor: 4.854, Q1)

iii

A2. In Refereed Conferences

1. M. A. Ganaie, M. Tanveer, and P. N. Suganthan “Co-trained random vector

functional link network.” 2021 International Joint Conference on Neural Networks,

IJCNN. IEEE, 2021. (Scopus Indexed, Core rank: A)

2. M. A. Ganaie, M. Tanveer, and P. N. Suganthan “Minimum variance embed-

ded random vector functional link network.” International Conference on Neural

Information Processing (ICONIP2020). (Scopus Indexed, Core rank: A)

iv

B. Communicated

In Refereed Journals

UNDER REVISION

1. M. A. Ganaie, Minghui Hu, A.K. Malik, M. Tanveer, and P. N. Sugan-

than “Ensemble deep learning: A review” arXiv preprint arXiv:2104.02395.

(Submitted after first revision to Engineering Applications of Artificial Intel-

ligence, Elsevier) (SCI Indexed Impact Factor: 6.212, Q1)

v

C. Journal publications (other than thesis)

In Refereed Journals

[1] M. A. Ganaie, M. Tanveer, and C.T. Lin “Large scale fuzzy least squares twin

support vector machines for class imbalance learning” IEEE Transactions on

Fuzzy Systems (SCI Indexed Impact Factor: 12.03, Q1).

[2] M. Tanveer, M. A. Ganaie, A Bhattacharjee and C.T. Lin “Intuitionistic fuzzy

weighted least squares twin SVMs” IEEE Transactions on Cybernetics, (2022)

(SCI Indexed Impact Factor: 11.448, Q1).

[3] M. A. Ganaie, and M. Tanveer “KNN weighted reduced universum twin SVM

for class imbalance learning” Knowledge-Based Systems, (2022) (SCI Indexed

Impact Factor: 8.038, Q1).

[4] M. Tanveer, Jatin Jangir,M. A. Ganaie, Iman Beheshti, M. Tabish, and Nikunj

Chhabra “Diagnosis of Schizophrenia: A comprehensive evaluation” IEEE Jour-

nal of Biomedical and Health Informatics (2022) (SCI Indexed Impact Fac-

tor: 5.36, Q1).

[5] M. A. Ganaie, M. Tanveer, and Iman Beheshti “Brain age prediction with im-

proved least squares TSVR” IEEE Journal of Biomedical and Health Informatics

(2022) (SCI Indexed Impact Factor: 5.77, Q1).

[6] A. K. Malik, M. A. Ganaie, M. Tanveer, P.N. Suganthan “Alzheimer’s disease

diagnosis via intuitionistic fuzzy random vector functional link network” IEEE

Transactions on Computational Social Systems (2022) (SCI Indexed).

[7] M. Tanveer, A. Tiwari, R. Choudhary, and M. A. Ganaie “Large-scale pinball

twin support vector machines” Machine Learning (2021): 1-24, Springer (DOI:

10.1007/s10994-021-06061-z) (SCI Indexed Impact Factor: 2.94, Q1).

[8] M. A. Ganaie, and M. Tanveer “Fuzzy least squares projection twin support vec-

tor machines for class imbalance learning” Applied Soft Computing 113 (2021):

vi

107933, Elsevier (SCI Indexed Impact Factor: 6.725, Q1).

[9] I. Beheshti, M. A. Ganaie, V. Paliwal, A. Rastogi, I. Razzak, M. Tanveer

(2021). “Predicting brain age using machine learning algorithms: A comprehen-

sive evaluation”. IEEE Journal of Biomedical and Health Informatics.

(DOI: 10.1109/JBHI.2021.3083187) (SCI Indexed Impact Factor: 5.77,

Q1).

[10] M. A. Ganaie, I. Beheshti, M. Tanveer “Brain age prediction using improved

twin SVR.” Neural Computing and Applications (2021): 1-11. (SCI Indexed

Impact Factor: 5.606, Q1).

[11] M. Tanveer, A. H. Rashid, M. A. Ganaie, M. Reza, I. Razzak, and K. L. Hua

(2021). “Classification of Alzheimer’s disease using ensemble of deep neural

networks trained through transfer learning.” IEEE Journal of Biomedical and

Health Informatics. (SCI Indexed Impact Factor: 5.77, Q1).

[12] M. A. Ganaie, S. Ghosh, N. Mendola, M. Tanveer, and S. Jalan “Identification

of chimera using machine learning.” Chaos: An Interdisciplinary Journal of

Nonlinear Science 30.6 (2020): 063128. (SCI Indexed Impact Factor: 3.642,

Q1)

vii

Contents

Abstract i

List of Publications iii

List of Figures xv

List of Tables xvii

List of Abbreviations and Acronyms xxi

1 Introduction 1

1.1 Background . 2

1.2 Motivation . 5

1.3 Objectives . 6

1.4 Contributions of the thesis . 6

1.5 Organization of the thesis . 10

2 Literature survey and research methodology 13

2.1 Ensemble learning . 13

2.1.1 Bias-variance decomposition . 15

2.1.2 Statistical, computational and representational aspects 15

2.1.3 Diversity . 16

2.2 Ensemble strategies . 16

2.2.1 Bagging . 17

2.2.2 Boosting . 19

2.2.3 Stacking . 22

ix

2.2.4 Negative correlation based ensembles 25

2.2.5 Explicit/Implicit ensembles . 26

2.2.6 Homogeneous/Heterogeneous ensembles 28

2.2.7 Decision fusion strategies . 29

2.2.8 Unsupervised learning . 33

2.2.9 Semi-supervised and active learning 34

2.2.10 Reinforcement learning . 36

2.2.11 Online/Incremental, multi-label learning 37

2.3 Decision trees and their ensembles . 39

2.3.1 Random forest . 43

2.3.2 Rotation forest . 44

2.3.3 Double random forest . 46

2.3.4 Rotation random forest . 46

2.3.5 Oblique decision tree ensemble via multisurface proximal sup-

port vector machine . 49

2.4 Artificial neural networks . 49

2.4.1 Random vector functional link network 51

2.4.2 Extreme learning machine . 52

2.4.3 Minimum class variance extreme learning machine 53

2.4.4 Autoencoder . 53

2.4.5 Sparse pre-trained random vector functional link network 54

2.5 Support vector machines . 55

2.5.1 Twin bounded support vector machine 56

2.5.2 Least squares twin support vector machines 58

2.5.3 Robust energy based least squares twin support vector machines 59

2.5.4 Twin k-class support vector classification 60

2.5.5 Least squares twin k-class support vector classification 61

2.6 Statistical tests . 62

2.6.1 Friedman test . 63

2.6.2 Win-tie-loss: sign test . 64

x

3 Oblique decision tree ensemble via twin bounded SVM 65

3.1 Oblique decision tree ensemble via twin bounded SVM 68

3.2 Experiments . 71

3.2.1 Experimental setup . 71

3.2.2 Computational complexity analysis 75

3.2.3 Influence of the parameters c1, c2, c3 and c4 75

3.2.4 Does TBSVM improve the decision tree ensemble? 75

3.2.5 Comparison among the proposed ensemble models and MPSVM

based ensemble models . 94

3.2.6 Win-tie-loss: sign test . 97

3.2.7 On the e↵ect of minleaf . 97

3.3 Summary . 98

4 Oblique and rotation double random forest 99

4.1 Handling multiclass problems . 101

4.2 Proposed oblique and rotation double random forest 103

4.2.1 Oblique double random forest with MPSVM 103

4.2.2 Double random forest with PCA/LDA 104

4.3 Comparison of the proposed oblique and rotation based double random

forest models with the existing baseline models 107

4.4 Experiments . 107

4.4.1 Experimental setup . 108

4.4.2 Statistical analysis . 108

4.4.3 Win-tie-loss: sign test . 122

4.4.4 E↵ect of “mtry” parameter . 122

4.4.5 E↵ect of “minleaf” parameter 124

4.4.6 Average number of nodes . 125

4.5 Diversity error diagrams . 134

4.6 Analysis of computational complexity 136

4.7 Bias variance analysis . 137

xi

4.8 Summary . 158

5 Minimum variance embedded RVFL and co-trained

RVFL network 159

5.1 Minimum variance embedded RVFL network 159

5.1.1 Proposed formulation . 160

5.1.2 Experiments . 161

5.1.3 Analysis of the number of hidden neurons 166

5.2 Co-trained RVFL network . 167

5.2.1 Proposed formulation . 167

5.2.2 Experiments . 169

5.2.3 Computational complexity analysis 170

5.2.4 Friedman test . 171

5.2.5 Pairwise win-tie-loss: sign test 174

5.2.6 Parameter sensitivity . 174

5.3 Summary . 176

6 Ensemble deep random vector functional link network

using privileged information 177

6.1 Proposed deep RVFL+ and its ensemble 178

6.1.1 Deep random vector functional link network using privileged

information . 178

6.1.2 Ensemble deep RVFL network using privileged information . . . 180

6.2 Experiments . 181

6.2.1 Experimental setup . 181

6.2.2 Evaluation on ADNI dataset . 182

6.2.3 Results and discussion . 183

6.3 Summary . 188

7 LSTSVM classifier with enhanced features from pre-

trained functional link network 191

xii

7.1 LSTSVM classifier with enhanced features from pre-trained functional

link network . 192

7.2 Experiments . 195

7.2.1 Experimental setup . 195

7.2.2 Computational complexity analysis 198

7.2.3 Significant di↵erences among classifiers with Nemenyi test . . . 199

7.2.4 Win-tie-loss: sign test . 205

7.2.5 Comparative analysis of number of enhanced patterns on the

RVFL network and the proposed ELSTSVM model 205

7.3 Summary . 206

8 Ensemble of classification models with weighted func-

tional link network 209

8.1 Proposed random weighted models . 211

8.1.1 RV-TBSVM . 212

8.1.2 RV-LSTSVM . 213

8.1.3 RV-RELSTSVM . 213

8.1.4 RV-TWKSVC . 213

8.1.5 RV-LSTWKSVC . 214

8.2 Proposed twin weighted models . 214

8.2.1 Weight generation phase . 215

8.2.2 Training of models . 216

8.2.3 Output value prediction . 216

8.3 Experiments . 217

8.3.1 Experimental setup . 218

8.3.2 Computational complexity analysis 218

8.3.3 Performance analysis . 219

8.3.4 Statistical analysis based on the Friedman test 228

8.3.5 Win-tie-loss: sign test . 234

8.3.6 Analyzing the e↵ect of enhanced patterns 235

xiii

8.4 Summary . 241

9 Conclusions and future work 243

9.1 Conclusions . 243

9.2 Future directions . 247

Bibliography 248

xiv

List of Figures

1.1 Layout of the thesis. 11

3.1 Influence of the parameters c1 and c3. 74

4.1 Nemenyi test based post hoc evaluation of classification models at

↵ = 5% level of significance. The classification models which are not

statistically di↵erent are connected. 119

4.2 E↵ect of the “mtry” parameter. 123

4.3 Mean node analysis of the proposed oblique and rotation double random

forest models and the baseline models. 134

4.4 Centroid of Kappa error diagrams on di↵erent datasets. 136

5.1 E↵ect of enhanced features on the performance of the classification

models. 166

5.2 Statistical di↵erence between the RVFL, Sp-RVFL, and the proposed

coRVFL models based on pairwise Nemenyi test. 171

5.3 Analysis of classification performance of the proposed coRVFL mod-

els with the varying hyperparameters c1 and c3 (Figures 5.3(a)-5.3(d)

corresponds to the coRVFL-max while as the figures 5.3(e)-5.3(h) cor-

responds to the coRVFL-avg model). 175

6.1 Deep random vector functional link network using privileged information.178

6.2 Ensemble deep random vector functional link network using privileged

information. 180

6.3 AUC analysis of the classification models for AD. 184

6.4 F-Measure analysis of the classification models for AD. 185

xv

6.5 AUC analysis of the classification models for AD. 186

7.1 Flowchart of proposed enhanced feature based LSTSVM model. 194

7.2 Impact of varying the number of enhanced patterns on the performance

of RVFL network and the proposed model. 202

7.3 Comparison of the number of enhanced features used by RVFL network

and the proposed model corresponding to maximum accuracy. 204

8.1 Proposed architecture of random weighted models. 212

8.2 Proposed architecture of twin weighted models. 215

8.3 E↵ect of enhanced features on the performance of proposed random

weighted classification models and baseline models. 236

8.4 E↵ect of enhanced features on the performance of proposed twin

weighted classification models and baseline models. 239

xvi

List of Tables

2.1 Bagging based ensemble models. 19

2.2 Boosting based ensemble models. 22

2.3 Implicit / Explicit ensembles. 28

2.4 Unsupervised ensemble models. 34

2.5 Semi-supervised ensemble models. 36

2.6 Online/Incremental ensemble models. 39

2.7 Multi-label ensemble models. 40

3.1 Classification accuracy of RaF, MPRaF-T, MPRaF-P, MPRaF-N and

proposed TBRaF. 77

3.2 Classification accuracy of RoF, MPRoF-T, MPRoF-P, MPRoF-N and

proposed TBRoF. 83

3.3 Classification accuracy of RRoF, MPRRoF-T, MPRRoF-P, MPRRoF-

N and proposed TBRROF. 88

3.4 Significant di↵erence for RaF and its ensembles at ↵ = 0.05. 96

3.5 Significant di↵erence for RoF and its ensembles at ↵ = 0.05. 96

3.6 Significant di↵erence for RRoF and its ensembles at ↵ = 0.05. 96

3.7 Significant di↵erence between the TBRaF, TBRoF, TBRRoF ensemble

methods and MPRaF, MPRoF, MPRRoF ensemble methods based on

win-tie-loss: sign test. 96

3.8 Average rank of the ensemble methods for di↵erent minleaf parameter. 97

4.1 Significance di↵erence of classification performance of the baseline mod-

els and the proposed oblique and rotation double random forest with

Nemenyi posthoc tests based on the accuracy. 109

xvii

4.2 Classification accuracy of RaF, MPRaF-T, MPRaF-P, MPRaF-N,

RaF-PCA, RaF-LDA, DRaF, MPDRaF-T, MPDRaF-P, MPDRaF-N,

DRaF-PCA and DRaF-LDA classification models. 110

4.3 Overall comparison of the baseline classification models, proposed

oblique and rotation double random forest models. 118

4.4 Pairwise win-tie-loss count . 120

4.5 Pairwise win-tie-loss: sign test . 121

4.6 Average rank of the classification models with di↵erent minleaf param-

eters. 124

4.7 Average number of nodes in RaF, MPRaF-T, MPRaF-P, MPRaF-N,

RaF-PCA, RaF-LDA, DRaF, MPDRaF-T, MPDRaF-P, MPDRaF-N,

DRaF-PCA and DRaF-LDA classification models. 126

4.8 Significant di↵erence among the standard and double variants of the

ensembles of decision trees based on the bias analysis. 138

4.9 Significant di↵erence among the standard and double variants of the

ensembles of decision trees based on the variance analysis. 139

4.10 Bias variance analysis of RaF, MPRaF-T, MPRaF-P, MPRaF-N,

RaF-PCA, RaF-LDA, DRaF, MPDRaF-T, MPDRaF-P, MPDRaF-N,

DRaF-PCA and DRaF-LDA classification models. 140

5.1 Performance of ELM, MVELM, MCVELM, RVFL, proposed Total-Var-

RVFL and proposed Class-Var-RVFL. 162

5.2 Statistical comparison of the classification models. 172

5.3 Dataset details. 172

5.4 Classification accuracy of RVFL, Sp-RVFL and the proposed coRVFL

models. 173

5.5 Comparison of RVFL, Sp-RVFL, and the proposed coRVFL models

based on pairwise win-tie-loss: sign test. 174

5.6 Significant di↵erence between the RVFL, Sp-RVFL, and the proposed

coRVFL models based on pairwise win-tie-loss: sign test. 174

xviii

6.1 Performance evaluation of the algorithms on CN versus AD case. 183

6.2 Performance evaluation of the algorithms on CN versus MCI case. . . . 184

6.3 Performance evaluation of the algorithms on MCI versus AD case. . . . 185

7.1 Classification accuracy of RVFL, LSTSVM and proposed ELSTSVM. . 196

7.2 Statistical di↵erence among the RVFL, LSTSVM and proposed EL-

STSVM model based on the Friedman ranking and Nemenyi test. . . . 201

7.3 Statistical di↵erence among the RVFL, LSTSVM and proposed EL-

STSVM model based on pairwise sign test. 201

8.1 Summary of the datasets used for evaluation. 220

8.2 Classification accuracy of RVFL, TBSVM, TWKSVC, LSTWKSVC,

RELSTSVM, LSTSVM and proposed classification models. 221

8.3 Classification accuracy of RVFL, RVFL-AE, TBSVM, TWKSVC, LST-

WKSVC, RELSTSVM, LSTSVM and proposed classification models. . 225

8.4 Statistical comparison of RVFL, TBSVM, TWKSVC, LSTWKSVC,

RELSTSVM, LSTSVM and proposed classification models. 229

8.5 Statistical comparison of RVFL, RVFL-AE, TBSVM, TWKSVC, LST-

WKSVC, RELSTSVM, LSTSVM and proposed classification models. . 232

8.6 Significant di↵erence between TBSVM, RV-TBSVM, TWKSVC,

RV-TWKSVC, LSTWKSVC, RV-LSTWKSVC, RELSTSVM, RV-

RELSTSVM, LSTSVM and RV-LSTSVM based on pair-wise sign test. 234

8.7 Significant di↵erence between RVFL, RVFL-AE, TBSVM, TBSVM-

FL, TWKSVC, TWKSVC-FL, LSTWKSVC, LSTWKSVC-FL, REL-

STSVM, RELSTSVM-FL, LSTSVM and LSTSVM-FL based on pair-

wise sign test. 235

xix

List of Abbreviations and Acronyms

BP Back propagation

DNN Deep neural network

dRVFL Deep random vector functional link network

dRVFL+ Deep random vector functional link network with LUPI framework

DT Decision tree

edRVFL Ensemble deep random vector functional link network

edRVFL+ Ensemble deep random vector functional link network with LUPI frame-

work

ELM Extreme learning machine

GBT Gradient boosted tree

KRR Kernel ridge regression

LDA Linear discriminant analysis

LSTSVM Least squares twin support vector machines

LUPI Learning using privileged information

MPSVM Multi-surface proximal support vector machines

NCL Negative correlation learning

NN Neural network

xxi

PCA Principal component analysis

QPP Quadratic programming problem

RaF Random forest

RELSTSVM Robust energy based least squares twin support vector machines

RoF Rotation forest

RRoF Random sub-rotation forest

RVFL Random vector functional link network

RVFL+ Random vector functional link network with LUPI framework

SRM Structural risk minimization

SVM Support vector machine

TBRaF Twin bounded random forest

TBRoF Twin bounded rotation forest

TBRRoF Twin bounded random sub-rotation forest

TBSVM Twin bounded support vector machines

TWKSVC Twin k-class support vector classification

TWSVM Twin support vector machines

xxii

Chapter 1

Introduction

With the advent of technology, the generation of data has proliferated creating

a need to develop the robust machine learning models. In the past few decades,

the development of machine learning algorithms has brought significant changes in

our daily life. The advancement of machine learning algorithms have attracted the

research community especially in classification problems. Classification problem is

the identification of a discrete category for the new testing sample. The classification

learning algorithm is trained on a set of data with the observations of known categories.

Mathematically, the classification problem is given as:

y = f(x, ✓) 2 Y, (1.1)

where y is the label assigned to new observation x by the learning algorithm f , ✓ is the

parameter of the learning algorithm and Y is the set of categories or class labels. The

classification problem may be binary or multiclass depending on the cardinality of Y.

In binary class problems, there exist two categories while as in multiclass problems

more than two categories are present. In literature, hundreds of classification problems

have been proposed [62] from the computer science and mathematics to solve the

classification problems.

In this thesis, we discuss decision trees (DTs), neural networks (NNs) and support

vector machines (SVMs). We give the brief overview of these classification models in

the following section, followed by the motivations and objectives of this thesis. Finally,

1

we give the contributions of this thesis followed by the organization of the thesis.

1.1 Background

“Many heads are better than one” “Many are smarter than the few”. These

proverbs have been studied in several sociological, psychological and other human

aspects [227, 250]. Ensemble learning [221] is a widely used approach in classification

and regression problems. The combination of multiple classifiers, which are unsta-

ble, into an ensemble model leads to better generalization performance compared to a

single unstable classifier [57, 194, 225, 266]. Ensemble learning employ multiple base

classifiers such that the ensemble prediction performance is better than any of the

individual classifiers. Perturb and combine strategy on individual classifiers are used

in ensemble methodology [19]. In perturb strategy, the classifiers are evaluated on the

perturbed training datasets and in combine strategy, the outputs of these classifiers

are aggregated in a suitable fashion such that the classification of an ensemble model is

better compared to the individual baseline classifiers. In ensemble learning framework,

the unstable classifiers are mostly sought ones. Decision trees and neural networks are

unstable classifiers whose performance greatly varies with small perturbations in the

training set or in construction [18]. Ensembles of support vector machines [134] have

also been proposed wherein multiple support vector machines are generated. Thus,

ensembles of random forest, random vector functional link network and support vector

machines are generated to make the more accurate and robust classification models.

Decision tree algorithm is a commonly used classification model due to its sim-

plicity and better interpretability. Decision tree uses divide and conquer approach to

recursively partition the data. Decision tree enjoy multiple benefits. Decision tree uses

a sequence of decisions from the root node to the leaf node via If-Then rules which are

intuitive to humans. The recursive partition of the tree is sensitive to perturbation of

the input data, and hence, results in an unstable classifier. Thus, it is said to have

high variance and low bias which makes it most suitable algorithm for the ensemble

methodology. The decision trees have been successfully employed in medical diagnosis

2

and legal analysis wherein interpretability is of utmost importance [33]. Mostly, en-

semble of decision trees such as random forest (RaF) [23], gradient boosted tree (GBT)

[67] are used which results in better performance compared to the individual decision

trees. Due to the better generalization performance, random forest proved to be one

of the best classification models among 179 classifiers evaluated on 121 datasets [62].

Based on the type of evaluation at each node, decision trees can be broadly divided

into two categories: axis-parallel or orthogonal and oblique or multivariate decision

trees. In orthogonal decision trees, the expression “xj < bi” (is jth feature less than

the threshold value bi) while as in oblique decision trees “wT

i
x < bi” expression is

evaluated. In this thesis, we refer the standard RaF as an ensemble of orthogonal

decision trees and oblique random forest as an ensemble of oblique decision trees.

Neural Network (NN) is another machine learning model widely used for the clas-

sification problems. NN consists of multiple computational units, known as neurons,

interconnected to mimic the functionality of human brain. Typically, a neural network

consists of an input layer, one or more hidden layers and an output layer. The hidden

layer consists of multiple neurons or nodes that perform non-linear transformation

from the input layer to the output layer. The hidden neurons are connected by the

weights of a network. The training of neural networks is performed by minimizing the

loss functions. Specifically, gradient of the loss function with respect to the network

parameters is calculated and the model weights are updated iteratively in the nega-

tive direction of the gradient to minimize the loss function. However, it su↵ers from

local minima problem, slow convergence and learning rate sensitivity [248]. To ele-

vate the training procedure, randomization based neural networks have been putforth.

Randomization based models avoid the above enumerated issues as the optimization

problem is solved via closed form solution [84, 85, 231, 263]. These models show good

generalization performance and training is faster [52, 284, 285]. Among the random-

ization based models, extreme learning machine [113] and RVFL [203] are the widely

used architectures.

Support vector machine (SVM) [47, 151, 268] is a powerful method used mainly in

classification as well as regression problems. SVM is based on the maximum margin

3

concept and shows better generalization performance as it implements the structural

risk minimization (SRM) principle. Despite its better generalization performance,

SVM owns high computational complexity of the order of O(M3) where M is the size

of the training dataset. To overcome this drawback of higher complexity, TWSVM

builds two hyperplanes such that each hyperplane is proximal to its own class and

farthest from the samples of other class. Unlike SVM wherein a single large quadratic

programming problem (QPP) is solved, TWSVM solves two QPPs of smaller size com-

pared to SVM. Solving two smaller quadratic programming problems (QPPs) make

TWSVM approximately 4 times faster than SVM. As TWSVM implements empiri-

cal risk minimization principle, twin bounded SVM (TBSVM) [233] implemented the

structural risk minimization principle. Least squares twin SVM (LSTSVM) [73, 144]

involves a system of linear equations with squared loss function instead of the convex

QPP. As LSTSVM is sensitive to noise and outliers, hence energy-based least squares

twin support vector machine [190] introduced energy term to reduce the e↵ect of noise

and outliers. Tanveer et al. [260] introduced an extra regularization term and pro-

posed robust energy-based least squares twin support vector machine (RELSTSVM),

resulting in the optimization problems to be positive definite and hence, better gen-

eralization. Recent study [261] shows that RELSTSVM is the best classifier among

the twin support vector machine models. Di↵erent from twin bounded SVM, least

squares twin SVM, energy based least squares twin SVM, and robust energy based

least squares twin SVM, a new multiclass approach called twin k-class support vector

classification (TWKSVC) [294] based on “1-versus-1-versus-rest” generates k(k�1)/2

binary classifiers for a k-class classification problem. To reduce the computational

complexity of TWKSVC, least squares TWKSVC [191] introduced the equality con-

straints in the objective function of TWKSVC to solve linear system of equations

instead of solving a QPP.

4

1.2 Motivation

Deep neural networks (DNNs) have been successfully applied in tasks like image,

text and speech recognition, however, there are many other tasks wherein the DNNs

perform lower compared to other models like random forest [23, 193, 236]. Recent

study of evaluation of classification models on the UCI machine learning repository

[60], wherein the datasets range from standard vision to speech dataset, reveal that

random forest is a top ranked classifier [62, 306]. Thus, Chapter 3 and Chapter 4 of

this thesis present the techniques to further improve the performance of ensemble of

decision trees.

Training of artificial neural networks via back propagation (BP) has several

disadvantages like slow convergence, local minima problem and sensitive to learn-

ing rate setting which results in lower generalization performance [248]. To avoid

these issues, randomization based neural network models use closed form solutions

[84, 85, 231, 263] for training the network. Apart from the neural networks trained

via backpropagation, there is growing interest in randomized based neural networks

[11, 84, 85, 201]. Also, neural network ensembles are more accurate than individual

networks [112, 129, 220, 270]. In Chapter 5, we present a novel RVFL model and an

ensemble of RVFL model. Recently, deep learning architectures have received quite a

lot attention. In particular, non-iterative learning based deep randomized models have

been proposed for the classification and regression problems. The deep randomized

models especially deep RVFL with direct links have been quite successful. However,

deep RVFL and its ensemble models are trained only on normal samples. In Chapter

6, we present deep RVFL and its ensembles which are enabled to incorporate privi-

leged information, however, the standard RVFL model and its deep models are unable

to use privileged information.

Support vector machines (SVMs) have been successfully employed in classification

problems. The success of SVMs is attributed to three factors. First, SVM is a maxi-

mum margin classifier. Second, the dual form of SVM solves a quadratic programming

problem which depends on number of data samples and not their dimensions. Third,

5

the dual form of the optimization problem involves the inner product of data points

and hence, kernel trick can be easily plugged [64]. The SVMs need to choose kernel

type, kernel parameters and the regularization parameter. The choice of these param-

eters determines the generalization performance of the models. Using kernel trick for

the transformation of the data to a higher dimensional space leads to computation

and memory issues. Using explicit randomized features instead of Gram matrix leads

to smaller computational time as no kernel parameters are tuned [64]. Therefore, we

propose ensembles of randomized feature based twin SVM model in Chapter 7 and

Chapter 8, which provide better control over complexity and memory related issues.

1.3 Objectives

The objectives of this thesis are:

[1] To present literature review on ensemble learning and twin SVM based models.

[2] To develop novel ensembles of decision trees for the classification problems.

[3] To develop the rotation double random forest with diversified base learners and

also develop the oblique double random forest models.

[4] To develop the novel RVFL and its ensemble.

[5] To develop the novel deep RVFL network using privileged information and its

ensemble.

[6] To develop novel ensemble of least squares twin SVM model.

[7] To develop novel ensemble classifiers based on twin SVM models.

1.4 Contributions of the thesis

In this section, we give the brief overview of work contributed in this thesis. The

contributions are as follows:

6

[1] To develop the novel machine learning algorithms, better understanding of the

literature is important. Therefore, we reviewed di↵erent approaches of ensemble

learning followed in the literature. Moreover, we reviewed di↵erent learning

techniques followed in twin SVM to make the models more e�cient and/or robust

against noise and outliers. We presented detailed review of the ensemble learning

approaches and the formulations of twin SVM based models in Chapter 2 of this

thesis.

[2] Decision trees and their ensembles are well known machine learning algorithms

applied in di↵erent domains to solve the classification problems. In Chapter 3,

we present an ensemble of decision trees via twin bounded support vector ma-

chines. The proposed method overcomes the issues of invertibility while generat-

ing the decision trees. The proposed method doesn’t require any regularization

technique to render the solution and uses structural risk minimization principle

for better generalization performance. Furthermore, we developed ensemble of

decision trees known as twin bounded random forest, twin bounded rotation

forest and twin bounded random subspace rotation forest for the classification

problems.

[3] Recent study of double random forest [91] evaluated the e↵ect of node size on

the performance of the model. The study revealed that the prediction accuracy

could be improved if there is a way to generate deeper decision trees. The

authors showed that the largest tree grown on a given data by the standard

random forest might not be su�ciently large to give the optimal performance.

Hence, double random forest [91] generated decision trees that are bigger than

the ones in standard random forest. Instead of training each decision tree with

di↵erent bags of training set obtained via bagging approach at the root node,

the authors in [91] generated each tree with the original training set and used

bootstrap aggregation at each non-leaf node of the decision tree to obtain the best

split. However, both the random forest and double random forest are ensembles

of univariate decision trees and hence, ignore the geometric class distributions

7

resulting in lower generalization performance. In Chapter 4, we present oblique

and rotation double random forest to overcome these issues. Oblique double

random forest models integrate the benefits of double random forest and the

geometric structure information of the class distribution for better generalization

performance. For generating more diverse base learners in the double random

forest, we present rotation double random forest wherein we transform or rotate

the feature space at each non-leaf node using the principal component analysis

or linear discriminant analysis transformations.

[4] We present minimum variance embedded RVFL and ensemble of RVFL. Mini-

mum variance embedded RVFL exploits the training data dispersion and uses

extra information for learning the network parameters. Furthermore, we present

an ensemble of RVFL known as co-trained RVFL which trains two RVFL models

jointly such that each RVFL model is constructed with di↵erent feature pro-

jections. We use randomly projected features and sparse-l1 norm autoencoder

based features to train the proposed coRVFL model, which resulted in better

generalization performance.

[5] Recently, deep learning architectures have received quite a lot attention. In par-

ticular, non-iterative learning based deep randomized models have been proposed

for the classification and regression problems. The deep randomized models es-

pecially RVFL with direct links have been successful. However, deep RVFL and

its ensemble models are trained only on normal samples. We present deep RVFL

and its ensembles which are enabled to incorporate privileged information, how-

ever, the standard RVFL model and its deep models are unable to use privileged

information. Privileged information based approach is commonly seen in hu-

man learning. To fill this gap, we have incorporated learning using privileged

information (LUPI) in deep RVFL model, and propose deep RVFL with LUPI

framework (dRVFL+). Privileged information is available while training the

models. In order to make the model more robust, we propose ensemble deep

RVFL+ with LUPI framework.

8

[6] Inspired by the random feature projection in RVFL network, we present

LSTSVM classifier with enhanced features from pre-trained functional link net-

work. In addition to random projections, kernel trick has also been used for

transforming the input data. The kernel trick transforms the data into non-

linear space with kernel function being applied to each pair of the training sam-

ple. This kernel trick leads to computational and memory issues. Hence, we use

LSTSVM projected features which results in improved performance and reduce

the computational cost compared to kernel trick. Here, the input feature space

is enhanced by the pre-trained functional link network. Weights are generated

by LSTSVM, and a non-linear function is applied on the product between input

features and the weights to get the enhanced features. The final classification is

performed by least squares twin support vector machines based on the original

and enhanced feature space.

[7] Kernel based machines such as twin SVM based models can approximate any ar-

bitrary function with enough training data. However, these models su↵er as the

size of the data increases. The kernel trick transforms the data into non-linear

space with kernel function being applied to each pair of the training samples.

This kernel matrix leads to computational and memory issues. To overcome

these issues, we propose two approaches for the non-linear projection of the data

and hence, avoid the use of kernel trick which results in better e�ciency com-

pared to kernel based models. In the first approach, the input data points are

mapped explicitly into a randomized feature space via neural network wherein

the weights of the hidden layer are generated randomly. After feature projec-

tion, classification models twin bounded support vector machines (SVM), least

squares twin SVM, twin k-class SVM, least squares twin k-class SVM and robust

energy based least squares twin SVM are trained on the extended features (orig-

inal features and randomized features). In the second approach, twin bounded

support vector machines (SVM), least squares twin SVM, twin k-class SVM,

least squares twin k-class SVM and robust energy based least squares twin SVM

9

models are used to generate the weights of the hidden layer architecture and the

weights of output layer are optimized via closed form solution. The projection

of data points via random process or twin SVM based models provide better

control over complexity and memory issues.

1.5 Organization of the thesis

The work of this thesis is divided into nine chapters. Figure 1.1 gives the pictorial

layout of the thesis. The brief description of the chapters included is as follows:

• In chapter 2, we review the basics of ensemble learning and di↵erent ensemble

strategies. Moreover, we discuss the algorithms and the formulations of the

variants of the ensembles of decision trees, RVFL and twin SVM based models.

• In chapter 3, we present the oblique decision tree ensemble via TBSVM.

• In chapter 4, we present the basics of double random forest. Also, we propose

rotation double random forest and ensembles of oblique double random forest.

• In chapter 5, we present the minimum variance embedded RVFL and co-trained

RVFL.

• In chapter 6, we present the deep RVFL with privileged information and ensem-

ble deep RVFL with privileged information.

• In chapter 7, we present LSTSVM classifier with enhanced features from pre-

trained functional link network.

• In chapter 8, we present ensemble of classification models with weighted func-

tional link network.

• In chapter 9, we give brief contribution of this thesis and the possible future

research directions.

10

E
n
se
m
b
le
s
o
f
d
ec

is
io
n

tr
ee

a
n
d

ra
n
d
o
m

v
ec

to
r
fu
n
ct
io
n
a
l
li
n
k
n
eu

ra
l
n
et
w
o
rk

fo
r
cl
a
ss
ifi
ca

ti
o
n

p
ro

b
le
m
s

E
x
is
t
in
g
t
e
c
h
n
iq
u
e
s

C
h
a
p
t
e
r
2

L
it
e
r
a
t
u
r
e
s
u
r
v
e
y

[1
]
R
e
v
ie
w
o
f
e
n
s
e
m
b
le

le
a
r
n
in
g

[2
]
R
e
v
ie
w

o
f

tw
in

S
V
M

m
o
d
e
ls

P
r
o
p
o
s
e
d
t
e
c
h
n
iq
u
e
s

D
e
c
is
io
n
t
r
e
e

R
a
n
d
o
m

fo
r
e
s
t

C
h
a
p
t
e
r
3

O
b
li
q
u
e
r
a
n
d
o
m

fo
r
e
s
t

[1
]
O
b
li
q
u
e

d
e
c
i-

s
io
n
t
r
e
e
e
n
s
e
m
-

b
le
s

[2
]
O
b
li
q
u
e

R
a
F
,

R
o
F
,
a
n
d
R
R
o
F

D
o
u
b
le
r
a
n
d
o
m

fo
r
e
s
t

C
h
a
p
t
e
r
4

O
b
li
q
u
e
a
n
d
r
o
t
a
t
io
n

d
o
u
b
le
r
a
n
d
o
m

fo
r
e
s
t

[1
]
O
b
li
q
u
e

d
o
u
b
le

r
a
n
d
o
m

fo
r
e
s
t

[2
]
R
o
t
a
t
io
n

b
a
s
e
d

d
o
u
b
le

r
a
n
d
o
m

fo
r
e
s
t

R
V
F
L

S
h
a
ll
o
w
R
V
F
L

C
h
a
p
t
e
r
5

Im
p
r
o
v
e
m
e
n
t
s

o
v
e
r
R
V
F
L

[1
]
M
in
im
u
m

v
a
r
i-

a
n
c
e
R
V
F
L

[2
]
E
n
s
e
m
b
le

o
f

R
V
F
L

D
e
e
p
R
V
F
L

C
h
a
p
t
e
r
6

L
U
P
I

b
a
s
e
d
R
V
F
L

[1
]
D
e
e
p
R
V
F
L
+

[2
]
E
n
s
e
m
b
le

d
e
e
p

R
V
F
L
+

R
a
n
d
o
m
iz
a
t
io
n
b
a
s
e
d

tw
in

S
V
M

C
h
a
p
t
e
r
7

P
r
e
t
r
a
in
e
d

L
S
T
S
V
M

[1
]
P
r
e
t
r
a
in
e
d

L
S
T
S
V
M

C
h
a
p
t
e
r
8

Im
p
r
o
v
e
m
e
n
t
s

o
v
e
r
tw
in

S
V
M

[1
]
R
a
n
d
o
m
iz
a
t
io
n

b
a
s
e
d

tw
in

S
V
M
s

[2
]
P
r
e
t
r
a
in
e
d
tw
in

S
V
M
s

Figure 1.1: Layout of the thesis.
11

Chapter 2

Literature survey and research

methodology

In this chapter, we review the literature on di↵erent research problems addressed

in this thesis. We divided the literature into six sections. Section 2.1 introduces the

ensemble learning. Moreover, a survey for ensemble learning strategies is presented

in Section 2.2 and Section 2.3 discusses decision trees and di↵erent approaches to

generate the ensemble of decision trees. Section 2.4 introduces the artificial neural

networks and discusses the formulation of multiple artificial neural networks. Section

2.5 discusses the formulation of twin support vector machines and its variants.

2.1 Ensemble learning

Generally speaking, the goal of generating the hypothesis H in machine learning

area is that it should perform better when applied to unknown data. The performance

of the model is measured with respect to the area in which the model is applied. Com-

bining the predictions from several models has proven to be an elegant approach for

increasing the performance of the models. Combination of several di↵erent predictions

from di↵erent models to make the final prediction is known as ensemble learning or

ensemble model. The ensemble learning involves multiple models combined in some

fashion like averaging, voting such that the ensemble model is better than any of the

individual baseline models. To prove that ensemble is better than individual models,

13

Marquis de Condorcet proposed a theorem wherein he proved that if the probability

of each voter being correct is above 0.5 and the voters are independent, then addition

of more voters increases the probability of majority vote being correct until it ap-

proaches 1 [46]. Although Marquis de Condorcet proposed this theorem in the field of

political science and had no idea of the field of machine learning, but it is the similar

mechanism that leads to better performance of the ensemble models. Assumptions of

Marquis de Condorcet theorem also holds true for ensembles [93].

Perturb and combine strategy [19] is core of the ensemble learning [57] and hence,

it has been used across di↵erent domains like machine learning [287], computer vision

tasks [79] and recognition of patterns. Both theoretical and empirical aspects of the

ensemble learning have been explored in the literature. Multiple classifier systems

[319] or ensemble learning perturbs the input data to induce diversity among the base

learners of an ensemble and use combine strategy to aggregate the outputs of base

learners such that the performance of the ensemble model is better in comparison

with the individual learners.

To analyze how the ensemble models perform better compared to individual mod-

els, studies like variance reduction among the classifiers [19, 78, 299] have been put-

forth. With the bias and variance reduction theory [19, 139], the classification error is

given in terms of bias and variance. Bias measure gives information about how far is

the average guess of each base learner from the target class over the perturbed training

sets generated from a given training set and variance measures how much the base

learners guess fluctuates with the perturbations of the given training set. Ensemble

methods have been supported by several theories like bias-variance [139, 289], strength

correlation [23], stochastic discrimination [137], and margin theory [229]. These the-

ories provide the equivalent of bias-variance-covariance decomposition [212].

The reasons for the success of ensemble learning include: statistical, computa-

tional and representation learning [57], bias-variance decomposition [139] and strength-

correlation [23].

14

2.1.1 Bias-variance decomposition

Initially, the success of ensemble methods was theoretically investigated in regres-

sion problems. The authors proved via ambiguity decomposition [26, 143] that the

proper ensemble classifier guarantees a smaller squared error compared to the individ-

ual predictors of the classifier. Ambiguity decomposition was given for single dataset

based ensemble methods, later on, multiple dataset bias-variance-covariance decom-

position was introduced in [26, 27, 76, 208] and is given as:

E[o� y]2 = bias2 +
1

L
var + (1� 1

L
)covar,

bias =
1

L

X

i

(E[oi]� y),

var =
1

L

X

i

E[oi � E[oi]]
2, (2.1)

covar =
1

L(L� 1)

X

i

X

j 6=i

E[oi � E[oi]][oj � E[oj]],

where y is target, oi is the output of ith model and L is the ensemble size. Here bias

term measures the average di↵erence between the base learner and the model output,

var indicates their average variance, and covar is the covariance term measuring the

pairwise di↵erence of di↵erent base learners.

The above given equations of decomposition error can’t be directly applied to the

datasets with discrete class labels due to their categorical nature. However, alternate

ways to decompose the error in classification problems have been given in [21, 69, 121,

139, 140].

2.1.2 Statistical, computational and representational aspects

Dietterich provided Statistical, Computational and Representational reasons [57]

for success of ensemble models. The learning model is viewed as the search of the opti-

mal hypothesis H among the several hypothesis in the search space. When the amount

of data available for the training is smaller compared to the size of the hypothesis

space, the statistical problem arises. Due to statistical problems, the learning algo-

15

rithm identifies the di↵erent hypothesis which give similar performance on the training

samples. Ensembling of these hypothesis results in an algorithm which reduces the

risk of being a wrong classifier. In computational aspect, a learning algorithm stucks

in a local optima due to some form of local search. Ensemble model overcomes this

issue by performing some form of local search via di↵erent starting points which leads

to better approximation of the true unknown function. Another reason is representa-

tional wherein none of the hypotheses among the set of hypothesis is able to represent

the true unknown function. Hence, ensembling of these hypothesis via some weighting

technique results into the hypothesis which expands the representable function space.

2.1.3 Diversity

The success of ensemble methods depends on the diversity among the base clas-

sifiers and the same is highlighted in [57]. Di↵erent approaches have been proposed

to generate diverse classifiers. Di↵erent methods like bootstrap aggregation (bagging)

[18], adaptive boosting (AdaBoost) [66], random subspace [7], and random forest [23]

approaches are followed for generating the multiple datasets from the original dataset

to train the di↵erent predictors such that the outputs of predictors are diverse. At-

tempts have been made to increase diversity in the output data wherein multiple

outputs are created instead of multiple datasets for the supervision of the base learn-

ers. ‘Output smearing’ [22] is one of this kind which induces random noise to introduce

diversity in the output space.

2.2 Ensemble strategies

The di↵erent ensemble strategies have evolved over a period of time which results

in better generalization of the learning models. The ensemble strategies are broadly

categorised as follows:

16

2.2.1 Bagging

Bagging [18], also known as bootstrap aggregating, is one of the standard tech-

niques for generating the ensemble-based algorithms, which is applied to enhance the

performance of an ensemble classifier. The main idea in bagging is to generate a se-

ries of independent observations with the same size, and distribution as that of the

original data. Given the series of observations/samples, generate an ensemble predic-

tor which is better than the single predictor generated on the original data. Bagging

increases two steps in the original models: First, generating the bagging samples and

passing each bag of samples to the base models and second, strategy for combining

the predictions of the multiple predictors. Bagging samples may be generated with or

without replacement. Combining the output of base predictors may vary as mostly

majority voting is used for classification problems while the averaging strategy is used

in regression problems for generating the ensemble output.

Random forest [23] is an improved version of the decision trees that use the bagging

strategy for improving the predictions of the base classifier (decision tree). At each

non-leaf node of a decision tree in random forest, only a subset of features is randomly

selected and considered for splitting. The purpose of ensembling the decision trees is

to decorrelate the trees and prevent over-fitting. Breiman [23] showed heuristically

that the variance of the bagged predictor is smaller than the original predictor and

proposed that bagging is better in higher dimensional data. However, the analysis of

the smoothing e↵ect of bagging [29] revealed that bagging doesn’t depend on the data

dimensionality.

Bühlmann et al. [28] gave theoretical explanation of how bagging gives smooth

hard decisions, small variance, and mean squared error. Since, bagging is computa-

tionally expensive, hence subbagging and half subbagging [28] were introduced. Half

subbagging, being computationally e�cient, is as accurate as bagging.

Several approaches have been proposed to combine bagging with other machine

learning algorithms. Kim et al. [133] used bagging method to generate multiple bags

of the dataset and multiple SVM are trained independently with each bag as the

17

input. The output of the models in an ensemble is combined via majority voting,

least squares estimation weighting and double layer hierarchical approach. In the

double layer hierarchical approach, another SVM is used to combine the outcomes

of the multiple SVMs e�ciently. In [262], asymmetric bagging strategy was used to

generate the ensemble model to handle the class imbalance problems. A case study

of bagging, boosting and basic ensembles [174] revealed that at higher rejection rates

of samples, boosting is better compared to bagging and basic ensembles. However,

as the rejection rate increases the di↵erence disappears among the boosting, bagging

and basic ensembles. Ha et al. [87] showed that bagging based ensemble models are

better compared to individual multilayer perceptron. Gençay and Qi [77] analysed

the bagging approach and other regularization techniques and showed that bagging

regularizes the neural networks and hence provide better generalization. For predicting

the short term load forecasting, an ensemble of bagging based neural networks [131]

was proposed. Unlike random forest [23] which uses majority voting for aggregating

the ensemble of decision trees, bagging based survival trees [104] used Kaplan–Meier

curve to predict the ensemble output for breast cancer and lymphoma patients. In

[4], ensembles of stacked denoising autoencoders for classification showed that bagging

and switching technique in a general deep machine results in improved diversity.

Bagging has also been applied to solve the problems of imbalanced data. Roughly

balanced bagging [99] tries to equalize each class’s sampling probability in binary

class problems wherein the negative class samples are sampled via negative bino-

mial distribution, instead of keeping the sample size of each class the same number.

Neighbourhood balanced bagging [15] incorporates the neighbourhood information for

generating the bagging samples of the class imbalance problem.

The theoretical and experimental analysis of online bagging and boosting [198]

showed that the online bagging algorithm can achieve similar accuracy as the batch

bagging algorithm with only a little more training time, however, online bagging is

an option when all training samples can’t be loaded into the memory due to memory

issues.

Although, ensembling may increase the computational complexity, however, bag-

18

Papers Contribution
[18] Proposed the idea of bagging
[23] Bagging with random subspace decision trees and ensembling outputs via majority voting
[29] Theoretical analysis of bagging
[28] Theoretical justification of bagging, proposed subbagging and half subagging
[262] Proposed assymmetric bagging with SVMs and ensembling outputs SVMs
[133] Bagging with SVMs and ensembling outputs via SVMs, majority voting and least squares estimation
[174] Case study of bagging, boosting and basic ensembles

[87, 131] Bagging with neural networks and ensembling outputs via majority voting
[77] Study of Bayesian regularization, early stopping and bagging
[104] Bagging with decision trees and ensembling outputs via Kaplan–Meier curve
[99] Roughly balanced bagging on decision trees and ensembling outputs via majority voting
[15] Neighbourhood balanced bagging ensembling outputs via majority voting
[198] Theoretical and experimental analysis of online bagging and boosting

Table 2.1: Bagging based ensemble models.

ging possesses the property that it can be paralleled. Hence, it can lead to e↵ective

reduction in the training time subject to the availability of hardware for running the

parallel models. Since, deep learning models have high training time, hence, optimiza-

tion of multiple deep models on di↵erent training bags is not a feasible option. To

subsidise the memory issues, online bagging is used which avoids the complexity of

loading all the data into memory.

2.2.2 Boosting

Boosting technique is a sequential approach used in ensemble models for improving

the generalization performance of the base learners. The techniques such as majority

voting in case of classification problems or linear combination of unstable learners in

the regression problems results in better prediction compared to the single unstable

learner. Boosting methods like AdaBoost [66] and gradient boosting [70] have been

used across di↵erent domains. Adaboost uses a greedy technique for minimizing a

convex surrogate function upper bounded by misclassification loss via augmentation

at each iteration of the current model with the appropriately weighted predictor.

AdaBoost learns an e↵ective ensemble classifier as it leverages the incorrectly classified

sample at each stage of the learning. AdaBoost minimizes the exponential loss function

while as the gradient boosting generalized this framework to the arbitrary di↵erential

loss function.

Boosting, also known as forward stagewise additive modelling, was originally pro-

19

posed to improve the performance of the classification trees. It has been recently

incorporated in the deep learning models keeping in view the performance of the deep

learning models in applications across many domains.

Boosted deep belief network (DBN) [168] for facial expression recognition unified

the boosting technique and multiple DBN’s via objective function which results in a

strong classifier. The model learns complex feature representation to build a strong

classifier in an iterative manner. deep boosting [48] is an ensemble model that uses the

deep decision trees or can be used in combination with any other rich family classifier

and improves the generalization performance. In each stage of the deep boosting, the

decisions of which classifier to add and what weights should be chosen depends on the

(data-dependent) complexity of the classifier to which it belongs. The interpretation of

the deep boosting classifier is given via structural risk minimization principle at each

stage of the learning. Multiclass deep boosting [147] extended the deep boosting [48]

algorithm to theoretical, algorithmic, and empirical results to the multiclass problems.

Due to the limitation of the training data in each mini batch, Boosting convolutional

neural network (CNN) may overfit the data. To avoid overfitting, incremental boosting

CNN (IBCNN) [89] accumulated the information of multiple batches of the training

data samples. The IBCNN uses decision stumps on the top of single neurons as the

unstable learners and learns weights via AdaBoost method in each mini batch. Unlike

DBN [168] which uses image patch for learning the unstable classifiers, incremental

Boosting CNN trains the classifiers from the fully connected layer i.e. the whole

image is used for learning the classifiers. To make the IBCNN model more e�cient,

the unstable learners loss functions are combined with the global loss function.

Boosted CNN [183] use boosting technique for training the deep CNN. Instead

of averaging, least squares objective function was used to incorporate the boosting

weights into CNN. The authors also showed that CNN can be replaced by network

structure within their boosting framework for improving the performance of the base

classifier. Boosting increases the complexity of training the networks, hence, the

concept of dense connections was introduced in a deep boosting framework to overcome

the problem of vanishing gradient problem for image denoising [37]. Deep boosting

20

framework was extended to image restoration in [38] wherein the dilated dense fusion

network was used to boost the performance.

The convolutional channel features [296] generated the high level features via CNN

and then used boosted forest for final classification. As CNN has high number of hy-

perparameters than the boosted forest, thus the ensemble model proved to be e�cient

than end-to-end training of CNN models both in terms of performance and time. The

authors showed its application in edge detection, object proposal generation, pedes-

trian and face detection. A stagewise boosting deep CNN [272] trains several CNN

models within the o✏ine paradigm boosting framework. To extend the concept of

boosting in online scenario’s wherein only a chunk of data is available at given time,

boosting independent embeddings robustly (BIER) [195] was proposed to cope up the

online scenario’s. In BIER, a single CNN model is trained end-to-end with an on-

line boosting technique. The training set in the BIER is reweighted via the negative

gradient of the loss function to project the input spaces (images) into a collection of

independent output spaces. To make BIER more robust, hierarchical boosted deep

metric learning [273] incorporated the hierarchical label information into the embed-

ding ensemble which improves the performance of the model on the large scale image

retrieval application. As deep boosting results in higher training time, thus, to reduce

the warm-up phase of training which trains the classifier from scratch, deep incre-

mental boosting [184] used transfer learning approach. This approach leveraged the

initial warm-up phase of each incremental base model of the ensemble during the

training of the network. To reduce the training time of boosting based ensembles,

snapshot boosting [310] combined the merits of snapshot ensembling and boosting to

improve the generalization performance without increasing the cost of training. Snap-

shot boosting trains each base network and combines the outputs via meta learner to

combine the output of base learners more e�ciently.

Literature shows that the boosting concept is the backbone behind well-known

architectures like deep residual networks [96, 243] and AdaNet [49]. The theoretical

background for the success of the deep residual network (DeepResNet) [96] was ex-

plained in the context of boosting theory [110]. Huang et al. [110] showed that the

21

Papers Contribution
[168] Boosted deep belief network (DBN) as base classifiers for facial expression recognition
[48] Decision trees as base classifiers for binary class classification problems
[147] Decision trees as base classifiers for multiclass classification problems
[89] Boosting based CNN with incremental approach for facial action unit recognition
[183] Boosted CNN
[37] Deep boosting for image denoising with dense connections
[38] Deep boosting for image restoration and image denoising
[296] Ensemble of CNN and boosted forest for edge detection, object proposal generation, pedestrian and face detection
[272] CNN Boosting applied to bacterila cell images and crowd counting
[195] Boosted deep independent embedding model for online scenarios
[273] Hierarchical boosted deep metric learning with hierarchical label embedding
[184] Transfer learning based deep incremental boosting
[310] Snapshot boosting

Table 2.2: Boosting based ensemble models.

output of the top layer is a layer-by-layer boosting method. Huang et al. [110] proposed

multi-channel telescoping sum boosting learning framework, known as BoostResNet,

wherein each channel has a scalar value updated during rounds of boosting to mini-

mize the multi-class error rate. The fundamental di↵erence between the AdaNet and

BoostResnet is that the former maps the feature vectors to classifier space and boosts

weak classifiers while the latter used multi-channel representation boosting. Huang

et al. [110] showed that in terms of computational time, BoostResNet is more e�cient

than DeepResnet.

The theory of boosting was extended to online boosting in [12] and provided theo-

retical convergence guarantees. Online boosting shows improved convergence guaran-

tees for batch boosting algorithms.

The ensembles of bagging and boosting have been evaluated in [80]. The study

evaluated the di↵erent algorithms based on the concept of bagging and boosting along

with the availability of software tools. The study highlighted the practical issues and

opportunities of their feasibility in ensemble modeling.

Boosting based models are slower due to the sequential approach used in reweighing

the samples after training of each base model.

2.2.3 Stacking

Ensembling can be done either by combining outputs of multiple base models in

some fashion or using some method to choose the “best” base model. Stacking is one

22

of the integration techniques wherein the meta-learning model is used to integrate the

output of base models. If the final decision part is a linear model, the stacking is

often referred to as “model blending” or simply “blending”. The concept of stacking

or stacked regression was initially given by [288]. In this technique, the dataset is

randomly split into J equal parts. For the jth-fold cross-validation one set is used for

testing and the rest are used for training. With these training testing pair subsets, we

obtain the predictions of di↵erent learning models which are used as the meta-data

to build the meta-model. Meta-model makes the final prediction, which is also called

the winner-takes-all strategy.

Stacking is a bias reducing technique [150]. Following [288], deep convex net (DCN)

[55], a deep learning architecture, composed of variable number of modules stacked

together to form the deep architecture. Each learning module in DCN is convex. DCN

is a stack of several modules consisting of linear input units, hidden layer non-linear

units, and the second linear layer with the number of units as that of target clas-

sification classes. The modules are connected layerwise as the output of the lower

module is given as input to the adjacent higher module in addition to the original

input data. The deep stacking network (DSN) enabled parallel training on very large

scale datasets [54], the network was named stacking based as it shared the concept

of “stacked generalization” [288]. The kernelized version of DCN, known as kernel

deep convex networks (K-DCN), was given in [56], here the number of hidden layer

approach infinity via kernel trick. The authors showed that K-DCN performs better

compared to DCN. However, due to kernel trick the memory requirements increase

and hence, may not be scalable to large scale datasets also we need to optimize the hy-

perparameters like the number of levels in the stacked network, the kernel parameters

to get the optimal performance of the network. To leverage the memory require-

ments, random Fourier feature-based kernel deep convex network [114] approximated

the Gaussian kernel which reduces the training time and the memory requirements

and thus helps in the evaluation of K-DCN over large scale datasets. A framework

for parameter estimation and model selection in kernel deep stacking networks [283]

based on the combination of model-based optimization and hill-climbing approaches

23

used data-driven framework for parameter estimation, hyperparameter tuning and

model selection in kernel deep stacking networks. Another improvement over DSN

was tensor deep stacking network (T-DSN) [116], here in each block of the stacked

network large single hidden layer was split into two smaller ones and then mapped

bilinearly to capture the higher-order interactions among the features. Comprehensive

evaluation and detailed analysis of the learning algorithm and T-DSN implementation

was given in [117]. Sparse coding is another popular method using in the deep learning

area. The advantage of sparse representation is numerous, including robust to noise,

e↵ective for learning useful features, etc. Sparse deep stacking network (S-DSN) is

applied in image classification and abnormal detection [153, 249]. The authors stack

many sparse simplified neural network modules (SNNM) with mixed-norm regulariza-

tion, in which weights are solved by using the convex optimization and the gradient

descent algorithm. In order to make sparse SNNM learning the local dependencies

between hidden units, [154] split the hidden units or representations into di↵erent

groups, which is termed as group sparse DSN (GS-DSN). The DSN idea is also uti-

lized in the deep reinforcement learning field. Zhang et al. [302] employ DSN method

to integrate the observations from the formal network: grasp network and stacking

network based on Q-learning algorithm to make an integrated robotic arm system to

grasp and place actions. Convolutional neural networks (CNN) are widely used in the

image classification task, the stacking method also plays a role in this field. Wang

et al. [275] stack the evolved block multiple times to increase the performance of the

neural architecture search task. Zhang et al. [301] presents a deep hierarchical multi-

patch network for image deblurring, with the stacked method, they can reach a better

result.

Since, there is no temporal representation of the data in DSNs, they are less e↵ec-

tive to the problems where temporal dependencies exist in the input data. To embed

the temporal information in DSNs, recurrent deep stacking networks (R-DSNs) [200]

combined the advantages of DSNs and recurrent neural networks (RNN). Unlike RNN

which uses back propagation through time for training the network, R-DSNs use echo

state network (ESN) to initialize the weights and then fine-tuning them via batch-

24

mode gradient descent. A stacked extreme learning machine (ELM) was proposed in

[315]. Here, at each level of the network ELM with the reduced number of hidden

nodes was used to solve the large scale problems. The number of hidden nodes was

reduced via the principal component analysis (PCA) reduction technique. Keeping in

view the e�ciency of stacked models, the number of stacked models based on support

vector machine have been proposed [159, 276, 277]. Traditional models like random

forests have also been extended to deep architecture, known as deep forests [317], via

stacking concept.

In addition to DSNs, there are some novel network architectures proposed based on

the stacked method, Low et al. [170] contributed a stacking-based deep neural network

(S-DNN) which is trained without a backpropagation algorithm. Kang et al. [128]

presented a model by stacking conditionally restricted Boltzmann machine and deep

neural network, which achieve significant superior performance with fewer parameters

and fewer training samples.

2.2.4 Negative correlation based ensembles

Negative correlation learning (NCL) [169] is an important technique for training

the learning algorithms. The main concept behind the NCL is to encourage diver-

sity among the individual models of the ensemble to learn the diverse aspects of the

training data. NCL minimizes the empirical risk function of the ensemble models via

minimization of error functions of the individual networks. NCL [169] was evaluated

for regression as well as classification tasks. The evaluation used di↵erent measures

like simple averaging and winner-takes-all measures on classification tasks and simple

average combination methods for regression problems. The authors figured out that

winner-takes-all is better compared to simple averaging in NCL ensemble models.

Shi et al. [240] proposed deep negative correlation learning architecture for crowd

counting known as D-ConvNet i.e. decorrelated convolutional networks. Here, count-

ing is done based on regression-based ensemble learning from a pool of convolutional

feature mapped weak regressors. The main idea behind this is to introduce the NCL

concept in deep architectures. Robust regression via deep NCL [307] is an extension

25

of [240] wherein theoretical insights about the Rademacher complexity are given and

extended to more regression-based problems.

Buschjäger et al. [30] formulated a generalized bias-variance decomposition method

to control the diversity and smoothly interpolation. They present the generalized

negative correlation learning algorithm, which can encapsulate many existing works

in literature and achieve superior performance.

2.2.5 Explicit/Implicit ensembles

Ensembling of deep neural networks doesn’t seem to be an easy option as it may

lead to increase in computational cost heavily due to the training of multiple neural

networks. High performance hardware’s with GPU acceleration may take weeks of

weeks to train the deep networks. Implicit/Explicit ensembles obtain the contradictory

goal wherein a single model is trained in such a manner that it behaves like ensemble

of training multiple neural networks without incurring additional cost or to keep the

additional cost as minimum as possible. Here, the training time of an ensemble is same

as the training time of a single model. In implicit ensembles, the model parameters

are shared and the single unthinned network at test times approximates the model

averaging of the ensemble models. However, in explicit ensembles model parameters

are not shared and the ensemble output is taken as the combination of the predictions

of the ensemble models via di↵erent approaches like majority voting, averaging and

so on.

Dropout [245] creates an ensemble network by randomly dropping out hidden nodes

from the network during the training of the network. During the time of testing, all

nodes are active. Dropout provides regularization of the network to avoid overfit-

ting and introduces sparsity in the output vectors. Overfitting is reduced as it trains

exponential number of models with shared weights and provides an implicit ensem-

ble of networks during testing. Dropping the units randomly avoids coadaptation of

the units by making the presence of a particular unit unreliable. The network with

dropout takes 2-3 times more time for training as compared to a standard neural

network. Hence, a balance is to be set appropriately between the training time of

26

the network and the overfitting. Generalization of DropOut was given in DropCon-

nect [274]. Unlike DropOut which drops each output unit, DropConnect randomly

drops each connection and hence, introduces sparsity in the weight parameters of the

model. Similar to DropOut, DropConnect creates an implicit ensemble during test

time by dropping out the connections (setting weights to zero) during training. Both

DropOut and DropConnect su↵er from high training time. To alleviate this problem,

deep networks with stochastic depth [111] aimed to reduce the network depth during

training while keeping it unchanged during testing of the network. Stochastic depth is

an improvement on ResNet [96] wherein residual blocks are randomly dropped during

training and bypassing these transformation blocks connections via skip connections.

Swapout [242] is a generalization of DropOut and stochastic depth. Swapout involves

dropping of individual units or to skip the blocks randomly. Embarking on a distinc-

tive approach of reducing the test time, distilling the knowledge in a network [100]

transferred the “knowledge” from ensembles to a single model. Gradual DropIn or

regularised DropIn [244] of layers starts from a shallow network wherein the layers are

added gradually. DropIn trains the exponential number of thinner networks, similar

to DropOut, and also shallower networks.

All the aforementioned methods provided an ensemble of networks by sharing the

weights. There have been attempts to explore explicit ensembles in which models

do not share the weights. Snapshot ensembling [112] develops an explicit ensemble

without sharing the weights. The authors exploited good and bad local minima and

let the stochastic gradient descent (SGD) converge M -times to local minima along the

optimization path and take the snapshots only when the model reaches the minimum.

These snapshots are then ensembled by averaging at multiple local minima for object

recognition. The training time of the ensemble is same as that of a single model.

The ensemble out is taken as the average of the snapshot outputs at multiple local

minimas. Random vector functional link network [203] has also been explored for

creating the explicit ensembles [239] where di↵erent random initialization of the hidden

layer weights in a hierarchy diversifies the ensemble predictions.

Explicit/Implicit approach produce ensemble out of a single network at the expense

27

Papers Contribution
[245] Introduced Dropout (Random skipping of units)
[274] Introduced DropConnect (Random skipping of connections)
[111] Deep networks with stochastic depth (Random skipping of blocks)
[242] Introduced swapout (Hybrid of Dropout and stochastic depth approach)

Table 2.3: Implicit / Explicit ensembles.

of base model diversity [31] as the lower level features across the models are likely to

be same. To alleviate this issue, branching based deep models [88] branch the network

to induce more diversity. As di↵erent initializations of the neural network leads to dif-

ferent local minimas, hence, Xue et al. [295] proposed deep ensemble model wherein

ensemble of fully convolution neural network over multiloss module with coarse fine

compensation module resulted in better segmentation of central serous chorioretinopa-

thy lesion. Multiple neural networks with di↵erent initializations or multiple loss

functions resulted in better diversity of an ensemble.

2.2.6 Homogeneous/Heterogeneous ensembles

Homogeneous/Heterogeneous ensembles involve training a group of base learners

either from the same family or di↵erent families, respectively. Hence, base learners of

an ensemble must be as diverse as possible and each base model must be performing

better than a random guess. The base learner can be a decision tree, neural network,

or any other learning model.

In homogeneous ensembles, the same base learner is used multiple times to generate

the family of base classifiers. However, the key issue is to train each base model such

that the ensemble model is as diverse as possible i.e., no two models are making the

same error on a particular data sample. The two most common techniques of inducing

randomness in homogeneous ensemble is either sampling of training set multiple times

thereby training each model on a di↵erent bootstrapped sample of the training data or

sampling the feature space of the training data and train each model on di↵erent fea-

ture subset of the training data. In some ensemble models like random forest [23] which

used both these techniques for introducing diversity in an ensemble of decision trees.

28

In neural networks, training each model independently with di↵erent initialization also

induces diversity. However, deep learning models have high training costs and hence,

training of multiple deep learning models is not a feasible option. Some attempts like

horizontal vertical voting of deep ensemble [292] have been made to obtain ensemble

of deep models without independent training. Temporal ensembling [149] trains mul-

tiple models with di↵erent input augmentation, di↵erent regularization and di↵erent

training epochs. Training of multiple deep neural networks for image classification [45]

and for disease prediction [82] showed that better performance is achieved via ensem-

bling of multiple networks and averaging the outputs. Despite these models, training

multiple deep learning models for ensembling is an uphill task as millions or billions

of parameters need to be optimized. Hence, some studies have used deep learning in

combination with the traditional models to build the heterogeneous ensemble models

enjoying the benefits of lower computation and higher diversity. Heterogeneous ensem-

ble for default prediction [157] is an ensemble of the extreme gradient boosting, deep

neural network and logistic regression. Heterogeneous ensemble for text classification

[132] is an ensemble of multivariate Bernoulli näıve Bayes, multinomial näıve Bayes,

support vector machine, random forest, and convolutional neural network learning

algorithms. Using di↵erent perspectives of data, model and decision fusion strategies,

heterogeneous deep network fusion [254] showed that complex heterogeneous fusion

architecture is more diverse and hence, shows better generalization performance.

2.2.7 Decision fusion strategies

Ensemble learning trains several base learners and aggregates the outputs of base

learners using some rules. The rule used to combine the outputs determines the e↵ec-

tive performance of an ensemble. Most of the ensemble models focus on the ensemble

architectures followed by their naive averaging to predict the ensemble output. How-

ever, naive averaging of the models, followed in most of the ensemble models, is not

data adaptive and leads to less optimal performance [126] as it is sensitive to the

performance of the biased learners. As there are billions of hyperparameters in deep

learning architecture, hence, the issues of overfitting may also lead to the failure of

29

some base learners. Hence, to overcome these issues, approaches like Bayes optimal

classifier and super learner have been followed [126].

The di↵erent approaches followed in the literature for combining the outputs of

the ensemble models are:

2.2.7.1 Unweighted model averaging

Unweighted averaging of the outputs of the base learners in an ensemble is the

most followed approach for fusing the decisions in the literature. Here, the outcomes

of the base learners are averaged to get the final prediction of the ensemble model.

Deep learning architectures have high variance and low bias, thus, simple averaging

of the ensemble models improve the generalization performance due to the reduction

of the variance among the models.

The averaging of the base learners is performed either on the outputs of the base

learners directly or on the predicted probabilities of the classes via softmax function:

P j

i
= softmaxj(Oi) =

Oj

iP
K

k=1
exp(Oj

k
)
, (2.2)

where P j

i
is the probability outcome of the ith unit on the jth base learner, Oj

i
is the

output of the ith unit of the jth base learner and K is the number of the classes.

Unweighted averaging is a reasonable choice when the performance of the base

learners is comparable, as suggested in [96, 241, 253]. However, when the ensemble

contains heterogeneous base learners naive unweighted averaging may result in sub-

optimal performance as it is a↵ected by the performance of the weak learners and

the overconfident learners [126]. The adaptive metalearner should be good enough to

adaptively combine the strengths of the base learners as some learners may have lower

overall performance but may be good at the classification of certain subclasses and

hence, leading to better overall performance.

30

2.2.7.2 Majority voting

Similar to unweighted averaging, majority voting combines the outputs of the base

learners. However, instead of taking the average of the probability outcomes, majority

voting counts the votes of the base learners and predicts the final labels as the label

with the majority of votes. In comparison to unweighted averaging, majority voting is

less biased towards the outcome of a particular base learner as the e↵ect is mitigated

by majority vote count. However, favouring of a particular event by most of the

similar base learners or dependent base learners leads to the dominance of an event in

an ensemble model. In majority voting, the analysis in [146] showed that the pairwise

dependence among the base learners plays an important role and for the classification

of images, the prediction of shallow networks is more diverse compared to the deeper

networks [43]. Hence, in [126] hypothesised that the performance of the majority

voting based shallow ensemble models is better compared to the majority based deep

ensemble models.

2.2.7.3 Bayes optimal classifier

In Bayesian method, hypothesis hj of each base learner with the conditional dis-

tribution of target label t given x. Let hj be the hypothesis generated on the training

data D evaluated on test data (x, t), mathematically, hj(t|x) = P [y|x, hj, D]. With

Bayes rule, we have

P (t|x,D) /
X

hj

P [t|hj, x,D]P [D|hj]P [hj] (2.3)

and the Bayesian optimal classifier is given as:

argmax
t

X

hj

P [t|hj, x,D]P [D|hj]P [hj], (2.4)

where P [D|hj] = ⇧(t,x)2Dhj(t|x) is the likelihood of the data under hj. However,

due to overfitting issues this might not be a good measure. Hence, training data

is divided into two sets-one for training the model and the other for evaluating the

31

model. Usually the validation set is used to tune the hyperparameters of a model.

Choosing prior probabilities in Bayes optimal classifier is di�cult and hence, usu-

ally set to uniform distribution for simplicity. With a large sample size, one hypothesis

tends to give larger posterior probabilities than others and hence, the weight vector is

dominated by a single base learner and the Bayes optimal classifier would behave as

the discrete superlearner with a negative likelihood loss function.

2.2.7.4 Stacked generalization

Stacked generalization [288] works by reducing the biases of the generalizer(s) with

respect to a learning set. To obtain the good linear combination of the base learners in

regression, cross-validation data and least squares under non-negativity constraints are

used to get the optimal weights of combination [20]. Consider the linear combination

of the predictions of the base learners f1, f2, · · · , fm given as:

fstacking(x) =
mX

j=1

wjfj(x), (2.5)

where w is the optimal weight vector learned by the meta learner.

2.2.7.5 Super learner

Inspired by the cross validation for choosing the optimal classifier, Van der Laan

et al. [267] proposed super learner which is weighted combination of the predictions

of a base learner. Unlike the stacking approach, it uses cross validation approach to

select the optimal weights for combining the predictions of the base learners.

With smaller datasets, cross validation approach can be used to optimize the

weights. However, with the increase in size of the data and the number of base learners

in a model, it may not be a feasible option. Instead of optimizing the five-fold cross

validation, single split cross validation can also be used for optimizing the weights to

get optimal combination [127]. In deep learning models, usually, a validation set is

used to evaluate the performance instead of using the cross validation.

32

2.2.8 Unsupervised learning

Unsupervised learning is another group of machine learning techniques. The fun-

damental di↵erence between it and supervised learning is that unsupervised learning

usually handles training samples without corresponding labels. Therefore, the primary

usage of unsupervised learning is to do clustering. Diversity among the base learners

is important in the ensemble learning. To create diverse clusters, several approaches

can be applied: using di↵erent sampling data, using di↵erent subsets of the original

features, and employing di↵erent clustering methods. Sometimes, even some random

noise can be added to these base models to increase randomness, which is good for

ensemble methods according to [14]. After receiving all the outputs from each cluster,

various consensus functions can be chosen to obtain the final output based on the user’s

requirement [269]. The ensemble clustering is also known as consensus clustering.

Zhou and Tang [318] explored ensemble methods for unsupervised learning and de-

veloped four di↵erent approaches to combine the outputs of these clusters. In recent

years, some new ensemble clustering methods have been proposed that illustrated the

priority of ensemble learning [108, 109, 314]. Most of the clustering ensemble methods

are based on the co-association matrix solution, which can be regarded as a graph

partition problem. Besides, there is some focus on integrating the deep structure and

ensemble clustering method. Liu et al. [164, 165] showed that ensemble unsupervised

representation learning with deep structure via auto-encoder can be applied in large

scale data and extended it to the vision field. Shaham et al. [232] used restricted

Boltzmann machine with a single hidden neuron for crowd sourcing and proposed an

RBM-based Deep Neural Net (DNN) for unsupervised ensemble learning. The un-

supervised ensemble methods have also been used in the field of Natural Language

Processing. Alami et al. [2] demonstrate that an ensemble of unsupervised deep neu-

ral network models that use Sentence2Vec representation as the input has the best

performance according to the experiments. Hassan et al. [94] included four semantic

similarity measures which improve the performance on the semantic textual similarity

(STS) task. The unsupervised ensemble method is also widely used for tasks that lack

33

Papers Contribution
[318] Develop several approaches for cluster ensemble
[164] Large scale unsupervised ensemble clustering method based on graph partition method
[165] Vision clustering method integrates the deep structure and ensemble clustering method
[232] RBM-based deep neural net applied in crowd sourcing and unsupervised ensemble learning
[2] Unsupervised text summarization via ensemble method
[94] Unsupervised ensemble method for assessing the semantic similarity
[1] Medical image classification via unsupervised feature learning and ensemble

[148, 163] Unsupervised ensemble method for retinal vessel segmentation
[32] Subcellular localization prediction for long non-coding RNAs

Table 2.4: Unsupervised ensemble models.

annotation, such as the medical image. Ahn et al. [1] proposed unsupervised feature

learning method integrated ensemble approach with a traditional convolutional neural

network. Lahiri et al. [148] employed unsupervised hierarchical feature learning with

ensemble sparsely autoencoder on retinal blood vessels segmentation task, meanwhile,

Liu et al. [163] also proposed an unsupervised ensemble architecture to automatically

segment retinal vessel. Besides, there are also some ensemble deep methods working

on localization predicting for long non-coding RNAs [32].

2.2.9 Semi-supervised and active learning

Semi-supervised learning [36, 320] is a machine learning method that falls between

supervised and unsupervised learning. It allows the dataset to contain a small number

of labeled data and a large number of unlabeled data. The exploiting of unlabeled

data can help to achieve a strong generalization.

There is a point of view that using unlabeled data to boost is good enough to

achieve acceptable results, so there is no need to employ ensemble methods. Another

view claims that ensemble learning models can tackle di↵erent kinds of tasks. And

therefore using semi-supervised learning is redundant. However, Zhou [316] illustrated

the benefits of combining semi-supervised learning and ensemble learning with theo-

retical proof.

Bennett et al. [10] proposed a successful adaptive semi-supervised ensemble method

that won the NIPS 2001 unlabeled data competition. It maximized the function space

of both labeled and unlabeled data by assigning “pseudo-classes” to these unlabeled

34

data. And the experimental results showed that both neural network and decision

tree are suitable for this method and have strong performance on benchmark datasets.

Furthermore, in recent years, some new semi-supervised ensemble methods have been

proposed to deal with various tasks.

With the development of semi-supervised deep learning, ensemble methods started

to be integrated with it. Li et al. [156] proposed an ensemble semi-supervised deep

neural network (DNN), acoustic models, for automatic speech recognition. Here, the

sub-models are trained with di↵erent labels in di↵erent GPUs and the ensemble train-

ing framework is inspired by Kaldi toolkit. Wang et al. [279] proposed an ensemble

self-learning method to enhance semi-supervised performance and extracting adverse

drug events from social media. In the semi-supervised classification area, deep coupled

ensemble learning method combined with complementary consistency regularization

gave state of the art performance [152]. Some results have also been achieved with

semi-supervised ensemble learning on some datasets where the annotation is costly.

Pio et al. [211] employed an ensemble method to improve the reliability of micro

RNA:micro RNA predicted interactions.

Active learning is another popular topic in the deep learning area, which is also

often used in conjunction with semi-supervised learning and ensemble learning. The

key sight of this is to train the algorithm from less annotated data. Some conven-

tional active learning algorithms, such as Query-By-Committee, have already adopted

the idea of ensemble learning. In [177, 178], an ensemble method generated a diverse

committee. Beluch et al. [8] discussed the power of ensembles for active learning is

significantly better than Monte-Carlo Dropout and geometric approaches. Sharma

and Rani [234] shows some applications in drug-target interaction prediction. Ensem-

ble active learning is also available to conquer the concept drift and class imbalance

problem [300].

In the semi-supervised/active learning domain, the foremost purpose of ensembles

is to construct diverse subspaces that can be used to fill in the e↵ects of missing labeled

data. Since, the ensemble approach is able to cover data with di↵erent tendencies at

the same time, it can achieve excellent results in semi-supervised and active learning.

35

Papers Contribution
[10] Adaptive semi-supervised ensemble method
[156] Semi-supervised automatic speech recognition
[279] Ensemble of spatial and non-spatial transformations to train a semi-supervised network
[166] Extracting adverse drug events from social media
[152] Semi-supervised deep coupled ensemble learning for image classification
[211] Semi-supervised ensemble learning to predict microRNA target
[8] Ensemble-based uncertainties consistently outperforms than other active learning method
[234] Drug target interaction prediction using active learning
[300] Ensemble active learning for concept drift and class imbalance

Table 2.5: Semi-supervised ensemble models.

2.2.10 Reinforcement learning

Reinforcement learning (RL) [252] deals with problems which need an agent to

take actions in an uncertain and complex environment. Unlike supervised learning or

unsupervised learning which has training samples, the training process of reinforce-

ment learning is based on a notion called reward. Each time when the agent acts, a

corresponding reward or penalty will be received by the agent. Therefore, the object

of reinforcement learning is to maximize the total reward.

Wiering and Van Hasselt [287] proposed di↵erent ensemble algorithms to com-

bine several popular RL models: Q-learning [282], Sarsa [228, 251], actor-critic (AC)

[252], QV -learning [286], and AC learning automaton (ACLA) [286]. They used the

weighted majority voting method, the rank voting method, the Boltzmann multiplica-

tion method, and the Boltzmann addition method as the decision fusion strategies to

reach the final output of an ensemble model. Their experimental results indicated that

the ensembling via weighted majority voting method and Boltzmann multiplication

method significantly outperforms the single RL model.

There have been other attempts that tried to combine ensemble learning and re-

inforcement learning. Partalas et al. [207] used RL to decide whether to include a

particular classifier into the ensemble. Moreover, ensembles of neural networks are

used to achieve a more robust learning process and more reliable near-optimal policies

in [92].

With the development of deep learning, some researchers have implemented deep

reinforcement learning, which combines deep learning with Q-learning algorithm [182].

36

Ensemble methods in deep Q learning have decent performance. Chen et al. [41] pro-

posed an ensemble network architecture for deep reinforcement learning which inte-

grated temporal ensemble and target values ensemble. Develop a human-like chat

robot is a challenging job, by incorporating deep reinforcement learning and ensemble

method, Cuayáhuitl et al. [50] integrated 100 deep reinforcement learning agents, the

agents are trained based on clustered dialogues. They also demonstrate that ensemble

of DRL agents have better performance than a single variant or Seq2Seq model. Stock

trading is another topic where ensemble deep reinforcement learning has achieved a

promising result.Carta et al. [34] found the single supervised classifier is inadequate to

deal with complex and volatile stock market. They employed hundreds of neural net-

works to pre-process the data, then combined several reward-based meta learners as a

trading agency. Moreover, Yang et al. [297] trained an ensemble trading agency based

on three di↵erent metrics: proximal policy optimization (PPO), advantage actor-critic

(A2C), and deep deterministic policy gradient (DDPG). The ensemble strategy com-

bines the advantages of the three di↵erent algorithms. Besides, some researchers used

ensemble strategy to solve the disease-prediction problem. Tang et al. [256] proposed a

model that consists of several sub-models which are in response to di↵erent anatomical

parts.

In this aspect of reinforcement learning, the ensemble is more of an auxiliary tool,

by federating the decisions made by di↵erent agents to get a more consistent per-

formance. At the same time, the ensemble approach shows generality in the field

of reinforcement learning, and it is applicable to all kinds of di↵erent reinforcement

learning strategies.

2.2.11 Online/Incremental, multi-label learning

In recent years, online/incremental learning has received more and more atten-

tion [5]. With the limitation of getting the complete data in real-world problems,

online/incremental learning has been applied to various tasks like learning social rep-

resentations [210], fog computing [293], identifying suspicious URLs [171], etc. Some

conventional ensemble learning methods have also been extended to online versions

37

such as bagging and boosting [198]. These online versions proved to have similar results

as batch models with theoretical guarantees in [12, 198]. Other examples that em-

ployed online ensemble learning models were used to deal with the presence of concept

drift [181], power load forecasting [83, 217], myoelectric prosthetic hands surface elec-

tromyogram characteristics [61], etc. In [51], the author proposed an ensemble incre-

mental learning with pseudo-outer-product fuzzy neural network for tra�c flow predic-

tion, real-life stock price, and volatility predictions, etc. Work done in [186, 204, 215]

propose Learn++ and its variants in the data fusion area, which is known as the combi-

nation of data or information from several sources, that demonstrate the e↵ectiveness

of ensemble incremental learning methods. Besides, some scholars are also working

on developing di↵erent algorithms for ensemble incremental learning, in [187], the au-

thor employ a dynamically modified weighted majority voting strategy to combine the

sub-classifiers. Tang et al. [257] proposed negative correlation learning (NCL) based

approach for ensemble incremental learning. Zhao et al. [313] suggests that heteroge-

neous bagging based ensemble strategy perform better than boosting based Learn++

algorithms and some other NCL methods.

With the continuous increase in availability of data, there have been problems that

need to assign each instance multiple labels. For example, the famous movie “The

Shawshank Redemption” is a drama, but it can also be classified as crime fiction or

mystery. This kind of classification problem is named multi-label classification [264]. It

can also be combined with ensemble learning, and a typical application is the RAndom

k-labELsets (RAKEL) algorithm [265]. Here, several single-label classifiers are trained

using small random subsets of actual labels. Then the final output is carried out by a

voting scheme based on the predictions of these single classifiers. There are also many

variants of RAKEL proposed in recent years [135, 185, 278]. Shi et al. [238] proposed

a solution for multi-label ensemble learning problem, which construct several accurate

and diverse multi-label based basic classifiers and employed two objective functions

to evaluate the accuracy and diversity of multi-label base learners. Li et al. [155]

proposed an ensemble multi-label classification framework based on variable pairwise

constraint projection. Xia et al. [291] proposed weighted stacked ensemble scheme

38

Papers Contribution
[181] Analysis the impact of ensemble algorithms with the presence of concept drift

[83, 217] Ensemble incremental learning for electric load forecasting
[51] Ensemble pseudo outer-product fuzzy neural network for time series prediction ability

[186, 204, 215] Learn++ and its variants
[187] Dynamically modified weighted majority voting strategy to combines the sub-classifiers
[257] Negative correlation learning based ensemble incremental learning
[313] Heterogeneous bagging based ensemble strategy incremental learning

Table 2.6: Online/Incremental ensemble models.

and employed sparsity regularization to facilitate classifier selection and ensemble

construction. Besides, there are many applications of ensemble multi-label methods.

Some publications employ multi-label ensemble classifier to explore the protein, such

as protein subcellular localization [86], protein function prediction [298], etc. Multi-

label classifier are also utilized in predicting the drug side e↵ects [309], predicting the

gene prediction [230], etc. Moreover, there is another critical ensemble multi-label

algorithm called ensemble classifier chains (ECC) [219]. This method involves binary

classifiers linked along a chain, the first classifier is trained using only the input data,

and then each subsequent classifier is trained on the input space and all previous

classifiers in the chain. The final prediction is obtained by the integration of the

predictions and selection above a manually set threshold. Chen et al. [39] proposed an

ensemble application of convolutional and recurrent neural networks to capture both

the global and the local textual semantics and to model high-order label correlations.

The ensemble approach plays an important role in online learning and multi-label

tasks. Many ensemble approaches can be considered as an online learning strategy.

By combining the predictions of the model trained on the initial data with the model

trained on the added data, the ensemble approach demonstrates a solid boost. In

the multi-label domain, ensemble is also one of the main mean, fusing the results of

multiple single-label classifiers is very intuitive solution to the multi-label task.

2.3 Decision trees and their ensembles

Decision tree algorithm is a commonly used classification model due to its sim-

plicity and better interpretability. Decision tree uses divide and conquer approach

39

Papers Contribution
[135, 185, 265, 278] Random k-labeLsets (RAKEL) algorithm and its variants.

[238] Multi-label ensemble learning constrained by two di↵erent objective functions.
[155] Multi-label classification framework based on variable pairwise constraint projection.
[291] Multi-label classification with weighted classifier selection and stacked ensemble.

[86, 298] Protein subcellular localization and Protein function prediction by ensemble multi-label classifier.
[309] Predict the drug side e↵ects.
[230] Predict the gene function.
[219] Classifier chains for multi-label classification.
[39] Ensemble CNN and RNN for multi-label text categorization.

Table 2.7: Multi-label ensemble models.

to recursively partition the data. The recursive partition of the tree is sensitive to

perturbation of the input data, and hence, results in an unstable classifier. Hence,

it possess high variance and low bias. The ensemble methodology can be used with

unstable classifiers to further improve their generalization performance.

In decision trees, mostly two approaches are used: bootstrap aggregation (bagging)

[18] and boosting [65]. In bagging, independent classifiers are trained on di↵erent boot-

strap versions of data points selected with replacement from the training data points.

In boosting, individual classifiers are trained in sequential manner with next level clas-

sifier taking the training instances which were hard to classify for the current classifier.

In each training iteration, weights are updated for each sample of the training set. The

samples which are hard to classify will more likely to be sampled than the other ones.

In the literature, mostly random forest [23] and rotation forest [224] are used in

ensemble methodology. In a recent comprehensive survey of 179 classifiers over 121

datasets, RaF emerged as the best classifier [62]. With the randomly chosen subspaces

of data samples at each non-leaf node, classification ensembles are build using the con-

cepts of bagging [18] and random-subspaces [103] in each decision tree. The decision

of individual base classifiers are independent as each classifier is trained on di↵erent

bootstrapped versions of the training data which follow the same distribution as that

of the whole population. Variance of each base classifier is increased due to the ran-

dom subspace strategy at each node. RaF has been applied across di↵erent problems

like object recognition and image segmentation [68], micro-arrays [123], time series

[237] and spectral data [179]. With little tuning of parameters [105], RaF achieves

comparable performance as that of other non-linear algorithms. Additionally, RaF is

40

able to choose the relevant set of features even if large number of irrelevant features

are present [123, 161, 162].

The rotation forest (RoF) [224] is similar to RaF with the di↵erence of two points:

First, each tree in RoF is trained in a rotated feature space of the whole training

data. Second, the best splitting feature is searched among all the features at each

node of the tree. According to Rodriguez et al. [224], a small rotation in feature axes

generates very di↵erent tree models. Also, RoF works comparatively better than the

RaF. RoF has been applied to various research areas like bioinformatics [246, 290],

business, economics, and medical fields [167, 199].

To obtain the better generalization performance, various hyperparameters of the

random forest need to be chosen optimally. These hyperparameters include number of

decision trees in a forest (ntree), number of candidate features for evaluation at a given

non-leaf node (mtry), and number of samples in an impure node (node size or minleaf)

(we will use minleaf and node size interchangeably). To get these parameters optimally,

di↵erent studies have been proposed. Analysis of tuning process [63, 216], sensitivity

of the parameters [107], e↵ect of number of trees in an ensemble [6, 98, 196] provide

insight how these parameters a↵ect the model performance. To obtain the optimal

number of candidate features, di↵erent methods [17, 90] have been proposed. Analysis

of optimal sample size in bagging [176] and estimation of tree size via combination of

random forest with adaptive nearest neighbours [162] result in the better choice of the

hyperparameters.

Mostly the decision trees have been classified into two categories: univariate (axis-

parallel or orthogonal) [6] and multivariate (oblique) [188] decision trees. In univariate

decision trees, best split among several features is chosen based upon some impurity

criteria. While as in multivariate decision trees, all or part of the features are eval-

uated for the best split. Broadly speaking, univariate decision tree can approximate

any oblique decision boundary using a large number of stair-like decision boundaries.

At each non-leaf node of a decision tree, hyperplane separates the data such that sep-

aration at the child nodes in the next level is easier. At that stage, the hyperplane

itself may or may not be a good classifier [173]. Several impurity measures like Gini

41

index, entropy, a towing rule are used by the decision trees to evaluate the best split-

ting feature. For each feature in the axis parallel decision trees, a predefined criteria

is evaluated at each node to find the best cutting plane and impurity score. Impu-

rity criterion measures the di↵erent class skewness distribution on the data samples

reaching to the node. Low impurity score is assigned to distributions closer to the uni-

form distribution and high score is assigned to the distributions where the one class

has majority over the others. Impurity measure is optimized in most of the decision

tree algorithms for choosing the best split. However, some impurity measures may

not be di↵erentiable with respect to the hyperplane parameters. In such cases, other

techniques are used for finding the best hyperplane. For instance, deterministic hill

climbing algorithm is used by CART-LC [24], randomized search based on CART-LC

is used by OC1 [189]. Both these approaches [24, 189] su↵er from local optimum

problem. Hence, multiple restarts or trails are done to reduce the chances of end-

ing with local optima. In high dimensional feature space, both are computationally

expensive as they search in one dimension at a time. Some evolutionary approaches

[35, 209] have been employed to optimize in all dimensions. All these impurity mea-

sures depend on the class distribution on each side of the hyperplane [173]. Altering

the class labels of the data without altering the features of each class on either side of

hyperplane will not make any change in the impurity measures. It happens due to the

reason that geometric structure is not captured by the impurity measures. However,

geometric structure involves the internal data structure by measuring the distance

between the data point and the decision hyperplane. Hence, any change to the rele-

vant features will change the decision hyperplane. To generate the geometric decision

trees, support vector machines were used to generate the hyperplane capturing the

geometric structure of the class distributions. Decision tree based on support vector

machines [308] generated optimal hyperplane with standard support vector machines

using radial basis function (RBF) kernel. Multisurface proximal support vector ma-

chine (MPSVM) [172] finds the two hyperplanes such that each hyperplane is closer

to the data samples of one class and farthest from the data samples of other class,

and the test data samples are classified based on their distance from the hyperplanes.

42

In geometric decision tree [173], MPSVM finds the two clustering hyperplanes, and

based on the impurity measure choose the angle bisector of these hyperplanes. Man-

wani and Sastry [173] grouped the majority class into one class and rest into other

class to tackle the multi-class problem. Sample size problem arises when the data

samples reaching to the children nodes are fewer. To reduce this problem, [40] used

NULL space method. For more details regarding the decision trees, readers may refer

to [226]. The oblique decision tree ensemble classifier [303] uses MPSVM to enhance

the performance of the di↵erent base classifiers such as random forest (RaF), rotation

forest (RoF), and random subspace rotation forest (RRoF) and named these classifiers

as MPRaF, MPRoF, and MPRRoF, respectively. In each non-leaf node of the decision

tree, MPSVM generates splitting plane of the decision trees. Di↵erent regularization

techniques were applied in oblique decision trees based on MPSVM as the matrices

appearing in the MPSVM formulation are positive semi-definite.

Recent study of double random forest [91] evaluated the e↵ect of node size on the

performance of the model. The study revealed that the prediction accuracy could

be improved if there is a way to generate deeper decision trees. The authors showed

that the largest tree grown on a given data by the standard random forest might not

be su�ciently large to give the optimal performance. Hence, double random forest

[91] generated decision trees that are bigger than the ones in standard random forest.

Instead of training each decision tree with di↵erent bags of training set obtained via

bagging approach at the root node, double random forest [91] generates each tree

with the original training set and uses bootstrap aggregation at each non-leaf node

of the decision tree to obtain the best split. However, both the random forest and

double random forest are univariate decision trees and hence, ignore the geometric

class distributions that results in lower generalization performance.

The brief overview of the related ensembles of decision trees is given as follows:

2.3.1 Random forest

Originally given by Breiman [23], RaF uses the idea of bagging and random sub-

spaces. RaF relies on the series of tree predictors, where each tree takes values from

43

Algorithm 2.1 Random forest.
Training Phase:
Given:

X = M ⇥ n is the dataset with M samples each with feature length n.
Y = M ⇥ 1 are data labels corresponding to the training dataset.
L is the ensemble size i.e. number of trees in the forest.
Each tree in the random forest is represented as Ti, where i = 1, · · · , L.
“mtry” refers to the randomly selected features for splitting at each non-leaf node.
“minleaf” is the maximum number of samples in an impure node.

1) Each tree Ti is build using the bootstrapped versions of the training data X with
replacement.
2) At each non-leaf node, the best feature split is selected among the “mtry” ran-
domly selected features from the training data.
3) Repeatedly execute step 2 until one of the conditions is met:

• Node becomes pure.
• Node contains number of samples less than or equal to minleaf .

Classification Phase:
For classification of a test sample, it is pushed down each tree in the forest, and
each tree in the forest assigns the vote to the given sample data. Then the predicted
label for the sample data is the one with the highest number of votes among the
forest.

a randomly initialized vectors which are sampled independently and have same distri-

bution across all the trees in a forest. Diversity among the base classifiers is increased

by combining the concepts of bagging and random subspaces. Each tree is trained on

the bootstrapped version of the training data with random subspace of features. The

number of random subspace features selected control the number of tests (split tests)

to be performed at each node, as each feature is evaluated for the split. Among these

features, the one which makes the node more pure is selected.

The algorithm of RaF is given in Algorithm 2.1.

2.3.2 Rotation forest

Before constructing each tree, RoF [224] uses PCA to transform or rotate the

dataset. The di↵erent decision trees in the forest are uncorrelated as each tree uses

a distinct rotation matrix. The heuristics used in RoF is that features are extracted

from a subset of features and then a full feature set is reconstructed for each classifier.

44

The authors used all the principal components to construct the feature sub space. The

diversity of the model comes with the di↵erence in the possible feature subsets. With

rotation heuristic, the number of di↵erent partitions of the feature set T = n!

K!(M !)K
,

where K is the number of subsets of size M , and n is the sample feature length.

Di↵erent classifiers are generated on di↵erent partitions. Under the assumption that

partitions of the feature sets are equally likely, the probability that all classifiers will

be di↵erent is P (di↵erent classifiers)= T !

(T�L)!TL , where L is the ensemble size.

The algorithm of RaF is given in Algorithm 2.2.

Algorithm 2.2 Rotation forest.
Training Phase:
Given: X = M ⇥ n is the dataset with M samples each with feature length n.
Y = M ⇥ 1 are class labels corresponding to the training data set.
L := Number of decision trees in an ensemble.
S is the number of subsets and {C1, · · · , Ck} is the set of class labels.
F is the feature set.
For i = 1, · · · , L
1) Prepare the rotation matrix Ra

i
:

• Split F into S subsets: Fi,j with j = 1, · · · , S.
• For j = 1, · · · , S

– Let Xi,j be the data set X for the features in Fi,j.
– Eliminate a random subset of classes from Xi,j.
– Select a bootstrap sample from Xi,j of size 75% of the number of samples

in Xi,j. Denote the new set as X
0
i,j
.

– Apply PCA on X
0
i,j

to get the coe�cients in a matrix Zi,j.

• Arrange the Zi,j, for j = 1, · · · , S in a rotation matrix Ri as in equation (2.6).

• For construction of Ra

i
, rearrange the columns of Ri to match order of the

features in F .
2) With (XRa

i
, Q) as the training data, build the classifier Di.

Classification Phase:
• For a given sample x, let the classifier Di assigned the probability di,j(xRa

i
)

to the hypothesis that x belongs to class Cj. For each class Cj, calculate the
confidence by the average combination method:

µj(x) =
1

L

X

i

di,j(xR
a

i
), j = 1, · · · , k. (2.6)

• Assign x to the class with the largest confidence.

45

2.3.3 Double random forest

Double random forest [91] is an ensemble of decision trees based on the concept

of bagging and the random subspace method. Unlike standard random forest wherein

each decision tree is generated on the boostrapped samples of the training set, double

random forest trains each decision tree on the original training set. This results in more

unique features in the data used in training the double random forest than standard

forest. The more number of unique instances leads to larger decision trees and hence,

better generalization performance. Double random forest uses bootstrap sampling

momentarily at each non-leaf node. Once the best feature split is chosen among the

randomly chosen subset of the features from the bootstrap samples, the splitting of the

original data is done and hence, original data is sent down the decision tree resulting

in more number of unique instances. The algorithm of the double random forest is

given in Algorithm 2.3.

2.3.4 Rotation random forest

In rotation random forests [305], the objective is to rotate or transform the input

feature space at a given node. Here, instead of applying the transformation to the

whole data, the data is transformed at each node. The transformation at each node is

di↵erent as di↵erent subspace of features is chosen at node while building CART. This

results in the improved diversity among the weak learners of an ensemble. Here, we

discuss the two rotations of random forest with PCA and linear discriminant analysis

(LDA) known as PCA based random forest and LDA based random forest, respectively.

The Algorithm of PCA based random forest is given in Algorithm 2.4.

The algorithm of LDA based random forest is similar to Algorithm 2.4, except at

Step 3, where instead of calculating the total scatter matrix St, within class Sw and

between class scatter matrix Sb are calculated. Then, all the generalized eigenvectors

of (Sb, Sw) are calculated i.e. Sb⇥↵ = �⇥Sw⇥↵ where � is the generalized eigenvalue

of the generalized eigenvector.

46

Algorithm 2.3 Double random forest.
Training Phase:
Given:
X := M ⇥ n be the training set with M number of samples with feature size n.
Xi := Mi⇥ni be the training samples reaching to a node i, with Mi number of samples
with feature size ni.
Y := M ⇥ 1 be the labels of the training data.
L := Number of decision trees in an ensemble.
“mtry”: number of candidate features to be evaluated at each non-leaf node.
“nodesize” or “minleaf”: maximum number of samples in an impure
node.

For each decision tree, Ti for i = 1, 2, · · · , L

[1] Use training data X.

[2] Generate the decision tree Ti with random feature subset and random boot-
strap instances using X:
For a given node d with data Xd:

(i) if Md > M ⇥ 0.1
Generate bootstrap sample X⇤

d
from Xd.

else
X⇤

d
= Xd.

(i) Choose “mtry”=
p
n number of features from the given feature space of

D⇤
d
.

(ii) Select the best split feature and the cutpoint among the random feature
subset X⇤

d
.

(iii) With the optimal split feature and the cutpoint with X⇤
d
, split the data

Xd into child nodes.

Repeat steps (i)-(iii), until one of the conditions is met:

• Node becomes pure.

• Number of samples reaching a given node is less than or equal to minleaf.

Classification Phase:
For a test sample xi, use the decision trees of the forest to generate the label of the
test sample. The predicted label of the test sample is given by the majority voting of
labels generated by the decision trees of an ensemble.

47

Algorithm 2.4 PCA based random forest.
Training Phase:
Given:
X := M ⇥ n be the training set with M number of samples with feature size n.
Y := M ⇥ 1 be the labels of the training data.
L := Number of decision trees in an ensemble.
“mtry”: number of candidate features to be evaluated at each non-leaf node.
“nodesize” or “minleaf”: maximum number of samples in an impure
node.

For each decision tree, Ti for i = 1, 2, · · · , L
[1] Generate the decision tree Ti with random feature subset and random boot-

strap instances using X.
[2] For a given node, choose “mtry”=

p
n number of features from the given

feature space.
[3] Calculate total scatter matrix Sd using “mtry” features.
[4] Calculate all the eigenvectors of Sd, denoted by V .
[5] Calculate the data transformation using all the eigenvectors V as, X⇤

PCA
=

X ⇤ V.
[6] In the PCA space, search the best feature split.
[7] With the optimal split feature and the cutpoint, split the data X into the

child nodes.
Repeat steps [2]-[7], until the stopping criteria is met.

Classification Phase:
For a test sample xi, use the decision trees of the forest to generate the label of the
test sample. At each non-leaf node, the test data sample is rotated with the same
matrix V generated in the training stage. The predicted label of the test sample is
given by the majority voting of labels generated by the decision trees of an ensemble.

48

2.3.5 Oblique decision tree ensemble via multisurface proxi-

mal support vector machine

The oblique decision tree ensemble classifier [303] uses MPSVM to enhance the

performance of the di↵erent base classifiers such as random forest, rotation forest,

and random subspace rotation forest and name these classifiers as MPRaF, MPRoF,

and MPRRoF, respectively. The multisurface proximal support vector machines

(MPSVM) generate the clustering hyperplanes such that each plane is closer to the

samples of one class and as far as possible from the samples of another class [172].

In each non-leaf node of the decision tree, MPSVM generates splitting plane of the

decision trees. Di↵erent regularization techniques were applied in oblique decision

trees based on MPSVM as the matrices appearing in the MPSVM formulation are

positive semi-definite. To avoid this issue two regularization approaches have been

used Tikhonov regularization and axis-parallel split regularization. Tikhnonov regu-

larization adds a small constant to the diagonal entries of the matrix to be regularised.

Let the matrix G is rank deficient, then G is regularized as

G0 = G+ �I, (2.7)

where � is a small constant and I is an identity matrix of appropriate dimensions. If

the matrix at a particular node becomes singular, then we can always continue the

building of a tree via axis-parallel split. Thus, from the root node upto the current

node, MPSVM is used to generate the splits and from the current node to the leaf

node, the decision tree uses axis-parallel method. Hence, heterogeneous test splits are

used to complete the decision tree.

2.4 Artificial neural networks

Neural networks have been widely used for classification and regression problems,

however, there are issues like slow training, local minima problem and sensitivity to

learning rate that need attention [248]. Backpropagation approach is used to tune the

49

model parameters of the neural network. Gradient of the loss function with respect

to the model parameters is calculated and the model weights are updated iteratively

in the negative direction of the gradient to minimize the loss function. It su↵ers from

local minima problem, slow convergence and learning rate sensitivity [248].

To elevate the training procedure, randomization based neural networks have been

putforth. Randomization based models avoid the above enumerated issues as the

optimization problem is solved via closed form method [84, 85, 231, 263]. These

models show good generalization performance and training is faster [52, 284, 285].

Among the randomization based models, extreme learning machine (ELM) [113] and

random vector functional link networks (RVFL) [203] are the widely used architectures.

RVFL/ELM are the single layer feedforward neural networks composed of input layer,

hidden layer and the output layer. The weights and biases in the hidden layer are

initialized randomly within a suitable range and kept fixed while as the output layer

weights are optimized either via Moore penrose pseudoinverse or least squares ridge

regression method.

RVFL has direct links from input layer to the output layer which boosts the gen-

eralization performance of the model [258, 271]. The direct links regularize the net-

work, hence, RVFL model shows better generalization performance than ELM model

[97, 180]. Compared to ELM network, the direct links make the RVFL model less

complex and thinner network [304]. According to Occam’s Razor principle and PAC

theory [130], the simpler and lesser complex model make RVFL better compared to

ELM. To further boost the performance of the RVFL model, the unsupervised learning

based RVFL model [311] use sparse l1-norm autoencoder for tuning the hidden layer

weights to obtain better feature representation. The autoencoder helps to learn more

superior network parameters for di↵erent learning tasks.

RVFL model has been successfully used in combination with other learning mod-

els. Statistical self-organizing learning system [42] combined RVFL with hypothesis

testing. It is a two stage method wherein the nodes in the enhancement layer are

added incrementally which leads to the learning of optimal number of nodes e�ciently.

RVFL in combination with expectation minimization [115] lead to the improvement

50

in the training process. Ensemble model with negative correlation learning (NCL)

[169] have been widely used for improving the performance of RVFL model. Fast

decorrelated neural network with random weights [3] trained multiple RVFL models

such that each RVFL model is decorrelated from every other model of an ensemble.

Contrary to NCL, the positively correlated kernel ridge regression (KRR) model [306]

was proposed. RVFL model has also been in multitude of real world applications. An

ensemble of RVFL model [158] for clinker free lime content estimate uses multisource

data ensemble. The combination of RVFL model with radial basis neural net [205]

for o✏ine english language script recognition, RVFL in MPEG-4 [206], pedestrian

detection [280, 281] and deep RVFL [235, 239] have proved the e�ciency of the model.

Here, we briefly discuss the formulation of the randomization based neural networks

as follows:

2.4.1 Random vector functional link network

Random vector functional link network (RVFL) [202] uses non-linear transforma-

tion on the input feature space to get the randomized features of the input data. The

non-linear features are concatenated with original features to optimize the final layer

weights. Hence, the RVFL network performs the classification based on both the orig-

inal and enhanced features. RVFL is a three layer network consisting of input layer,

enhancement layer and the final output layer. In this network, the weights of the

hidden layer aij, between the ith input node and jth enhancement node, are generated

randomly such that the activation function for the jth node g(·) is not saturated. For

each dataset, weights are chosen from the uniform distribution within [S,+S] interval,

where S is the scaling parameter. The RVFL network is essentially same as the gen-

eralized delta rule (GDR) except that the hidden layer is moved to the enhancement

layer of the input feature space and the weights aij are not learned but generated

randomly. The output layer weights � of the network are obtained by solving

yi = dT
i
�, i = 1, 2, · · · ,M, (2.8)

51

whereM represents the number of data samples, yi is the target, di is the concatenated

vector of original and the random features. Once the � values are calculated then the

RVFL network can be expressed as:

f ⇤(X) =
X

j

(�j · (g(aTj X + bj))), (2.9)

where f ⇤(X) is the approximate function of f(X) as it maps the input samples X =

[x1, x2, · · · , xM] to the target response Y = [y1, y2, · · · , yM], bj is the bias of the jth

hidden node and �j are weights for the links to output node. Solving the equation

(2.8) directly may lead to overfitting. Hence, Moore-penrose pseudoinverse and l2 norm

regularized least square (ridge regression) methods are used to avoid the overfitting

issues while solving the equation (2.8). Using l2-norm regularized least square method

(or ridge regression), we have

X

i

��yi � dT
i
�
��2 + c||�||2 i = 1, 2, · · · ,M. (2.10)

The optimal output layer weights are given as � = (DTD + cI)�1DtY , where c,

D and Y are the regularization parameter, concatenated data and target responses,

respectively.

2.4.2 Extreme learning machine

Extreme learning machine (ELM) [113] is a randomization based feed forward

neural network. Unlike RVFL, ELM is without direct links between input and output

layer and bias term in the output layer. The optimization problem of the ELM is

given as:

O = min
�

kH� � Y k2 + c k�k2 , (2.11)

52

where H represent the randomized features, and c is a penalty parameter. The final

output parameters in primal and dual space are given as follows:

Primal space: � = (HTH + cI)�1HTY, (2.12)

Dual space: � = HT (HHT + cI)�1Y. (2.13)

2.4.3 Minimum class variance extreme learning machine

The minimum class variance extreme learning machine [119] is a randomized single

layer feed-forward network which exploits the training data dispersion while optimizing

the output layer weights of the objective function. The optimization problem of the

minimum class variance extreme learning machine is given as:

min
�

���S
1
2
T
�
���
2

F

+ c⇠T ⇠

s.t. H� = Y � ⇠, (2.14)

where � contains the optimized output layer weights, c is the penalty parameter, S is

the training data scatter matrix and H represents the randomized features. To avoid

the singularity issues in S, a regularization parameter c is added.

2.4.4 Autoencoder

An autoencoder [9] is a neural network consisting of two parts i.e. encoder and

decoder part. The encoder transforms the input features into some other feature

space wherein the decoder is able to reconstruct the original input space. Based on

the number of neurons in the hidden layer, the encoder either compresses or expands

the input features [9].

Encoder: The encoder f(·) maps the the input data point x 2 Rn to the hidden

feature space f(x) 2 Rd
0
. Mathematically, mapping is given as

h = f(x) = ah(Wx+ bh), (2.15)

53

where ah(·) is the activation function, W 2 Rd
0⇥n and bh 2 Rd

0
is the weight matrix

and bias, respectively. The encoder parameter set is ⇥ = {W, bh}.

Decoder: The decoder g(·) maps the hidden feature representation to the repre-

sentation y as

y = g(h) = ag(W
0h+ bg), (2.16)

where ag(·) is the activation function, W 0 and bh 2 Rd
0
is the weight matrix and bias

of the decoder parameter set ⇥0, respectively.

The optimization problem to learn the parameter sets ⇥ and ⇥0 for the dataset X

is given as

arg min
⇥,⇥0

E(L(X, g(f(X)))), (2.17)

where reconstruction error is represented by L. The optimization of the autoencoder

can be done either through closed form solution or via iterative procedure.

2.4.5 Sparse pre-trained random vector functional link net-

work

Once the hidden layer parameters are optimized via autoencoder, these pretrained

weights are utilised for projecting the input data and the optimization problem is

given as follows:

ORV FL = min
�

||Ĥ� � Y ||+ c||�||2, (2.18)

where Ĥ is the feature projection matrix optimized via l1 norm autoencoder, c is the

regularization parameter and � represents the output layer weights. Similar to RVFL

model, the objective function (2.18) can be optimized via regularized least squares

54

ridge regression and the optimal output weights are given as:

Primal space: � = (ĤT Ĥ + cI)�1ĤTY, (2.19)

Dual space: � = ĤT (ĤĤT + cI)�1Y. (2.20)

Depending upon the number of samples and features of the training dataset, choosing

optimally between the primal and dual space leads to reduction in training time.

2.5 Support vector machines

Support vector machines (SVMs) [47, 151, 268] are powerful methods used in clas-

sification as well as regression problems. SVM is based on the maximum margin

concept and shows better generalization performance as it implements the structural

risk minimization (SRM) principle. SRM principle is at the core of the statistical

learning and hence, SVM and its variants have been successfully applied across di↵er-

ent fields including detection of faces [197], categorization of text [125], classification

of electroencephalogram signals [223], extraction of features [160, 222], identification

of chimera [74] and so on. Despite its better generalization performance, SVM owns

high computational complexity of the order of O(M3) where M is the size of the train-

ing dataset. To overcome this drawback of higher complexity, generalized eigenvalue

proximal support vector machine (GEPSVM) [172] was proposed. GEPSVM builds

two hyperplanes such that each hyperplane is proximal to its own class. Motivated by

GEPSVM, twin support vector machine (TWSVM) [122] formulation was proposed

for classification problems. Like GEPSVM, TWSVM builds two hyperplanes such that

each hyperplane is proximal to its own class and farthest from the samples of other

class. Unlike SVM wherein a single large quadratic programming problem (QPP) is

solved, TWSVM solves two QPPs of smaller size as compared to SVM. Solving two

smaller QPPs make TWSVM approximately 4 times faster than SVM. As TWSVM

implements empirical risk minimization principle, twin bounded support vector ma-

chine (TBSVM) [233] implemented the structural risk minimization principle.

55

Twin bounded support vector machine (TBSVM) [233] implement structural risk

minimization principle to embody the marrow of statistical learning. TBSVM solves

two smaller QPPs to find the two non-parallel hyperplanes. By adding the regulariza-

tion term in TBSVM, structural risk is minimized by maximizing the margin.

Least squares twin support vector machine (LSTSVM) [144] involves a system of

linear equations with squared loss function instead of the convex QPP. As LSTSVM

is sensitive to noise and outliers, hence, energy-based least squares twin support vec-

tor machine (ELSTSVM) [190] introduced energy term to reduce the e↵ect of noise

and outliers. Tanveer et al. [260] introduced an extra regularization term to the EL-

STSVM formulation, known as robust energy based least squares twin support vector

machines (RELSTSVM), resulting in the optimization problems to be positive definite

and hence, better generalization performance. Recent study [261] shows that REL-

STSVM is the best classifier among the twin support vector machine based models.

Di↵erent from TBSVM, LSTSVM, ELSTSVM, RELSTSVM and sparse linear pro-

gramming twin support vector machines [259], a new multiclass approach called twin

k-class support vector classification (TWKSVC) [294] based on “1-versus-1-versus-

rest” generates k(k � 1)/2 binary classifiers for a k-class classification problem. To

reduce the computational complexity of TWKSVC, least squares TWKSVC [191] in-

troduced the equality constraints in the objective function of TWKSVC to solve a

linear system of equations instead of solving a QPP.

Here, we briefly discuss the formulation of variants of twin SVM models. Assume

H = [A e], G = [B e], where e is vector of ones of appropriate dimensions. Also, ci

be the positive penalty parameters, with i = 1, 2, 3, 4.

2.5.1 Twin bounded support vector machine

The linear TBSVM [233] finds the nonparallel hyperplanes

f1(x) = w>
1
x+ b1 = 0 and f2(x) = w>

2
x+ b2 = 0, (2.21)

such that each hyperplane is closer to the data points of one class and farthest

from the data points of another class. Based upon the proximity of the data samples

56

from two hyperplanes, it is assigned with the class label +1 or �1. With the objective

function of one class and constraints corresponding to the other class, TBSVM solves

the pair of QPPs as

min
w1,b1,⇠,⇠

⇤

1

2
c3(||w1||2 + b2

1
) +

1

2
⇠⇤T ⇠⇤ + c1e

T ⇠ (2.22)

s.t. Aw1 + eb1 = ⇠⇤,

� (Bw1 + eb1) + ⇠ � e, ⇠ � 0

and

min
w2,b2,⌘,⌘

⇤

1

2
c4(||w2||2 + b2

2
) +

1

2
⌘⇤T⌘⇤ + c2e

T⌘ (2.23)

s.t. Bw2 + eb2 = ⌘⇤,

(Aw2 + eb2) + ⌘ � e, ⌘ � 0,

The dual of the QPP (2.22) is given as

max
↵

eT↵� 1

2
↵TG(HTH + c3I)

�1GT↵ (2.24)

s.t. 0  ↵  c1.

Similarly, the dual of QPP (2.23) is given as

max
�

eT
1
� � 1

2
�TH(GTG+ c4I)

�1HT� (2.25)

s.t. 0  �  c2,

where � is the Lagrange multiplier.

57

The optimal separating hyperplanes are given as:

2

4w1

b1

3

5 = (HTH + c3I)
�1GT↵, (2.26)

2

4w2

b2

3

5 = (GTG+ c4I)
�1HT�. (2.27)

The test sample is assigned with one of the class labels i (i = +1,�1) based upon its

distance from the two hyperplanes as

Class(x) = arg min
k=1,2

|wT

k
x+ bk|
||wk||

, (2.28)

where | · | is the absolute value.

2.5.2 Least squares twin support vector machines

Least squares twin support vector machines (LSTSVM) [144] solves a pair of primal

problems of twin support vector machine instead of dual problems which is extremely

fast for generating the two non-parallel hyperplanes. The primal problems of LSTSVM

are given as:

min
w1,b1,⇠

⇤

1

2
kAw1 + eb1k2 +

c1
2
k⇠⇤k2

s.t. � (Bw1 + eb1) + ⇠⇤ = e

(2.29)

and

min
w2,b2,⌘

⇤

1

2
kBw2 + eb2k2 +

c2
2
k⌘⇤k2

s.t. (Aw2 + eb2) + ⌘⇤ = e.

(2.30)

The linear LSTSVM solves the inverse of matrix of the order of (n+ 1)⇥ (n+ 1).

Once the equations (2.29) and (2.30) are solved, the optimal hyperplanes are obtained

58

as follows:

2

4w1

b1

3

5 = �[c1G
TG+HTH]�1c1G

T e, (2.31)

2

4w2

b2

3

5 = [c2H
TH +GTG]�1c2H

T e. (2.32)

2.5.3 Robust energy based least squares twin support vector

machines

The primal formulation of robust energy based least squares twin support vector

machines (RELSTSVM) [260] is given as follows:

min
w1,b1,⇠

⇤

1

2
kAw1 + eb1k2 +

c1
2
k⇠⇤k2 + c3

2

������

2

4w1

b1

3

5

������

2

s.t. � (Bw1 + eb1) + ⇠⇤ = E1 (2.33)

and

min
w2,b2,⌘

⇤

1

2
kBw2 + eb2k2 +

c2
2
k⌘⇤k2 + c4

2

������

2

4w2

b2

3

5

������

2

s.t. (Aw2 + eb2) + ⌘⇤ = E2, (2.34)

where E1 and E2 are energy parameters of the hyperplanes.

On substituting the equality constraints into the objective function, QPP (2.33)

becomes:

L1 =
1

2
kAw1 + eb1k2 +

c1
2
kBw1 + eb1 + E1k2 +

c3
2

������

2

4w1

b1

3

5

������

2

. (2.35)

Setting the gradient of (2.35) with respect to w1 and b1 to zero gives the solution

59

of QPP (2.33) as follows:

2

4w1

b1

3

5 = �[c1G
TG+HTH]�1c1G

TE1. (2.36)

In the similar way, the solution of QPP (2.34) is given as follows:

2

4w2

b2

3

5 = [c2H
TH +GTG]�1c2H

TE2. (2.37)

2.5.4 Twin k-class support vector classification

Twin k-class support vector classification (TWKSVC) [294] algorithm evaluates

the training points into “1-versus-1-versus-rest” with the two kind of samples selected

from k-classes as the focused partitions. Let l1, l2 be the number of samples in two

focused class samples and l3 be the samples in rest class, here M = l1 + l2 + l3. The

remaining samples are mapped into a region between the non-parallel hyperplanes.

The optimization problem of TWKSVC is given as:

min
w1,b1,⇠,⇠

⇤

1

2
kAw1 + e1b1k2 + c1e

T

2
⇠⇤ + c2e

T

3
⇠

s.t. � (Bw1 + e2b1) + ⇠⇤ � e2,

� (Cw1 + e3b1) + ⇠ � e3(1� ✏),

⇠⇤ � 0, ⇠ � 0 (2.38)

and

min
w2,b2,⌘,⌘

⇤

1

2
kBw2 + e2b2k2 + c3e

T

1
⌘⇤ + c4e

T

3
⌘

s.t. (Aw2 + e2b2) + ⌘⇤ � e2,

(Cw2 + e3b2) + ⌘ � e3(1� ✏),

⌘⇤ � 0, ⌘ � 0, (2.39)

60

where w1 2 Rn⇥1, w2 2 Rn⇥1, b1 2 R, b2 2 R, ⇠⇤ 2 Rl2⇥1, ⇠ 2 Rl3⇥1, ⌘⇤ 2 Rl1⇥1, ⌘ 2

Rl3⇥1, e1 2 Rl1⇥1, e2 2 Rl2⇥1, and e3 2 Rl3⇥1.

The dual of QPP (2.38) is given as follows:

max
�

� 1

2
�TN(HTH)�1NT� + eT

4
�

s.t. 0  �  F, (2.40)

where S = [C e3], e4 = [e2; e3(1� ✏)], N = [G;S], � = [↵; �] and F = [c1e2; c2e3].

Similarly, the dual of QPP (2.39) is obtained as follows:

max
⇢

� 1

2
⇢TP (GTG)�1P T⇢+ eT

5
⇢

s.t. 0  ⇢  F ⇤, (2.41)

where P = [H;S], F ⇤ = [c3e1; c4e3], e5 = [e1; e3(1� ✏)].

Once the QPP (2.40) is solved, the optimal hyperplane is given as:

2

4w1

b1

3

5 = �(HTH)�1(NT�). (2.42)

Similarly, as the QPP (2.41) is solved, the optimal hyperplane is given as:

2

4w2

b2

3

5 = (GTG)�1(P T⇢). (2.43)

2.5.5 Least squares twin k-class support vector classification

The optimization problem of least squares TWKSVC [191] is given as follows:

min
w1,b1,⇠,⇠

⇤

1

2
kAw1 + e1b1k2 +

c1
2
⇠⇤T ⇠⇤ +

c2
2
⇠T ⇠

s.t. � (Bw1 + e2b1) + ⇠⇤ = e2,

� (Cw1 + e3b1) + ⇠ = e3(1� ✏) (2.44)

61

and

min
w2,b2,⌘,⌘

⇤

1

2
kBw2 + e2b2k2 +

c3
2
⌘⇤T⌘⇤ +

c4
2
⌘T⌘

s.t. (Aw2 + e1b2) + ⌘⇤ = e1,

(Cw2 + e3b2) + ⌘ = e3(1� ✏). (2.45)

On substituting the equality constraints into the objective function, QPP (2.44)

becomes:

min
w1,b1

1

2
kAw1 + e1b1k2 +

c1
2
kBw1 + e2b1 + e2k2 +

c2
2
kCw1 + e3b1 + e3(1� ✏)k2 .

(2.46)

Setting the gradient of (2.46) with respect to w1 and b1 to zero gives the dual of

QPP (2.44) as follows:

2

4w1

b1

3

5 = �(c1G
TG+HTH + c2P

TP)�1(c1G
T e5 + c2P

T e6(1� ✏)), (2.47)

where H = [A e1], G = [B e2] and P = [C e3].

Similarly, the solution of QPP (2.45) is given as follows:

2

4w2

b2

3

5 = (c3H
TH +GTG+ c4P

TP)�1(c3H
T e4 + c4P

T e6(1� ✏)). (2.48)

2.6 Statistical tests

In this section, we discuss the statistical tests used to evaluate the performance of

the models statistically. We follow the following tests:

62

2.6.1 Friedman test

Friedman test has been proven to be more robust than other approaches and has

been practiced by numerous researchers [53, 145] to check the statistical significance

among classifiers. This method ranks the algorithms for each dataset separately, the

best performing algorithm on each dataset achieves the lower rank. Then, the average

of the rank across all the datasets is taken as the rank of the classifier. Let rj
i
be the

rank of the jth algorithm on the ith dataset among k algorithms and N datasets. The

Friedman test compares the average rank of algorithms, Rj = 1

N

P
i
rj
i
. Under the

null-hypothesis, which states that all the algorithms are equivalent and so their rank

Rj should be equal. If k is the number of algorithms and N is number of datasets

then Friedman statistic

�2

F
=

12N

k(k + 1)

"
X

j

R2

j
� k(k + 1)2

4

#
, (2.49)

is distributed according to �2

F
with (k � 1) degrees of freedom, when N and k

are big enough. In that case, Friedman statistic �2

F
is undesirably conservative and

derived a better statistic

FF =
(N � 1)�2

F

N(k � 1)� �2

F

, (2.50)

which is distributed according to the F -distribution with k � 1 and (k � 1)(N � 1)

degrees of freedom. If the null-hypothesis is rejected, Nemenyi test [192] can be used

to check whether the performance of two among k classifiers are significantly di↵erent.

Two classifiers are said to be statistically di↵erent if the rank of two classifiers di↵er

by at least critical di↵erence (CD). Mathematically, critical di↵erence is given by

CD = q↵

r
k(k + 1)

6N
, (2.51)

where critical value q↵ is based on the studentized range statistic divided by
p
2 .

63

2.6.2 Win-tie-loss: sign test

To access the overall performances of classifiers, we count the number of datasets

on which algorithm is the overall winner. We use sign test for the pairwise comparison

of algorithms. In this test, under null-hypothesis two algorithms are equivalent if

each wins on approximately N/2 out of N datasets. If the number of wins is at

least N/2 + 1.96
p
N/2, the algorithm is significantly better with p < 0.05. If the

two algorithms end with tie, then the number should be evenly splitted between the

classifiers. However, if the number is odd we ignore one.

64

Chapter 3

Oblique decision tree ensemble via twin

bounded SVM

Ensemble methods with “perturb and combine” strategy have shown improved per-

formance in the classification problems. Recently, random forest algorithm was ranked

one among 179 classifiers evaluated on 121 UCI datasets. Motivated by this, we present

a new approach for the generation of oblique decision trees. At each non-leaf node,

the training data samples are grouped in two categories based on the Bhattachrayya

distance with randomly selected feature subset. Then, twin bounded support vector

machine (TBSVM) is used to get two clustering hyperplanes such that each hyper-

plane is closer to data points of one group and as far as possible from the data points

of other group. Based on these hyperplanes, each non-leaf node is splitted to generate

the decision tree. We used di↵erent base models like random forest (RaF), rotation

forest (RoF), random sub rotation forest (RRoF) to generate the di↵erent oblique

decision tree forests named as twin bounded random forest (TBRaF), twin bounded

rotation forest (TBRoF) and twin bounded random sub rotation forest (TBRRoF), re-

spectively. In earlier oblique decision trees, like multisurface proximal support vector

machine (MPSVM) based oblique decision trees, matrices are positive semi-definite

and hence di↵erent regularization methods are required. However, no explicit regu-

larization techniques need to be applied to the primal problems as the matrices in

the proposed TBRaF, TBRoF and TBRRoF are positive definite. We evaluated the

performance of the proposed models (TBRaF, TBRoF and TBRRoF) on 49 datasets

65

taken from the UCI repository and on some real-world biological datasets (not in

UCI). The experimental results and statistical tests conducted show that TBRaF and

TBRRoF outperform other baseline methods.

In the oblique decision trees where SVM based models are used for generating the

separating hyperplanes, we need to handle the multiclass problem as SVM is basically

a binary classification model. In literature, multiple approaches have been followed

like one versus one, one versus all [95, 106, 141, 247], one-versus-one-versus-rest [294],

DAG [214], ECOC [58], majority class versus rest class [173] and so on. However,

these approaches being successfull lead to additional complexity as each method gen-

erates di↵erent number of hyperplanes like one-versus-one approach generates k(k�1)

2

hyperplanes for a k�class problem. In order to avoid any additional computational

cost, we followed the same approach as in [303] to convert the multiclass problem into

binary problem with a Bhattachrayya distance [13]. Bhattacharyya distance measures

the similarity between the two discrete or continuous probability distributions, which

is considered a good metric to measure the separability between two normal classes

wj and wk with distributions N(µj,
P

j
) and N(µk,

P
k
). Here, multivariate Gaussian

distribution is taken due to reasons given in [124]. First, it is the most natural dis-

tribution and the sum of a large number of independent random distributions follow

Gaussian distribution. It has the maximum uncertainty of all distributions having a

given mean and variance. Also, it is appropriate in many situations.

In MPSVM based oblique decision trees [303], the matrices that appear in MPSVM

may or may not be invertible. Hence, in order to get solution, MPSVM assumes

that either the inverse of the matrices exist or the matrices are non-singular. These

prerequisites may or may not be satisfied. Hence, the dual problems are technically

modified to handle the inverse matrices problem in MPSVM. In this chapter, we

propose TBSVM based oblique decision trees. TBSVM has following advantages :

• TBSVM minimizes the structural risk by incorporating the regularization.

• No extra assumption or modification of the original dual problems is required.

• Matrices that appear in dual problems are positive definite.

66

This chapter presents TBRaF, TBRoF and TBRRoF ensemble classifiers for the

multiclass classification problems. For each class, a decision hyperplane is learned

based on the randomly selected feature set. The proposed model uses TBSVM based

hyperplanes for splitting the data at each non-leaf node. Hyperplanes generated by

TBSVM provide better classification down the hierarchy in the proposed TBRaF,

TBRoF and TBRRoF ensemble classifiers. The proposed TBRaF, TBRoF and TBR-

RoF lead to the following improvements:

• The matrices in MPSVM based oblique decision tree ensemble are positive semi-

definite as the generalized eigenvalue problems in MPSVM based decision tree

may become singular. Thus, require a regularization technique to render their

solutions. However, the matrices that appear in the dual formulation of the

proposed TBRaF, TBRoF and TBRRoF are positive definite and thus primal

problems in TBRaF, TBRoF and TBRRoF can be derived without any extra

assumption and need not be modified any more.

• The significant advantage of the proposed TBRaF, TBRoF and TBRRoF is

that the structural risk minimization principle is implemented by introducing

the regularization term. This embodies the marrow of statistical learning theory

which improves the generalization performance.

• At each node, the samples are grouped based on the Bhattacharyya distance.

Based on the groups generated, splitting hyperplanes are generated via TBSVM.

• Unlike using univariate features in RaF, the proposed TBRaF, TBRoF and

TBRRoF use multivariate features for the decision making at each non-leaf node.

This provide better decision hyperplane.

• Numerical experiments on multiple datasets from the UCI repository and some

real-world biological (not in UCI) datasets show the e�cacy of the proposed

TBRaF, TBRoF and TBRRoF models.

67

3.1 Oblique decision tree ensemble via twin

bounded SVM

In order to use TBSVM based hyperplanes as a test criterion in the decision trees,

following issue needs to be resolved.

• As TBSVM was originally designed for the binary classification, so we need to

handle the scenarios of multiclass problem.

The approach we have followed to transform multiclass to binary class problem is

given in Algorithm 3.1.

Algorithm 3.1 Multiclass to Binary class.

Input:
X = M ⇥ n is the dataset with M samples each with feature length n.
Y = M ⇥ 1 are data labels corresponding to the training data set.
{L1, . . . , Lk} is the set of data labels.
Output:
G+ and G� are the two hyperclasses or groups.

• For j = 1, . . . , k
– Calculate the Bhattacharyya distance between every pair of classes Lj and

Li, with i = j + 1, . . . , k as:

B(Lj, Li) =
1

8
(µi � µj)

T

 P
j
+
P

i

2

!�1

(µi � µj) +
1

2
ln
|(
P

j
+
P

i
)/2|

q
|
P

j
||
P

i
|
.

(3.1)

• Let L+ and L� be the pair of classes with largest Bhattacharyya distance, put
them in groups G+ and G� respectively.

• For every other class, if B(Li, L+) < B(Li, L�) then assign the Li to the group
G+ else put in group G�.

First we describe the construction of the proposed TBRaF, TBRoF and TBRRoF

models, and then we will discuss about the motivation behind these ensemble models.

In the proposed TBRaF ensemble model, we use RaF as the base model. In this

model, multiple decision trees are generated based on the di↵erent bootstrapped ver-

sions of the training data. In each decision tree, splitting hyperplane is generated

at each non-leaf node. We use TBSVM for generating the hyperplanes. The split-

ting hyperplane depends on the randomly selected subset of features of the training

68

data samples. Each tree takes the decision independently based on the di↵erent boot-

strapped version of the training data. During testing, each test sample is pushed down

in each tree of the forest, and based on the majority voting final label is assigned to

the test sample. The detailed algorithm of the proposed TBRaF model is given in

Algorithm 3.2.

Algorithm 3.2 Proposed TBRaF.
Training Phase:
Given:
X = M ⇥ n is the dataset with M samples each with feature length n.
Y = M ⇥ 1 are data labels corresponding to the training dataset.
L is the ensemble size i.e number of trees in the forest.
Each tree in the random forest is represented as Ti, where i = 1, . . . , L.
“mtry” refers to the number of randomly selected features.
“minleaf” is the maximum number of samples in an impure node.
c1, c2, c3, c4 are the positive parameters, e is vector of ones, ↵ and � are the Lagrange
multipliers.
[1] Each tree Ti is build using the bootstrapped versions of the training data P with

replacement.
[2] At each non-leaf node,

(a) Based on the Bhattacharyya distance, group the samples into two groups
(G+ and G�) using the Multiclass to Binary class algorithm given in Algo-
rithm 3.1.

(b) The node samples are splitted based on the “mtry” randomly selected fea-
tures from the training data by solving the following optimization problems
with H = [G+, e] and G = [G�, e]

max
↵

eT↵� 1

2
↵TG(HTH + c3I)

�1GT↵ (3.2)

s.t. 0  ↵  c1
and

max
�

eT
1
� � 1

2
�TH(GTG+ c4I)

�1HT� (3.3)

s.t. 0  �  c2.

[3] Repeatedly execute step 2 until one of the conditions is met:
• Node becomes pure.
• Node contains number of samples less than or equal to minleaf .

Classification Phase:
For classification of a test sample, it is pushed down each tree in the forest, and each
tree in the forest assigns the vote to the given sample data. Then the predicted label
for the sample data is the one with the highest number of votes among the forest.

69

In the proposed TBRoF ensemble model, we use RoF as the base model. In this

model, multiple decision trees are generated based on the rotated feature space of

the training data. In each decision tree, splitting hyperplane is generated at each

non-leaf node. We use TBSVM for generating the hyperplanes. Each tree uses a

di↵erent rotated feature space matrix for generating the tree. The decision hyperplane

generated in each tree depends on all the features of the rotated feature space matrix

being used for that tree. The proposed TBRoF algorithm is given in Algorithm 3.3.

In the proposed TBRRoF ensemble model, we use RRoF as the base model. In this

model, decision trees are generated based on the randomly selected subset of features

taken from rotated feature space of the training data. In each decision tree, splitting

hyperplane is generated at each non-leaf node. We use TBSVM for generating the

hyperplanes. Each tree uses a di↵erent rotated feature subspace matrix for generating

the tree. The decision hyperplane generated in each tree depends on randomly selected

subset of features of the rotated feature space matrix being used for that tree. The

proposed TBRRoF models is given in Algorithm 3.3. Note that TBRoF and TBRRoF

models di↵er in step 2 of Algorithm 3.3 wherein the TBRoF is trained on the entire

feature space while as the TBRRoF model is generated based on the random subspace

of the training data depending on the “mtry” parameter.

Zhang and Suganthan [303] generated the hyperplane using MPSVM. In MPSVM,

the matrices of generalized eigen value problem are not always positive definite. Hence,

the authors used di↵erent regularization techniques like Tikhonov regularization and

axis-parallel split regularization to tackle this issue. However, in TBSVM the reg-

ularization term is added in the primal problem, thus the matrices that evolve in

dual formulation are always positive definite. Thus, there is no need to handle the

regularization problem explicitly.

Unlike base models (RaF, RoF and RRoF), the proposed TBRaF, TBRoF and

TBRRoF apply TBSVM for generating the hyperplanes at each non-leaf node of the

decision trees. At each non-leaf node of the ensemble model, more than one feature

is used for generating the decision hyperplanes. The proposed TBRaF, TBRoF and

TBRRoF models provides the following advantages:

70

• The proposed models handle multi-class problem naturally. There is no need to

use a series of binary classification problems (like one-vs-one, one-vs-all, one-vs-

one-vs-rest) as in other classifier models such as support vector machine.

• The decision tree construction process can be distributed among several work-

stations or cores, hence ideal for parallelization.

• Recently in literature [62], decision trees (RaF) emerged as the rank one classifier

among 179 classifiers evaluated on 121 datasets. Thus, ensemble classifiers with

RaF as one of the base models provide better performance.

• Structural risk minimization principle is implemented by introducing the regu-

larization term. This embodies the marrow of statistical learning theory, so this

modification improved the performance of classification.

3.2 Experiments

Here, we analyze the computational complexity of the given models and evaluate

the e↵ect of di↵erent algorithmic parameters, compare the proposed ensemble models

with other baseline models and finally evaluate the statistical significance among the

models.

3.2.1 Experimental setup

In all the experiments, we used Intel Xeon processor MATLAB R2010b on Win-

dows10 with system configuration Intel Xeon processor (2 ⇥ 18cores, 2.3 GHZ CPU)

with 128 GB of RAM. In the experimental work, we evaluate the performances of the

proposed TBRaF, TBRoF and TBRRoF with other standard models and MPSVM

based ensemble models. The di↵erent ensemble methods evaluated are MPSVM

based RaFs (MPRaF-T, P, N), MPSVM based RoFs (MPRoF-T, P, N), MPSVM

based RRoFs (MPRRoF-T, P, N), TBSVM based RaF (TBRaF), TBSVM based

71

Algorithm 3.3 Proposed TBRRoF and TBRoF.
Training Phase:
Given:
X = M ⇥ n is the dataset with M samples each with feature length n.
Y = M ⇥ 1 are class labels corresponding to the training data set.
L is the ensemble size i.e. number of trees in the forest.
F is the feature set.
S is the number of subsets of feature set F and {C1, . . . , Ck} is the set of class labels.
“mtry” refers to the number of randomly selected features.
For i = 1, . . . , L
[1] Prepare the Rotation Matrix Ra

i
:

• Split F into S subsets: Fi,j with j = 1, . . . , S.
• For j = 1, . . . , S

– Let Xi,j be the data set X for the features in Fi,j.

– Eliminate a random subset of classes from Xi,j.

– Select a bootstrap sample from Xi,j of size 75% of the number of sam-
ples in Xi,j. Denote the new set as X

0
i,j

– Apply Principle Component Analysis (PCA) on X
0
i,j

to get the coe�-
cients in a matrix Ci,j.

• Arrange the Ci,j, for j = 1, . . . , S in a rotation matrix Ri as in equation
(3.4).

• For construction of Ra

i
, rearrange the columns of Ri to match order of the

features in F .

[2] For TBRRoF method: The node samples are splitted based on the “mtry” ran-
domly selected features from the training data (XRa

i
, Q).

For TBRoF method: The node samples are splitted based on the training data
(XRa

i
, Y) as the training data.

At each non-leaf node of the decision tree Ti with a given training data,
(a) Based on the Bhattacharyya distance, group the samples into two groups

(G+ and G�) using the Multiclass to Binary class algorithm given in Algo-
rithm 3.1.

(b) Solve the optimization problems (3.2) and (3.3) with H = [G+, e] and
G = [G�, e].

[3] Repeatedly execute step 2 until one of the conditions is met:
• Node becomes pure.

• Node contains number of samples less than or equal to minleaf .
Classification Phase:

• For a given sample x, let each individual decision tree Ti assigned the probability
di,j(xRa

i
) to the hypothesis that x belongs to class Cj. For each class Cj, calculate

the confidence by the average combination method:

µj(x) =
1

L

X

i

di,j(xR
a

i
), j = 1, . . . , k. (3.4)

• Assign x to the class with the largest confidence.
72

RoF (TBRoF) and TBSVM based RRoF (TBRRoF). For all the ensemble meth-

ods, we used CART [24] as the base classifier. We have taken the codes of ran-

dom forest from “https://github.com/P-N-Suganthan/CODES” and TBSVM from

“http://www.optimal-group.org/Resource/TWSVM.html”.

Gini impurity criteria is defined as

Gini(t) =
nl

t

nt

"
1�

cX

i=1

nl

wi

nl

t

!2#
+

nr

t

nt

"
1�

cX

i=1

nr

wi

nl

t

!2#
, (3.5)

where c is the number of classes, nt represents the number of data points at this node,

nl

t
, nr

t
are the number of data points reaching to the left and right of the current node,

respectively. nl

wi
, nr

wi
are the number of data points belonging to class wi that reached

to the left node and right node of the current node, respectively.

For evaluating the performances of these ensemble methods, we conducted ex-

periments on the benchmark datasets from the UCI repository and some real world

datasets (not in UCI repository) [60, 62] . The four real world datasets not included

in the UCI repository are about fecundity estimation [81] for fisheries: they are given

as oocMer14D (2-class classification according to the presence/absence of oocyte nu-

cleus), oocMer12F (3-class classification according to the stage of development of the

oocyte) for fish speciesMerluccius, and oocTris2F (nucleus) and oocTris5B (stages) for

fish species Trisopterus. The di↵erent parameters corresponding to di↵erent models

are as follows

• minleaf is the parameter in the decision trees that controls the maximum number

of data samples within an impure node. This value is usually set to 1 (as default).

• L represents the ensemble size in all the ensemble methods. With the increase

in the value of L the computational time increases. Hence, to keep the compu-

tational time low we conducted all the experiments with L = 50.

• mtry is another parameter in RaF and RRoF used to control randomness of the

algorithm. mtry is the number of features used for splitting at each node. mtry

is set to round(
p
n), where n represents the dimensions of the data samples.

73

https://github.com/P-N-Suganthan/CODES
http://www.optimal-group.org/Resource/TWSVM.html

(a) Ilpd-indian-liver. (b) Musk-1.

(c) Seeds. (d) Statlog-australian-credit.

Figure 3.1: Influence of the parameters c1 and c3.

• For RoF, the number of subset features is set to three [224]. If n is not divisible

by 3, randomly selected 1 or 2, as necessary, features from other features are used

to complete the final feature subset. For all the experiments with regularization

method as Tikhonov, we used � = 0.01.

• For TBRaF, TBRoF and TBRRoF, we performed grid search over the parame-

ters of c1 and c3 with the parameters varying from {2�5, . . . , 25}. To reduce the

computational complexity, we set the parameters as c1 = c2 and c3 = c4.

74

3.2.2 Computational complexity analysis

Consider X as training dataset with dimensions M ⇥ n where M is the number

of samples and n is the number of features of each sample. Without any assumption

about the structure of the decision tree as computational time is highly variable, we

focus on partitioning the samples at a given node. In axis parallel split, each feature

is split based on the impurity criterion. The computational complexity of finding such

best split nodes is of the order of nM logM (M logM for each feature). For oblique

decision trees based on MPSVM, complexity of generalized problem is of the order of

n3 [172]. For the oblique decision tree based on TBSVM, complexity of the generalized

problem is of the order of 2(M/2)3. The training times corresponding to each model

is given in the Table 3.1, 3.2 and 3.3 for TBRaF, TBRoF and TBRRoF, respectively.

3.2.3 Influence of the parameters c1, c2, c3 and c4

Figure (3.1(a)) to Figure (3.1(d)) show the sensitivity of the proposed TBRaF

with respect to the parameters c1, c2, c3, c4 with c1 = c2, c3 = c4. Figure (3.1(a))

shows that the proposed TBRaF achieves maximum accuracy near lower values of

c1 and c3. However, this model is insensitive to higher values of parameters c1 and

c3. In Figure (3.1(b)), the model is insensitive to higher values of c1. However, the

model shows better performance at higher values of c3. Figure (3.1(c)) shows that the

performance of the proposed TBRaF model decreases if both values of c1 and c3 are

higher. However, the model shows better performance if the value of c1 is lower and

the value of c3 is higher or vice-versa. Similarly, Figure (3.1(d)) indicates that the

performance is better for higher values of c1 as compared to the lower values of c1.

From the figures, it is clear that the choice of these parameters is a subjective

matter. Thus, one must tune in these parameters to get the optimal accuracy.

3.2.4 Does TBSVM improve the decision tree ensemble?

In this subsection, we compare the classification accuracy of the proposed TBRaF,

TBRoF and TBRRoF models with the existing standard RaF, RoF and RRoF models.

75

The results obtained on multiple datasets are presented in Tables 3.1, 3.2 and 3.3.

From Table 3.1, it is clear that the proposed TBRaF outperforms or achieves better

performance as compared to the other baseline methods. The average accuracy of

TBRaF is 84% while as among the baseline models MPRaF-P achieved the maximum

accuracy of 83.49%. Also, the average rank of the proposed TBRaF model is lowest

with 2.1122. In terms of overall win-tie-loss comparison, the proposed TBRaF has

emerged as overall winner in 21 datasets while as other baseline models show win at

less than or equal to 9 datasets.

From Table 3.2, one can see that the TBRoF does not show much improvement

w.r.t. standard RoF and MPRoF-P. However, the proposed TBRoF achieves better

performance than MPRoF-T and MPRoF-N. The average rank and overall win of

the proposed TBRoF is second to RoF. In terms of overall-win-tie-loss, the proposed

TBRoF is second to RoF with the number of wins 21 and 18 for RoF and TBRoF,

respectively.

Similarly in Table 3.3, the proposed TBRRoF achieves better average accuracy

and lower rank as compared to other baseline models. The proposed TBRRoF has

emerged as the overall winner in 21 datasets while as other models show overall win

in 9 or less than 9 datasets.

From the above discussion, we can conclude that the proposed TBRaF and TBR-

RoF with di↵erent base classifiers have improved the standard models in terms of

average accuracy, average rank and the overall win-tie-loss performance.

76

Table 3.1: Classification accuracy1 of RaF, MPRaF-T, MPRaF-P, MPRaF-N and
proposed TBRaF.

Datasets RaF MPRaF-T MPRaF-P MPRaF-N Proposed TBRaF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

balance-scale 0.8531±0.021 0.8893±0.02 0.888±0.02 0.8925±0.022 0.8979±0.018

1.53602 2.0714 2.82122 2.08447 5.65959, 0.25, 0.0625

balloons 0.5625±0.212 0.5125±0.189 0.55±0.237 0.575±0.183 0.5375±0.233

0.0419774 0.0550788 0.0676103 0.0611679 0.140481, 0.25, 16

breast-cancer-

wisc-diag

0.9525±0.014 0.9722±0.014 0.967±0.011 0.9708±0.013 0.9687±0.015

5.64472 0.519897 2.37919 0.666441 5.34323, 0.25, 0.25

breast-cancer-

wisc-prog

0.7741±0.052 0.7862±0.055 0.7841±0.063 0.7912±0.053 0.8023±0.054

2.79874 0.594735 1.96744 0.709238 1.54653, 0.0625, 0.5

breast-cancer-

wisc

0.966±0.01 0.9685±0.009 0.9651±0.009 0.9691±0.009 0.9674±0.009

1.05521 0.629595 1.05363 0.718628 3.78236, 0.03125,

0.125

breast-cancer 0.7273±0.043 0.7398±0.05 0.7321±0.043 0.7412±0.045 0.7336±0.042

1.13152 1.14917 1.67626 1.18845 3.18361, 0.03125,

0.0625

CTG-10clases 0.8554±0.014 0.8185±0.013 0.8491±0.014 0.7981±0.018 0.8253±0.016

21.3329 14.3621 26.9488 16.4288 71.4426, 0.03125,

0.03125

CTG-3clases 0.9371±0.01 0.9166±0.009 0.9348±0.011 0.9056±0.009 0.9209±0.008

13.0621 5.70305 14.2068 6.65877 66.5011, 0.03125,

0.03125

Continued on next page

1Average accuracy obtained in five times 4-fold cross validation

77

Table 3.1 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N Proposed TBRaF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

conn-bench-

sonar-mines-

rocks

0.7913±0.05 0.8192±0.057 0.7952±0.059 0.8096±0.057 0.8144±0.053

3.56253 0.705381 2.77231 0.896123 1.56348, 0.03125, 4

cylinder-bands 0.7746±0.047 0.7422±0.051 0.7613±0.042 0.7215±0.047 0.7426±0.03

3.56915 2.09743 4.8048 2.46726 6.13782, 0.125, 1

dermatology 0.9743±0.014 0.9765±0.011 0.9754±0.012 0.9738±0.013 0.9754±0.009

1.18396 1.22938 2.25063 1.49392 5.13847, 0.5, 1

echocardiogram 0.8279±0.051 0.8431±0.05 0.8324±0.054 0.8336±0.057 0.8444±0.061

0.571991 0.442826 0.780068 0.509125 1.2295, 0.5, 0.125

fertility 0.878±0.058 0.88±0.059 0.884±0.06 0.88±0.059 0.88±0.059

0.233329 0.278645 0.389356 0.272389 0.769963, 0.03125, 1

haberman-

survival

0.721±0.043 0.7138±0.045 0.7197±0.05 0.7256±0.049 0.7405±0.041

1.18723 1.15411 1.50033 1.22006 1.53548, 0.0625, 32

heart-

hungarian

0.8206±0.056 0.8193±0.054 0.8138±0.05 0.8274±0.044 0.824±0.044

1.06171 0.909603 1.50164 0.978653 2.66378, 0.03125, 16

hepatitis 0.8195±0.045 0.8179±0.041 0.8209±0.032 0.8286±0.037 0.819±0.031

0.582215 0.437568 0.782073 0.509688 1.38997, 0.0625, 4

ilpd-indian-

liver

0.7117±0.032 0.7176±0.042 0.7087±0.037 0.7039±0.04 0.7156±0.028

3.93123 2.24851 3.26439 2.19885 4.52837, 0.03125, 2

ionosphere 0.93±0.026 0.9277±0.029 0.9453±0.022 0.9237±0.029 0.9334±0.027

4.68988 0.834947 3.25767 0.973408 2.28928, 0.03125, 0.25

iris 0.9412±0.031 0.9546±0.024 0.9506±0.034 0.9642±0.026 0.9547±0.024

Continued on next page

78

Table 3.1 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N Proposed TBRaF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

0.260484 0.235475 0.280535 0.235618 0.728634, 0.03125,

0.0625

led-display 0.7188±0.021 0.7112±0.028 0.7146±0.025 0.711±0.026 0.7088±0.022

1.65933 3.61142 4.34234 3.21508 12.0478, 0.03125,

0.125

libras 0.7672±0.033 0.8367±0.032 0.8128±0.034 0.8267±0.038 0.8506±0.031

11.5398 4.59987 10.4651 5.31686 10.117, 0.25, 0.125

low-res-spect 0.8892±0.026 0.8968±0.026 0.8904±0.023 0.8825±0.026 0.9024±0.028

12.9121 2.12658 13.88 2.87792 13.5362, 32, 0.03125

lymphography 0.8216±0.059 0.8297±0.06 0.827±0.068 0.8176±0.08 0.8419±0.077

0.538933 0.69192 1.06478 0.750724 1.71002, 0.03125, 0.25

mammographic 0.8237±0.021 0.8237±0.022 0.8256±0.021 0.8293±0.018 0.8244±0.023

2.68687 2.4751 3.57924 2.53127 9.69897, 0.0625,

0.0625

molec-biol-

promoter

0.8457±0.085 0.7771±0.088 0.8266±0.07 0.7604±0.065 0.8078±0.066

0.655743 0.408548 0.863222 0.49062 0.711638, 0.125, 0.5

musk-1 0.8685±0.027 0.8748±0.028 0.8634±0.029 0.8786±0.032 0.8761±0.025

13.9999 1.99875 10.081 2.6516 4.6471, 0.0625, 32

oocytes-

merluccius-

nucleus-4d

0.7914±0.025 0.8346±0.021 0.8295±0.021 0.8233±0.015 0.8389±0.015

31.7648 4.05487 13.44 4.56613 12.5657, 0.0625,

0.03125

oocytes-

merluccius-

states-2f

0.9225±0.015 0.9198±0.017 0.9235±0.015 0.9209±0.016 0.9248±0.016

Continued on next page

79

Table 3.1 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N Proposed TBRaF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

19.6519 2.14772 8.01702 2.48453 16.169, 0.0625, 0.125

oocytes-

trisopterus-

nucleus-2f

0.7989±0.025 0.8243±0.022 0.8173±0.019 0.825±0.024 0.832±0.019

23.325 3.35974 8.36373 3.83251 10.8075, 0.0625,

0.0625

oocytes-

trisopterus-

states-5b

0.9086±0.017 0.9235±0.013 0.9136±0.019 0.9169±0.014 0.9279±0.016

25.0987 2.17577 15.7213 3.05768 12.3638, 0.0625,

0.03125

parkinsons 0.8903±0.038 0.9202±0.039 0.9017±0.037 0.9046±0.039 0.9108±0.048

1.67672 0.47586 1.13345 0.53735 1.29587, 0.03125, 0.5

pima 0.7609±0.029 0.7628±0.035 0.757±0.029 0.7607±0.031 0.7576±0.028

5.16697 2.72914 4.24306 2.96877 8.50438, 0.03125, 4

pittsburg-

bridges-

MATERIAL

0.8547±0.074 0.8565±0.064 0.8489±0.064 0.8659±0.057 0.8696±0.054

0.274766 0.375906 0.532384 0.373841 0.979578, 0.125, 4

pittsburg-

bridges-REL-L

0.7091±0.075 0.7197±0.055 0.7275±0.065 0.7195±0.056 0.7369±0.061

0.429036 0.581914 0.872204 0.637329 1.4768, 0.03125, 4

pittsburg-

bridges-SPAN

0.6522±0.085 0.6696±0.075 0.6652±0.063 0.6717±0.085 0.6826±0.091

0.379814 0.534946 0.735547 0.571372 1.32874, 0.125, 8

Continued on next page

80

Table 3.1 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N Proposed TBRaF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

pittsburg-

bridges-T-OR-

D

0.8531±0.061 0.8573±0.059 0.855±0.064 0.8653±0.063 0.8611±0.07

0.239393 0.264411 0.347137 0.240879 0.715674, 0.125,

0.03125

planning 0.695±0.058 0.7102±0.063 0.7146±0.069 0.7124±0.07 0.7168±0.061

1.59859 0.745928 1.20486 0.847941 2.22809, 0.0625, 0.5

post-operative 0.6972±0.074 0.6926±0.067 0.6949±0.078 0.7038±0.075 0.7106±0.082

0.296504 0.436419 0.623308 0.460275 0.852061, 0.25, 0.125

seeds 0.9192±0.034 0.9449±0.032 0.9286±0.037 0.9333±0.034 0.9458±0.035

0.933655 0.39269 0.810089 0.434924 1.82897, 0.5, 0.03125

statlog-

australian-

credit

0.66±0.032 0.6464±0.045 0.6577±0.026 0.6643±0.031 0.6782±0.035

4.944 3.15254 5.30835 3.44116 3.22101, 2, 2

statlog-

german-credit

0.7574±0.024 0.7424±0.017 0.749±0.024 0.7364±0.03 0.7514±0.025

5.49939 4.12323 7.33562 4.37016 15.1641, 0.125, 2

statlog-heart 0.8133±0.038 0.834±0.035 0.84±0.034 0.8369±0.033 0.8319±0.028

1.33561 0.808507 1.5169 0.932894 3.31014, 0.25, 0.5

statlog-image 0.9729±0.005 0.9739±0.007 0.9761±0.006 0.9679±0.006 0.9697±0.007

18.9464 6.79109 16.9491 7.43291 70.1839, 0.0625,

0.03125

statlog-vehicle 0.7357±0.026 0.7634±0.024 0.7579±0.034 0.7586±0.023 0.7671±0.025

7.04925 3.92815 7.70733 4.47957 12.5013, 0.03125,

0.03125

Continued on next page

81

Table 3.1 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N Proposed TBRaF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

synthetic-

control

0.9787±0.011 0.992±0.005 0.9863±0.007 0.9817±0.012 0.986±0.011

11.6504 1.43298 9.54569 2.42161 4.7429, 0.03125, 1

tic-tac-toe 0.9793±0.011 0.977±0.013 0.9768±0.015 0.9572±0.02 0.976±0.016

2.37135 2.81796 3.95174 2.98624 9.75575, 0.03125,

0.03125

vertebral-

column-2clases

0.8263±0.043 0.8464±0.03 0.8458±0.035 0.8405±0.041 0.8536±0.033

1.62642 0.967857 1.13434 0.912168 2.42357, 0.0625, 2

wine 0.9765±0.019 0.9808±0.016 0.9776±0.016 0.9763±0.015 0.9775±0.017

0.921645 0.34843 0.736564 0.41319 0.949454, 0.03125,

0.125

zoo 0.9367±0.053 0.9387±0.041 0.9288±0.051 0.9348±0.046 0.9465±0.045

0.234978 0.402426 0.546577 0.434458 0.970172, 0.0625,

0.0625

Average Accu-

racy

0.8294 0.8346 0.8349 0.8330 0.8401

Average Rank 3.7449 2.8265 3.2143 3.1020 2.1122

Overall Win-

Tie-Loss

7-0-22 8-0-6 4-0-6 9-0-13 21-0-1

Here, CTG denotes cardiotocography.

82

Table 3.2: Classification accuracy2 of RoF, MPRoF-T, MPRoF-P, MPRoF-N and
proposed TBRoF.

Datasets RoF MPRoF-T MPRoF-P MPRoF-N Proposed TBRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

balance-scale 0.878±0.0219 0.8738±0.035 0.8946±0.03640.8873±0.0379 0.7946±0.1841

6.34407 2.2999 6.15686 2.75258 6.30545, 0.0625, 2

balloons 0.65±0.1884 0.5±0.2294 0.5375±0.1862 0.5375±0.247 0.6625±0.2841

0.143577 0.0878862 0.12783 0.0956771 0.205192, 8, 0.03125

breast-cancer-

wisc-diag

0.9718±0.0125 0.9511±0.0206 0.9595±0.016 0.9437±0.0237 0.9764±0.0141

84.4053 1.83243 50.3251 3.52055 4.44207, 0.0625, 8

breast-cancer-

wisc-prog

0.8009±0.0462 0.6825±0.0714 0.7846±0.0457 0.729±0.0408 0.8039±0.0558

32.0557 1.73 30.4958 3.2382 3.07957, 16, 1

breast-cancer-

wisc

0.9662±0.0106 0.9453±0.0129 0.9588±0.0109 0.9593±0.0118 0.9599±0.0113

11.217 0.83596 8.32655 1.23002 7.8142, 1, 1

breast-cancer 0.6993±0.0425 0.6672±0.0427 0.6866±0.051 0.6966±0.0506 0.7246±0.0662

6.54187 1.34891 6.81218 1.7516 4.96631, 0.5, 0.5

CTG-10clases 0.8666±0.0115 0.716±0.0234 0.8626±0.0131 0.7811±0.0156 0.7786±0.0128

554.614 39.5324 615.48 76.0299 151.284, 0.125, 0.125

CTG-3clases 0.9404±0.0091 0.8849±0.0141 0.9398±0.0098 0.8769±0.0144 0.8958±0.017

492.875 13.914 520.895 22.9332 77.2051, 0.0625,

0.125

conn-bench-

sonar-mines-

rocks

0.8307±0.0452 0.7278±0.0519 0.7817±0.0596 0.748±0.0793 0.7875±0.046

73.6051 3.40861 60.825 6.01374 4.71071, 1, 32

Continued on next page

2Average accuracy obtained in five times 4-fold cross validation

83

Table 3.2 – continued from previous page

Datasets RoF MPRoF-T MPRoF-P MPRoF-N Proposed TBRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

cylinder-bands 0.7972±0.0329 0.6425±0.0388 0.7953±0.0373 0.7273±0.0395 0.7031±0.0407

90.6537 6.04663 101.946 9.012 10.5082, 0.5, 2

dermatology 0.9694±0.0182 0.9579±0.0155 0.9727±0.0155 0.959±0.0222 0.9743±0.0101

13.4256 2.43307 16.3661 3.87778 4.58952, 0.0625, 4

echocardiogram0.8174±0.0579 0.761±0.0683 0.8249±0.0615 0.8511±0.05920.8218±0.0708

6.00092 0.654299 7.3419 0.8314 2.11714, 2, 8

fertility 0.874±0.0584 0.804±0.084 0.862±0.0615 0.83±0.0732 0.88±0.0467

2.27835 0.450268 2.65816 0.560399 0.474786, 1, 32

haberman-

survival

0.6993±0.0412 0.6922±0.0477 0.6875±0.0568 0.6795±0.0587 0.7339±0.0461

7.86895 1.92986 3.50187 1.99036 8.93732, 0.5, 1

heart-

hungarian

0.8034±0.0402 0.7675±0.0501 0.798±0.0365 0.8033±0.0438 0.802±0.0376

14.7009 1.46215 12.1157 1.84952 3.82945, 1, 1

hepatitis 0.8025±0.0517 0.7709±0.0661 0.7983±0.0583 0.8383±0.04180.81±0.0504

8.75994 1.01502 10.0063 1.25461 3.05519, 0.5, 16

ilpd-indian-

liver

0.7009±0.0327 0.6619±0.038 0.6899±0.0379 0.67±0.0437 0.7156±0.0271

41.7445 3.66013 16.5748 3.89046 6.54913, 0.5, 1

ionosphere 0.943±0.0255 0.8752±0.0351 0.9436±0.02370.886±0.0288 0.9031±0.0302

77.4499 2.04324 82.3376 3.24659 9.77862, 0.5, 32

iris 0.9452±0.0417 0.968±0.0238 0.9706±0.0192 0.9733±0.0196 0.9771±0.0236

1.44854 0.314701 0.769036 0.368306 1.20041, 0.5, 0.5

led-display 0.7106±0.0291 0.711±0.0299 0.7134±0.029 0.709±0.0321 0.709±0.0295

6.40203 6.66245 11.4223 7.20944 18.4051, 0.03125, 2

libras 0.8572±0.0425 0.6888±0.0599 0.85±0.055 0.7538±0.0525 0.7511±0.0455

220.033 65.2071 266.071 129.963 34.0787, 0.125, 0.5

Continued on next page

84

Table 3.2 – continued from previous page

Datasets RoF MPRoF-T MPRoF-P MPRoF-N Proposed TBRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

low-res-spect 0.8942±0.0194 0.8263±0.0374 0.8847±0.0317 0.8071±0.0425 0.8621±0.0272

316.559 36.0088 272.133 61.7302 31.3146, 4, 32

lymphography 0.8351±0.0428 0.7256±0.0627 0.8216±0.0506 0.8013±0.08 0.7689±0.0597

4.19793 1.2612 6.21308 1.83226 1.68999, 0.0625, 16

mammographic0.7841±0.0233 0.7779±0.026 0.7735±0.0239 0.7894±0.0205 0.8102±0.0195

23.1274 5.76322 18.9043 6.02513 22.3329, 0.25, 0.25

molec-biol-

promoter

0.8483±0.0642 0.7105±0.0978 0.8387±0.0531 0.7184±0.1075 0.7125±0.0696

20.1039 1.59418 24.7746 2.67736 1.06812, 0.25, 32

musk-1 0.8962±0.0355 0.8075±0.0387 0.897±0.0292 0.8815±0.0351 0.8558±0.0297

728.169 49.8765 772.725 105.082 17.7031, 2, 32

oocytes-

merluccius-

nucleus-4d

0.8389±0.019 0.7385±0.0241 0.7919±0.029 0.7868±0.0328 0.8231±0.0184

429.307 13.6073 254.303 21.5857 33.0952, 0.5, 0.03125

oocytes-

merluccius-

states-2f

0.9281±0.0131 0.8953±0.0176 0.9183±0.0153 0.9091±0.0134 0.9178±0.0113

235.95 5.44743 156.404 9.11346 35.8439, 0.5, 0.25

oocytes-

trisopterus-

nucleus-2f

0.8337±0.0184 0.728±0.0323 0.7714±0.0253 0.7618±0.026 0.8015±0.022

259.341 8.43164 124.478 14.1039 21.0519, 0.25, 1

oocytes-

trisopterus-

states-5b

0.9326±0.0115 0.9002±0.019 0.9353±0.01420.9287±0.0131 0.9309±0.0153

284.709 4.92042 239.741 9.70073 28.4211, 1, 0.5

Continued on next page

85

Table 3.2 – continued from previous page

Datasets RoF MPRoF-T MPRoF-P MPRoF-N Proposed TBRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

parkinsons 0.9106±0.056 0.8438±0.0571 0.8859±0.0461 0.8802±0.0582 0.8928±0.0463

24.4298 1.22282 14.4354 2.21427 2.92968, 0.125, 4

pima 0.7486±0.0273 0.683±0.0305 0.7263±0.0271 0.7192±0.0235 0.7653±0.0316

76.3127 5.03872 30.7515 6.39343 9.23343, 1, 0.25

pittsburg-

bridges-

MATERIAL

0.8299±0.0688 0.8166±0.0704 0.8274±0.0813 0.856±0.0493 0.8151±0.0601

2.73545 0.728494 2.93366 0.874335 1.41142, 0.03125,

0.25

pittsburg-

bridges-REL-

L

0.6671±0.0986 0.6188±0.1147 0.6585±0.0963 0.6685±0.08840.6011±0.1044

3.27439 1.15099 3.94896 1.38253 2.40118, 0.03125, 2

pittsburg-

bridges-SPAN

0.626±0.0696 0.5717±0.0884 0.6108±0.0791 0.6239±0.0763 0.5956±0.087

3.08439 1.08511 3.37997 1.25927 2.44113, 0.0625, 32

pittsburg-

bridges-T-OR-

D

0.8545±0.0633 0.8605±0.0418 0.8389±0.0481 0.8297±0.0593 0.8608±0.0644

2.1259 0.514897 1.40227 0.587455 0.967282, 0.25, 2

planning 0.6857±0.0499 0.6224±0.0663 0.6431±0.0628 0.6276±0.0606 0.712±0.0439

18.8087 1.62626 10.8308 2.38968 1.94542, 0.5, 0.125

post-operative 0.6282±0.1088 0.5721±0.1306 0.6261±0.1235 0.6395±0.1163 0.7094±0.1065

2.21755 0.917702 2.85467 1.0935 0.394733, 8, 8

seeds 0.9389±0.0302 0.9227±0.0403 0.9285±0.0377 0.9143±0.0377 0.9523±0.0286

6.70914 0.653522 4.46574 0.965109 3.15239, 4, 0.5

Continued on next page

86

Table 3.2 – continued from previous page

Datasets RoF MPRoF-T MPRoF-P MPRoF-N Proposed TBRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

statlog-

australian-

credit

0.6377±0.0295 0.571±0.0301 0.5907±0.0336 0.5901±0.0275 0.6782±0.0249

104.333 6.67357 56.661 9.82792 4.75702, 4, 8

statlog-

german-credit

0.7708±0.0276 0.6796±0.0297 0.766±0.0313 0.7452±0.035 0.7512±0.032

111.489 8.67586 110.458 12.7143 23.2292, 0.5, 0.0625

statlog-heart 0.8206±0.042 0.7386±0.0405 0.8021±0.0405 0.7865±0.0474 0.8112±0.0539

18.717 1.64374 14.8313 2.00331 3.2454, 2, 2

statlog-image 0.9833±0.0061 0.9326±0.0121 0.9767±0.0063 0.9324±0.0175 0.9637±0.0076

361.169 16.7608 230.238 32.9771 96.6169, 0.125,

0.03125

statlog-vehicle 0.7902±0.0237 0.7643±0.0285 0.8002±0.03240.7867±0.0347 0.7943±0.0225

165.044 7.61175 106.054 13.576 27.3681, 0.5, 0.125

synthetic-

control

0.9906±0.0073 0.949±0.0215 0.9716±0.0193 0.977±0.0126 0.98±0.0192

231.585 6.37416 165.883 14.4046 10.8487, 0.25, 4

tic-tac-toe 0.9895±0.0055 0.9716±0.0076 0.9835±0.0072 0.9832±0.0067 0.9832±0.0067

13.4263 1.26946 6.08404 1.3285 10.1453, 8, 0.0625

vertebral-

column-

2clases

0.8676±0.0345 0.8302±0.0361 0.8476±0.0339 0.8426±0.0425 0.8504±0.0451

10.4226 1.17567 5.82557 1.44774 4.82573, 1, 4

wine 0.9754±0.0285 0.9742±0.0244 0.9754±0.025 0.9674±0.0247 0.9943±0.01

8.86472 0.483222 2.849 0.586307 0.957313, 0.0625, 4

zoo 0.9403±0.0527 0.9366±0.0585 0.9364±0.0509 0.9386±0.0491 0.9505±0.0424

Continued on next page

87

Table 3.2 – continued from previous page

Datasets RoF MPRoF-T MPRoF-P MPRoF-N Proposed TBRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

1.63271 0.920206 2.50957 1.16041 1.30516, 1, 1

Average Accu-

racy

0.8361 0.7800 0.8233 0.8068 0.8226

Average Rank 1.8469 4.5918 2.7347 3.4592 2.3673

Overall Win-

Tie-Loss

21-0-1 0-0-34 6-0-2 4-0-8 18-0-3

Here, CTG denotes cardiotocography.

Table 3.3: Classification accuracy3 of RRoF, MPRRoF-T, MPRRoF-P, MPRRoF-N
and proposed TBRROF.

Datasets RRoF MPRRoF-T MPRRoF-P MPRRoF-N Proposed TBRRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

balance-scale 0.8646±0.0209 0.903±0.0169 0.8937±0.0201 0.9023±0.0203 0.902±0.0218

4.09479 3.15363 4.34982 3.37573 7.7355, 0.125, 0.0625

balloons 0.5625±0.179 0.5375±0.2599 0.6375±0.2496 0.6375±0.2217 0.625±0.25

0.124138 0.132158 0.148812 0.135168 0.300394, 0.03125,

0.125

breast-cancer-

wisc-diag

0.9666±0.0101 0.9729±0.0118 0.9725±0.013 0.9715±0.0108 0.9753±0.0083

15.6612 1.30613 5.7209 1.50981 6.63948, 0.0625, 2

breast-cancer-

wisc-prog

0.8133±0.04 0.8061±0.0425 0.803±0.046 0.804±0.0435 0.8133±0.0395

7.21432 1.24913 4.05133 1.59607 3.16648, 0.0625, 0.25

Continued on next page

3Average accuracy obtained in five times 4-fold cross validation

88

Table 3.3 – continued from previous page

Datasets RRoF MPRRoF-T MPRRoF-P MPRRoF-N Proposed TBRRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

breast-cancer-

wisc

0.9662±0.0132 0.965±0.0116 0.9642±0.0126 0.9665±0.0116 0.9668±0.0119

4.79869 1.16632 2.15567 1.29555 11.276, 0.125, 0.03125

breast-cancer 0.726±0.0519 0.7203±0.045 0.7294±0.0435 0.7246±0.0474 0.7357±0.047

3.61585 2.09501 3.3657 2.31028 6.4252, 0.5, 32

CTG-10clases 0.8509±0.0159 0.8133±0.017 0.8401±0.013 0.802±0.0204 0.8257±0.0183

116.953 32.0436 95.0748 34.6305 87.5706, 0.03125,

0.03125

CTG-3clases 0.932±0.0105 0.9174±0.0097 0.9242±0.0096 0.9151±0.0103 0.9201±0.0116

91.7823 10.5951 43.0608 12.1037 88.621, 0.03125,

0.03125

conn-bench-

sonar-mines-

rocks

0.8298±0.048 0.8201±0.0437 0.8211±0.0409 0.8057±0.0521 0.8298±0.0455

12.0361 1.72983 6.60695 2.1017 4.01408, 0.25, 2

cylinder-bands 0.7972±0.0227 0.7718±0.0365 0.7773±0.0315 0.7453±0.032 0.78±0.0332

17.5184 4.02551 12.5728 4.52613 10.5769, 0.125, 1

dermatology 0.9764±0.0171 0.9742±0.0143 0.9742±0.0168 0.9743±0.0147 0.9748±0.0151

3.88823 2.47363 4.8165 3.06688 6.07008, 0.0625, 0.5

echocardiogram0.814±0.0461 0.8348±0.0477 0.8321±0.0502 0.8231±0.0484 0.8487±0.0465

1.89361 0.727468 1.26649 0.753632 1.86393, 0.5, 8

fertility 0.878±0.0922 0.88±0.083 0.874±0.0802 0.88±0.083 0.88±0.082

0.832361 0.498083 0.795095 0.476865 1.32369, 0.0625, 1

haberman-

survival

0.7071±0.0456 0.7052±0.0447 0.7083±0.0419 0.7071±0.0435 0.7391±0.0456

5.14339 2.01874 2.44577 1.85193 2.42135, 0.03125, 8

Continued on next page

89

Table 3.3 – continued from previous page

Datasets RRoF MPRRoF-T MPRRoF-P MPRRoF-N Proposed TBRRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

heart-

hungarian

0.8081±0.045 0.813±0.0431 0.8169±0.04510.8082±0.0435 0.813±0.0441

3.97653 1.62576 2.84685 1.63621 3.93937, 0.5, 0.03125

hepatitis 0.8078±0.0673 0.8206±0.0621 0.8232±0.0624 0.8296±0.05790.8246±0.0474

2.09076 0.854563 1.72104 0.920929 2.13331, 0.03125, 0.25

ilpd-indian-

liver

0.7108±0.0343 0.7108±0.0325 0.7129±0.03740.7036±0.0418 0.7125±0.0279

14.5554 3.65307 5.81799 3.71275 9.51685, 0.25, 0.25

ionosphere 0.9452±0.0257 0.9429±0.0223 0.9498±0.02030.9436±0.0212 0.9469±0.015

15.4361 1.68565 8.05488 1.74154 5.1604, 0.0625, 0.25

iris 0.9498±0.0371 0.9644±0.0294 0.963±0.0271 0.9655±0.0268 0.9683±0.0248

1.02457 0.442621 0.619184 0.463659 1.65091, 0.25, 0.03125

led-display 0.7036±0.0326 0.7044±0.0327 0.7046±0.03240.7016±0.0336 0.662±0.0724

3.96341 6.77295 8.0428 5.88161 16.0665, 0.0625, 0.5

libras 0.865±0.0401 0.8683±0.0378 0.8688±0.0261 0.8533±0.0372 0.8744±0.029

32.6966 9.97352 21.7712 10.8252 15.0519, 0.125,

0.03125

low-res-spect 0.8914±0.0314 0.8944±0.025 0.8899±0.03 0.8895±0.0286 0.9012±0.028

38.8281 5.48187 30.9212 7.00611 12.2346, 0.0625,

0.0625

lymphography 0.8351±0.0567 0.8418±0.052 0.8405±0.0649 0.8297±0.0632 0.8445±0.0643

1.73855 1.31614 2.36874 1.46099 2.84016, 0.0625,

0.03125

mammographic 0.8054±0.0265 0.8214±0.0272 0.8035±0.0224 0.8204±0.026 0.827±0.0225

9.01402 5.00246 7.33527 4.93632 9.75736, 0.0625, 2

molec-biol-

promoter

0.8473±0.0588 0.78±0.0821 0.8076±0.0633 0.7789±0.0923 0.7968±0.0614

Continued on next page

90

Table 3.3 – continued from previous page

Datasets RRoF MPRRoF-T MPRRoF-P MPRRoF-N Proposed TBRRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

3.77228 1.00445 2.93334 1.14846 1.72298, 0.0625, 1

musk-1 0.9004±0.0293 0.8932±0.0265 0.8886±0.03 0.8886±0.0293 0.8865±0.0285

47.0719 4.72229 23.9045 6.00834 7.38054, 0.125, 0.25

oocytes-

merluccius-

nucleus-4d

0.834±0.0246 0.8387±0.024 0.8399±0.0221 0.842±0.0278 0.8395±0.0302

67.1065 7.52705 24.1753 8.59568 21.8265, 0.03125,

0.125

oocytes-

merluccius-

states-2f

0.9228±0.0129 0.9252±0.0137 0.925±0.0146 0.9252±0.0132 0.9273±0.0119

41.5749 4.35347 16.9693 4.90871 19.6346, 0.03125,

0.0625

oocytes-

trisopterus-

nucleus-2f

0.8241±0.0191 0.8208±0.0203 0.826±0.0182 0.8245±0.0218 0.8364±0.0174

50.7754 6.49082 16.6738 7.25101 17.8984, 0.03125,

0.03125

oocytes-

trisopterus-

states-5b

0.9285±0.0144 0.9287±0.016 0.9287±0.0142 0.9296±0.0136 0.9313±0.0156

56.9417 4.75703 20.3494 5.75159 19.7663, 0.03125,

0.0625

parkinsons 0.908±0.0439 0.9344±0.03250.9232±0.0346 0.923±0.0463 0.9203±0.042

4.75873 0.920433 2.52871 1.06274 2.07906, 0.03125,

0.0625

pima 0.7507±0.029 0.7468±0.028 0.7523±0.0323 0.7541±0.0329 0.7601±0.0314

Continued on next page

91

Table 3.3 – continued from previous page

Datasets RRoF MPRRoF-T MPRRoF-P MPRRoF-N Proposed TBRRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

20.4454 4.9798 8.63783 5.10208 15.4454, 0.5, 0.25

pittsburg-

bridges-

MATERIAL

0.8247±0.0433 0.8416±0.0513 0.8322±0.0499 0.8436±0.0467 0.8605±0.0488

1.12882 0.753009 1.30153 0.798122 1.53054, 0.25, 0.25

pittsburg-

bridges-REL-L

0.6856±0.077 0.696±0.0783 0.7038±0.087 0.699±0.0724 0.7025±0.0811

1.67203 1.22721 1.9887 1.24888 2.38282, 0.03125, 8

pittsburg-

bridges-SPAN

0.6413±0.0976 0.6521±0.0858 0.6804±0.09170.6586±0.1067 0.6652±0.0998

1.5292 1.09759 1.80332 1.19927 2.14966, 0.03125, 32

pittsburg-

bridges-T-OR-

D

0.8665±0.0661 0.88±0.0676 0.8825±0.07120.8708±0.0687 0.8763±0.0712

1.05365 0.56043 0.907649 0.586204 1.42341, 0.125, 0.25

planning 0.7091±0.0656 0.7209±0.0617 0.7208±0.0574 0.722±0.0669 0.7253±0.063

6.05221 1.59899 2.56125 1.56499 3.59153, 0.0625,

0.03125

post-operative 0.6299±0.0665 0.6592±0.0681 0.6456±0.0613 0.6702±0.0649 0.7104±0.0652

1.1116 0.991297 1.63455 1.01075 0.455685, 8, 0.0625

seeds 0.9418±0.0352 0.9426±0.029 0.9428±0.0301 0.9399±0.0367 0.9457±0.0292

3.19883 0.777223 1.93635 0.865785 3.64155, 8, 0.03125

statlog-

australian-

credit

0.6423±0.0285 0.6203±0.0354 0.6266±0.0276 0.6368±0.0306 0.6783±0.0259

23.5354 6.00389 11.3536 6.48367 2.41396, 8, 0.0625

Continued on next page

92

Table 3.3 – continued from previous page

Datasets RRoF MPRRoF-T MPRRoF-P MPRRoF-N Proposed TBRRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

statlog-

german-credit

0.7648±0.024 0.7434±0.0269 0.7566±0.0288 0.7412±0.022 0.7548±0.0285

20.3747 7.23834 15.0714 7.58658 19.6344, 0.03125, 0.5

statlog-heart 0.8356±0.0542 0.8238±0.0504 0.8259±0.0498 0.8334±0.0493 0.8394±0.053

4.79391 1.50302 3.42737 1.74863 3.73004, 0.5, 1

statlog-image 0.9779±0.0064 0.9774±0.0048 0.9796±0.00680.9759±0.0062 0.9758±0.0062

76.0733 12.0994 37.9945 13.4508 71.504, 0.03125,

0.03125

statlog-vehicle 0.7793±0.0325 0.7725±0.0371 0.7784±0.0391 0.7744±0.0359 0.7853±0.0361

34.0603 7.85545 20.1122 8.66157 20.941, 0.03125,

0.03125

synthetic-

control

0.9863±0.0085 0.9923±0.00750.9893±0.0079 0.987±0.0073 0.9886±0.0061

30.6564 3.40665 22.1319 4.9698 10.9711, 0.125, 0.5

tic-tac-toe 0.9893±0.0054 0.9868±0.0089 0.9866±0.0092 0.9843±0.0114 0.9839±0.01

6.55748 4.60064 6.91135 5.0801 13.8609, 0.03125,

0.0625

vertebral-

column-2clases

0.8612±0.0231 0.8574±0.0214 0.8464±0.0293 0.8541±0.0299 0.8541±0.0343

3.43212 1.35993 1.82605 1.43099 4.21239, 0.0625,

0.0625

wine 0.9775±0.0206 0.9797±0.0216 0.9785±0.0225 0.9808±0.01840.9797±0.0191

2.43472 0.586922 1.73049 0.721739 2.60316, 4, 0.03125

zoo 0.9424±0.0507 0.9403±0.0526 0.9462±0.05540.9424±0.0584 0.9423±0.0556

0.528149 0.747051 0.990783 0.827133 1.61777, 0.125, 0.0625

Continued on next page

93

Table 3.3 – continued from previous page

Datasets RRoF MPRRoF-T MPRRoF-P MPRRoF-N Proposed TBRRoF

Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std Accuracy±Std

Time(s) Time(s) Time(s) Time(s) Time(s), c1, c3

Average Accu-

racy

0.8363 0.8359 0.8396 0.8364 0.8440

Average Rank 3.3980 3.3061 2.8163 3.3673 2.1122

Overall Win-

Tie-Loss

9-0-18 3-0-10 9-0-5 3-0-11 21-0-4

Here, CTG denotes cardiotocography.

3.2.5 Comparison among the proposed ensemble models and

MPSVM based ensemble models

The main motive in this subsection is to verify whether the proposed TBRaF, TBRoF

and TBRRoF improve the performance with respect to other classifiers. Thus, we want to

ensure that the improvement if any observed is due to di↵erent random strategies or due to

ensemble methodology.

We first rank the performance of RaF, MPRaF-T, MPRaF-P, MPRaF-N and the pro-

posed TBRaF on each dataset and take average across all the datasets. After calculations,

the average ranks of RaF, MPRaF-T, MPRaF-P, MPRaF-N and the proposed TBRaF are

3.7449, 2.8265, 3.2143, 3.1020 and 2.1122, respectively. Then after evaluation, �2

F
= 28.0064

and FF = 8.0021. with five algorithms and 49 datasets, FF is distributed according to the

F -distribution with 5�1 = 4 and (5�1)(49�1) = 192 degrees of freedom. The critical value

of F(4,192) for ↵ = 0.05 is 2.42. So, we reject the null hypothesis. Based on the Nemenyi test

with ↵ = 0.05, the critical di↵erence (CD) for q↵ = 2.728, k = 5, N = 49 is 0.8714. Since the

di↵erence among the average ranks of pairs (RaF, MPRaF-T), (RaF, TBRaF), (MPRaF-P,

TBRaF) and (MPRaF-N, TBRaF) are 0.9184, 1.6327, 1.1021, 0.9898 which is larger than the

critical di↵erence. We can conclude that the proposed model is significantly better than

the other baseline models except MPRaF-T. However, the Nemenyi test fails to detect the

significant di↵erence between the TBRaF and MPRaF-T. Also, MPRaF-T shows better per-

formance as compared to the RaF model. The proposed TBRaF achieves maximum average

94

accuracy and lower average rank among all the baseline ensemble classifier models.

Similarly, the average ranks of RoF, MPRoF-T, MPRoF-P, MPRoF-N and the pro-

posed TBRoF are 1.8469, 4.5918, 2.7347, 3.4592 and 2.3673, respectively. Then after eval-

uation, �2

F
= 89.0707 and FF = 39.9834. With five algorithms and 49 datasets, FF is

distributed according to the F -distribution with 5 � 1 = 4 and (5 � 1)(49 � 1) = 192

degrees of freedom. The critical value of F(4,192) for ↵ = 0.05 is 2.42. So, we reject

the null hypothesis. Based on the Nemenyi test with ↵ = 0.05, the critical di↵erence

(CD) for q↵ = 2.728, k = 5, N = 49 is 0.8714. The significant di↵erence among the av-

erage ranks of pairs (MPRoF-T, RoF), (MPRoF-P, RoF), (MPRoF-N, RoF), (MPRoF-T,

MPRoF-P), (MPRoF-T, MPRoF-N), (MPRoF-T, TBRoF) and (MPRoF-N, TBRoF) are

2.7449, 0.8878, 1.6123, 1.8571, 1.1326, 2.2245 and 1.0919, respectively. Based on this, the sig-

nificant di↵erence among the algorithms is shown in Table 3.5. One can see from Table 3.5

that Nemenyi test shows that the TBRoF is better than MPRoF-T and MPRoF-N. How-

ever, the Nemenyi test fails to detect the significant di↵erence among the TBRoF and other

baseline methods like RoF and MPRoF-P. The proposed TBRoF achieves lower average rank

as compared to the other baseline methods except RoF model. However, in terms of average

accuracy no improvement is shown compared to RoF and MPRoF-P models.

Also, the average ranks of RRoF, MPRRoF-T, MPRRoF-P, MPRRoF-N and TBR-

RoF are 3.3980, 3.3061, 2.8163, 3.3673 and 2.1122, respectively. Then after evaluation

�2

F
= 23.6836 and FF = 6.5972. The significant di↵erence among the average ranks of pairs

(RRoF, TBRRoF), (MPRRoF-T, TBRRoF) and (MPRRoF-N, TBRRoF) are 1.2858, 1.1939

and 1.2551, respectively. In the Table 3.4-3.6, the numbers in the bracket represent the aver-

age rank for the algorithm, the numbers in di↵erent cells represent the statistical di↵erence

between the method in the corresponding column and its corresponding row. Empty entry

means there is no significant di↵erence between the row method and column method.

From the analysis given in Table 3.6, one can see that the proposed TBRRoF is signifi-

cantly better as compared to other baseline methods. However, Nemenyi test fails to detect

any significant di↵erence between the proposed TBRRoF and MPRRoF-P. The proposed

TBRRoF achieves lower rank and highest average accuracy as compared to MPRRoF-P.

Also, the proposed TBRRoF emerged as the overall winner in more number of datasets as

compared to other baseline models.

From Tables 3.1, 3.2 and 3.3, one can see that the average accuracy and the average rank

95

Method RaF (3.7449) MPRaF-T (2.8265) MPRaF-P (3.2143) MPRaF-N (3.1020) TBRaF (2.1122)
RaF (3.7449)
MPRaF-T (2.8265) 0.9184
MPRaF-P (3.2143)
MPRaF-N (3.1020)
TBRaF (2.1122) 1.6327 1.1021 0.9898

Table 3.4: Significant di↵erence for RaF and its ensembles at ↵ = 0.05.

Method RoF (1.8469) MPRoF-T (4.5918) MPRoF-P (2.7347) MPRoF-N (3.4592) TBRoF (2.3673)
RoF (1.8469) 2.7449 0.8878 1.6123
MPRoF-T (4.5918)
MPRoF-P (2.7347) 1.8571
MPRoF-N (3.4592) 1.1326
TBRoF (2.3673) 2.2245 1.0919

Table 3.5: Significant di↵erence for RoF and its ensembles at ↵ = 0.05.

Method RRoF (3.3980) MPRRoF-T (3.3061) MPRRoF-P (2.8163) MPRRoF-N (3.3673) TBRRoF (2.1122)
RRoF (3.3980)
MPRRoF-T (3.3061)
MPRRoF-P (2.8163)
MPRRoF-N (3.3673)
TBRRoF (2.1122) 1.2858 1.1939 1.2551

Table 3.6: Significant di↵erence for RRoF and its ensembles at ↵ = 0.05.

Table 3.7: Significant di↵erence between the TBRaF, TBRoF, TBRRoF ensemble
methods and MPRaF, MPRoF, MPRRoF ensemble methods based on win-tie-loss:
sign test.

Method Significance
(TBRaF, MPRaF-T) (34,14) 4
(TBRoF, MPRoF-T) (45,4) 4
(TBRRoF, MPRRoF-T) (37,9) 4

The numbers in the bracket for (A,B) (say) method represent the number of times A
wins w.r.t. method B , 4 means there is significant di↵erence between this pair of

algorithms.

of the classifiers of the proposed TBRaF, TBRoF and TBRRoF are better or comparable as

compared to other classifier models. The proposed TBRaF, TBRoF and TBRRoF showed

consistent performance with all the three standard base models of decision trees (RaF, RoF

and RRoF). However, the MPSVM based decision trees especially MPRoF-T and MPRoF-N

does not show the consistent performance.

96

Table 3.8: Average rank of the ensemble methods for di↵erent minleaf parameter.

Method minleaf = 1 minleaf = 2 minleaf = 3 FF

RaF 1.51 2.3 2.2 12.3812
MPRaF-T 1.84 2.06 2.1 0.9596
MPRaF-P 1.61 2.3 2.1 8.2094
MPRaF-N 1.66 2.06 2.28 5.2623
TBRaF 1.7 2 2.3 4.7473
RRoF 1.51 2.3 2.2 12.3812
MPRRoF-T 1.84 2.06 2.1 0.9596
MPRRoF-P 1.61 2.29 2.1 6.7383
MPRRoF-N 1.66 2.06 2.28 5.2623
TBRRoF 1.7 2 2.3 4.7473

3.2.6 Win-tie-loss: sign test

From Table 3.7, one can see that the sign test shows significant di↵erences among

(TBRaF, MPRaF-T), (TBRoF, MPRoF-T) and (TBRRoF, MPRRoF-T) pair of classifiers.

The proposed models achieve better performance as compared to the Tikhonov regularized

MPSVM based oblique decision trees.

3.2.7 On the e↵ect of minleaf

Parameter minleaf in decision trees represents the maximum number of data samples

within an impure node. Generally, smaller trees are generated with the large values of

minleaf. Zhang and Zhang [299] reported that the accuracy of decision tree ensemble is

robust to minleaf parameter. However, Lin and Jeon [162] reported that the optimal values

of minleaf parameter is situation dependent. In this subsection, we evaluate the results

obtained by varying the minleaf parameter from 1 to 3 on all the 49 datasets. The average

ranks of each method with di↵erent minleaf parameters are given in Table 3.8. With 3

parameter variations (minleaf = 1, 2, 3) and 49 datasets, FF is distributed according to the

F -distribution with 3 � 1 = 2 and (3 � 1)(49 � 1) = 96 degrees of freedom. The critical

value of F(2,96) for ↵ = 0.05 is 3.09. Thus, if FF > 3.09 then there is a significant di↵erence

among the values corresponding to di↵erent minleaf parameters of the method in that row.

The methods in which significant di↵erence exist among the di↵erent minleaf parameters

are highlighted.

From Table 3.8, one can see that in most of the cases Null hypothesis is rejected

97

while as in some methods no significant di↵erence exist among varying minleaf parame-

ters. Based on the Nemenyi test, critical di↵erence (CD) for ↵ = 0.05, q↵ = 2.343, k = 3

and N = 49 is 0.4734. In RaF method, the significant di↵erence exist among the varying

minleaf parameters as the di↵erence among the pairs (RaFminleaf = 2, RaFminleaf = 1) and

(RaFminleaf = 3, RaFminleaf = 1) is greater than 0.4734. Further, RaFminleaf = 1 achieves

lowest rank and hence shows better performance. Likewise, the significant di↵erence exist

among the varying minleaf parameter of the methods where FF values are highlighted. One

can see from Table 3.8 that in most of the cases smaller minleaf parameter leads to lower

rank and better performance.

3.3 Summary

In this chapter, we presented a novel approach to generate the decision tree ensembles

with di↵erent base models like RaF, RoF and RRoF. Here, the splitting plane is decided

based on multivariate features in each non-leaf node. This hyperplane is based on the hy-

perplanes generated by TBSVM. Unlike MPSVM based oblique decision trees, the proposed

TBRaF, TBRoF and TBRRoF require no explicit regularization techniques. This is due to

the reason that in TBSVM based oblique decision trees, the matrices appearing in the dual

formulation are positive-definite. Also, the structural risk minimization principle is imple-

mented in the proposed models. The proposed models show consistent performance with all

the three baseline methods (RaF, RoF, RRoF). Among all the models, the proposed TBRaF

and TBRRoF models emerge as the overall winner in 21 terms of accuracy while as other

models show lower number of overall wins. The proposed TBRaF, TBRoF and TBRRoF

show consistent performance with di↵erent base classifiers.

In this chapter, we presented the variants of the ensembles of oblique decision tree via

TBSVM. Standard RaF and the ensembles of oblique decision tree via TBSVM used boot-

strapping only at the root node. Recent study of double random forest revealed that the

application of bootstrapping at each non-leaf node results in better performance. More-

over, the presented models uses TBSVM which solves QPP at each non-leaf node, which is

computationally expensive. Hence, next chapter presents double RaF based ensemble which

overcomes these issues.

98

Chapter 4

Oblique and rotation double random forest

In previous chapter, we presented several variants of oblique ensembles of decision tree.

In this chapter, we present oblique and rotation double random forest. The proposed work is

inspired by the recent study of double random forest [91]. We used the concepts of rotations

(principle component analysis and linear discriminant analysis) and oblique hyperplane via

multi-surface proximal support vector machine (MPSVM). As suggested by Breiman [23],

the strength of unstable learners and the diversity among them are the ensemble models’ core

strength. In this chapter, we present two approaches known as oblique and rotation double

random forests. In the first approach, we propose a rotation based double random forest.

In rotation based double random forests, transformation or rotation of the feature space is

generated at each node. At each node di↵erent random feature subspace is chosen for eval-

uation, hence the transformation at each node is di↵erent. Di↵erent transformations result

in better diversity among the base learners and hence, better generalization performance.

With the double random forest as base learner, the data at each node is transformed via

two di↵erent transformations namely, principal component analysis and linear discriminant

analysis. In the second approach, we propose oblique double random forest. Decision trees

in random forest and double random forest are univariate, and this results in the generation

of axis parallel split which fails to capture the geometric structure of the data. Also, the

standard random forest may not grow su�ciently large decision trees resulting in suboptimal

performance. To capture the geometric properties and to grow the decision trees of su�cient

depth, we propose oblique double random forest. The oblique double random forest models

are multivariate decision trees. At each non-leaf node, multisurface proximal support vector

machine generates the optimal plane for better generalization performance. Also, di↵erent

99

regularization techniques (Tikhonov regularisation and axis-parallel split regularisation) are

employed for tackling the small sample size problems in the decision trees of oblique double

random forest. The evaluation of the baseline models and the proposed oblique and rota-

tion double random forest models is performed on benchmark UCI datasets and real-world

fisheries datasets. Both statistical analysis and the experimental results demonstrate the

e�cacy of the proposed oblique and rotation double random forest models compared to the

baseline models on the benchmark datasets.

Recent study of double random forest [91] evaluated the e↵ect of node size on the per-

formance of the model. The study revealed that the prediction performance may improve if

deeper decision trees are generated. The authors showed that the largest tree grown on a

given data by the standard random forest might not be su�ciently large to give the optimal

performance. Hence, double random forest [91] generated decision trees that are bigger than

the ones in standard random forest. Instead of training each decision tree with di↵erent

bags of training set obtained via bagging approach at the root node, the authors in [91]

generated each tree with the original training set and used bootstrap aggregation at each

non-terminal node of the decision tree to obtain the best split. However, both the random

forest and double random forest are univariate decision trees and hence ignore the geometric

class distributions resulting in lower generalization performance. To overcome these issues,

we propose oblique double random forest. oblique double random forest models integrate the

benefits of double random forest and the geometric structure information of the class distri-

bution for better generalization performance. For generating more diverse ensemble learners

in the double random forest, feature space is rotated or transformed at each non leaf node

using two transformations known as linear discriminant analysis and principal component

analysis. Using transformations at each non-leaf node on di↵erent randomly chosen fea-

ture subspaces improves diversity among the base models and leads to better generalization

performance.

The main highlights of this chapter are:

• We use di↵erent rotations (principal component analysis and linear discriminant anal-

ysis) at each non-leaf node to generate diverse double random forest ensembles (DRaF-

PCA and DRaF-LDA).

• The proposed oblique double random forest (MPDRaF-T, MPDRaF-P and MPDRaF-

100

N) variants use MPSVM for obtaining the optimal separating hyperplanes at each

non-terminal node of the decision tree ensembles.

• The proposed ensemble of double Random forest generate larger trees compared to

the variants of standard Random forest.

• Statistical analysis reveals that the average rank of the proposed double random forest

models is superior than the standard random forest. Moreover, the average accuracy of

the proposed DRaF-LDA, DRaF-PCA, and MPDRaF-P is superior than the standard

random forest and standard double random forest models. Also, the average rank

of the proposed DRaF-LDA, MPDRaF-P and DRaF-PCA is better compared to the

standard double Random forest.

4.1 Handling multiclass problems

MPSVM is a binary classification model and finding the optimal separating hyperplanes

at each non-terminal node of a decision tree may be a multiclass problem. To handle the

multiclass problem via binary class approach, di↵erent methods like one-versus-all [16], one-

versus-one [138], decision directed acyclic graph [213], error correcting output codes [59]

and so on have been proposed. Data partitioning rule of the decision trees at each non-leaf

node proves handy over other binary classification models [303]. Separating the classes with

majority samples as one class and rest samples as another class results in an ine�cient model

as it fails to capture the geometric structure of the data samples [173]. To incorporate the

geometric structure, the authors in [303] decomposed the multiclass problem into a binary

one by using class separability information. The authors used Bhattacharyya distance for

decomposition. In statistics, Bhattacharyya distance gives the measure of similarity between

the two discrete probability distributions or continuous probability distributions as it is

deemed to be a good insight about separability of classes between two normal classes C1 ⇠

N(µ1, ⌫1), C2 ⇠ N(µ2, ⌫2), where µi and ⌫i are the parameters of the normal distribution

of class Ci, for i = 1, 2. Following the similar approach as in [303], we used multivariate

Gaussian distribution [124]. Motivated by [124, 303], we use Bhattacharyya distance to

measure the class separability for decomposing the multiclass problem into a binary class

problem (Algorithm 4.1).

101

Algorithm 4.1 Decomposition of multiclass problem to a binary class problem
Input:
D := N ⇥n be the training dataset with N number of data points with feature size n.
Y := N ⇥ 1 be the target labels.
{L1, L2, . . . , LC} be the target labels.
Output:
Cp and Cn are two hyperclasses or groups

For each class j = 1, 2, . . . , C.

[1] For each pair of Lj and Lk, for k = j + 1, . . . , C as:

F (Lj, Lk) =
1

8
(µk � µj)

t

⇣⌫j + ⌫k
2

⌘�1

(µk � µj) +
1

2
ln
|(⌫j + ⌫k)/2|p

|⌫j||⌫k|
(4.1)

[2] Find the pair Lp and Ln of classes with the maximum Bhattacharyya distance,
and assign them to Cp and Cn respectively.

[3] For every other class, if F (Lk, Lp) < F (Lk, Ln) then group Lk to Cp otherwise
group in Cn.

Algorithm 4.2 Null space regularization
Input: P (Positive class) and H (Negative class).

Output: Clustering hyperplane


w
b

�
.

[1] Suppose P is rank deficit with rank r < n+1, calculate O = [↵1,↵2, · · · ,↵n+1�r]
whose columns are the orthonormal basis for the Null space of P .

[2] Project the matrix Q in the Null space of P . For each vector (row) p in matrix
P , the projection is given as pOOt. Hence, the projection of matrix Q is given
as Q̄ =

P
p2Q OOtptpOOt = OOtQOOt. In the similar manner, the projeection

of matrix P is given as P̄ = OOtPOOt.

[3] Since the columns of O span the Null space of P , hence P̄ would be zero. Thus,
the desired plane is the eigen vector corresponding to the largest eigenvector of
Q̄.

102

4.2 Proposed oblique and rotation double random

forest

This chapter presents two approaches for generating the double random forest known as

oblique double random forest models and the rotation based double random forest models.

Two approaches are given as follows:

4.2.1 Oblique double random forest with MPSVM

Univariate decision trees don’t capture properties of the data geometrically. Both stan-

dard random forest and double random forest are univariate decision tree ensembles. Also,

decision trees in the standard random forest may not be large enough for the datasets to

get the better generalization. To overcome these limitations, we propose oblique double

random forest with MPSVM. Unlike standard random forest, the oblique double random

forest models with MPSVM use bootstrapping samples at every non-terminal node (until

some condition is met as given in Algorithm 4.3) for generating the optimal oblique splits

and divide the original data instead of bootstrapped samples among the children nodes. To

incorporate the geometric structure in the splitting hyperplane, the proposed oblique dou-

ble random forest uses MPSVM wherein optimal split at each non-leaf node is generated

based on the clustering hyperplanes. As the decision tree size increases, the data points

arriving at a particular node decreases and hence, the issues of sample size may arise. To

overcome this issue, we use di↵erent regularization techniques to obtain a better general-

ization performance. The regularization approaches used are Tikhonov regularization, axis

parallel split regularization and null space approach. If the model uses Tikhonov regulariza-

tion then the proposed model is named as oblique double random forest via MPSVM with

Tikhonov regularization (MPDRaF-T), if the model uses axis parallel split regularization

then the proposed model is known as oblique double random forest via MPSVM with axis

parallel split regularization (MPDRaF-P) and if the model uses null space approach then

the proposed models is known as oblique double random forest via MPSVM with null space

approach (MPDRaF-N). In Tikhonov regularization, the small positive number is added

along the diagonal elements to regularize the data matrix (say, H) i.e., if data matrix H is

103

rank deficient, then regularize H as :

H = H + � ⇥ I, (4.2)

where � is a small positive number and I is appropriate dimensional identity matrix. In

axis-parallel split regularization, if the data matrix (say, H) is rank deficient at a given

node then we follow axis parallel approach to complete the growth of decision tree. Thus,

heterogeneous test functions are used for growing the decision trees. i.e., till the current node

MPSVM is used for generating the optimal splits and now onwards axis parallel approach is

followed for growing the decision tree. In order to handle the sampling issues, Manwani and

Sastry [173] proposed the Null space approach (given in Algorithm 4.2) for regularizing the

matrices. For the proposed MPDRaF-N, we follow the Algorithm 4.2 for regularizing the

matrices.

Algorithm 4.3 summarises the oblique double random forest with MPSVM.

4.2.2 Double random forest with PCA/LDA

For generating the diverse learners in an ensemble, we propose rotation based double

random forest ensemble models. Rotation or transformation on di↵erent random feature

subspaces results in di↵erent projections leading to better generalization performance. In

this method, the objective is to rotate or transform the data for better diversity among the

base learners. At each non-leaf node, the rotation is applied on random feature subspace

which results in improved diversity among the base classifiers. We use two approaches for

rotation of feature subspace i.e., principal component analysis (PCA) and linear discriminant

analysis (LDA).

The proposed double random forest with PCA (DRaF-PCA) is given in Algorithm 4.4.

At each non-leaf node, rotation or transformation is applied on the bootstrapped samples

reaching a given node with random feature subspace.

The algorithm of the proposed double random forest with LDA (DRaF-LDA) varies from

Algorithm 4.4 at step (ii) and (iii). In DRaF-LDA model, instead of calculating total scatter

matrix Sd at each node, within class scatter matrix Sw

d
and between class scatter matrix Sb

d

are calculated. Then, generalized eigenvectors of (Sw

d
, Sb

d
) are calculated (Sb

d
⇥ ↵ = �⇥ Sw

d
,

where ↵ is the generalized eigenvector corresponding to the generalized eigenvalue �).

104

Algorithm 4.3 Oblique Double Random Forest with MPSVM
Training Phase:
Given:
D := N ⇥ n be the training set with N number of samples with feature size n.
Di := Ni⇥ni be the training samples reaching to a node i, with Ni number of samples
with feature size ni.
Y := N ⇥ 1 be the target labels.
L : is number of base learners.
“mtry”: number of candidate features to be evaluated at each non-leaf node.
“nodesize” or “minleaf”: maximum number of data samples to be placed in an impure
node.

For each decision tree, Ti for i = 1, 2, . . . , L

[1] Use training data D.

[2] Generate the decision tree Ti with randomly chosen subset of features and
randomised bootstrap instance using D:
For a given node d with data Dd:

(i) if Nd > N ⇥ 0.1
Generate bootstrap sample D⇤

d
from Dd.

else
D⇤

d
= Dd

(i) Choose “mtry”=
p
n number of features from the given feature space of

D⇤
d

(ii) Using Algorithm 4.1 group the dataset D⇤
d
into Cp and Cn.

(iii) Use MPSVM (with di↵erent regularization’s) for generating the optimal
split with Cp and Cn as input, and split the data Dd into child nodes.

Repeat steps (i)-(iii), until the stopping criteria is one of the conditions is met:

• Node reaches to purest form.

• Samples reaching a given node are lesser or equal than minleaf

Classification Phase:
For a test data point xi, use the decision trees of the forest to generate the label of
the test sample. The predicted class of the test data point is given by the majority
voting of the decision trees of an ensemble.

105

Algorithm 4.4 Double Random Forest with PCA
Training Phase:
Given:
D := N ⇥ n be the training set with N number of samples with feature size n.
Di := Ni⇥ni be the training samples reaching to a node i, with Ni number of samples
with feature size ni.
Y := N ⇥ 1 be the target labels.
L : is number of base learners.
“mtry”: number of candidate features to be evaluated at each non-leaf node.
“nodesize” or “minleaf”: maximum number of data samples to be placed in an impure
node.

For each decision tree, Ti for i = 1, 2, . . . , L

[1] Use training data D.

[2] Generate the decision tree Ti with randomly chosen subset of features and
randomised bootstrap instance using D:
For a given node d with data Dd:

(i) if Nd > N ⇥ 0.1
Generate bootstrap sample D⇤

d
from Dd.

else
D⇤

d
= Dd

(i) Choose “mtry”=
p
n number of features from the given feature space of

D⇤
d

(ii) Calculate total scatter matrix Sd using D⇤
d
.

(iii) Calculate all the eigenvectors of Sd, denoted by V .

(iv) Calculate the data transformation using all the eigenvectors V as,
D⇤

PCA
= D⇤

d
⇤ V.

(v) In the PCA space, search the best feature split.

(iii) With the optimal split feature and the cutpoint, split the data Dd into
the child nodes.

Repeat steps (i)-(iii), until the stopping criteria is met.

Classification Phase:
For a test sample xi, generate labels via decision trees of the forest. At every non-
terminal node, the test data sample is rotated with the same matrix V generated in
the training stage. The predicted class of the test data point is given by the majority
voting of decision trees of an ensemble.

106

4.3 Comparison of the proposed oblique and rota-

tion based double random forest models with

the existing baseline models

The main di↵erences of the proposed models with respect to the existing models are

given as follows:

[1] MPDRaF-T, P, N are the oblique double random forest variants which employ bagging

at each non leaf node to allow the generation of bigger trees. Unlike standard variants

like RaF, MPRaF-T, MPRaF-P and MPRaF-N, the proposed models use the training

bags which have more unique instances of the samples which results in generation of

bigger trees. Moreover, MPDRaF-T,P,N capture the geometric properties of the data

which is ignored by the standard RaF and double RaF models.

[2] The standard RaF and DRaF models use the concepts of random subspace and bagging

for introducing the diversity among the base learners of an ensemble. However, the

proposed DRaF-PCA and DRaF-LDA employ PCA and LDA transformations at non-

leaf nodes in addition to the random subspace and bagging concepts for producing

more diverse base learners. Thus, the proposed DRaF-PCA and DRaF-LDA models

possess better diversity compared to the RaF and DRaF models. Unlike RaF-PCA and

RaF-LDA, the proposed DRaF-PCA and DRaF-LDA models use bagging concept at

each non-leaf node which allow greater depth of the tree and hence better performance.

4.4 Experiments

Here, we discuss the setup followed in experiments and analyze the performance of the

proposed oblique and rotation double random models and baseline models or existing models

(here, standard RaF [23], standard DRaF [91], MPRaF-T [303], MPRaF-P [303], MPRaF-N

[303], RaF-PCA [305] and RaF-LDA [305]).

107

4.4.1 Experimental setup

We evaluated the classification models on UCI datasets [60] and real world fisheries

datasets [81]. We follow the preprocessing scripts of [136] wherein the partitions of the

training and testing sets are publicly available for evaluation. The sample size of the datasets

varies from 10 to 130064. Also, the dimensions of the feature samples vary from 3 to 262

and the number of classes vary from 2 to 100.

In all the ensemble models, 50 is the number of base learners. At each non-terminal

node, we evaluated
p
n number of features, here n is the dimension of feature set and the

minleaf parameter is set to default. We used CART [25] as the base classifier.

4.4.2 Statistical analysis

Table 8.2 summarizes the classification performance of each ensemble model on 121

datasets. From the given table, it is evident that the average accuracy of the proposed

DRaF-LDA, MPDRaF-P and DRaF-PCA are superior compared to the existing classifiers.

Following [62], we rank each classifier based on its performance on each dataset. Every

classifier in Friedman test is given a rank on a dataset with the worse performing classifier

assigned higher rank and vice versa. Hence, a lower rank indicates better generalization

performance of the model. The average rank of each classification model is presented in

Table 4.3. It is evident that the average rank of the proposed ensemble models DRaF-

LDA, DRaF-PCA, and MPDRaF-P is better as compared to all the existing classifiers.

Furthermore, the rank of the proposed MPDRaF-T is better in comparison to existing

classifiers (except standard DRaF and DRaF-LDA).

The average ranks of the classification models RaF, MPRaF-T, MPRaF-P, MPRaF-

N, RaF-PCA, RaF-LDA, DRaF, MPDRaF-T, MPDRaF-P, MPDRaF-N, DRaF-PCA and

DRaF-LDA are 6.99, 6.81, 6.48, 8, 7.31, 6.12, 6.27, 6.38, 5.45, 7.3, 5.84 and 5.04 respectively.

With simple calculations, we get �2

F
= 71.0559 and FF = 6.7675. At 5% level of signif-

icance i.e. ↵ = 5%, FF follows F -distribution with (n� 1) = 11 and (n� 1)(N � 1) = 1320.

From Statistical table, FF (11, 1320) = 1.8. Since 6.7675 > 1.8, hence we reject the null

hypothesis. Thus, significant di↵erence exists among the classification models. To get the

significant di↵erence, we use Nemenyi post hoc test. With simple calculations, critical dif-

ference CD = 1.5149 with q↵ = 3.268 at 5% level of significance. From Figure 4.1, one can

108

RaF MPRaF-T MPRaF-P MPRaF-N RaF-PCA RaF-LDA DRaF MPDRaF-T MPDRaF-P MPDRaF-N DRaF-PCA DRaF-LDA
RaF r� r�
MPRaF-T r�
MPRaF-P r+
MPRaF-N r� r� r� r� r� r� r�
RaF-PCA r� r�
RaF-LDA r+
DRaF r+
MPDRaF-T r+
MPDRaF-P r+ r+ r+ r+
MPDRaF-N r� r�
DRaF-PCA r+
DRaF-LDA r+ r+ r+ r+ r+

Here, r+ denotes that the the row model is significantly better than the column
model. r� denotes that the row model is significantly worse than the corresponding
column model. Empty entries denote that no significant di↵erence exists among the
models of a cell.

Table 4.1: Significance di↵erence of classification performance of the baseline models
and the proposed oblique and rotation double random forest with Nemenyi posthoc
tests based on the accuracy.

see the statistically significant di↵erence exists among the models which are not connected

by a line. Table 4.1 summarizes the Nemenyi post-hoc test results. From the table, it is evi-

dent that the proposed DRaF-LDA is significantly better in comparison to RaF, MPRaF-T,

MPRaF-N, RaF-PCA and MPDRaF-N classifiers. Also, the proposed DRaF-PCA is signif-

icantly better compared to the DRaF-PCA model.

109

Table 4.2: Classification accuracy of RaF [23], MPRaF-T [303], MPRaF-P [303], MPRaF-N [303], RaF-PCA [305], RaF-LDA
[305], DRaF [91], MPDRaF-T, MPDRaF-P, MPDRaF-N, DRaF-PCA and DRaF-LDA classification models.

Datasets RaF MPRaF-T MPRaF-P MPRaF-N RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

abalone 64.68 64.99 65.54 65.06 64.85 65.4 64.18 65.33 63.94 65.33 64.06 65.35

acute-inflammation 100 100 100 100 100 100 100 100 100 100 100 100

acute-nephritis 100 100 100 100 100 100 100 100 100 100 100 100

adult 85.79 85.04 85.54 84.5 85.6 85.47 85.63 85.12 85.45 84.41 85.58 85.47

annealing 54.25 76 38.75 76 62.25 65 37 76 56 76 65.25 64

arrhythmia 73.01 63.05 73.23 61.5 65.49 67.04 73.67 63.05 73.89 60.62 70.35 70.35

audiology-std 75 70 76 24 55 48 78 59 78 25 60 58

balance-scale 86.7 89.42 88.94 89.42 88.62 89.42 82.69 87.82 86.86 89.58 85.42 86.38

balloons 81.25 87.5 87.5 93.75 81.25 75 87.5 93.75 81.25 81.25 81.25 87.5

bank 89.6 88.61 89.2 88.63 89.45 89.91 89.93 88.87 89.29 88.83 89.6 89.82

blood 76.6 76.74 77.27 77.81 76.6 77.01 75.67 77.14 75.94 77.14 75.8 76.34

breast-cancer 73.94 73.94 73.94 73.94 76.06 76.76 75.35 73.24 74.65 76.06 72.89 75

breast-cancer-wisc 97.29 97.71 97.43 97 97.14 97.43 97.14 97.86 97.71 97.57 97.43 97.29

breast-cancer-wisc-

diag

95.6 96.83 96.83 97.71 95.6 97.01 95.77 97.01 96.65 96.3 96.83 97.01

breast-cancer-wisc-

prog

80.1 80.61 79.59 81.12 80.1 80.61 81.63 82.65 82.14 83.67 82.14 82.14

breast-tissue 70.19 69.23 71.15 71.15 73.08 75 73.08 69.23 69.23 68.27 73.08 70.19

Continued on next page

110

Table 4.2 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

car 96.93 95.31 96.99 88.08 96.76 96.76 97.05 95.37 97.8 87.96 97.16 98.15

cardiotocography-

10clases

86.11 82.44 85.59 79.8 84.37 84.84 87.15 83.47 86.53 81.87 84.93 85.64

cardiotocography-

3clases

94.02 92.75 94.26 91.57 92.33 93.27 94.92 93.22 94.73 92.23 92.7 93.69

chess-krvk 69.6 65.97 70.12 52.02 73.33 71.72 69.92 66.34 71.36 52.22 75.18 73.24

chess-krvkp 98.25 97.97 98.62 97.43 98.25 98.59 98.56 98.53 98.94 97.84 98.75 98.81

congressional-

voting

62.39 61.24 61.01 61.24 60.55 61.01 61.7 62.39 61.7 60.78 60.78 61.7

conn-bench-sonar-

mines-rocks

76.92 78.37 78.85 78.37 76.44 78.85 79.33 77.4 80.77 79.33 80.77 84.13

conn-bench-vowel-

deterding

98.48 99.78 99.13 99.62 99.57 99.46 98.97 100 99.73 99.68 99.95 99.95

connect-4 83.54 76 81.2 75.41 82.63 82.31 84.01 75.91 81.7 75.4 83.37 82.83

contrac 53.94 50.41 53.13 49.8 51.9 50.68 53.33 48.78 51.15 52.31 51.15 51.56

credit-approval 87.5 86.92 86.05 88.08 88.08 87.5 87.5 86.63 87.21 85.61 87.21 87.06

cylinder-bands 81.25 76.17 80.47 73.05 78.71 77.73 82.03 76.95 82.03 79.3 80.86 80.47

dermatology 98.35 98.08 98.35 96.7 97.8 97.8 98.08 97.8 97.8 97.8 97.53 97.25

echocardiogram 84.85 84.85 85.61 84.09 84.09 83.33 84.09 85.61 84.85 84.85 84.09 84.09

ecoli 86.31 87.2 88.99 87.8 87.5 87.5 88.1 86.01 88.1 88.39 86.61 86.61

Continued on next page

111

Table 4.2 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

energy-y1 94.79 92.58 94.92 94.14 94.53 95.7 95.83 92.19 95.96 94.27 96.09 96.22

energy-y2 89.06 89.45 89.84 89.32 89.97 89.71 88.28 89.06 88.8 89.71 89.84 89.45

fertility 88 89 89 88 88 88 88 88 88 88 88 88

flags 67.19 55.21 64.58 56.77 56.25 57.29 66.67 54.69 63.02 54.69 62.5 62.5

glass 73.11 69.34 75.47 70.28 70.75 72.17 76.89 69.34 75.47 67.92 71.7 74.06

haberman-survival 71.05 71.71 71.05 72.37 70.07 71.38 69.74 70.39 69.08 70.72 69.41 68.75

hayes-roth 87.5 86.61 84.82 81.25 89.29 87.5 89.29 85.71 90.18 75 89.29 88.39

heart-cleveland 57.89 61.51 57.57 59.21 58.22 59.21 55.59 59.21 58.22 59.54 60.2 57.57

heart-hungarian 83.9 84.93 84.25 84.25 84.59 84.59 84.25 83.56 83.56 85.27 84.59 84.59

heart-switzerland 41.13 43.55 41.13 44.35 43.55 45.16 41.94 39.52 41.94 41.13 45.97 47.58

heart-va 35.5 34.5 35.5 36.5 34 37.5 36 32.5 36.5 39.5 33.5 34.5

hepatitis 83.33 82.05 82.05 86.54 82.69 84.62 82.69 82.69 81.41 82.69 81.41 80.77

hill-valley 53.84 66.75 63 65.88 64.03 66.25 54.17 70.09 66.79 66.58 67.2 66.75

horse-colic 86.4 86.03 87.87 87.5 82.35 85.29 86.76 83.46 86.76 84.56 80.51 81.62

ilpd-indian-liver 71.4 70.72 71.23 71.23 73.29 71.23 71.23 72.6 72.95 71.23 73.46 71.75

image-

segmentation

93.8 94.18 94.75 92.46 94.96 95.07 94.85 94.63 95.15 92.57 95.93 96.06

ionosphere 91.76 93.75 93.47 93.18 94.03 94.6 91.48 93.75 94.03 94.32 94.89 93.18

iris 95.27 97.3 97.3 97.97 95.95 96.62 95.95 97.3 95.95 97.3 96.62 96.62

led-display 74.3 72 73.7 72.4 73.9 73.6 71.7 72.1 72.4 71.2 71.6 72.1

Continued on next page

112

Table 4.2 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

lenses 83.33 79.17 83.33 79.17 79.17 87.5 83.33 79.17 75 83.33 79.17 79.17

letter 95.31 95.35 95.18 94.83 94.74 95.62 95.86 95.85 96 95.02 96.06 96.73

libras 76.94 84.17 79.17 79.44 80.28 81.39 79.72 86.11 84.72 86.67 85.28 85.83

low-res-spect 90.79 91.17 91.35 89.47 90.6 91.54 91.54 91.17 91.73 90.79 91.17 91.35

lung-cancer 46.88 46.88 50 53.13 40.63 43.75 50 31.25 53.13 50 46.88 50

lymphography 79.05 85.14 83.11 83.78 84.46 84.46 85.81 86.49 83.11 85.81 84.46 86.49

magic 87.01 86.37 86.26 86.69 87.38 87.06 87.19 86.51 86.78 86.88 87.79 87.57

mammographic 81.98 81.67 80.63 81.67 80.63 80.42 79.9 81.46 80.63 81.35 80.1 80.42

miniboone 93.33 93.07 93.24 92.76 93.21 93.46 93.69 93.5 93.64 93.3 93.65 93.88

molec-biol-

promoter

84.62 79.81 84.62 82.69 71.15 78.85 91.35 84.62 87.5 80.77 83.65 85.58

molec-biol-splice 94.2 86.57 93.1 85.01 84.1 89.9 94.7 87.23 93.22 87.14 87.05 90.56

monks-1 59.95 60.59 58.39 57.52 58.04 58.16 60.65 60.47 58.8 58.97 58.22 59.32

monks-2 66.78 66.9 66.9 67.01 66.84 67.01 66.55 66.96 66.61 67.13 66.9 66.72

monks-3 53.01 56.6 52.78 54.34 53.36 52.89 52.78 54.17 52.95 52.78 53.01 53.76

mushroom 100 100 100 100 100 100 100 100 100 100 100 100

musk-1 86.13 86.97 83.82 87.18 86.13 83.82 86.34 89.29 86.97 87.82 88.24 85.92

musk-2 97.21 96.12 95.94 95.69 95.98 96.12 98.12 96.53 96.45 96.07 96.71 96.95

nursery 99.28 98.58 99.21 96.74 99.22 99.33 99.31 98.9 99.53 96.95 99.66 99.76

OM nucleus 4d 77.65 81.57 82.55 80.69 82.55 82.65 79.8 84.31 83.24 82.84 82.45 84.31

Continued on next page

113

Table 4.2 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

OM states 2f 91.37 91.57 92.16 91.86 91.86 92.16 92.35 92.35 92.35 92.55 92.06 92.45

OT nucleus 2f 79.39 81.58 82.79 83.11 82.57 82.24 80.7 83.44 82.79 82.89 83.77 83.22

OT states 5b 90.9 92.54 92 92.65 92.65 93.31 92.21 93.64 93.09 93.09 92.87 93.64

optical 96.08 95.66 96.26 84.65 95.72 91.62 96.91 96.37 96.74 83.85 96.59 94.3

ozone 97.08 97.2 97.16 97.16 97.16 97.16 97.08 97.16 97.16 97.16 97.16 97.2

page-blocks 97.08 96.98 97.3 96.78 97.09 97.13 97.08 97.08 97.09 97.08 97.09 97.28

parkinsons 88.78 92.35 89.8 91.84 87.76 90.82 90.31 92.86 92.35 92.35 90.82 91.84

pendigits 95.05 96.76 95.75 96.06 96.38 96.48 95.48 96.96 96.22 96.18 96.53 96.58

pima 76.69 75.26 75.52 75.13 74.61 74.87 73.96 74.74 74.22 74.48 74.09 75

pittsburg-bridges-

MATERIAL

91.35 93.27 91.35 92.31 92.31 92.31 88.46 93.27 89.42 92.31 90.38 91.35

pittsburg-bridges-

REL-L

74.04 75.96 73.08 75.96 75 73.08 73.08 74.04 71.15 78.85 73.08 75

pittsburg-bridges-

SPAN

61.96 72.83 63.04 67.39 69.57 71.74 60.87 67.39 61.96 67.39 66.3 66.3

pittsburg-bridges-

T-OR-D

88 88 88 88 88 90 89 88 88 88 88 88

pittsburg-bridges-

TYPE

68.27 69.23 67.31 66.35 71.15 66.35 67.31 69.23 68.27 69.23 70.19 71.15

planning 70 67.78 70 70 70.56 69.44 69.44 71.67 71.11 72.22 70.56 70.56

Continued on next page

114

Table 4.2 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

plant-margin 79.25 75.06 72.25 72.56 76 75.5 81.56 76.88 77.5 73.06 79.75 82.44

plant-shape 59.44 66.13 62.13 65.25 65.31 68.44 61.94 67.75 66.31 66.13 70 73.44

plant-texture 77.94 77.25 76.06 75.06 75.81 76.81 80.56 79.13 79.06 75.56 79 81.63

post-operative 72.73 71.59 70.45 71.59 69.32 67.05 70.45 72.73 69.32 68.18 69.32 68.18

primary-tumor 54.88 51.83 55.18 52.44 53.05 56.1 54.88 53.05 53.66 53.35 54.57 54.57

ringnorm 95.19 90.41 90.81 90.85 97.01 97.09 95.46 91.99 92.15 92.54 97.24 97.15

seeds 93.27 94.71 91.83 91.83 93.75 92.31 93.75 93.75 95.19 92.31 92.79 93.75

semeion 92.4 89.51 91.52 89.13 88.69 91.96 92.46 89.7 92.09 90.52 91.14 93.22

soybean 90.29 89.23 90.56 82.71 89.83 86.3 90.36 88.63 90.76 83.38 90.36 87.43

spambase 94.39 94.5 94.15 94.11 94.8 94.48 94.72 94.91 94.83 94.3 95.3 95.17

spect 68.95 61.56 65.46 59.68 60.75 61.29 65.05 60.75 63.04 60.22 61.42 62.1

spectf 91.98 91.98 91.98 91.98 91.98 91.84 91.98 91.84 91.98 91.98 91.98 91.84

statlog-australian-

credit

67.3 65.26 66.57 67.15 63.66 63.23 64.39 63.37 65.55 63.52 64.53 63.08

statlog-german-

credit

77.5 74.8 75.4 73.9 75.3 77.7 77.4 73.9 75.9 72.8 76.1 76.1

statlog-heart 85.45 87.31 86.19 86.19 85.45 85.45 85.07 85.82 85.45 83.21 85.45 85.45

statlog-image 97.27 97.66 97.57 96.66 97.88 97.92 97.88 97.92 98.31 97.18 98.09 98.27

statlog-landsat 89.94 89.99 89.99 89.04 89.78 89.88 90.78 90.89 90.73 89.44 90.76 90.98

statlog-shuttle 99.96 99.87 99.95 99.76 99.94 99.96 99.99 99.9 99.97 99.78 99.97 99.97

Continued on next page

115

Table 4.2 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

statlog-vehicle 73.58 76.3 77.73 75.95 78.08 79.03 75.71 76.18 77.61 77.25 78.32 80.45

steel-plates 78.04 78.04 76.75 75.15 75.05 76.49 78.4 78.2 78.76 76.86 77.94 77.99

synthetic-control 97.67 99.83 98.5 98.33 97.17 99.17 98.5 99.33 99.33 98.83 98.5 99.67

teaching 59.21 58.55 60.53 57.24 55.92 60.53 58.55 58.55 59.87 57.24 59.21 59.87

thyroid 98.88 95.86 98.89 93.26 98.7 97.65 98.96 96.05 98.93 93.46 98.87 98.16

tic-tac-toe 97.91 97.49 97.7 94.77 97.07 98.01 98.64 98.95 98.85 98.22 98.43 99.06

titanic 78.95 78.68 78.95 78.32 78.95 78.95 78.95 78.95 78.95 78.5 78.95 78.95

trains 87.5 100 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5

twonorm 96.8 97.59 97.68 97.57 97.68 97.55 96.8 97.57 97.53 97.42 97.68 97.66

vertebral-column-

2clases

83.77 86.69 86.04 86.04 85.06 86.69 82.14 86.36 86.36 87.01 83.44 85.06

vertebral-column-

3clases

83.44 84.09 83.44 83.77 83.77 83.77 84.74 86.04 84.42 85.71 85.39 86.36

wall-following 99.3 94.24 98.41 93.71 96.17 96.19 99.52 94.54 98.57 94.68 96.87 96.92

waveform 84.54 85.4 85.04 85.44 84.8 85.4 83.76 85.26 85.9 85.48 85.12 85.78

waveform-noise 85.5 85.2 86.24 85.74 85.08 85.84 85.22 85.44 85.44 85.52 85.6 86.14

wine 97.73 98.86 99.43 97.73 97.16 98.86 97.73 97.73 99.43 98.3 97.16 99.43

wine-quality-red 65.81 68 67.38 68.19 68.31 67.56 68 67.5 69.19 67.31 68.81 67.88

wine-quality-white 67.01 67.28 67.57 66.14 67.87 67.69 68.2 67.85 67.97 66.91 68.57 68.4

yeast 61.52 62.06 61.79 62.2 62.53 62.53 60.58 61.39 61.39 60.98 60.98 61.79

Continued on next page

116

Table 4.2 – continued from previous page

Datasets RaF MPRaF-T MPRaF-P MPRaF-N RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

zoo 99 99 98 98 99 99 98 97 98 99 98 98

Average Accuracy 81.86 81.98 81.96 80.83 81.48 81.9 82.09 81.79 82.39 80.96 82.2 82.55

Here, ⇤ denotes the methods introduced in this chapter.

OM denotes oocytes merluccius, OT denotes oocytes trisopterus.

117

Rank Average Rank Average Accuracy Average Time(s)
DRaF-LDA⇤ 1 5.04 82.55 758.68
MPDRaF-P⇤ 2 5.45 82.39 80.83
DRaF-PCA⇤ 3 5.84 82.2 765.81
RaF-LDA 4 6.12 81.9 732.63
DRaF 5 6.27 82.09 523.32
MPDRaF-T⇤ 6 6.38 81.79 30.66
MPRaF-P 7 6.48 81.96 56.3
MPRaF-T 8 6.81 81.98 24.64
RaF 9 6.99 81.86 383.43
MPDRaF-N⇤ 10 7.3 80.96 32.12
RaF-PCA 11 7.31 81.48 719.97
MPRaF-N 12 8 80.83 26.76
Here ⇤ denotes the methods introduced in this chapter.

Table 4.3: Overall comparison of the baseline classification models, proposed oblique
and rotation double random forest models.

118

CD = 1.515

12 11 10 9 8 7 6 5 4 3 2 1

5.04

DRaF-LDA
*

5.45

MPDRaF-P
*

5.84

DRaF-PCA
*

6.12

RaF-LDA

6.27

DRaF

6.38

MPDRaF-T
*

6.48

MPRaF-P

6.81

MPRaF-T

6.99

RaF

7.3

MPDRaF-N
*

7.31

RaF-PCA

8

MPRaF-N

Figure 4.1: Nemenyi test based post hoc evaluation of classification models at ↵ = 5%
level of significance. The classification models which are not statistically di↵erent are
connected.

119

RaF MPRaF-T MPRaF-P MPRaF-N RaF-PCA RaF-LDA DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤

MPRaF-T [57, 10, 54]
MPRaF-P [60, 17, 44] [60, 13, 48]
MPRaF-N [50, 10, 61] [36, 14, 71] [40, 16, 65]
RaF-PCA [49, 16, 56] [51, 8, 62] [47, 11, 63] [63, 15, 43]
RaF-LDA [67, 10, 44] [63, 10, 48] [61, 14, 46] [77, 13, 31] [70, 17, 34]
DRaF [69, 14, 38] [65, 8, 48] [58, 17, 46] [64, 11, 46] [60, 15, 46] [54, 11, 56]
MPDRaF-T⇤ [56, 14, 51] [61, 15, 45] [54, 10, 57] [70, 15, 36] [60, 14, 47] [48, 12, 61] [52, 12, 57]
MPDRaF-P⇤ [69, 13, 39] [74, 10, 37] [70, 14, 37] [76, 12, 33] [68, 18, 35] [67, 9, 45] [63, 16, 42] [59, 16, 46]
MPDRaF-N⇤ [46, 14, 61] [44, 12, 65] [45, 13, 63] [74, 13, 34] [55, 14, 52] [40, 12, 69] [47, 14, 60] [36, 17, 68] [37, 13, 71]
DRaF-PCA⇤ [61, 14, 46] [65, 10, 46] [56, 16, 49] [77, 11, 33] [72, 22, 27] [64, 14, 43] [57, 14, 50] [59, 10, 52] [49, 20, 52] [70, 11, 40]
DRaF-LDA⇤ [69, 11, 41] [70, 10, 41] [62, 15, 44] [79, 11, 31] [71, 16, 34] [77, 12, 32] [67, 12, 42] [68, 15, 38] [62, 13, 46] [79, 8, 34] [66, 22, 33]

Here, ⇤ denotes the proposed methods, [a, b, c] entry in each cell denotes that row method wins a-times, loses c-times and ties
b-times with respect to column method.

Table 4.4: Pairwise win-tie-loss count

120

RaF MPRaF-T MPRaF-P MPRaF-N RaF-PCA RaF-LDA DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

RaF r� r� r� r�
MPRaF-T r� r�
MPRaF-P r�
MPRaF-N r� r� r� r� r� r�
RaF-PCA r� r� r� r�
RaF-LDA r+ r+ r+ r� r�
DRaF r+ r�
MPDRaF-T⇤ r+ r�
MPDRaF-P⇤ r+ r+ r+ r+ r+ r+
MPDRaF-N⇤ r+ r� r�
DRaF-PCA⇤ r+ r+ r+ r�
DRaF-LDA⇤ r+ r+ r+ r+ r+ r+ r+ r+ r+
Here, ⇤ denotes the methods introduced in this chapter, r+ denotes that the method in the corresponding row is significantly
better as compared to the method given in the corresponding column. r� denotes that the row method is significantly worse
than the method given in the corresponding column. Blank entries denote that no significant di↵erence exists among the
methods in the cell’s corresponding row and column.

Table 4.5: Pairwise win-tie-loss: sign test

121

4.4.3 Win-tie-loss: sign test

Under the null hypothesis, the pair of classifiers is significantly di↵erent if each classifica-

tion model wins N/2 in N datasets. The number of wins follow binomial distribution. When

N is large enough, the number of wins follow N(N/2,
p
N/2), and hence, z-test can be used:

two models are significantly better with p < 0.05 if any model has least N/2 + 1.96
p
N/2

wins. Since tied matches favor of null hypothesis, hence, we split the number of ties between

the models evenly and if the number is odd we ignore one.

Table 4.4 summarizes the count of win tie loss results among the given classification

models. One can see that the proposed rotation double random forest (DRaF-PCA and

DRaF-LDA) achieved more wins as compared to the existing models. Compared to the exist-

ing MPRaF-N and RaF-PCA models, the proposed MPDRaF-N emerged as winner in more

datasets. Also, the proposed MPDRaF-P model emerged as the winner in more datasets in

comparison to the given baseline models. Table 4.5 shows that the proposed DRaF-LDA

model is significantly better as compared to the RaF, MPRaF-T, MPRaF-N, RaF-PCA,

RaF-LDA and DRaF models. The proposed DRaF-PCA model is significantly better com-

pared to the existing MPRaF-N and RaF-PCA models. Also, the proposed MPDRaF-P is

significantly better as compared to the existing models except DRaF model.

4.4.4 E↵ect of “mtry” parameter

The parameter “mtry” denotes the number of candidate features to be evaluated at each

non-leaf node. In a given problem, the smaller “mtry” results in stronger randomization

among the trees and weaker dependency of their structures on the output. However, if the

“mtry” is small, the random subset of features selected at a given node may fail to get the

geometry of the data points. To see the e↵ect of “mtry” parameter, we varied it to di↵erent

values on the datasets given in Figure 4.2. From the Figure 4.2, it is clear that at very low

values of “mtry”, the performance is lower. However, as the size of the “mtry” parameter

increases, the performance starts increasing and becomes stable very quickly. Setting “mtry”

to round(
p
n) leads to satisfactory performance.

122

Figure 4.2: E↵ect of the “mtry” parameter.

(a) Echocardiogram

1 2 3 4 5 6 7 8 9 10

"mtry"

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

A
cc

u
ra

cy
 (

%
)

RaF

MPRaF-T

MPRaF-P

MPRaF-N

RaF-PCA

RaF-LDA

DRaF

MPDRaF-T

MPDRaF-P

MPDRaF-N

DRaF-PCA

DRaF-LDA

(b) Ecoli

1 2 3 4 5 6 7

"mtry"

0.78

0.8

0.82

0.84

0.86

0.88

0.9

A
cc

u
ra

cy
 (

%
)

RaF

MPRaF-T

MPRaF-P

MPRaF-N

RaF-PCA

RaF-LDA

DRaF

MPDRaF-T

MPDRaF-P

MPDRaF-N

DRaF-PCA

DRaF-LDA

(c) Soybean

0 5 10 15 20 25 30 35

"mtry"

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
cc

u
ra

cy
 (

%
)

RaF
MPRaF-T
MPRaF-P
MPRaF-N
RaF-PCA
RaF-LDA
DRaF
MPDRaF-T
MPDRaF-P
MPDRaF-N
DRaF-PCA
DRaF-LDA

123

4.4.5 E↵ect of “minleaf” parameter

In the ensembles of decision tree “minleaf” denotes the maximum number of data samples

to be placed in an impure node. In general, smaller trees are generated with higher minleaf

which results in higher bias and lower variance. Zhang and Zhang [299] suggested that

performance ensembles of decision tree are robust to this parameter while as Lin and Jeon

[162] suggested that its optimal value varies in di↵erent situations. To analyse the e↵ect of

this parameter, we evaluated the e↵ect of “minleaf” parameter with its value varying from 1

to 3 on 120 datasets (leaving miniboone dataset as it took huge time to compute for all these

parameters). The average rank of each model across di↵erent parameters corresponding to

each model are given in Table 4.6. With N = 120, K = 3 (as minleaf=1,2,3), FF (2, 238) =

3.03. Significant di↵erence exist among the di↵erent performances based on the minleaf

value of the model if FF > 3.03 (Table 4.6). From the given table, it is clear that significant

di↵erence exists among the performances of the all the models (except DRaF-LDA) with

di↵erent minleaf parameters. However, in most of the cases smaller minleaf parameter results

in better performance. This study is in consensus with the observation that decision trees

of an ensemble should grow as much as possible for better performance.

Table 4.6: Average rank of the classification models with di↵erent minleaf parameters.

Method minleaf = 1 minleaf = 2 minleaf = 3 FF

RaF 1.87 1.87 2.26 6.3555

MPRaF-T 1.79 1.93 2.29 11.2753

MPRaF-P 1.66 2.11 2.23 11.8124

MPRaF-N 1.73 1.95 2.32 11.6113

RaF-PCA 1.73 2.01 2.27 12.1945

RaF-LDA 1.77 2.01 2.22 6.3555

DRaF 1.65 2.08 2.27 13.3546

MPDRaF-T⇤ 1.87 1.94 2.19 3.4658

MPDRaF-P⇤ 1.74 1.98 2.28 9.3988

MPDRaF-N⇤ 1.76 1.93 2.3 7.0927

DRaF-PCA⇤ 1.68 2 2.32 13.5758

Continued on next page

124

Table 4.6 – continued from previous page

Method minleaf = 1 minleaf = 2 minleaf = 3 FF

DRaF-LDA⇤ 1.8 2.08 2.11 1.111

4.4.6 Average number of nodes

As seen in the above section that smaller minleaf results in better performance, hence,

the performance of the models can be increased if there is a way to generate the bigger

trees [91]. Thus, greater the size of the tree better the performance is. Here, we analyse

the size of the tree via number of nodes. Average number of nodes denote that the average

number of nodes in an ensemble. Table 4.7 gives the average of the nodes present in di↵erent

ensembles of the classification models. From Figure 4.3 represents the average of mean nodes

in di↵erent classification models. Figure 4.3, it is clear that double variants of the random

forest have higher number of nodes compared to the standard variants of the random forest.

Hence, the proposed variants of the double random forest show better performance due to

larger size of the trees.

125

Table 4.7: Average number of nodes in RaF [23], MPRaF-T [303], MPRaF-P [303], MPRaF-N [303], RaF-PCA [305], RaF-LDA
[305], DRaF [91], MPDRaF-T, MPDRaF-P, MPDRaF-N, DRaF-PCA and DRaF-LDA classification models.

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

abalone 349.81 481.93 392.75 372.79 304.43 296.08 470.07 447.08 491.77 324.92 444.69 439.34

acute-inflammation 4.9 5.04 4.97 4.74 4.46 4.44 5.05 4.99 5.18 4.72 4.32 4.54

acute-nephritis 3.89 4.46 4.03 4.09 3.57 3.66 4.01 4.48 4.3 4.27 3.52 3.77

adult 1731.66 2113.55 1843.9 1846.68 1480.15 1489.83 2132.73 2456.92 2321.47 2021.68 2016.47 1965.98

annealing 34.1 55.84 34.65 46.51 32.62 34.05 40.54 68.02 40.73 54.3 38.96 40.03

arrhythmia 36.6 63.65 36.12 63.92 34.81 35.39 43.64 58.73 43.54 58.12 46.24 47.53

audiology-std 17.26 23.98 17.22 23.18 16.63 17.89 14.43 26.65 13.98 23.34 15.89 16.14

balance-scale 38.45 38.18 37.65 34.35 32.13 30.73 35.96 36.71 36.53 30.1 33.8 32.89

balloons 2.1 1.84 2.13 1.78 2.23 2.33 1.25 1.28 1.38 1.32 1.92 1.86

bank 167.83 245.75 185.29 218.47 140.31 138.89 232.43 294.41 250.61 264.36 207.68 203.55

blood 44.22 39.85 47.36 44.86 41.17 40.84 54.81 41.74 54.41 46.77 56.34 56.92

breast-cancer 26.38 28.39 26.35 26.41 21.9 21.39 29.49 31.43 31.22 26.8 31.53 28.97

breast-cancer-wisc 14.94 17.11 14.83 17.75 11.36 10.34 19.77 19.92 18.68 22.86 16.07 15.21

breast-cancer-wisc-

diag

11.41 14.47 11.79 18.57 11.87 8.36 16.65 18.06 15.71 23.04 17.41 11.69

breast-cancer-wisc-

prog

12.66 17.26 13.81 19.59 11.65 9.77 19.42 21.51 20.14 23.98 19.2 17.14

breast-tissue 10.22 13.94 11.58 12.88 10.03 9.45 12.42 11.86 13.4 9.65 12.85 12.45

Continued on next page

126

Table 4.7 – Continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

car 52.05 53.99 59.95 38.74 56.29 51.94 48.68 51.09 57.2 32.38 55.22 51.35

cardiotocography-

10clases

134.08 242.91 144.6 253.69 134.46 113.43 161.43 256.29 174.09 270.15 176.92 148.62

cardiotocography-

3clases

63.94 110.23 71.05 122.75 60.33 54.43 80.75 127.33 90.16 144.95 85.3 75.46

chess-krvk 922.92 1341.55 1138.44 651.32 1250.65 1226.39 720.29 897.58 876.76 390.42 1014.06 982.35

chess-krvkp 91.09 158.26 96.72 130.73 94.32 90.97 98.88 190.97 106.51 149.3 110.76 102.34

congressional-

voting

9.03 11.01 8.65 8.95 8.6 8.12 6.46 13.07 6.49 10.67 8.65 8.58

conn-bench-sonar-

mines-rocks

11.95 17.62 12.94 19.71 11.59 8.2 19.3 21.92 21.08 24.68 19.88 15.11

conn-bench-vowel-

deterding

61.24 92.06 71.79 94.91 58.61 52.83 77.37 103.21 89.43 94.97 76.15 67.79

connect-4 1967.07 2058.1 1891.47 1183.77 2060.35 2069.17 2042.64 2231.71 1938.48 1325.44 2340.46 2169.71

contrac 132.21 143.02 134.2 112.51 122.42 118.87 131.37 124.59 137.45 94 144.96 138.52

credit-approval 38.91 57.35 43.62 52.44 34.06 32.43 52.69 67.08 56.72 61.46 51.09 47.16

cylinder-bands 41.29 57.62 42.98 58.21 32.63 30.92 59.68 63.21 63.02 63.14 52.22 51.39

dermatology 16.57 21.36 16.72 22.93 15.93 15.07 18.75 25.76 18.88 26.48 18.59 19.01

echocardiogram 9.39 12.91 10.54 13.51 8.47 8.16 12.5 13.4 13.18 13.64 12.37 11.55

ecoli 21.06 29.67 22.12 29.22 19.55 19.53 24.27 30.18 25.9 29.94 24.87 24.44

Continued on next page

127

Table 4.7 – Continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

energy-y1 19.81 28.57 21.12 23.27 21.05 19.8 20.84 28.92 22.49 22.94 22.88 20.51

energy-y2 20.16 27.39 21.02 21.62 19.94 18.93 19.06 26.41 19.82 19.59 20.55 20.12

fertility 6.59 7.89 6.98 7.71 5.3 4.98 7.55 8.45 7.9 8.06 6.39 6.25

flags 22.14 29.94 23.32 30.2 19.74 19.1 20.38 24.02 20.65 23.11 22.19 22.11

glass 19.94 28.3 20.21 27.43 18.29 17.5 23.35 26.87 24.81 24.85 24.46 24.13

haberman-survival 25.08 30.43 27.5 30.54 22.39 22.72 31.43 30.7 29.78 29.58 31.97 31.9

hayes-roth 9.48 11.65 10.47 11.06 9.27 9.57 9.25 12.94 10.4 12.14 9.38 10.1

heart-cleveland 29.28 38.23 30.57 38.94 24.89 23.78 31.77 30.35 31.28 31.75 32.14 31.8

heart-hungarian 19.39 24.65 20.9 22.62 17.24 16.58 23.73 27.59 25.09 23.16 24.27 22.77

heart-switzerland 16.19 18.03 15.94 16.19 13.97 14.5 13.85 11.5 14.31 10.72 15.2 15

heart-va 24.8 29.49 24.4 25.87 22.4 22.69 21.02 17.98 21.08 16.34 25.44 25.66

hepatitis 10.18 13.48 10.88 12.77 8.45 7.74 13.07 14.49 13.59 13.81 11.91 11.54

hill-valley 66.19 35.12 78.26 66.38 44.66 33.52 107.02 48.96 113.11 81.06 71.38 57.43

horse-colic 24.01 35.35 26.48 36.79 21.26 18.99 30.83 42.35 35.99 43.91 32.1 29.08

ilpd-indian-liver 42.55 62.23 52.69 59.59 37.81 36.36 64.22 66.84 70.02 61.38 60.39 60.05

image-

segmentation

15.59 27.32 18.32 28.83 15.1 13.31 18.55 29.1 22.34 31.26 19.57 17.15

ionosphere 13.52 21.57 16.08 23.27 12.08 10.21 18.44 27.29 22.89 29.9 18.13 15.86

iris 5.29 7.04 5.75 6.28 5.98 4.31 5.84 6.99 6.15 6.31 7.45 5.29

led-display 12.41 13.45 12.54 12.22 13.08 13.42 10.19 11.76 9.96 9.72 11.3 10.27

Continued on next page

128

Table 4.7 – Continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

lenses 2.8 2.61 2.75 2.78 2.78 2.77 2.15 1.85 2.01 2.12 2.19 2.29

letter 1190.77 1941.31 1545.76 2019.17 1105.98 930.41 1277.75 1958.65 1592.73 1954.44 1307.54 1096.94

libras 35.05 52.7 41.16 56.74 33.61 24.04 46.59 58.94 50.94 60.77 45.32 35.67

low-res-spect 21.64 30.63 24.64 41.84 22.72 15.78 29.46 37.97 32.4 54.2 29.92 22.45

lung-cancer 4.49 4.47 4.37 4.87 4.04 3.63 4.23 3.11 4.42 3.11 4.3 4.2

lymphography 13.44 16.54 12.94 16.01 10.45 10.4 15.29 17.56 15.17 16.81 14.91 13.9

magic 778.89 1291.33 1027.86 1307.15 753.48 712.13 1111.39 1482.07 1405 1449.84 1107.32 1065.07

mammographic 44.23 41.93 46.28 37.9 38.79 40.24 55.53 50.51 55.49 44.05 51.62 52.76

miniboone 2878.18 3186 3325.18 3415.87 2829.45 2159.2 4173.28 3917.6 4949.34 4402.77 4223.4 3380.49

molec-biol-

promoter

8.25 11.47 9.13 11.27 7.16 5.22 11.85 12.52 12.61 12.61 12.22 9.04

molec-biol-splice 176.93 313.37 203.18 340.19 189.1 121.92 222.68 344.12 267.96 367.3 270.48 185.86

monks-1 13.76 14.75 14.34 13.17 13.46 13.17 13.82 14.26 14.8 12.42 14.68 14.39

monks-2 18.58 19.18 19.15 17.15 19.37 20.08 17.63 15.94 17.98 13.79 21.23 20.87

monks-3 11.2 12.73 12.65 11.99 10.42 10.54 12.02 12.08 12.44 11.3 11.67 11.34

mushroom 22.75 40.82 28.52 40.07 25.59 22.62 22.69 41.7 29.31 40.72 25.97 22.32

musk-1 24.84 38.13 27.21 42.76 23.55 14.11 38.03 49.24 42.81 56.82 39.26 25.85

musk-2 122.19 209.28 154.56 269.33 131.13 80.8 155.73 272.22 218.71 358.09 185.13 119.86

nursery 251.01 304.95 292.95 227.6 284.02 229 238.47 317.62 291.65 207.74 284.79 238.4

OM nucleus 4d 60.42 82 67.16 77.37 49.74 41.21 90.32 96.09 97.68 97.48 78.41 65.48

Continued on next page

129

Table 4.7 – Continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

OM states 2f 28.9 43.9 34.34 50.86 29.16 22.92 41.53 54.12 47.79 63.07 41.68 34.74

OT nucleus 2f 54.49 81 67.18 87.08 49.45 43.09 81.65 97.52 96.57 105.17 78.13 69.05

OT states 5b 35.15 48.35 36.61 60.54 32.36 24.35 50.86 61.42 54.25 80.15 47.17 36.41

optical 210.94 383.82 219.43 467.41 204.48 183.58 244.67 454.88 253.86 562.79 246.3 218.09

ozone 28.65 41.55 31.06 52.34 27.68 20.37 42.9 56.45 45.01 74.71 40.87 31.9

page-blocks 63.65 91.79 72.87 85.22 59.51 59 78.39 102.96 92.8 89.51 77.12 77.25

parkinsons 8.53 12.85 10.47 13.85 8.53 7.28 12.53 15.65 14.38 16.36 12.63 10.9

pendigits 210.57 320.17 237.25 385.79 200.55 153.25 254.88 371.52 279.76 434.7 245.63 188.28

pima 49.77 73.48 61.52 77.61 45.37 43.15 71.98 79.12 81.43 81.48 71.59 69

pittsburg-bridges-

MATERIAL

7.64 8.8 7.63 8.55 6.54 6.35 8.78 9.04 8.5 8.33 7.39 7.36

pittsburg-bridges-

REL-L

11.41 12.56 11.42 12.48 9.7 9.55 11.93 12.62 12.23 11.47 11.32 10.99

pittsburg-bridges-

SPAN

10.1 11.39 10.42 11.4 8.78 8.55 10.38 10.78 10.49 9.89 9.76 9.72

pittsburg-bridges-

T-OR-D

6.56 7.48 6.65 7.78 5.28 4.93 7.27 8.55 7.66 8.49 6.45 5.95

pittsburg-bridges-

TYPE

12.21 14.65 12.47 14.11 11.06 11.04 11.24 11.1 11.46 11.3 10.85 10.98

planning 14.76 21.19 18.04 22.72 14.07 13.81 22.81 22.24 24.48 22.64 22.64 22.4

Continued on next page

130

Table 4.7 – Continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

plant-margin 185.17 278.12 226.79 284.17 177.44 162.35 208.88 237.69 224.82 215.9 214.61 198.11

plant-shape 179.46 269.87 225.2 266.63 172.3 151.38 211.7 223.83 224.9 208.34 211.32 185.95

plant-texture 183.56 280.18 229.79 288.43 185.23 174.11 204.49 239.06 224.63 228.76 213.6 203.7

post-operative 9.47 10.15 9.36 9.94 8.33 8.2 8.78 9.8 9.02 8.52 9.1 8.89

primary-tumor 30.61 35.14 30.93 29.84 29.14 27.48 28.67 28.18 27.73 25.73 26.43 23.9

ringnorm 192.09 94.06 78.06 97.7 184.54 177.42 278.44 94.96 81.93 106.52 276.47 270.66

seeds 7.75 9.65 8.57 9.61 7.46 5.71 10.24 10.99 10.03 10.33 9.25 7.65

semeion 133.92 200.29 140.83 211.13 112.95 74.38 134.27 205.83 142.29 217.42 129.69 95.45

soybean 34.87 43.67 34.94 42.07 31.01 30.76 38.45 48.22 38.59 46.51 35.89 34.99

spambase 145.86 266.25 155.26 264.33 126.5 128.33 185.34 359.57 195.29 330.51 172.87 172.18

spect 8.87 10.66 9.01 10.16 7.56 7.34 7.92 11.14 8.36 9.83 9.03 8.89

spectf 7.22 9.79 7.9 8.53 6.88 5.17 10.53 12.95 11.62 11.17 11.03 8.53

statlog-australian-

credit

61.65 84.09 67.34 80.9 51.56 50.41 88.45 86.61 93.81 81.66 82.81 81.69

statlog-german-

credit

83.54 104.95 86.89 98.17 62.34 61.28 114.18 115.94 116.87 111.89 96.46 93.76

statlog-heart 19.09 23.63 19.61 24.06 15.01 13.64 25.98 27 25.5 27.88 22.85 21.07

statlog-image 53.56 104.54 66.08 110.84 55.86 44.66 64.94 122.42 82.5 126.87 70.88 57.08

statlog-landsat 212.51 282.05 215.65 348.32 183.51 147.53 279.69 349.92 291.84 441.74 255.52 214.28

statlog-shuttle 43.13 85.75 50.42 88.78 50.5 46.36 46.61 96.3 55.25 92.36 56.93 53.09

Continued on next page

131

Table 4.7 – Continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

statlog-vehicle 62.92 86.28 69.01 86.57 54.83 48.37 84.86 88.85 89.87 86.25 80.76 72.17

steel-plates 137.59 219.51 151.26 223.54 127.45 116.3 174.26 212 191.89 216.55 172.86 163.19

synthetic-control 22.45 30.57 24.67 47.6 22.3 14.81 31.6 39.99 33.12 68.44 31.62 23.2

teaching 16.53 15.55 15.79 13.96 14.67 15.2 17.06 13.03 16.26 10.53 16.72 16.82

thyroid 35.33 97.28 38.4 86.65 43.65 40.25 40.6 125.71 41.32 102.93 53.44 49.49

tic-tac-toe 63.59 74.08 68.68 70.4 53.15 49.43 69.82 89.25 79.65 78.96 68.94 60.88

titanic 2.11 1.79 1.96 1.22 1.89 1.92 1.78 1.57 1.67 1.02 1.66 1.58

trains 1.86 1.83 1.82 1.84 1.85 1.87 1.86 1.33 1.83 1.29 1.62 1.79

twonorm 228.12 218.97 174.37 246.81 148.81 117.17 338.36 276.83 242.89 304.57 213.91 179.02

vertebral-column-

2clases

16.76 24.45 21.93 22.62 17.19 16.12 23.89 26.32 26.1 24.54 24.36 23.27

vertebral-column-

3clases

17.79 27.44 22.68 23.81 19.01 17.86 24.66 27.57 27 25.11 26.38 24.15

wall-following 75.12 447.26 206.66 457 200.73 172.75 87.98 525.26 292.24 542.77 260.06 226.96

waveform 235.29 341.47 263.81 393.89 218.79 171.81 345.63 422.09 393.9 497.19 334.64 274.58

waveform-noise 248.63 394.91 283.88 450.01 252.12 178.42 364.23 477.08 430.04 541.41 371.84 285.08

wine 6.59 8.7 7.12 11.46 6.78 5.45 8.63 10.95 8.85 12.68 9.05 7.46

wine-quality-red 145.57 216.6 160.1 214.39 129.81 128.37 187.58 205.59 199.63 196.07 182.78 180.84

wine-quality-white 469.5 680.6 513.65 660.92 417.41 409.4 596.95 643.95 635.97 596.16 573.59 569.44

yeast 154.13 205.48 159.04 180.27 139.59 140.98 173.4 158.29 176.88 145.17 175.34 176.23

Continued on next page

132

Table 4.7 – Continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

zoo 7.05 8.55 7.22 8.02 6.7 6.63 7.21 9 7.41 8.29 7.29 7.32

Average of Mean

Nodes

135.98 183.01 152.44 172.21 132.99 119.17 166.91 198.03 185.75 187.43 171.87 153.07

Here, OM denotes oocytes merluccius, OT denotes oocytes trisopterus.

133

Models

A
ve

ra
ge

 n
um

be
r o

f n
od

es

0

50

100

150

200

(RaF, DRaF) (MPRaF-T, MPDRaF-T) (MPRaF-P, MPDRaF-P) (MPRaF-N, MPDRaF-N) (RaF-PCA, DRaF-PCA) (RaF-LDA, DRaF-LDA)

Standard Double

Figure 4.3: Mean node analysis of the proposed oblique and rotation double random
forest models and the baseline models.

4.5 Diversity error diagrams

In this section, we analyze the existing baseline models and the proposed oblique and

rotation double random forest in terms of “diversity” among the individual decision tree

classifiers and their classification accuracy or error. To visualise both the models in terms

of these measures, visualization approach known as kappa-error diversity diagrams are used

[175]. Kappa error diagrams use 2D plot for visualisation of individual accuracy and diver-

sity of the members of the base learner. For L number of base learners (here, decision trees)

in an ensemble, a diagram is shown as a scatter plot of L(L�1)/2 points with each point cor-

responding to a pair of classifiers being analysed. The x-coordinate represents the diversity

among the pair of base learners, also known as Kappa () coe�cient and the y-coordinate

represents the average error of the pair of base learners. Kappa gives the level of agreement

between the two base learners and while correcting for chance. For T target labels of given

dataset,  is defined on the T ⇥ T coincidence matrix C of two classifiers. Each entry in the

cij represents the proportion of the testing data which one classifier predicted as kth class

while the other base learner classifies it as the jth class. Kappa coe�cient  represents the

134

level of agreement between the two classifiers and is given as follows:

 =
pr(a)� pr(e)

1� pr(e)
(4.3)

where pr(a) is the observed agreement between the two classifiers i.e. probability that both

classifiers predicted the same label and the pr(e) is the hypothetical probability of agreement

by chance. Mathematically,

pr(a) =
X

i

cii, (4.4)

pr(e) =
X

k

"⇣X

i

mki

⌘⇣X

j

mjk

⌘#
. (4.5)

If the two decision trees are in complete agreement, then the kappa coe�cient () is

1 and the two trees are identical. If the trees are independent, then the kappa coe�cient

() is 0. As mentioned above, we evaluate L(L � 1)/2 pairs of kappa coe�cients. Also,

averaged error of the individual classifiers Ei,j = (Ei +Ej)/2. The smaller  value indicates

better diversity or low correlation while as the smaller averaged error E represents the more

accurate or better strength classifier. The most desirable pair of classifiers is the one in the

bottom left corner of Figure 4.4.

Figure 4.4 plots the kappa error diagram for some datasets. The ensemble size is 50,

hence, 1225 dots in each plot. All the classification models are trained on the training data

samples and -error diagrams are plotted based on the performance of the classification

models on the testing samples (in some diagrams the axis are adjusted for better view).

Figure 4.4 represents the centroid of the scatter points for each classification model corre-

sponding to the semeion, oocytes merluccius nucleus 4d, oocytes trisopterus nucleus 2f and

statlog-vehicle datasets. From the given plots, di↵erent models of the random forest possess

di↵erent characteristics. Figure 4.4(a) plot shows that MPRaF-N is the most diverse classi-

fier (least mean value of kappa) and DRaF is the most accurate classifier (least mean value

of error). However, DRaF-LDA ensemble classifiers possess the best overall generalization

performance on this dataset. From the plot, one can see that the proposed DRaF-LDA have

the better combination of diversity and error. Similarly in other datasets, the models with

better combination results in better performance.

135

Figure 4.4: Centroid of Kappa error diagrams on di↵erent datasets.

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5

Mean value of Kappa

0.3

0.35

0.4

0.45

0.5

0.55

M
e
a
n

 v
a
lu

e
 o

f
E

rr
o

r

semeion

RaF

MPRaF-T

MPRaF-P

MPRaF-N

RaF-PCA

RaF-LDA

DRaF

MPDRaF-T

MPDRaF-P

MPDRaF-N

DRaF-PCA

DRaF-LDA

(b)

0.22 0.24 0.26 0.28 0.3 0.32 0.34

Mean value of Kappa

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

M
e
a
n

 v
a
lu

e
 o

f
E

rr
o

r

oocytes_trisopterus_nucleus_2f

RaF

MPRaF-T

MPRaF-P

MPRaF-N

RaF-PCA

RaF-LDA

DRaF

MPDRaF-T

MPDRaF-P

MPDRaF-N

DRaF-PCA

DRaF-LDA

(c)

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

Mean value of Kappa

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

M
e
a
n

 v
a
lu

e
 o

f
E

rr
o

r

oocytes_merluccius_nucleus_4d

RaF

MPRaF-T

MPRaF-P

MPRaF-N

RaF-PCA

RaF-LDA

DRaF

MPDRaF-T

MPDRaF-P

MPDRaF-N

DRaF-PCA

DRaF-LDA

(d)

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54

Mean value of Kappa

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

M
e
a
n

 v
a
lu

e
 o

f
E

rr
o

r

statlog-vehicle

RaF

MPRaF-T

MPRaF-P

MPRaF-N

RaF-PCA

RaF-LDA

DRaF

MPDRaF-T

MPDRaF-P

MPDRaF-N

DRaF-PCA

DRaF-LDA

4.6 Analysis of computational complexity

Here, we evaluate the computational complexity of the classifiers. Without assuming

any structure of decision trees, we focus on the complexity involved at a given node. Let a

given node receives m number of samples with n number of features. In axis parallel splits,

the optimum threshold is chosen based on some impurity criteria via ranking of each fea-

ture. Despite the complexity of the gini impurity, the complexity of the search involved in

optimal split is O(nm log m) [303]. For MPSVM based oblique decision trees, the computa-

tional complexity of generalized problem is O(n3) [173]. In decision trees wherein the feature

transformations (PCA and LDA) are used for projecting the input features, additional com-

putational time is involved for calculating the projection matrix. The complexity of the PCA

is O(mn⇥min(m,n) + n3) [142] while as for LDA the complexity is O(mn2) [44]. MPSVM

based decision tree ensembles are faster as compared to the standard ensemble models. The

reason is that in most of the cases, particularly for the nodes near the root, MPSVM method

is faster compared to the exhaustive search. The training time of the proposed DRaF-PCA

and DRaF-LDA is more as compared to the RaF-PCA and RaF-LDA, respectively, due to

the reason that the bootstrapping at each non-leaf node of the proposed DRaF-PCA and

DRaF-LDA leads to more number of unique samples to be sent down the tree resulting in

136

more deeper decision trees. The average training time of each classification model is given

in Table 4.3.

4.7 Bias variance analysis

In this section, we discuss the bias-variance analysis of the ensemble models. Bias-

variance analysis is the main reason for the success of ensemble models. The concept of

bias-variance is well known in the regression problems for the squared loss functions [76].

However, this analysis is inappropriate as the labels of the classes are categorical. Thus, it is

not feasible to transplant the decomposition of error in regression problems to classification

problems. In classification problems, several studies have provided the ways to decompose

the classification error into bias-variance terms [69, 121, 140]. Each of these studies provide

some insight into the models performance.

In this study, we consider 0 � 1 loss function to analyse the performance of the models

[139]. Let D and Y be spaces representing the input and output, respectively. Suppose |D|

represents the cardinality of D and |Y | represents the cardinality of Y . Also, let d 2 D

and y 2 Y be the element its label respectively. The conditional probability distribution of

target f is P (YF = yF |d) where YF is the Y -valued random variable. Then for a single test

data sample:

E(C) =
X

d

P (D)[(biasd)
2 + �2

d
+ varianced], (4.6)

where

(biasd)
2 =

1

2

X

y2Y
[P (YF = y)� P (YH = y)]2, (4.7)

varianced =
1

2
[1�

X

y2Y
P (YH = y)2], (4.8)

�2

d
=

1

2
[1�

X

y2Y
P (YH = y)2]. (4.9)

Here, (biasd)2 and varianced are calculated are each model and for each dataset. (biasd)2

is abbreviated as biasd. Theoretically, the error should be decomposed into squared bias,

variance and noise (also known as irreducible error). However, given the real-world tasks

137

Methods Average Rank Average Rank Di↵erence Significance
(RaF, DRaF) (7, 3.02) 3.98 Yes

(MPRaF-T, MPDRaF-T) (8.52, 4.37) 4.15 Yes
(MPRaF-P, MPDRaF-P) (7.96, 3.55) 4.41 Yes
(MPRaF-N, MPDRaF-N) (9.73, 5.9) 3.83 Yes
(RaF-PCA, DRaF-PCA) (10.03, 5.5) 4.53 Yes
(RaF-LDA, DRaF-LDA) (8.42, 4.01) 4.41 Yes
�2

F
= 615.0719, FF = 103.0950, q0.05 = 3.2680. The two models are significantly

di↵erent if the average ranks of the two models di↵er at least by the critical
di↵erence, CD = 1.5149.

Table 4.8: Significant di↵erence among the standard and double variants of the en-
sembles of decision trees based on the bias analysis.

wherein the true underlying probability distribution is unknown, estimation of noise is dif-

ficult task. In commonly used approach, the noise is generally aggregated into bias and

variance or the only bias term as the noise in invariant across the learning models for a given

task and hence not a significant factor for the comparative analysis of the algorithms. Table

4.10 gives the bias-variance values for each model corresponding to the 121 datasets. In

most of the cases the double variant ensembles of decision trees have the best bias-variance

values compared to the standard ensembles of the decision trees.

We evaluate the bias-variance of the classification models via statistical tests. In this test,

the lower value of bias/variance gets lower rank and vice versa. The analysis of the results for

bias and variance are given in Table 4.8 and Table 4.9, respectively. From the given tables,

it is clear that the double variants of the random forest achieve lower average rank compared

to the standard variants of random forest for both bias and variance performance. Hence,

the proposed double variants of random forest show better bias-variance results compared

to the standard variants of the random forest. Moreover, the all the proposed variants of

the double random forest are significantly better compared to the standard variants of the

random forest.

138

Methods Average Rank Average Rank Di↵erence Significance
(RaF, DRaF) (6.61, 1.93) 4.68 Yes

(MPRaF-T, MPDRaF-T) (8.96, 4.03) 4.93 Yes
(MPRaF-P, MPDRaF-P) (8.13, 3.36) 4.77 Yes
(MPRaF-N, MPDRaF-N) (9.88, 5.64) 4.24 Yes
(RaF-PCA, DRaF-PCA) (10.68, 5.64) 5.04 Yes
(RaF-LDA, DRaF-LDA) (8.93, 4.2) 4.73 Yes
�2

F
= 809.8335, FF = 186.4664, q0.05 = 3.2680. The two models are significantly

di↵erent if the average ranks of the two models di↵er at least by the critical
di↵erence, CD = 1.5149.

Table 4.9: Significant di↵erence among the standard and double variants of the en-
sembles of decision trees based on the variance analysis.

139

Table 4.10: Bias variance analysis of RaF [23], MPRaF-T [303], MPRaF-P [303], MPRaF-N [303], RaF-PCA [305], RaF-LDA
[305], DRaF [91], MPDRaF-T, MPDRaF-P, MPDRaF-N, DRaF-PCA and DRaF-LDA classification models.

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

abalone 422.19 421.95 422.16 409.26 424.42 420.62 415.77 411.11 417.33 399.97 415.42 413.34

220.38 224.11 226.61 206.18 228.12 225.96 202.89 204.21 214.17 190.48 215.17 214.64

acute-

inflammation

2.21 1.48 2.14 1.99 1.72 1.74 1.81 1.44 1.64 2.07 1.56 1.53

1.84 1.31 1.84 1.74 1.52 1.48 1.53 1.25 1.4 1.83 1.31 1.32

acute-nephritis 1.14 0.86 1.14 1.53 0.74 0.72 0.53 0.86 0.71 1.18 0.58 0.53

0.99 0.8 1.02 1.41 0.66 0.66 0.49 0.8 0.66 1.09 0.54 0.5

adult 3032.87 3261.33 3192.13 3669.3 3341.57 3802.34 2798.83 2993.5 2967.71 3432.11 3175.48 3539.3

1423.89 1552.82 1555.3 1908.44 1718.95 2123.73 1110.31 1241.92 1287.36 1646.2 1553.7 1886.05

annealing 56.94 76.64 54.6 80.44 62.27 63.7 52.45 78.1 58.66 80.84 63.66 64.95

24.71 23.7 25.63 21.81 33.16 34.4 23.87 21.74 24.56 22.91 32.91 34.78

arrhythmia 48.16 55.61 47.75 54.86 53.39 53.65 45.18 52.32 45.5 50.95 49.35 50.5

30.55 35.78 30.37 35.2 34.99 35.65 26.16 30.44 26.79 28.58 29.82 32.12

audiology-std 11.27 14.81 10.96 15.59 15.04 14.59 11 14.25 11.12 15.71 14.47 14.25

Continued on next page

140

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

6.9 10.19 6.73 10.3 10.22 9.98 5.79 9.92 6 10.03 9.82 9.83

balance-scale 34.84 30.63 31.25 30.69 32.12 30.29 32.76 28.41 28.69 27.46 30.59 27.93

22.44 20.42 20.46 20.4 21.08 19.99 17.75 17.64 17.18 16.99 17.8 16.84

balloons 1.42 1.42 1.41 1.35 1.43 1.33 1.26 1.19 1.27 1.31 1.11 1.14

0.8 0.82 0.82 0.83 0.84 0.77 0.66 0.67 0.65 0.75 0.65 0.66

bank 158.45 171.54 164.99 165.29 168.34 166.13 146.42 151.74 152.84 148.85 155.18 153.4

79.65 85.26 83.55 76.1 87.21 84.7 67.42 64.8 70.35 59.45 75 73.58

blood 52.18 50.54 51.52 50.64 52.67 52.28 47.96 44.88 48.01 46.45 49.84 49.51

19.29 18.11 19.18 19.06 19.8 19.75 11.12 10.79 11.85 12.1 13.16 12.94

breast-cancer 24.34 24.42 24.36 23.73 24.75 24.51 21.58 22.02 21.87 20.98 22.56 22.05

11.77 11.85 11.78 11.64 12.35 12.23 8.8 9.28 9 8.51 9.87 9.6

breast-cancer-

wisc

9.94 9.37 8.91 9.06 9.99 9.29 9.31 8.12 8.07 8.01 8.91 8.75

5.92 5.6 5.22 4.98 6.03 5.35 5.25 4.5 4.5 4.38 4.99 4.89

Continued on next page

141

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

breast-cancer-

wisc-diag

11.58 9.6 10.32 10.57 13.13 10.09 10.13 8.5 8.84 8.47 11.23 8.46

6.82 5.79 6.28 6.57 8.5 6.47 5.65 4.93 5.16 4.91 7.17 5.07

breast-cancer-

wisc-prog

16.76 15.82 16.42 16.32 17.21 16.64 15.98 14.64 15.08 14.58 15.74 16.16

8.9 8.65 8.63 8.73 9.24 8.94 8.11 7.55 7.98 7.41 8.29 8.43

breast-tissue 9.3 9.45 9.77 9.95 10.14 9.38 8.33 9.1 8.89 9.2 8.96 8.71

5.28 5.81 5.84 6.32 6.47 5.91 4.45 4.87 4.85 5.37 5.18 4.9

car 53.62 66.26 57.3 82.54 57.16 51.75 47.24 60.48 48.71 76.95 46.33 42.38

40.16 49.16 43.61 52.95 43.64 39.4 35.52 44.72 37.55 46.94 35.5 33.03

cardiotocography-

10clases

131.33 173.39 137.05 184.31 167.74 146.51 109.53 152.42 116.46 171.16 142.7 125.47

89.8 125.16 96.6 132.33 124.55 106.39 70.11 106.29 76.81 121.06 102.89 86.74

cardiotocography-

3clases

57.33 73.66 62.12 78.34 73.06 69.02 47.51 62.48 51.28 68.54 62.08 57.57

Continued on next page

142

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

37.12 47.85 40.8 50.63 47.74 45.32 28.08 38.44 31.89 42.3 38.38 36.22

chess-krvk 3034.05 3362.72 3124.59 3727.55 2940.16 2994.79 2827.31 3183.27 2887.18 3648.43 2662.02 2724.99

2059.91 2326.91 2178.24 2416.27 2080.07 2093.71 1831.25 2132.02 1957.51 2302.68 1831.15 1848.16

chess-krvkp 80.61 120.16 83.73 155.37 102.15 90.43 58.94 98.25 64.73 138.61 79.92 73.46

61.57 90.21 64.48 113.06 77.99 69.75 44.63 74.42 50.15 102.97 61.82 57.61

congressional-

voting

44.37 44.87 45.13 44.68 46.33 45.13 42.7 42.79 42.63 43.49 43.21 42.87

16.03 14.65 15.34 13.96 18.56 17.31 3.25 3.8 3.4 6.23 5.88 4.65

conn-bench-

sonar-mines-

rocks

17.83 17.62 18.6 18 19.54 17.24 16.33 16.47 16.78 16.82 17.18 15.5

10.12 10.15 10.55 10.38 11.02 9.62 9.37 9.19 9.77 9.4 9.89 8.92

conn-bench-

vowel-deterding

116.57 95.58 112.38 124.23 121.65 109.1 76.15 60.54 70.67 101.47 78.76 68.95

105.4 92.13 105.05 117.06 113.98 102.3 71.13 61.26 69.17 99.09 78.68 68.13

Continued on next page

143

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

connect-4 3786.62 4350.55 3949.26 4354.23 4067.8 3991.2 3372.93 4027.03 3573.11 4160.29 3628 3581.14

1936.33 1787.5 1932.43 1384.57 2150.1 2055.04 1546.41 1353.85 1556.88 1148.35 1772.59 1673.69

contrac 178 186.21 182.14 187 181.85 181.28 175.47 182.93 178.55 180.44 179.98 179.21

91.6 96.67 94.68 98.58 94.61 93.99 75.21 82 80.1 87.81 80.62 80.66

credit-approval 35.78 38.42 38.92 37.32 39.4 38.34 33.89 34.78 34.9 35.15 37.12 35.42

19.87 21.82 22.12 20.93 22.69 21.69 17.87 17.97 19.05 18.67 20.57 19.26

cylinder-bands 44.55 49.18 46.05 48.93 47.79 46.45 40.46 47.67 42.35 46.89 44.39 43.68

25.53 27.29 26.23 26.87 27.08 26.09 23.47 26.66 24.57 26.55 25.48 24.91

dermatology 9.98 10.83 9.38 11.47 13.46 11.9 7.52 9.16 7.64 9.71 10.38 9.35

8.43 9.44 7.97 9.97 11.84 10.41 5.96 7.71 6.03 8.33 9.03 8.01

echocardiogram 9.15 8.86 9.1 9.38 9.44 9.19 8.03 7.87 8.28 8.04 8.78 8.11

4.68 4.69 4.87 4.96 5.04 4.95 3.72 3.77 4.15 3.79 4.38 4.03

ecoli 18.23 19.64 18.28 20.9 19.4 18.85 15.41 17.79 15.86 19.05 16.9 16.7

10.84 11.67 10.89 13.62 12.08 11.52 7.47 9.45 8.21 11.62 8.97 8.87

energy-y1 16.04 24.28 17.47 23.22 20.83 17.95 12.73 19.82 13.21 20.27 15.18 13.49

Continued on next page

144

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

8.06 14.04 9.48 13.82 12.6 10.71 5.35 9.79 5.86 10.98 8.25 7.04

energy-y2 23.08 26.22 23.5 27.07 24.83 23.9 22.61 23.18 21.97 26.04 23.07 22.62

10.96 13.58 11.08 14.46 12.98 12.13 7.2 9.18 7.58 12.87 9.78 8.9

fertility 4.31 4.93 4.55 4.56 4.73 4.57 3.67 3.86 3.91 3.7 3.9 3.95

1.94 2.47 2.06 2.06 2.27 2.09 1.12 1.31 1.38 1.08 1.43 1.47

flags 21.28 25.33 22.76 25.36 24.8 25 19.63 24.64 20.77 24.74 23.38 23.12

14.72 16.74 15.71 17.01 16.75 17.04 12.68 15.6 13.78 15.65 15.34 15.29

glass 19.46 20.25 19.09 20.78 20.5 20.51 16.67 18.63 17.23 19.99 18.63 18.57

12.45 12.55 12.2 12.87 13.1 12.98 9.7 10.73 10.14 11.45 11.37 11.18

haberman-

survival

25.47 25.79 25.48 25.05 26.5 26.28 25.04 24.18 24.92 24.09 25.51 25.24

11.01 11.38 11 10.92 11.64 11.61 7.83 8.31 8.69 8.14 8.86 9.16

hayes-roth 5.92 9.26 8.03 10.3 8.09 8.58 4.57 7.82 5.92 9.55 6.86 7.24

3.43 5.99 5.21 6.48 5.45 5.44 2.37 4.98 3.56 5.76 4.52 4.61

heart-cleveland 32.34 32.18 31.56 32.01 32.1 31.78 31.08 30.46 30.52 30.2 31 31.05

Continued on next page

145

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

19.01 19.59 18.77 19.27 19.53 19.35 16.28 16.73 16.64 16.38 17.69 17.68

heart-hungarian 17.72 17.95 18.06 17.68 18.68 17.26 15.66 15.94 16.59 15.6 16.65 16.44

9.05 9.54 9.56 9.41 10.05 9.19 7.06 7.67 7.92 7.52 8.34 8.12

heart-switzerland 17.46 17.32 17.33 17.45 17.62 17.52 17.16 17.5 17.15 17.44 17.58 17.24

9.94 10.18 10.02 10.2 10.31 10.23 9.04 9.31 8.9 9.19 9.78 9.66

heart-va 29.78 29.76 29.87 29.57 29.55 29.72 29.61 30.17 29.46 29.33 29.59 29.76

17.39 17.41 17.36 17.5 17.44 17.49 15.93 16.11 16.02 16.16 16.35 16.34

hepatitis 8.91 9.79 9.41 9.57 9.48 9.05 8.82 9.19 8.89 9.06 9.04 8.96

4.91 5.54 5.26 5.5 5.45 5.18 4.71 5.11 4.81 5.04 4.92 4.88

hill-valley 293.58 272.38 281 268.79 281.38 273.96 290.39 264.8 274.21 261.01 271.99 267.73

135.21 143.5 144.06 137.19 145 138.52 132.08 141.33 142.91 131.17 142.78 137.4

horse-colic 18.23 20.99 19.67 20.73 22.68 22.33 16.51 19.16 18.7 20.2 21.22 22.24

10.34 11.9 11.27 11.99 12.96 12.69 8.78 10.51 10.31 11.22 11.82 12.32

ilpd-indian-liver 48.37 48.88 49.08 50.59 48.99 49.22 46.68 46.75 46.17 47.11 46.68 47.47

23.29 23.55 23.93 24.73 24.41 24.09 20.95 20.99 21.37 21.25 22.14 22.45

Continued on next page

146

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

image-

segmentation

380.59 466.36 424.88 623.46 457.6 468.05 298.42 393.75 338.4 588.04 378.66 392.93

295.25 377.07 348.3 520.25 375.6 398.97 227.28 315.87 270.57 490.47 315.18 339.2

ionosphere 13.06 14.02 14.4 14.62 14.84 13.84 10.89 12.21 12.45 12.83 13.34 12.7

7.97 9.19 9.42 9.32 9.71 8.95 6.4 8 8.19 8.4 8.69 8

iris 2.02 2.11 1.77 2.02 2.77 1.55 1.95 1.52 1.59 1.39 2.28 1.54

1.08 1.33 1.13 1.42 2.02 0.88 0.84 0.78 0.86 0.81 1.46 0.88

led-display 79.9 84.24 80.89 90.26 78.53 79.14 78.8 83.67 80.07 90.53 77.87 78.75

38.74 45.57 40.56 55.39 38.18 38.21 28.95 35.1 31.03 49.77 26.71 29.18

lenses 1.93 1.85 1.77 2.06 2.13 1.96 1.64 1.8 1.94 1.57 1.9 1.79

1.32 1.28 1.17 1.31 1.39 1.33 1.02 1.15 1.17 1.05 1.2 1.14

letter 875.1 1169.82 1122.19 1298.45 1182.43 1040.52 684.66 988.71 890.24 1159.74 940.64 816.4

764.88 1047.64 1001.99 1159.21 1055.78 932.48 594 890.77 802.66 1044.75 852.52 743.86

libras 39.03 34 39.06 36.55 38.12 37.04 30.97 27.25 31.19 30.93 29.77 28.47

29.95 27.67 31.79 29.51 30.76 29.78 23.66 22.48 25.89 25.5 24.2 23.26

Continued on next page

147

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

low-res-spect 21.91 21.87 23.23 26.01 25.24 23.35 20.2 20.31 21.19 23.63 21.42 19.92

14.56 14.63 16.17 18.25 18.37 16.53 12.33 12.7 13.87 16.04 14.45 13.34

lung-cancer 4.26 4.17 4.33 4.34 4.44 4.39 3.98 4.31 4.06 4.23 4.2 4.26

2.41 2.45 2.38 2.48 2.55 2.51 2.14 2.45 2.13 2.43 2.43 2.39

lymphography 29.68 29.16 29.39 28.59 29.28 30 30.62 29.47 30.51 29.1 29.72 29.84

6.14 7.17 6.35 7.45 7.16 6.57 4.95 6.21 5.02 6.48 6.17 5.89

magic 966.3 1008.49 1008.6 1004.6 996.78 976.48 898 916.77 941.86 896.96 920.04 910.56

505.97 533.54 537.45 534.69 542.88 522.07 448 448.36 481.86 437.62 486.41 474.26

mammographic 54.54 53.46 57.6 52.97 56.38 57.43 52.55 50.14 52.68 50.64 52.91 53.6

23.19 21.7 24.86 21.59 23.8 24.96 14.66 15.31 16.96 17.48 16.02 16.37

miniboone 4121.21 3859.11 4216.63 3803.82 4551.71 4175.43 3858.53 3504.21 3965.63 3479.97 4206.87 3913.31

2422.28 2162.95 2504.94 2050.18 2765.54 2493.98 2254.23 1914.7 2351.13 1853.21 2542.82 2335.05

molec-biol-

promoter

9.42 10.33 9.78 10.49 11.02 9.94 8.33 9.79 9.17 9.58 10.18 9.34

5.6 5.9 5.76 6.01 6.1 5.79 5.11 5.66 5.46 5.6 5.87 5.53

Continued on next page

148

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

molec-biol-splice 181.66 290.79 213.17 297.37 306.32 244.77 145.8 261.31 180.77 267.25 269.7 214.22

138.02 201.95 159.45 205.03 212.57 177.08 109.67 182.44 135.65 187.34 189.93 154.95

monks-1 184.7 188.87 190.15 193.74 190.17 189.89 179.06 181.61 184.26 191.03 188.55 182.31

52.93 87.64 69.57 80.62 77.94 75.1 47.2 75.36 67.2 83.85 68.68 66.87

monks-2 153.7 157.68 155.9 162.69 163.26 160.78 148.77 150.26 151.06 154.24 154.44 154.19

30.91 44.29 38.65 54.25 51.21 47.28 16.71 26.01 23.34 35.95 33.11 30.23

monks-3 194.02 172.46 188.45 184.22 188.32 192.86 200.1 169.54 186.25 188.42 181.59 190.13

57.03 73.83 61.84 74.99 76.46 74.71 41.86 66.7 57.22 63.91 59.58 66.64

mushroom 3.18 6.41 3.36 27.9 9.02 7.78 2.21 4.61 2.23 22.76 9.97 4.58

2.96 6.01 3.19 26.48 8.51 7.39 2.11 4.41 2.16 21.69 9.63 4.32

musk-1 36.02 37.26 39.74 38.63 41.52 38.78 30.47 32.76 34.15 34.71 35.13 34.42

21.41 22.39 23.37 23.26 24.97 22.56 17.96 19.98 20.56 21.08 21.42 20.02

musk-2 115.57 146.03 149.62 159.35 175.74 157.47 74.74 114.79 115.99 122.98 125.67 120.31

74.39 94.63 96.47 104.31 117.35 103.39 48.23 70.91 72.46 75.96 82.9 78.09

nursery 2030.12 1962.02 2014.15 1920.23 2004.34 2021.52 2058.12 1985.2 2046.31 1939.8 2050.82 2058

Continued on next page

149

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

161.98 238.37 178.16 324.16 198.46 171.28 132.12 209.75 140.91 314.17 150.08 132.66

OM nucleus 4d 81.66 74.48 76.05 72.5 78.9 74.33 76.11 68.82 71.97 65.53 74.18 68

42.31 40.62 41.99 37.79 44.34 42.02 38.87 37.36 39.42 33.5 41.79 37.88

OM states 2f 34.01 34.28 34.58 35.49 37.72 32.94 31.06 30.45 31.41 31.39 33.8 29.99

19.83 19.9 20.75 21.12 23.55 20.02 17.22 17.43 18.2 18.1 20.25 17.49

OT nucleus 2f 74.58 72.35 73.19 71.7 73.64 69.96 68.6 66.13 68.06 66.72 68.15 64.49

40.36 40.87 41.87 40.8 41.99 39.73 36.25 37.3 38.51 37.36 39.01 35.9

OT states 5b 39.31 37.43 39.03 40.35 42.03 37.07 34.83 31.38 34.19 33.6 35.96 31.24

23.74 23.71 24.49 25.67 27.71 24.22 20.25 19.51 21.27 20.76 23.37 20.16

optical 347.14 471.68 351.36 932.06 525.93 854.82 293.25 424.12 301.73 941.64 473.15 746.27

311.63 429.48 317.48 724.69 482.75 698.24 265.14 391.18 272.43 729.29 443.37 643.02

ozone 30.14 30.46 30.64 29.86 35 33.74 28.36 26.49 27.92 24.97 30.81 30.67

15 16.01 15.45 15.3 19.46 18.5 13.23 11.87 13.25 10.05 15.93 15.73

page-blocks 61.43 65.49 62.18 71.87 67.36 65.3 54.61 56.4 55.72 65.77 58.29 56.73

34.01 36.47 35.83 42.22 39.94 38.53 24.99 27.94 27.59 36.35 30.5 29.61

Continued on next page

150

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

parkinsons 9.43 9.15 9.53 9.47 10.49 9.77 7.89 7.72 8.06 8.14 8.98 8.24

5.16 5.53 5.5 5.56 6.1 6.06 4.3 4.73 4.78 4.91 5.11 4.88

pendigits 432.84 349.16 411.69 461.57 442.92 392.22 371.49 296.03 353.34 415.33 390.87 340.92

334.57 280.17 325.47 379.57 375 322.83 281.79 233.79 278.04 338.84 328.11 276.92

pima 62.07 63.41 63.57 64.1 64.12 63 60.56 60.16 61.79 59.96 62.36 61.22

30.1 31.52 31.52 31.97 31.71 31.04 27.11 27.75 29.4 28.04 29.64 28.43

pittsburg-

bridges-

MATERIAL

4.32 3.93 4.51 4 4.56 4.33 3.65 3.28 3.64 3.27 3.69 3.34

2.45 2.53 2.76 2.51 2.96 2.71 1.56 1.71 1.58 1.7 2.03 1.62

pittsburg-

bridges-REL-L

9.87 9.77 9.89 9.77 10.05 10.19 9.04 8.99 9.16 8.98 9.28 9.05

5.66 5.84 5.88 5.88 5.92 6.01 4.78 4.92 4.75 5 5.09 4.96

pittsburg-

bridges-SPAN

9.73 9.39 9.7 9.57 9.61 9.55 9.36 8.72 9.08 8.87 9.26 9.19

Continued on next page

151

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

5.02 4.94 5 5.26 5.25 5.11 3.85 3.88 3.9 3.98 4.27 4.19

pittsburg-

bridges-T-OR-D

3.8 4.23 3.76 3.95 4.11 4.08 3.13 3.13 3.18 3.29 3.6 3.51

1.89 2.16 1.87 2 2.12 2.03 1.18 1.05 1.19 1.24 1.51 1.45

pittsburg-

bridges-TYPE

11.06 11.16 11.43 11.38 11.39 11.44 10.23 9.92 10.1 10.34 10.45 10.18

6.52 7.2 6.83 7.13 7.19 7.09 4.72 5.46 5.01 5.61 5.67 5.47

planning 18.94 18.72 19.12 18.83 19.18 18.78 18.43 17.87 17.96 16.92 18.36 18.3

8.34 8.66 8.61 8.58 8.95 8.67 7.44 7.37 7.76 6.7 7.82 7.91

plant-margin 207.32 213.59 225.57 224.65 214.8 220.86 185.65 203.73 208.48 217.32 189.21 191.76

165.7 168.02 175.83 174.65 169.32 173.42 150.92 162.44 166.6 170.34 153.6 156.81

plant-shape 208.39 200.15 218.05 213.26 207.39 210.35 187.89 186.74 199.96 201.49 181.49 179.02

151.83 151.54 165.52 162.81 157.17 161.98 131.84 142.14 152.98 154.54 136.95 138.34

plant-texture 200.01 204.59 217.09 218.8 209.02 215.93 172.62 191.51 197.74 208.96 183.31 187.08

161.71 165.22 173.28 173.36 167.88 172.22 142.61 156.98 161.7 167.84 150.72 155.16

Continued on next page

152

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

post-operative 9.14 9.2 9.15 9.45 9.25 9.94 7.73 8.02 7.79 8.18 8.5 8.18

3.58 3.53 3.47 3.78 3.54 3.92 1.69 1.94 1.81 2.07 2.28 2.12

primary-tumor 41.25 43.21 41.32 43.23 42.36 41.73 38.62 40.04 38.99 40.65 39.66 39.88

26.24 28.4 26.7 29.11 27.75 27.34 20.98 23.19 21.99 25.14 23.35 24.13

ringnorm 256.67 306.79 304.97 304.71 263.7 276.46 213.73 285.23 281 275.01 220.26 231.47

175.88 168.89 170.48 169.11 191.62 198.7 141.68 163.36 161.3 159.62 160.21 167

seeds 6.82 5.48 6.61 6.06 7.12 5.76 5.84 5.11 5.38 5.35 6.1 5.2

3.77 3.24 3.87 3.42 4.32 3.24 3.1 2.75 3.02 2.81 3.47 2.92

semeion 126.93 163.75 139.3 167.68 162.94 144.83 106.49 150.44 118.57 154.24 138.95 121.39

108.94 135.69 118.51 138.09 134.91 123.66 91.81 126.4 102.45 129.21 118.36 106.29

soybean 85.7 125.43 86.86 169.31 145.14 168.43 65.71 118.51 66.27 167.24 129.05 160.1

70.2 109.22 71.29 140.08 126.74 141.95 49.24 104.9 50.77 139.17 115.31 137.44

spambase 135.46 161.62 143.8 179.6 156.4 149.42 113.87 140.49 121.61 156.76 131.21 128.29

83.45 104.31 90.36 117.42 101.55 95.58 66.39 87.83 73.1 99.73 82.8 80.36

spect 74.55 78.75 75.48 81.66 81.93 79.26 70.13 75.54 71.13 76.95 77.76 76.27

Continued on next page

153

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

35.82 37.59 36.46 37.47 39.29 36.74 28.16 29.38 28.01 29.5 32.29 32.7

spectf 37.38 44.39 42.58 28.7 50.73 60.26 33.26 39.24 36.48 23 45.36 47.13

22.54 28.01 26.71 15.24 32.63 37.78 18.92 24.42 21.91 9.16 28.63 29.82

statlog-

australian-credit

72.45 76.02 74.31 72.89 75.22 75.5 73.17 75.86 75.58 75.18 75.13 75.66

35.72 36.79 36.61 35.72 36.67 36.65 35.08 36.52 36.82 35.68 35.9 36.08

statlog-german-

credit

82.59 86.24 83.99 85.12 85.53 83.99 76.37 80.24 79.5 80.47 80.94 79.28

43.05 44.83 43.79 43.73 44.69 43.93 37.2 38.65 39.35 38.63 40.84 39.73

statlog-heart 17.4 17.22 17.67 17.85 17.62 17 16.33 15.9 16.24 16.6 16.49 16.19

9.81 9.82 10 10.02 9.98 9.37 8.18 8.39 8.55 8.77 9.02 8.69

statlog-image 42.92 53.07 46.48 67.83 51.13 42.32 30.38 41.77 34.76 53.36 36.73 30.74

32.37 41.95 36.4 54.87 41.79 33.69 22.42 32.39 26.73 42.74 29.24 23.59

statlog-landsat 330.98 325.12 327.45 343.26 351.89 334.89 301.92 298.76 298.83 317.8 316.78 306.57

215.27 205.78 210.92 213.63 232.29 215.5 191.15 186.25 188.09 193.7 205.19 194.98

Continued on next page

154

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

statlog-shuttle 14.63 62.49 26.19 169.51 59.99 77.66 8.09 69.82 21.17 159.44 55.01 53.09

10.99 51.74 21.32 145.12 54.77 70.31 6.06 58.72 16.2 134.38 51.13 48.18

statlog-vehicle 68.72 68.8 67.81 70.73 72.12 67.28 62.6 64.3 62.07 65.36 65.54 60.85

41.53 43.94 43.43 45.73 48.4 44.34 35.74 39.18 38.16 41.03 42.64 39.28

steel-plates 158.94 168.25 167.32 176.17 174.42 169.94 143.81 157.85 150.39 163.29 156.3 156.1

102.96 111.27 110.38 115.95 116.19 112.44 89.65 101.28 97.22 107.58 102.84 100.54

synthetic-control 24.33 20.63 24.89 28.59 27.24 21.6 18.64 16.33 19.11 22.57 20.27 17.68

19.91 17.23 20.25 23.2 21.5 17.6 15.27 13.42 15.76 18.25 16.36 14.55

teaching 18.3 18.48 18.38 18.72 18.77 18.5 17.13 17.95 17.34 18.54 17.15 17.22

9.98 10.03 10.09 10.11 10.23 9.88 7.15 7.57 7.47 8.44 7.54 7.61

thyroid 96.4 235.15 103.95 764.03 327.21 473.01 85.6 217.64 84.42 714.99 347.09 433.88

64.68 152.4 71.55 587.65 277.09 396.42 54.73 137.61 53.7 558.06 307.19 369.07

tic-tac-toe 47.05 49.97 49.88 53.77 51 50.03 37.48 39.81 40.57 47.01 39.98 39.69

33.66 35.23 35.05 36.53 35.73 35.22 27.83 29.77 30.07 33.41 29.71 29.61

titanic 119.26 120.25 119.76 122.17 118.52 118.64 118.31 119.18 118.84 121.15 118.62 117.76

Continued on next page

155

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

13.4 15.83 14.35 17.7 12.64 12.65 7 11.63 8.12 16.16 8.8 7.18

trains 0.75 0.69 0.75 0.73 0.83 0.83 0.59 0.71 0.55 0.75 0.62 0.69

0.44 0.44 0.45 0.44 0.47 0.47 0.38 0.42 0.35 0.45 0.4 0.43

twonorm 322.13 174.14 179.14 175.13 196.7 174.59 300.72 154.18 163.55 152.77 173.41 156.68

228.03 123.14 128.34 123.87 140.69 123.59 212.1 107.54 114.87 106.02 122.73 109.67

vertebral-

column-2clases

18.23 17.96 18.07 18.48 19.07 17.83 17.34 16.3 16.55 16.32 17.53 16.7

9.64 9.9 9.85 9.84 10.22 9.72 8.37 8.37 8.7 8.23 8.81 8.62

vertebral-

column-3clases

18.24 19.38 18.97 19.38 19.65 18.88 16.69 17.36 17.24 17.18 18.4 16.97

10.39 11.58 11.49 11.48 11.94 11.35 9 9.59 9.7 9.74 10.76 9.47

wall-following 53.4 263.94 147.78 279.8 217.02 205.71 34.78 209.91 116.49 228.6 161.01 150.81

44.51 195.14 121.8 208.18 171.9 161.23 28.59 152.31 94.1 169.25 125.62 116.59

waveform 338.3 330.24 329.75 329.77 342.18 304.07 325.41 310.76 310.6 307.43 324.3 292.42

200.61 195.75 195.75 196.45 207.55 177.82 185.88 180.54 181.45 179.29 192.39 166.3

Continued on next page

156

Table 4.10 – continued from previous page

Datasets RaF MPRaF-

T

MPRaF-

P

MPRaF-

N

RaF-

PCA

RaF-

LDA

DRaF MPDRaF-T⇤ MPDRaF-P⇤ MPDRaF-N⇤ DRaF-PCA⇤ DRaF-LDA⇤

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var. Var.

waveform-noise 365.29 396.83 373.3 402.08 402.48 346.01 346.85 370.86 356.66 371.62 373.77 323.59

229.31 250.02 234.66 254.27 259.66 215.75 212.51 231 220.16 232.58 237.8 199.23

wine 4.7 4.16 4.63 4.9 5.94 4.44 3.9 3.97 3.44 4.12 4.59 3.28

3.7 3.32 3.72 3.85 4.53 3.6 3.03 3.04 2.72 3.2 3.55 2.66

wine-quality-red 170.47 172.33 170.37 172.22 170.12 169.33 152.43 159.31 152.86 160.16 150.89 148.68

98.56 102.89 99.29 101.99 101.58 101.11 82.49 89.32 85.4 89.21 85.87 83.8

wine-quality-

white

538.74 544.35 539.74 550.6 540.62 538.74 474.95 498.56 478.36 509.12 470.59 466.43

323.98 333.7 327.45 333.24 333.04 330.1 268.98 290.93 274.29 295.78 274.59 268.83

yeast 171.29 178.95 172.73 179.09 173.81 173.4 164.8 172.82 165.84 173.92 166.39 165.68

99.69 109.78 102.5 109.3 104.37 103.6 85.57 97.63 88.63 99.42 91.59 91.27

zoo 2.46 2.62 2.37 3.11 3.11 2.94 1.62 2.02 1.49 2.16 2.22 1.93

2.11 2.35 2.03 2.65 2.78 2.65 1.37 1.68 1.26 1.85 2.01 1.72

Here, OM denotes oocytes merluccius, OT denotes oocytes trisopterus.

Var. denotes the variance.

157

4.8 Summary

In this chapter, we propose two approaches for generating the double random forest

models. In the first model, we propose oblique double random forest ensemble models and

in the second approach, we propose rotation based double random forest ensemble models.

In oblique double random forest models, the splitting hyperplane at each non-leaf node is

generated via MPSVM. This leads to the incorporation of geometric structure and hence,

leads to better generalization performance. As the decision tree grows, the problem of sample

size may arise. Hence, we use Tikhonov regularisation, axis parallel split regularisation null

space regularisation for generating decision trees to full depth. In rotation based double

random forest models, we used two transformations- principal component analysis and linear

discriminant analysis, on randomly chosen feature subspace at each non-leaf node. Rotations

on di↵erent random subspace features lead to more diverse decision tree ensembles and better

generalization performance. Unlike standard random forest where the bootstrap aggregation

is used at root node only, the proposed oblique and rotation double random forest use

bootstrap aggregation at each non-terminal node for choosing the best split and then the

original samples are sent down the decision trees. The proposed double variants of the

ensemble of decision trees results in bigger trees compared to the standard variants of the

ensemble of decision trees. Experimental results and the statistical analysis show the e�cacy

of the proposed oblique and rotation double random forest ensemble models over standard

baseline classifiers.

158

Chapter 5

Minimum variance embedded RVFL and

co-trained RVFL network

In this chapter, we present two variants of random vector functional link network (RVFL)

model known as minimum variance embedded RVFL and co-trained RVFL model. The min-

imum variance embedded RVFL includes total variance minimization based RVFL (Total-

Var-RVFL) and intraclass variance minimization based RVFL (Class-Var-RVFL). Total-Var-

RVFL exploits the training data dispersion by minimizing the total variance while as Class-

Var-RVFL minimizes the intraclass variance of the training data. To further improve the

performance of the RVFL, we ensemble the projections from randomised networks and l1

norm autoencoder based projections. The coRVFL trains two RVFL models jointly such

that each RVFL model is constructed with di↵erent feature projection matrix and hence,

shows better generalization performance. We use randomly projected features and sparse-

l1 norm autoencoder based features to train the proposed coRVFL model. The proposed

formulations are given as follows:

5.1 Minimum variance embedded RVFL network

Motivated by the simplicity and better generalization performance of the RVFL model

[203] and minimum variance extreme learning machine [120], we propose novel multiclass

classifiers known as total variance minimization based random vector functional link network

(Total-Var-RVFL) and intraclass variance minimization based random vector functional link

network (Class-Var-RVFL) to optimize the output layer weights via minimization of both

159

training data dispersion and norm of output layer weights.

5.1.1 Proposed formulation

In this section, we discuss variance embedded variants of random vector functional link

network. The proposed Total-Var-RVFL and Class-Var-RVFL involve two step learning

process wherein the first step requires the generation of enhanced features via randomized

feature mapping. The second step involves incorporation of within class scatter matrix for

generating the optimal output weights. We exploit the training data dispersion for generating

the optimal classifier. Unlike RVFL network, the proposed approach minimizes the output

layer weights norm and the dispersion of the training data in the projected feature space

and original feature space.

Min
�

1

2
Tr(�TS�) +

c2
2
k�k2

2
+

c1
2
k⇠k2

2

s.t. H� � Y = ⇠, (5.1)

where first term minimizes the variance of the training samples and second term of the

objective function is the regularisation term andH is combination of original and randomized

features. The variance term S is given as ST for total variance and Sw for within class

variance both are defined as follows:

The within class variance of the training data is given as:

Sw =
X

k

X

i2Ck

(xi �mk)(xi �mk)
T , (5.2)

where mk is the mean of kth class training data, Ck represents the kth class, xi 2 R(d+J) is

the training data sample.

The total variance of the training data is given as:

ST =
MX

i=1

(xi � µ)(xi � µ)T , (5.3)

where µ is the mean of the training data samples.

Substituting the constraints in the objective function of (5.1) and taking the gradient

160

with respect to �, we have

L = S� + c2� + c1H
T (H� � Y). (5.4)

Setting the gradient to zero, we get the optimal output layer weights as

� = (
1

c1
S +

c2
c1
I +HTH)�1HTY, (5.5)

where I is an identity matrix of appropriate dimension. Testing data sample x is assigned

the class based on the maximum probability as f(x) = h(x)�.

5.1.2 Experiments

In this section, we analyze the experimental results of the given baseline models. We

evaluate the performance of the given methods on the datasets available from the UCI

repository [60]. We followed the same experimental setup and naming convention as given

in the experimental study [62]. We used grid search approach to tune the optimal parameters

corresponding to di↵erent given classification methods. The parameters are chosen from the

range given as: c1 = [10�6, 10�5, · · · , 105, 106], c2 = [10�6, 10�5, · · · , 105, 106] and number

of hidden neurons=2 : 20 : 300. We used relu activation function in the hidden layer. All

experiments are performed on Windows-10 platform with 3-GB RAM and MATLAB-2019b.

Based on the previous discussion, variants of the proposed method include Total variance

minimization based random vector functional link network (Total-Var-RVFL) and intraclass

variance minimization based random vector functional link network (Class-Var-RVFL). The

experimental results obtained by the given classification methods on di↵erent datasets is

given in Table 5.1.

From the Table 5.1, the average accuracy of the classification models extreme learn-

ing machine (ELM), minimum variance ELM (MVELM), minimum class variance ELM

(MCVELM), random vector functional link network (RVFL), proposed Total-Var-RVFL

and proposed Class-Var-RVFL are 75.83, 73.01, 74.97, 75.88, 77.94, and 77.88, respectively.

One can observe that the proposed Total-Var-RVFL and proposed Class-Var-RVFL classi-

fication models achieved better average accuracy in comparison to given baseline models.

We use Friedman test [53] to analyze the statistical significance of the classification models.

161

We assign rank Rj

i
to the ith classifier of the p classifiers on the jth dataset with the best

performing classifier getting the lower rank. Based on this evaluation, the average rank of

the classification models ELM, MVELM, MCVELM, RVFL, proposed Total-Var-RVFL and

proposed Class-Var-RVFL are 4.25, 4.22, 3.22, 4.06, 2.67, and 2.58, respectively. Under the

null-hypothesis, all classifiers are performing equally and hence their average ranks are equal.

After simple calculations, we have �2

F
= 15.4707, FF = 3.5289. Hence, we reject the Null

hypothesis. We use Nemenyi posthoc test to evaluate the significant di↵erence among the

models. After simple calculations at ↵ = 0.05, one can see that Nemenyi test fails to detect

the significant di↵erence among the models, however, the proposed models achieved higher

average accuracy and lower average rank as compared to the baseline models.

Table 5.1: Performance of ELM, MVELM, MCVELM, RVFL, proposed Total-Var-
RVFL and proposed Class-Var-RVFL.

Dataset ELM [113] MVELM

[120]

MCVELM

[119]

RVFL

[203]

Total-Var-

RVFL

Class-Var-

RVFL

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(N, c) (N, c2, c1) (N, c2, c1) (N, c) (N, c2, c1) (N, c2, c1)

arrhythmia (68.81,

0.0108)

(71.46,

0.0387)

(70.35, 0.07) (69.47,

0.0145)

(69.47,

0.0536)

(69.47,

0.067)

(162, 0.1) (202, 1000,

100)

(282, 100,

10)

(102, 1) (142, 1000,

100)

(142, 1000,

100)

balloons (75, 0.0002) (50, 0.0003) (50, 0.0005) (75,

0.0003)

(81.25,

0.0006)

(81.25,

0.0006)

(102,

0.000001)

(2,

0.000001,

1000)

(22,

0.000001,

100)

(2, 0.1) (22,

0.000001,

0.001)

(22,

0.000001,

0.001)

blood (78.61,

0.0073)

(76.47,

0.0261)

(79.28,

0.0031)

(77.81,

0.0218)

(79.01,

0.0174)

(79.01,

0.0188)

Continued on next page

162

Table 5.1 – continued from previous page

Dataset ELM [113] MVELM

[120]

MCVELM

[119]

RVFL

[203]

Total-Var-

RVFL

Class-Var-

RVFL

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(N, c) (N, c2, c1) (N, c2, c1) (N, c) (N, c2, c1) (N, c2, c1)

(102,

10000)

(202, 0.001,

100)

(62,

0.000001,

100000)

(262,

100000)

(222, 0.1,

1000)

(222, 0.1,

1000)

breast-cancer (69.37,

0.0041)

(69.37,

0.0153)

(70.77,

0.0044)

(68.66,

0.004)

(69.37,

0.0028)

(69.37,

0.0031)

(122,

1000000)

(162, 100,

10000)

(82, 0.00001,

1)

(262, 100) (102, 0.0001,

1)

(102, 0.0001,

1)

breast-cancer-

wisc-prog

(81.12,

0.0023)

(83.16,

0.0104)

(80.61,

0.0272)

(76.53,

0.0021)

(82.14,

0.0071)

(81.12,

0.0013)

(82, 1) (142, 0.1,

0.1)

(242, 0.01,

0.01)

(142, 100) (202, 0.1,

0.1)

(2, 10,

10000)

energy-y1 (85.16,

0.006)

(87.63,

0.0227)

(86.72,

0.0092)

(86.33,

0.024)

(87.11,

0.0078)

(87.37,

0.0316)

(162,

10000)

(202,

0.00001,

1000)

(122, 0.0001,

100000)

(282,

1000000)

(122,

0.000001,

1000)

(282,

0.000001,

100)

glass (68.87,

0.0023)

(62.26,

0.0153)

(60.38,

0.0045)

(66.04,

0.0026)

(64.15,

0.0046)

(66.04,

0.002)

(242, 10) (182, 1,

1000)

(82, 0.00001,

100000)

(222,

1000)

(142, 100,

100000)

(62, 0.00001,

1000)

heart-

hungarian

(82.53,

0.0047)

(83.22,

0.0014)

(84.93,

0.0037)

(81.16,

0.0038)

(84.25,

0.0031)

(83.56,

0.0144)

(182, 100) (42,

0.000001,

100000)

(62, 10, 1) (162,

100000)

(82, 1, 1000) (282, 1000,

100000)

Continued on next page

163

Table 5.1 – continued from previous page

Dataset ELM [113] MVELM

[120]

MCVELM

[119]

RVFL

[203]

Total-Var-

RVFL

Class-Var-

RVFL

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(N, c) (N, c2, c1) (N, c2, c1) (N, c) (N, c2, c1) (N, c2, c1)

hepatitis (78.21,

0.0007)

(73.72,

0.0206)

(78.21,

0.0336)

(78.85,

0.0012)

(82.05, 0.01) (80.13,

0.0057)

(62, 1000) (222, 0.01,

10)

(282,

0.000001,

0.00001)

(82, 1000) (282, 10,

1000)

(162, 0.1,

10)

hill-valley (56.44,

0.0282)

(68.48,

0.0256)

(56.77,

0.0338)

(58.25,

0.0075)

(59.74,

0.0094)

(65.51,

0.009)

(282,

10000)

(162,

0.0001,

0.1)

(202, 100,

1000000)

(62,

10000)

(22, 0.0001,

10)

(42, 0.00001,

0.1)

horse-colic (66.18,

0.0078)

(61.76,

0.0207)

(63.24,

0.0299)

(64.71,

0.0012)

(66.18,

0.0011)

(66.18,

0.0169)

(262, 0.1) (202, 1, 0.1) (242, 10, 1) (22, 1) (2, 0.01, 0.1) (222,

100000,

10000)

lenses (70.83,

0.0002)

(79.17,

0.0014)

(70.83,

0.0008)

(75,

0.0003)

(83.33,

0.0021)

(83.33,

0.0017)

(22, 0.1) (62, 10000,

1000)

(42, 10, 1) (42, 0.1) (122, 1000,

100)

(122, 100,

10)

mammographic (81.35,

0.012)

(81.67,

0.0254)

(81.56,

0.0075)

(82.29,

0.0145)

(82.5,

0.0036)

(81.98,

0.0023)

(182,

100000)

(182,

0.000001,

0.01)

(102, 0.0001,

10000)

(182,

1000)

(62, 0.1,

1000000)

(22, 0.001,

10000)

Continued on next page

164

Table 5.1 – continued from previous page

Dataset ELM [113] MVELM

[120]

MCVELM

[119]

RVFL

[203]

Total-Var-

RVFL

Class-Var-

RVFL

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(N, c) (N, c2, c1) (N, c2, c1) (N, c) (N, c2, c1) (N, c2, c1)

monks-3 (71.99,

0.0042)

(72.92,

0.0084)

(83.1,

0.0317)

(75.93,

0.0008)

(82.41,

0.0063)

(75.46,

0.0057)

(122,

100000)

(142, 0.001,

100)

(262, 0.001,

0.01)

(42,

1000000)

(222, 0.001,

0.01)

(202,

0.00001,

0.01)

planning (71.11,

0.0002)

(65.56,

0.009)

(71.67,

0.0129)

(71.11,

0.0004)

(71.11,

0.0005)

(71.11,

0.0006)

(2,

1000000)

(142,

0.00001,

0.01)

(182,

0.000001,

0.001)

(2,

0.000001)

(2, 0.000001,

0.000001)

(2, 0.000001,

0.000001)

seeds (94.23,

0.0005)

(65.38,

0.0007)

(95.19,

0.0038)

(94.23,

0.0022)

(94.71,

0.0008)

(95.67,

0.0008)

(42, 10) (22,

0.000001,

0.00001)

(82,

0.000001,

1000000)

(162,

100000)

(22, 0.00001,

1000000)

(22, 0.00001,

100)

statlog-

german-credit

(77.1,

0.005)

(75.8,

0.0144)

(78.1,

0.0295)

(77.6,

0.0299)

(77.2,

0.0096)

(77.6,

0.0068)

(102, 100) (142, 0.1,

100000)

(202,

0.000001,

0.01)

(262, 10) (102, 0.01,

100000)

(62, 1,

10000)

statlog-heart (88.06,

0.0021)

(86.19,

0.0012)

(87.69,

0.0032)

(86.94,

0.0016)

(86.94,

0.0029)

(87.69,

0.0025)

(122, 0.1) (22, 1000,

1000)

(82, 10, 1) (82, 0.1) (82, 1, 0.1) (82, 100, 10)

Continued on next page

165

0 50 100 150 200 250 300

Number of Neurons

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

ELM

MVELM

MCVELM

RVFL

Total-Var-RVFL

Class-Var-RVFL

(a) Synthetic-control

0 50 100 150 200 250 300

Number of Neurons

82

84

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

ELM

MVELM

MCVELM

RVFL

Total-Var-RVFL

Class-Var-RVFL

(b) Breast-cancer-wisc

0 50 100 150 200 250 300

Number of Neurons

50

55

60

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

ELM

MVELM

MCVELM

RVFL

Total-Var-RVFL

Class-Var-RVFL

(c) Lymphography

Figure 5.1: E↵ect of enhanced features on the performance of the classification models.

Table 5.1 – continued from previous page

Dataset ELM [113] MVELM

[120]

MCVELM

[119]

RVFL

[203]

Total-Var-

RVFL

Class-Var-

RVFL

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(Acc.,

Time(s))

(N, c) (N, c2, c1) (N, c2, c1) (N, c) (N, c2, c1) (N, c2, c1)

Average-

Accuracy

75.83 73.01 74.97 75.88 77.94 77.88

Average-Rank 4.25 4.22 3.22 4.06 2.67 2.58

5.1.3 Analysis of the number of hidden neurons

In this subsection, we analyze the significance of the number of hidden neurons on the

generalization performance of the classification models. From Figure 5.1(a) one can see

that as the number of hidden neurons increases, the generalization performance of the given

166

baseline methods also increases. Also, the generalization performance of the proposed Class-

Var-RVFL is better than the given baseline models. In Figure 5.1(b), it is visible that the

generalization performance of the proposed models is almost consistent with varying number

of hidden neurons. In Figure 5.1(c), it is evident that RVFL model initially performs better

and its performance decreases with the increase of hidden neurons. However, the performance

of the proposed Total-Var-RVFL is better than other baseline models.

Given the above analysis, it is imperative that the number of hidden neurons should be

chosen properly to obtain better generalization performance across di↵erent classification

datasets.

5.2 Co-trained RVFL network

Motivated by the random feature projection matrix in RVFL [203], unsupervised feature

learning based RVFL [311] and positively correlated KRR [306], we propose co-trained ran-

dom vector functional link network (coRVFL). The proposed coRVFL model is a positively

correlated ensemble model. It is e↵ective as each RVFL model is constructed with di↵erent

feature projection matrix and hence it is unlikely that the outcome of each model will give

wrong prediction for a particular data sample. The positive correlation forces the output of

bad learner to be as close as possible to the good learner in the ensemble.

5.2.1 Proposed formulation

In this section, we discuss the formulation and computational complexity of the proposed

co-trained random vector functional link network. The proposed co-trained random vector

functional link network (coRVFL) trains two RVFL models jointly. In the proposed coRVFL

model, both random feature projection matrix and the sparse l1-norm autoencoder features

are used to learn the network robustly. Hence, the proposed coRVFL model can be regarded

as marriage of random feature weighted RVFL model and unsupervised feature learning

based RVFL model. The latent feature representation of the input for random and pre-

167

trained network is given as follows:

F1 =

2

6666664

g(x1.w1 + b1) . . . g(x1.wL + bL)

g(x2.w1 + b1) . . . g(x2.wL + bL)
...

. . .
...

g(xN .w1 + b1) . . . g(xN .wL + bL)

3

7777775
, (5.6)

where each wi 2 Rn, W = [w1, w2, w3, . . . , wL]T is the random matrix and bi the biases

initialized from a suitable range.

Let

H1 = [F1, X]. (5.7)

and

F2 =

2

6666664

g(x1.�1 + d1) . . . g(x1.�L + dL)

g(x2.�1 + d1) . . . g(x2.�L + dL)
...

. . .
...

g(xN .�1 + d1) . . . g(xN .�L + dL)

3

7777775
, (5.8)

where each �i 2 Rn, � = [�1,�2,�3, . . . ,�L]t is the pre-trained weight matrix obtained by

l1-norm autoencoder and di are the biases.

Also assume

H2 = [F2, X]. (5.9)

The optimization problem of the proposed co-trained RVFL model is as follows:

min
↵

1

2

2X

i=1

(||Hi↵i � Y ||2 + ci||↵i||2F) +
c3
2

2X

i,j=1

||Hi↵i �Hj↵j ||2, (5.10)

where ↵i are the output layer weights, for i = 1, 2 and ||·||F denotes the Frobenius norm. The

first part of the objective function ensures that each model predicts the output label as closely

as possible, the second term is the regularization term to control the model complexity,

and the third term regularizes the pairwise models to minimize the disagreements between

168

the models. The objective function leads to better performance as it is unlikely for the

two models to agree on an incorrect label as each is trained on a di↵erent latent feature

representation of the input data. When c3 = 0, the proposed coRVFL model reduces to the

training of two independent RVFL models.

Taking derivative of the objective function with respect to ↵i and setting this gradient

to zero, we get the closed form solution as:

↵1 = ((1 + c3)H
t

1H1 + c1I + c23H
t

1H2((1 + c3)H
t

2H2 + c2I)
�1Ht

2H1)
�1

(Ht

1Y + c3H
t

1H2((1 + c3)H
t

2H2 + c2I)
�1Ht

2Y) (5.11)

and

↵2 = ((1 + c3)H
t

2H2 + c2I + c23H
t

2H1((1 + c3)H
t

1H1 + c1I)
�1Ht

1H2)
�1

(Ht

2Y + c3H
t

2H1((1 + c3)H
t

1H1 + c1I)
�1Ht

1Y). (5.12)

Let

Gi = (1 + c3)H
t

iHi + ciI, (5.13)

where i = 1, 2, then we have

↵1 = (G1 + c23H
t

1H2G
�1

2
Ht

2H1)
�1(Ht

1Y + c3H
t

1H2G
�1

2
Ht

2Y), (5.14)

↵2 = (G2 + c23H
t

2H1G
�1

1
Ht

1H2)
�1(Ht

2Y + c3H
t

2H1G
�1

1
Ht

1Y). (5.15)

The outcome of the proposed coRVFL is combined in two ways, maximum and average of

probability outcomes, to get the final output label and the coRVFL models are accordingly

named as coRVFL-max and coRVFL-avg. In coRVFL-max, the maximum of the probability

outcomes is taken as the final outcome of the model while as in coRVFL-avg the average of

the probability outcomes is taken as final outcome of the model.

5.2.2 Experiments

In this section, experimental analysis is performed to demonstrate the performance of

the proposed coRVFL model. All the experiments are conducted on MATLAB-2017b on a

169

PC with 8 GB RAM Intel(R) Core(TM) i7� 6700 CPU 3.40GHz 3.41 GHz.

For comparison of the baseline models (here, standard RVFL [203] and sparse pre-trained

RVFL (Sp-RVFL) [311]) and the proposed models, we have taken datasets from UCI repos-

itory [60] and some real-world fisheries datasets [81]. The details of the datasets used is

given in Table 5.3. For comparison, we have followed the same setting for data partitions

(training, validation and testing) as given in [62]. Stratified sampling is done to divide the

data into training and testing datasets (with approx. 50% of the available patterns). We

used grid search approach to obtain the optimal parameters, for number of hidden neurons

L = 3 : 203 with 20 step size and ci = (1
2
)� with � chosen from the range �5 : 14.

Table 5.4 gives the classification accuracies of the proposed coRVFL models and the

baseline models. One can see, the proposed coRVFL models (coRVFL-max and coRVFL-avg)

achieve highest average accuracies. However, comparing classifiers with average accuracy is

susceptible as lower performance in one dataset can be compensated by higher in other one.

Hence, we followed [62, 306], and use Friedman ranking method for performance evaluation.

In Friedman testing, each model is assigned a rank with the higher performance model being

assigned a lower rank and lower performance model being assigned higher rank. From Table

5.4, one can see that the top ranked model is the proposed coRVFL-avg model followed by

coRVFL-max model. This shows that the proposed method leads to better performance

compared to the given baseline models.

5.2.3 Computational complexity analysis

Let M be the number of samples in a dataset wherein each feature xi 2 Rn and L be the

number of hidden neurons in each architecture. Also, let d = n+L. In standard RVFL and

Sp-RVFL models, the primal space involves the inversion of matrix of size d while as in dual

space the matrix inversion of size M is involved. Let d be the number of features in each

model of co-trained RVFL. In proposed co-trained RVFL models, two matrix inversions of

size d are involved in calculation of each ↵. By standard matrix inversion procedure, the

complexity of inverting the matrix of size d is O(d3). Thus, the proposed co-trained RVFL

model involves more computation compared to standard RVFL and Sp-RVFL models. The

additional complexity comes at the cost of training two models in a cooperative manner.

170

coRVFL-avg

coRVFL-max

RVFL

Sp-RVFL

1 2 3 4

 CD

Figure 5.2: Statistical di↵erence between the RVFL, Sp-RVFL, and the proposed
coRVFL models based on pairwise Nemenyi test.

5.2.4 Friedman test

To analyse the performance of the classification models statistically, we use Friedman

test [71, 72]. With simple calculation, we get �2

F
= 19.3644, FF = 7.9502. With z = 4 and

D = 30, FF is distributed with 3 and 87 degrees of freedom. At ↵ = 0.10, the critical value

of FF (3, 87) = 2.15. Hence, we reject the null hypothesis, i.e., significant di↵erence exists

among the compared models. With Nemenyi test, critical di↵erence

CD =q↵

r
z(z + 1)

6D
,

=2.291 ⇤
p
4 ⇤ 5/(6 ⇤ 30) = 0.7. (5.16)

From Figure 5.2, one can see that the proposed coRVFL-avg model is significantly better as

compared to the RVFL and Sp-RVFL models. Also, coRVFL-max is significantly better as

compared to the RVFL model. The statistical test is also reported in Table 5.2. The empty

spaces denote that the significant di↵erence doesn’t exist among the methods given in the

corresponding row and s+ denotes that the row method is significantly better as compared

to the column method. Similarly, s� denotes that the row method is statistically worse than

the method in the corresponding column.

171

RVFL Sp-RVFL coRVFL-max coRVFL-avg
RVFL s- s-
Sp-RVFL s-
coRVFL-max s+
coRVFL-avg s+ s+

Table 5.2: Statistical comparison of the classification models. Here s+ means row
method is better as compared to the method in the corresponding column while as s-
means that the row method is worse as compared to the method in the corresponding
column. Empty entry means no significant di↵erence exist among the methods given
in the corresponding row and column of a cell.

Dataset #pat. #inputs #classes %Majority
bank 45211 17 2 88.5
cardiotocography-10clases 2126 21 10 27.2
cardiotocography-3clases 2126 21 3 77.8
chess-krvkp 3196 36 2 52.2
connect-4 67557 42 2 75.4
letter 20000 16 26 4.1
magic 19020 10 2 64.8
miniboone 130064 50 2 71.9
molec-biol-splice 3190 60 3 51.9
mushroom 8124 21 2 51.8
musk-2 6598 166 2 84.6
oocytes merluccius nucleus 4d 1022 41 2 68.7
oocytes merluccius states 2f 1022 25 3 67
ozone 2536 72 2 97.1
page-blocks 5473 10 5 89.8
plant-margin 1600 64 100 1
plant-shape 1600 64 100 1
plant-texture 1600 64 100 1
ringnorm 7400 20 2 50.5
semeion 1593 256 10 10.2
spambase 4601 57 2 60.6
statlog-german-credit 1000 24 2 70
statlog-image 2310 18 7 14.3
steel-plates 1941 27 7 34.7
twonorm 7400 20 2 50
wall-following 5456 24 4 40.4
waveform 5000 21 3 33.9
waveform-noise 5000 40 3 33.8
wine-quality-red 1599 11 6 42.6
wine-quality-white 4898 11 7 44.9
Naming convention is adapted from [62].

Table 5.3: Dataset details.

172

Dataset RVFL Sp-RVFL coRVFL-max coRVFL-avg
bank 89.8 89.23 89.96 89.96
cardiotocography-10clases 79 80.32 79.76 80.79
cardiotocography-3clases 90.82 91.15 91.24 91.34
chess-krvkp 96.87 96.65 97.59 97.59
connect-4 75.89 77.23 77.06 77.06
letter 79.71 82.56 83.46 84.1
magic 85.02 85.26 85.69 85.69
miniboone 90.36 89.28 91.07 91.07
molec-biol-splice 81.18 81.12 82.59 82.56
mushroom 100 100 100 100
musk-2 95.72 96.13 96.15 96.15
oocytes merluccius nucleus 4d 83.82 83.04 84.8 84.8
oocytes merluccius states 2f 93.04 92.35 92.16 91.37
ozone 97.24 97.08 97.12 97.12
page-blocks 95.76 96.11 96.13 96.18
plant-margin 78.31 84.69 83.56 83.44
plant-shape 56.69 59.81 61.19 61.88
plant-texture 80.63 81.94 81.06 81.75
ringnorm 95.64 96.32 96.5 96.5
semeion 88.32 94.03 93.15 91.21
spambase 91.48 92 92.33 92.33
statlog-german-credit 75.8 78.4 79 79
statlog-image 94.06 93.33 93.24 93.59
steel-plates 75.62 73.14 75.31 75.36
twonorm 97.77 97.89 97.76 97.76
wall-following 83.87 84.49 85.12 85.41
waveform 86.58 87.18 86.88 86.92
waveform-noise 86 86.78 86.78 86.76
wine-quality-red 60.13 61.63 60.63 61.81
wine-quality-white 55.58 55.25 55.86 55.47
Average Accuracy 84.69 85.48 85.77 85.83
Average Rank 3.25 2.7 2.13 1.92
Win-Tie-Loss 4-1-18 6-1-8 2-1-1 7-1-1

Table 5.4: Classification accuracy of RVFL, Sp-RVFL and the proposed coRVFL mod-
els.

173

Table 5.5: Comparison of RVFL, Sp-RVFL, and the proposed coRVFL models based
on pairwise win-tie-loss: sign test.

RVFL Sp-RVFL coRVFL-max coRVFL-avg
Sp-RVFL 19-1-10
coRVFL-max 24-1-5 18-2-10
coRVFL-avg 23-1-6 21-1-8 11-13-6

Here, a-b-c entry in each cell denotes that row method in each cell win a-times, ties
b-times and loses c-times with respect to the method in the corresponding column.

Table 5.6: Significant di↵erence between the RVFL, Sp-RVFL, and the proposed
coRVFL models based on pairwise win-tie-loss: sign test.

RVFL Sp-RVFL coRVFL-max coRVFL-avg
RVFL s� s�
Sp-RVFL s�
coRVFL-max s+
coRVFL-avg s+ s+

Here s+ means row method is better as compared to the column method while as
s� means that the row method is worse as compared to the column method in the
corresponding cell. Empty entry means no significant di↵erence exist among the

methods given in the corresponding row and column of a cell.

5.2.5 Pairwise win-tie-loss: sign test

Another statistical method counts the number of wins a particular algorithm is the

overall winner. In case of multiple algorithms, pairwise comparisons are given in a matrix

form. Table 5.5 gives the number of wins, ties and losses in a matrix form. Table 5.6 gives

the pairwise significant di↵erence among the classification models. One can see that the

proposed coRVFL-avg is better as compared to the given RVFL and Sp-RVFL classification

models. Also, the proposed coRVFL-max is significantly better as compared to the standard

RVFL model.

5.2.6 Parameter sensitivity

In this subsection, we analyze the e↵ect of hyperparameters c1, c3 on the performance

of the proposed coRVFL models. Figure 5.3(a) to Figure 5.3(d) show the e↵ect of the

parameters c1 and c3 on the performance of the proposed coRVFL-max models and Figure

5.3(e) to Figure 5.3(h) show the e↵ect of the parameters on the performance of the proposed

coRVFL-avg model. One can see that to obtain the optimal performance one needs to tune

174

0

215

20

213

211

40

215
29

213

A
cc

u
ra

cy
(%

)

60

27
211

C
1

29
25

80

27

C
3

23
25

100

21
23

21
2-1

2-1
2-3

2-3
2-5

2-5

(a) Cardiotocography-3clases

0

215

20

213

211

40

215
29

213

A
cc

u
ra

cy
(%

)

60

27 211

C
1

29
25

80

27

C
3

23
25

100

21
23

21
2-1

2-1
2-3

2-3
2-5

2-5

(b) Magic

0

215

20

213

211

40

215
29

213

A
cc

u
ra

cy
(%

)

60

27
211

C
1

29
25

80

27

C
3

23
25

100

21
23

21
2-1

2-1
2-3

2-3
2-5

2-5

(c) Oocytes merluccius nucleus 4d

0

215

20

213

211

40

215
29

213

A
cc

u
ra

cy
(%

)

60

27 211

C
1

29
25

80

27

C
3

23
25

100

21
23

21
2-1

2-1
2-3

2-3
2-5

2-5

(d) Molec-biol-splice

0

215

20

213

211

40

215
29

213

A
cc

u
ra

cy
(%

)

60

27
211

C
1

29
25

80

27

C
3

23
25

100

21
23

21
2-1

2-1
2-3

2-3
2-5

2-5

(e) Cardiotocography-3clases

20

215

213

40

211
215

60

29
213

A
cc

u
ra

cy
(%

)

27 211

80

C
1

29
25

27

C
3

23
25

100

21
23

21
2-1

2-1
2-3

2-3
2-5

2-5

(f) Magic

30

215

40

213

50

211
215

60

29
213

A
cc

u
ra

cy
(%

)

27
211

70

C
1

29
25

80

27

C
3

23
25

90

21
23

21
2-1

2-1
2-3

2-3
2-5

2-5

(g) Oocytes merluccius nucleus 4d

0

215

20

213

211

40

215
29

213

A
cc

u
ra

cy
(%

)

60

27 211

C
1

29
25

80

27

C
3

23
25

100

21
23

21
2-1

2-1
2-3

2-3
2-5

2-5

(h) Molec-biol-splice

Figure 5.3: Analysis of classification performance of the proposed coRVFL models
with the varying hyperparameters c1 and c3 (Figures 5.3(a)-5.3(d) corresponds to the
coRVFL-max while as the figures 5.3(e)-5.3(h) corresponds to the coRVFL-avg model).

175

these hyperparameters carefully.

5.3 Summary

In this chapter, we presented variance embedded RVFL and ensemble of RVFL, known

as Co-Trained RVFL model. We present total variance minimization based random vector

functional link network (Total-Var-RVFL) and intraclass variance minimization based ran-

dom vector functional link network (Class-Var-RVFL). The proposed methods exploit the

training data dispersion in the original feature space as well as the randomized feature pro-

jection space while optimizing the output layer weights. From the experimental analysis, one

can see that incorporation of total variance and class variance improved the generalization

performance of the proposed models. In comparison to given baseline models, the proposed

Total-Var-RVFL and Class-Var-RVFL models achieved better average accuracy. Also, the

average rank of the proposed Class-Var-RVFL is better than other baseline models except

MCVELM.

In co-trained random vector functional link network (coRVFL), two RVFL models are

trained jointly such that each RVFL model is predicting the target label as closely as pos-

sible. Since two RVFL models are trained on di↵erent feature representations and hence, it

is unlikely for the outcome of two models to agree on a particular data sample resulting in

forcing the less accurate model to be as close as possible to the more accurate model. Ex-

perimental results conducted on publicly available datasets show that the proposed coRVFL

is better as compared to the baseline models. Furthermore, statistical analysis show that

the proposed coRVFL-avg is statistically significantly better as compared to the baseline

models.

This chapter presented the improvements over shallow RVFL models. Recently, there

has been surge in the deep learning architecture, especially randomised based deep network

architectures. In the next chapter, we present deep architecture of RVFL with learning using

privileged information.

176

Chapter 6

Ensemble deep random vector functional

link network using privileged information

In the previous chapter, we presented the improvements over shallow RVFL model.

Recently, deep learning architectures have received quite a lot attention. In particular, non-

iterative learning based deep randomized models have been proposed for the classification

and regression problems. The deep randomised models especially random vector functional

link network (RVFL) with direct links have proved to be successful. However, deep RVFL

(dRVFL) and its ensemble models are trained only on normal samples. In this chapter,

deep RVFL with privileged information and ensemble deep RVFL with privileged informa-

tion are enabled to incorporate privileged information, however, the standard RVFL model

and its deep models are unable to use privileged information. Privileged information based

approach is commonly seen in human learning. To fill this gap, we have incorporated learn-

ing using privilaged information (LUPI) in dRVFL model, and propose dRVFL with LUPI

framework called dRVFL+. In LUPI framework, half of the available features are used as

normal features and rest as the privileged features. However, we propose a novel approach

for generating the privileged information. We utilise di↵erent activation functions while pro-

cessing the normal and privileged information in the proposed deep architectures. To the

best of our knowledge, this is first time that a separate privileged information is generated.

The formulation of the proposed architectures is given as:

177

Figure 6.1: Deep random vector functional link network using privileged information.

6.1 Proposed deep RVFL+ and its ensemble

In this section, we introduce deep RVFL using privileged information (dRVFL+) and its

ensemble deep RVFL (edRVFL) using privileged information known as edRVFL+.

6.1.1 Deep random vector functional link network using priv-

ileged information

Deep RVFL using privileged information (dRVFL+) is a deep architecture framework

based on RVFL+ model. The architecture of the proposed dRVFL+ is given by Figure

6.1. From the given architecture, one can see that the proposed dRVFL+ consists of two

components: normal information and the privileged information. The normal information

is processed through L number of hidden layers, with each layer receiving the input from

the previous layer. Here, we follow a rectangular structure wherein the number of nodes in

each hidden layer is fixed to N . The weights and biases, given by wi, bi for i = 1, 2, . . . , L

are generated randomly and kept fixed.

For mathematical simplicity, we skip the bias from the notation. The first hidden layer

178

output is given by

H(1) = g(XW (1)), (6.1)

and the output of higher hidden layers (i > 1) is given as

H(i) = g(H(i�1)W (i)), (6.2)

where W (1) 2 Rn⇥N and W (i) 2 RN⇥N , and g(·) is the activation function.

The concatenated input data matrix to the output layer is given as

D = [H(1), H(2), · · · , H(L�1), H(L), X]. (6.3)

The privileged information is also generated by the L layer architecture wherein we

input the original features. However, the privileged component of the given architecture uses

separate set of weights and biases, denoted by w̃i, b̃i for i = 1, 2, . . . , L, which are generated

randomly and kept fixed and di↵erent activation f(·) is used in the privileged component.

Similar to normal component, we fix the rectangular component with N number of hidden

nodes in each hidden layer of the L layer architecture.

The output of the first privileged hidden layer is given by

H̃(1) = f(XW̃ (1)), (6.4)

and the output of higher privileged hidden layers (i > 1) is given as

H̃(i) = f(H̃(i�1)W̃ (i)), (6.5)

where W̃ (1) 2 Rn⇥N and W̃ (i) 2 RN⇥N , and f(·) is the activation function.

The concatenated input to the output layer is given as

D̃ = [H̃(1), H̃(2), · · · , H̃(L�1), H̃(L), X]. (6.6)

Similar to RVFL+, the output weights (�) of the proposed dRVFL+ are obtained by

solving closed form solution.

179

Figure 6.2: Ensemble deep random vector functional link network using privileged
information.

6.1.2 Ensemble deep RVFL network using privileged infor-

mation

The concatenation of all the projections of hidden layer in a single matrix in dRVFL+

exaggerated the complexity of the algorithm. To overcome this issue, we proposed ensem-

ble of deep Random Vector Functional Link Network (edRVFL+). The proposed edRVFL+

utilises the intermediate features unlike the conventional multilayer architecture [255], which

results in improved generalization. The architecture of the proposed edRVFL+ is given in

Figure 6.2. The proposed edRVFL+ is composed of two components- normal and privileged

information processing components. The input to normal component are the original fea-

tures, processed by the L number of hidden layer, each having N number of nodes. Each

hidden layer receives the input as the output of the preceding layer and the original features.

The output of first hidden layer is

H(1) = g(XW (1)), (6.7)

180

and for the other higher layers (i > 1)

H(i) = g([H i�1, X]W (i)). (6.8)

The privileged information is also generated by the L layer architecture wherein we

input the original features. However, the privileged component of the given architecture

uses separate set of weights and biases, denoted by w̃i, b̃i for i = 1, 2, . . . , L, are generated

randomly and kept fixed and di↵erent activation f(·) is used in the privileged component.

Similar to normal part, we fix the rectangular component with N number of hidden nodes

in each hidden layer of the L layer architecture. Each privileged hidden layer receives the

input as the output of the previous privileged layer and the original features. The output of

first hidden layer is

H̃(1) = f(XW̃ (1)), (6.9)

and for the other higher layers (i > 1)

H̃(i) = f([H̃ i�1, X]W̃ i). (6.10)

Similar to RVFL+, with D = H(i) and D̃ = H̃(i) the output weights �(i) are optimised

via closed form solution.

6.2 Experiments

In this section, we analyse the performance of the baseline models and the proposed

dRVFL+ and edRVFL+ models. The analysis is performed for the diagnosis of Alzheimer’s

disease.

6.2.1 Experimental setup

The experimental evaluation was performed using MATLAB R2017b and the worksta-

tion with Intel Xenon(R) CPU E5-2697 v4 2.30 GHZ and 128 GB RAM. The datasets are

randomly partitioned into 70 : 30 ratio. Here, 30% samples are reserved for testing while as

70% of the samples are used for training the models. Also, we use five fold cross validation

181

on the training set for optimizing the hyperparameters corresponding to di↵erent classifica-

tion models. In five fold cross validation the data is portioned randomly into 5 disjoint sets

wherein one is used for testing and the rest are employed for training the model.

The hyperparameters corresponding to di↵erent classification models are obtained via

grid search approach in the following range � = C = {2�6, 2�5, · · · , 212} and the number

hidden neurons from {1028, 2048, 4096}. We followed a 2-stage method for obtaining the

optimal hyperparameters. In first stage, the number of hidden layers is fixed to two and

optimal number of hidden nodesN⇤ and regularisation parameter C⇤ is searched from the fine

range. In the second stage, tune the number of layers and then fine tune the regularisation

parameter C and number of hidden nodes N .

The performance measures used to evaluate the algorithms are given as follows:

Accuracy, AUC =
TP + TN

TP + FP + TN + FN
(6.11)

Sensitivity or Recall =
TP

TP + FN
(6.12)

Precision =
TP

TP + FP
(6.13)

F-measure =
2⇥ Precision⇥ Recall

Precision + Recall
(6.14)

G-mean =
p
Precision⇥ Recall (6.15)

where false positive, true positive, false negative and true negative are denoted by

FP, TP, FN and TN , respectively.

6.2.2 Evaluation on ADNI dataset

The scans from the ADNI repository (adni.loni.usc.edu) are used in this study. In 2003,

the Principal Investigator of ADNI project, Michael W. Weiner, launched the project. The

aim of this project is to analyse the neuroimaging techniques like MRI (Magnetic Resonance

Imaging), PET (Positron Emission Tomography) and other tests for the early diagnosis of

the AD from the MCI (Mild Cognitive Impairment) stage. For detailed information, we refer

the interested readers to www.adni-info.org. In this study, Volume based Morphometry

(VolBM) based features are used. The feature extraction pipeline followed is same as in

[75]. The classification models are evaluated in terms of the classification performance in

182

www.adni-info.org

RVFL dRVFL edRVFL RVFL+ dRVFL+ edRVFL+
(AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.)

Activation Function (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.)
(Selu, Sin) (0.8432, 0.9057) (0.8997, 0.8679) (0.8929, 0.8679) (0.886, 0.8679) (0.9186, 0.9057) (0.8834, 0.8491

(0.7808, 0.75) (0.9315, 0.902) (0.9178, 0.8846) (0.9041, 0.8679) (0.9315, 0.9057) (0.9178, 0.8824)
(Selu, Hardlim) (0.8321, 0.9245) (0.772, 0.7358) (0.8834, 0.8491

(0.7397, 0.7206) (0.8082, 0.7358) (0.9178, 0.8824)
(Selu, Tribas) (0.8484, 0.9434) (0.8535, 0.8302) (0.9049, 0.9057

(0.7534, 0.7353) (0.8767, 0.8302) (0.9041, 0.8727)
(Selu, Radbas) (0.8416, 0.9434) (0.8834, 0.8491) (0.886, 0.8679

(0.7397, 0.7246) (0.9178, 0.8824) (0.9041, 0.8679)
(Selu, Sign) (0.8201, 0.8868) (0.772, 0.7358) (0.8834, 0.8491

(0.7534, 0.7231) (0.8082, 0.7358) (0.9178, 0.8824)
(Relu, Sin) (0.8295, 0.9057) (0.8535, 0.8302) (0.9049, 0.9057) (0.9117, 0.9057) (0.9186, 0.9057) (0.9254, 0.9057

(0.7534, 0.7273) (0.8767, 0.8302) (0.9041, 0.8727) (0.9178, 0.8889) (0.9315, 0.9057) (0.9452, 0.9231)
(Relu, Hardlim) (0.8227, 0.9057) (0.856, 0.8491) (0.8723, 0.8679

(0.7397, 0.7164) (0.863, 0.8182) (0.8767, 0.8364)
(Relu, Tribas) (0.8484, 0.9434) (0.916, 0.8868) (0.8792, 0.8679

(0.7534, 0.7353) (0.9452, 0.9216) (0.8904, 0.8519)
(Relu, Radbas) (0.8304, 0.9623) (0.8586, 0.8679) (0.8483, 0.7925

(0.6986, 0.6986) (0.8493, 0.807) (0.9041, 0.8571)
(Relu, Sign) (0.8432, 0.9057) (0.856, 0.8491) (0.8723, 0.8679

(0.7808, 0.75) (0.863, 0.8182) (0.8767, 0.8364)
(Sigmoid, Sin) (0.8903, 0.8491) (0.9023, 0.8868) (0.8603, 0.8302) (0.8714, 0.8113) (0.8603, 0.8302) (0.8886, 0.8868

(0.9315, 0.9) (0.9178, 0.8868) (0.8904, 0.8462) (0.9315, 0.8958) (0.8904, 0.8462) (0.8904, 0.8545)
(Sigmoid, Hardlim) (0.8903, 0.8491) (0.8792, 0.8679) (0.8792, 0.8679

(0.9315, 0.9) (0.8904, 0.8519) (0.8904, 0.8519)
(Sigmoid, Tribas) (0.8414, 0.7925) (0.8818, 0.8868) (0.8509, 0.8113

(0.8904, 0.84) (0.8767, 0.8393) (0.8904, 0.8431)
(Sigmoid, Radbas) (0.8903, 0.8491) (0.8346, 0.7925) (0.8886, 0.8868

(0.9315, 0.9) (0.8767, 0.8235) (0.8904, 0.8545)
(Sigmoid, Sign) (0.8808, 0.8302) (0.8792, 0.8679) (0.8792, 0.8679

(0.9315, 0.898) (0.8904, 0.8519) (0.8904, 0.8519)
Here, bold face denotes the performance of top two models.

Table 6.1: Performance evaluation of the algorithms on CN versus AD case.

Control Normal (CN) versus Mild Cognitive Impairment (MCI) subjects, Control Normal

(CN) versus Alzheimer’s disease (AD) subjects and Mild Cognitive Impairment (MCI) versus

Alzheimer’s disease subjects.

6.2.3 Results and discussion

In this section, we analyse the performance of the models for the diagnosis of the

Alzheimer’s disease. The architecture of the models involved are based on the process-

ing of normal information and the privileged information. The standard RVFL, dRVFL and

edRVFL models are capable of using only the normal information while as the standard

RVFL+, dRVFL+ and edRVFL+ models can process both the normal and privileged in-

formation. In the literature of LUPI framework, the original feature space is divided into

two disjoint subsets wherein one is used as the normal information and the other being used

183

RVFL dRVFL edRVFL RVFL+ dRVFL+ edRVFL+
(AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.)

Activation Function (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.)
(Selu, Sin) (0.5381, 0.459) (0.5873, 0.5574) (0.6181, 0.541) (0.5893, 0.4754) (0.6774, 0.7377) (0.6244, 0.6393

(0.6172, 0.3636) (0.6172, 0.4096) (0.6953, 0.4583) (0.7031, 0.4328) (0.6172, 0.4787) (0.6094, 0.4382)
(Selu, Hardlim) (0.6033, 0.5738) (0.6005, 0.623) (0.6404, 0.6557

(0.6328, 0.4268) (0.5781, 0.413) (0.625, 0.4545)
(Selu, Tribas) (0.5861, 0.5082) (0.6931, 0.7377) (0.6478, 0.6393

(0.6641, 0.4189) (0.6484, 0.5) (0.6563, 0.4699)
(Selu, Radbas) (0.5744, 0.5082) (0.7013, 0.7541) (0.6977, 0.7705

(0.6406, 0.4026) (0.6484, 0.5055) (0.625, 0.4947)
(Selu, Sign) (0.5381, 0.459) (0.6005, 0.623) (0.6404, 0.6557

(0.6172, 0.3636) (0.5781, 0.413) (0.625, 0.4545)
(Relu, Sin) (0.5908, 0.541) (0.5951, 0.5574) (0.615, 0.5738) (0.5936, 0.4918) (0.6735, 0.7377) (0.6041, 0.6066

(0.6406, 0.4177) (0.6328, 0.4198) (0.6563, 0.443) (0.6953, 0.4348) (0.6094, 0.4737) (0.6016, 0.4205)
(Relu, Hardlim) (0.5865, 0.5246) (0.5955, 0.5738) (0.5506, 0.4918

(0.6484, 0.4156) (0.6172, 0.4167) (0.6094, 0.375)
(Relu, Tribas) (0.574, 0.4918) (0.697, 0.7377) (0.6614, 0.7213

(0.6563, 0.4054) (0.6563, 0.5056) (0.6016, 0.4632)
(Relu, Radbas) (0.5908, 0.541) (0.6692, 0.7213) (0.6564, 0.6721

(0.6406, 0.4177) (0.6172, 0.4731) (0.6406, 0.4713)
(Relu, Sign) (0.5908, 0.541) (0.5955, 0.5738) (0.5506, 0.4918

(0.6406, 0.4177) (0.6172, 0.4167) (0.6094, 0.375)
(Sigmoid, Sin) (0.6564, 0.5082) (0.6181, 0.541) (0.6744, 0.6066) (0.6564, 0.5082) (0.7091, 0.7541) (0.7052, 0.7541

(0.8047, 0.5536) (0.6953, 0.4583) (0.7422, 0.5286) (0.8047, 0.5536) (0.6641, 0.5169) (0.6563, 0.5111)
(Sigmoid, Hardlim) (0.6564, 0.5082) (0.6111, 0.5738) (0.5272, 0.4918

(0.8047, 0.5536) (0.6484, 0.4375) (0.5625, 0.3488)
(Sigmoid, Tribas) (0.6252, 0.5082) (0.7266, 0.8361) (0.7005, 0.7213

(0.7422, 0.4844) (0.6172, 0.51) (0.6797, 0.5176)
(Sigmoid, Radbas) (0.6564, 0.5082) (0.7415, 0.8033) (0.7204, 0.7377

(0.8047, 0.5536) (0.6797, 0.5444) (0.7031, 0.5422)
(Sigmoid, Sign) (0.6482, 0.4918) (0.6111, 0.5738) (0.5272, 0.4918

(0.8047, 0.5455) (0.6484, 0.4375) (0.5625, 0.3488)
Here, bold face denotes the performance of top two models.

Table 6.2: Performance evaluation of the algorithms on CN versus MCI case.

(S
el

u, S
in

)

(S
el

u, H
ar

dlim
)

(S
el

u, T
ri

bas
)

(S
el

u, R
ad

bas
)

(S
el

u, S
ig

n)

(R
el

u, S
in

)

(R
el

u, H
ar

dlim
)

(R
el

u, T
ri

bas
)

(R
el

u, R
ad

bas
)

(R
el

u, S
ig

n)

(S
ig

m
oi

d, S
in

)

(S
ig

m
oi

d, H
ar

dlim
)

(S
ig

m
oi

d, T
ri

bas
)

(S
ig

m
oi

d, R
ad

bas
)

(S
ig

m
oi

d, S
ig

n)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RVFL+ dRVFL+ edRVFL+

(a) CN-vs-AD

(S
el

u, S
in

)

(S
el

u, H
ar

dlim
)

(S
el

u, T
ri

bas
)

(S
el

u, R
ad

bas
)

(S
el

u, S
ig

n)

(R
el

u, S
in

)

(R
el

u, H
ar

dlim
)

(R
el

u, T
ri

bas
)

(R
el

u, R
ad

bas
)

(R
el

u, S
ig

n)

(S
ig

m
oi

d, S
in

)

(S
ig

m
oi

d, H
ar

dlim
)

(S
ig

m
oi

d, T
ri

bas
)

(S
ig

m
oi

d, R
ad

bas
)

(S
ig

m
oi

d, S
ig

n)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RVFL+ dRVFL+ edRVFL+

(b) CN-vs-MCI

(S
el

u, S
in

)

(S
el

u, H
ar

dlim
)

(S
el

u, T
ri

bas
)

(S
el

u, R
ad

bas
)

(S
el

u, S
ig

n)

(R
el

u, S
in

)

(R
el

u, H
ar

dlim
)

(R
el

u, T
ri

bas
)

(R
el

u, R
ad

bas
)

(R
el

u, S
ig

n)

(S
ig

m
oi

d, S
in

)

(S
ig

m
oi

d, H
ar

dlim
)

(S
ig

m
oi

d, T
ri

bas
)

(S
ig

m
oi

d, R
ad

bas
)

(S
ig

m
oi

d, S
ig

n)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RVFL+ dRVFL+ edRVFL+

(c) MCI-vs-AD

Figure 6.3: AUC analysis of the classification models for AD.

184

RVFL dRVFL edRVFL RVFL+ dRVFL+ edRVFL+
(AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.)

Activation Function (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.) (Spec, Prec.)
(Selu, Sin) (0.5624, 0.4462) (0.6308, 0.5385) (0.6601, 0.5077) (0.5986, 0.3846) (0.6539, 0.5846) (0.645, 0.5846

(0.6786, 0.4462) (0.7232, 0.5303) (0.8125, 0.6111) (0.8125, 0.5435) (0.7232, 0.5507) (0.7054, 0.5352)
(Selu, Hardlim) (0.5589, 0.6) (0.579, 0.4615) (0.5738, 0.4154

(0.5179, 0.4194) (0.6964, 0.4688) (0.7321, 0.4737)
(Selu, Tribas) (0.6266, 0.6462) (0.6207, 0.5538) (0.6576, 0.5385

(0.6071, 0.4884) (0.6875, 0.507) (0.7768, 0.5833)
(Selu, Radbas) (0.6014, 0.7385) (0.643, 0.5538) (0.6353, 0.5385

(0.4643, 0.4444) (0.7321, 0.5455) (0.7321, 0.5385)
(Selu, Sign) (0.5624, 0.4462) (0.579, 0.4615) (0.5738, 0.4154

(0.6786, 0.4462) (0.6964, 0.4688) (0.7321, 0.4737)
(Relu, Sin) (0.5862, 0.5385) (0.5968, 0.4615) (0.6102, 0.4615) (0.5475, 0.3538) (0.6276, 0.5231) (0.6296, 0.5538

(0.6339, 0.4605) (0.7321, 0.5) (0.7589, 0.5263) (0.7411, 0.4423) (0.7321, 0.5313) (0.7054, 0.5217)
(Relu, Hardlim) (0.5854, 0.4923) (0.5758, 0.4462) (0.6207, 0.5538

(0.6786, 0.4706) (0.7054, 0.4677) (0.6875, 0.507)
(Relu, Tribas) (0.5773, 0.5385) (0.6256, 0.4923) (0.6256, 0.4923

(0.6161, 0.4487) (0.7589, 0.5424) (0.7589, 0.5424)
(Relu, Radbas) (0.5854, 0.4923) (0.6308, 0.5385) (0.6673, 0.5846

(0.6786, 0.4706) (0.7232, 0.5303) (0.75, 0.5758)
(Relu, Sign) (0.5862, 0.5385) (0.5758, 0.4462) (0.6207, 0.5538

(0.6339, 0.4605) (0.7054, 0.4677) (0.6875, 0.507)
(Sigmoid, Sin) (0.6229, 0.4154) (0.6661, 0.6) (0.6365, 0.5231) (0.6229, 0.4154) (0.606, 0.5692) (0.6475, 0.5538

(0.8304, 0.587) (0.7321, 0.5652) (0.75, 0.5484) (0.8304, 0.587) (0.6429, 0.4805) (0.7411, 0.5538)
(Sigmoid, Hardlim) (0.6907, 0.7385) (0.6249, 0.4462) (0.5663, 0.5077

(0.6429, 0.5455) (0.8036, 0.5686) (0.625, 0.44)
(Sigmoid, Tribas) (0.6229, 0.4154) (0.617, 0.6) (0.6532, 0.5385

(0.8304, 0.587) (0.6339, 0.4875) (0.7679, 0.5738)
(Sigmoid, Radbas) (0.653, 0.7077) (0.6316, 0.5846) (0.6725, 0.6308

(0.5982, 0.5055) (0.6786, 0.5135) (0.7143, 0.5616)
(Sigmoid, Sign) (0.6229, 0.4154) (0.6249, 0.4462) (0.5663, 0.5077

(0.8304, 0.587) (0.8036, 0.5686) (0.625, 0.44)
Here, bold face denotes the performance of top two models.

Table 6.3: Performance evaluation of the algorithms on MCI versus AD case.

(S
el

u, S
in

)

(S
el

u, H
ar

dlim
)

(S
el

u, T
ri

bas
)

(S
el

u, R
ad

bas
)

(S
el

u, S
ig

n)

(R
el

u, S
in

)

(R
el

u, H
ar

dlim
)

(R
el

u, T
ri

bas
)

(R
el

u, R
ad

bas
)

(R
el

u, S
ig

n)

(S
ig

m
oi

d, S
in

)

(S
ig

m
oi

d, H
ar

dlim
)

(S
ig

m
oi

d, T
ri

bas
)

(S
ig

m
oi

d, R
ad

bas
)

(S
ig

m
oi

d, S
ig

n)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RVFL+ dRVFL+ edRVFL+

(a) CN-vs-AD

(S
el

u, S
in

)

(S
el

u, H
ar

dlim
)

(S
el

u, T
ri

bas
)

(S
el

u, R
ad

bas
)

(S
el

u, S
ig

n)

(R
el

u, S
in

)

(R
el

u, H
ar

dlim
)

(R
el

u, T
ri

bas
)

(R
el

u, R
ad

bas
)

(R
el

u, S
ig

n)

(S
ig

m
oi

d, S
in

)

(S
ig

m
oi

d, H
ar

dlim
)

(S
ig

m
oi

d, T
ri

bas
)

(S
ig

m
oi

d, R
ad

bas
)

(S
ig

m
oi

d, S
ig

n)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RVFL+ dRVFL+ edRVFL+

(b) CN-vs-MCI

(S
el

u, S
in

)

(S
el

u, H
ar

dlim
)

(S
el

u, T
ri

bas
)

(S
el

u, R
ad

bas
)

(S
el

u, S
ig

n)

(R
el

u, S
in

)

(R
el

u, H
ar

dlim
)

(R
el

u, T
ri

bas
)

(R
el

u, R
ad

bas
)

(R
el

u, S
ig

n)

(S
ig

m
oi

d, S
in

)

(S
ig

m
oi

d, H
ar

dlim
)

(S
ig

m
oi

d, T
ri

bas
)

(S
ig

m
oi

d, R
ad

bas
)

(S
ig

m
oi

d, S
ig

n)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RVFL+ dRVFL+ edRVFL+

(c) MCI-vs-AD

Figure 6.4: F-Measure analysis of the classification models for AD.

185

RVFL+ dRVFL+ edRVFL+ RVFL dRVFL edRVFL

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

(a) CN-vs-AD

RVFL+ dRVFL+ edRVFL+ RVFL dRVFL edRVFL

0.5

0.55

0.6

0.65

0.7

0.75

(b) CN-vs-MCI

RVFL+ dRVFL+ edRVFL+ RVFL dRVFL edRVFL

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

(c) MCI-vs-AD

Figure 6.5: AUC analysis of the classification models for AD.

as the privileged information. In this chapter, we introduced a novel strategy to generate

the privileged information. Instead of dividing the features into two disjoint subset of fea-

tures, we generated the privileged information via di↵erent activation functions. In standard

RVFL+ and proposed deep RVFL+ models, di↵erent activation functions are employed to

generate the privileged information. We evaluate the models using selu, relu, sigmoid, sin,

hardlim, tribas, radbas and sign activation functions. The first three activation functions

i.e., selu, relu and sigmoid are used in the processing of normal information while as rest of

the activation functions are employed for generating the privileged information.

The performance of the models is evaluated for the classification of di↵erent stages of

Alzheimer’s disease. Here, the evaluation of the models on Control Normal (CN) cases versus

Alzheimer disease (AD) cases, Control Normal (CN) cases versus Mild Cognitive Impairment

(MCI) cases and Mild Cognitive Impairment (MCI) cases versus Alzheimer disease (AD)

cases are presented in Tables 6.1, 6.2 and 6.3 respectively. The first column in each of the

given Tables represents the activation functions used in the architecture. Each entry (a, b) in

first column denotes that a activation function is used for processing the normal information

while b activation function is used for generating the privileged information. For the models

like RVFL, dRVFL and edRVFL which are not capable to handle the privileged information,

the entry (a, b) denotes that a activation function is used in the architecture while as the

models are not capable to use the activation function b.

6.2.3.1 CN versus AD

Table 6.1 gives the evaluation of the models on CN versus AD case in terms of AUC,

sensitivity (Sens.), specificity (Spec.), and precision (Prec.). One can see that the pro-

posed dRVFL+ and edRVFL+ emerged as the top two classifiers with AUC of 91.86%

186

and 92.54%, respectively, followed by RVFL+, edRVFL, dRVFL and standard RVFL with

91.17%, 90.49%, 90.23% and 89.03%, respectively. With respect to activation functions,

RVFL+, proposed dRVFL+ and edRVFL+ showed best performance with ‘relu’ as the

activation function for normal processing and ‘sin’ as the activation function for processing

the privileged information. Also, ‘sigmoid’ activation function proved to be better for RVFL

and dRVFL models while as edRVFL model showed best performance with ‘relu’ activation

function. Figure 6.3(a) and Figure 6.4(a) gives the performance of the models in terms of

AUC and F-Measure, respectively across di↵erent activation functions. From the figures,

it is evident that the proposed dRVFL+ and edRVFL+ demonstrate better performance

compared to the baseline models across di↵erent activation functions. Moreover, the overall

e↵ect of di↵erent activation functions is shown by Figure 6.5(a). One can see that proposed

dRVFL+ and edRVFL+ models show competitive or better performance compared to the

given baseline models.

6.2.3.2 CN versus MCI

Table 6.2 gives the performance of the models in terms of AUC, Sens., Spec., and Prec. for

the CN versus MCI subjects. Among the given models, the proposed dRVFL+ and edRVFL+

showed highest performance with AUC of 74.05% and 72.04%, respectively. Standard RVFL

and RVFL+ showed similar performance with AUC equal to 65.64%, respectively. Moreover,

dRVFL and edRVFL models showed AUC of 61.81% and 67.44%, respectively. With respect

to the activation functions, the proposed dRVFL+ and edRVFL+ showed best performance

with ‘sigmoid’ and ‘radbas’ as the activation for normal and privileged information compo-

nents, respectively. The performance of the models across di↵erent activation functions on

CN versus MCI case in terms of AUC and F-Measure are presented in Figures 6.3(b) and

6.4(b), respectively. It is clear that the proposed dRVFL+ and edRVFL+ models showed

best performance figures. Overall analysis of the models across di↵erent activation functions

is presented in Figure 6.5(b). It is clear that the proposed dRVFL+ and edRVFL+ models

proved to better compared to existing baseline models across di↵erent activation functions.

6.2.3.3 MCI versus AD

Table 6.3 gives the evaluation of the models on MCI versus AD case. The metrics

evaluated are AUC, Sens., Spec., and Prec. RVFL+ showed best performance with AUC

187

of 69.07% followed by the proposed edRVFL+ model with AUC equal to 67.25%, respec-

tively. The proposed edRVFL model emerged as the second highest performing classifier.

The RVFL+ model showed best figures with ‘sigmoid’ and ‘hardlim’ as the activation func-

tions for the normal and privileged information components respectively. However, for the

proposed edRVFL+, ‘sigmoid’ and ‘radbas’ activation for the normal and privileged infor-

mation, respectively, proved better in comparison with the existing baseline models. Figure

6.3(c) and 6.4(c) gives the evaluation of the algorithms in terms of AUC and F-Measure.

Except RVFL+, the propose edRVFL+ model emerged as the best classifier compared to

the existing models. Figure 6.5(c) gives the overall comparison of the models across multiple

activation functions. It is evident from the figure that proposed edRVFL+ showed best

figures compared to the baseline models (except RVFL+).

6.3 Summary

Alzheimer’s disease (AD) is a progressive neuro-degenerative disease. The conditions of

AD become worse with each passing day thereby interfering with the basic activities like

talking, swallowing etc. Hence, there is a need to develop novel tools for the early diagnosis

of AD. In this direction, we proposed deep random vector functional link using privileged

information (dRVFL+) and ensemble of deep random vector functional link network using

privileged information (edRVFL+) for the diagnosis of Alzheimer’s disease. Standard RVFL,

deep architectures of RVFL and its ensemble versions have shown better generalization, how-

ever, these models use only normal information for optimizing the network parameters. The

proposed deep RVFL+ and its ensemble versions are enabled to incorporate the privileged

information, which is sidelined by the standard RVFL and its deep models. Both dRVFL+

and edRVFL+ e�ciently utilise the privileged information in combination with the original

features to get better generalization performance. Unlike the standard LUPI based models

(like RVFL+) which normally utilise the half of the available features as normal features and

rest as the privileged features. We propose a novel approach for the privileged information.

We utilise di↵erent activation functions while processing the normal and privileged informa-

tion in the proposed deep architectures. To the best of our knowledge, this is first time that

all the features are utilised in the LUPI framework and a separate information is generated

as the privileged information. The proposed dRVFL+ and edRVFL+ models are employed

188

for the diagnosis of Alzheimer’s disease. Experimental results demonstrate the superiority

of the proposed dRVFL+ and edRVFL+ models over baseline models. Thus, the proposed

edRVFL+ model can be utilised in clinical setting for the diagnosis of AD.

In this chapter, we exploited the randomised feature mapping across di↵erent hidden

layers and used them for generating the deep RVFL and its ensemble via LUPI framework.

Random projection of the data provides better control over complexity and memory issues.

In addition to random projections, kernel functions are also used for non-linear projection

of the data. Kernel based machines like support vector machines and twin support vector

machines use kernel function for generating the non-linear feature representation. The kernel

matrix generated by the kernel functions corresponds to all pairs of data points. This results

in large computational and storage costs. To overcome these issues, the next chapter presents

randomised feature projections based models which provide better control over complexity

and memory issues in twin SVM based models.

189

Chapter 7

LSTSVM classifier with enhanced features

from pre-trained functional link network

In previous chapter, we used random projections for non-linear projection of the data.

In this chapter, we present the randomized feature projection based least squares twin SVM

model. Inspired by the fact that kernel based models su↵er from higher computation and

memory issues, this chapter presents least squares twin support vector machines (LSTSVM)

and pre-trained functional link to enhance the feature space. LSTSVM algorithm is used in

many real world classification problems as it has lower computational complexity and solves

system of linear equations instead of solving quadratic programming problems (QPPs). Since

neural network models provide implicit feature representation and is one of the reasons for

the success of neural networks. Here, we present a model wherein the input feature space is

enhanced by the pre-trained functional link network. Weights are generated by LSTSVM,

and a non-linear function is applied on the product between input features and the weights

to get the enhanced features. These features are concatenated with the input features to get

the extended feature space. Final classification is done by LSTSVM based on these extended

features.

Motivated by [64, 218], direct link benefits of the feed forward network [304] and im-

pact of randomization range on the performance [304], we propose LSTSVM classifier with

enhanced features from pre-trained functional link network (ELSTSVM) for classification

problems. In the proposed model, the hidden layer weights are initialized randomly from

the pre-trained weights of the decision hyperplanes obtained via LSTSVM. Then a non-linear

activation function is applied over the product of input features and weights generated. Af-

191

ter concatenating these enhanced features with the input features, LSTSVM generates the

optimal decision hyperplanes for the final classification. Note that the proposed model is

di↵erent from randomized SVM [64], random vector functional link network RVFL [118] and

LSTSVM [144] as follows:

• In randomized SVM [64], the hidden layer weights of extreme learning machine (ELM)

network are randomly generated and the final classification is based on SVM. How-

ever, the weights in the proposed model are chosen randomly from the weight space

generated by LSTSVM and final classification is based on LSTSVM.

• The hidden layer weights in RVFL are generated randomly from some pre-defined

range [�S, S]. However, the weights in the proposed model are chosen randomly from

the weight space generated by LSTSVM.

• The LSTSVM generates the hyperplanes based on the original input features only

while as the proposed model generates the hyperplane based on the extended input

feature space.

The architecture of the proposed model is discussed as follows:

7.1 LSTSVM classifier with enhanced features

from pre-trained functional link network

We propose an improved classification model known as LSTSVM classifier with enhanced

features from pre-trained functional link network (ELSTSVM). Unlike RVFL network, pre-

trained weights are used in the hidden layer instead of the random weights. We used one-

vs-all technique to evaluate the linear LSTSVM on the original input features and obtain

the weights of hyperplanes for initializing the hidden layer. The weights generated by the

LSTSVM are put in a column vector and from this column vector, the weights are chosen

randomly to initialize the hidden layer. Non-linear activation function y = exp(�s2) is then

applied on the product of the weights and input features (here, s represents the input variable

and y represents the output variable) to get the enhanced features. These enhanced features

provide more information about the input domain. Based on the extended features (enhanced

+ original features), the LSTSVM generates the hyperplanes for final classification. To

192

Algorithm 7.1 ELSTSVM.
Input: Let X = [x1, x2, · · · , xM] be an M ⇥ n training set, Y = [y1, y2, . . . , yM]
represents the corresponding labels, c1, c2 parameters and J the number of hidden
neurons.

Step 1: Let A = [XA], B = [XB] be the samples of ‘one’ class and ‘rest’ class,
respectively. Then, the LSTSVM is solved as follows:

min
(w1,b1)2Rn+1

1

2
kAw1 + eb1k2 +

c1
2
k⇠1k2

s.t. � (Bw1 + eb1) + ⇠1 = e,

min
(w2,b2)2Rn+1

1

2
kBw2 + eb2k2 +

c2
2
k⇠2k2

s.t. (Aw2 + eb2) + ⇠2 = e.

Step 2: Solve the optimization problems in Step 1 and concatenate the weights into
a column vector W 0 = [w1; b1;w2; b2].
Step 3: Choose the weights V randomly from W 0 for initializing the weights in the
hidden layer. Apply the non-linear function (radbas function) as:

X 0 = g(V T

j
X + bj), (7.1)

where Vj is a weight vector from the input to the jth hidden node, bj is the bias,
X represents the input data, X 0 = [x0

1
, x0

2
, ..., x0

M
] represents the enhanced features

where each x0
i
2 RJ for i = 1, 2, ...,M.

Step 4: Let the extended feature sets be represented as A⇤ = [XA, X 0
A
], B⇤ =

[XB, X 0
B
]. Based on these extended features, LSTSVM is solved as follows:

min
(w

0
1,b

0
1)2Rn+J+1

1

2
kA⇤w0

1
+ eb0

1
k2 + c1

2
k⇠1k2

s.t. � (B⇤w0
1
+ eb0

1
) + ⇠1 = e, (7.2)

min
(w

0
2,b

0
2)2Rn+J+1

1

2
kB⇤w0

2
+ eb0

2
k2 + c2

2
k⇠2k2

s.t. (A⇤w0
2
+ eb0

2
) + ⇠2 = e. (7.3)

Solving optimization problems (7.2) and (7.3) generate the optimal decision hyper-
planes via one-vs-all approach.

193

Linear LSTSVM-I

Initialize HIdden
Layer Weights

Concatenate
Enhanced and

Original Features

LSTSVM-II

Output

Input Data

Non-Linear
Features

Figure 7.1: Flowchart of proposed enhanced feature based LSTSVM model.

handle the multi-class problems, we used one-vs-all approach for generating the decision

hyperplanes. The flowchart of the proposed model is given in Figure 7.1 and the Algorithm

7.1 gives the model in detail.

Comparison with existing Models

The proposed ELSTSVM model is di↵erent from existing models as follows:

• In SVM using ELM approach [64] hidden layer input of the feedforward network is

initialized randomly and the output layer weights are optimized by SVM for final

classification. Also, final decision is based on the transformed input features. In

proposed model, the weights are taken randomly from the weight space generated by

the LSTSVM network initially and the final classification is done by the LSTSVM

model. In addition of transformed features, original input features are also used by

proposed model for final classification.

• In RVFL network, the hidden layer weights are initialized randomly and the output

layer weights are optimized in closed form solution based on the transformed and

194

original input features. In the proposed model, weights are chosen from the weight

space generated by solving the LSTSVM model on original input feature space and the

output layer weights are optimized by the LSTSVM model based on both the original

and transformed features.

• In LSTSVM model, the classification hyperplanes are generated based on the original

input features space while as the proposed model generates the classification hyper-

planes based on the extended input feature space.

7.2 Experiments

In this section, we discuss the experimental protocol followed, analyse and discuss the

performance of the classification models.

7.2.1 Experimental setup

In this subsection, we provide the experimental analysis of the models. All the experi-

ments were performed with Intel Xeon Processor (2.3 GHZ) with 128 GB RAM in MATLAB

R2010b environment with Windows 10 platform. For evaluating the performances of the

given models, we conducted experiments on the benchmark datasets from the UCI reposi-

tory [60] and some real world datasets (not in UCI) [62, 81]. The real-world datasets not

included in UCI repository are about fecundity estimation for fisheries: they are given as

oocMerl4d (2-class classification according to the presence/absence of oocyte nucleus) for

fish species Merluccius, and oocTris2F (nucleus) for fish species Trisopterus [81]. N is the

parameter that controls the maximum number of enhanced patterns and chosen from the

range [2 : 20 : 302]. We used radbas activation function in all our experiments as it performs

better as compared to other activation functions [304]. To handle the multi-class problem, we

used one-vs-all approach. In hidden layer, we evaluate LSTSVM once to generate the weights

for initializing the hidden layer. In the output layer, LSTSVM based on extended features

generates the decision hyperplanes in one-vs-all approach. In k�class problem, LSTSVM

in the output layer generates k hyperplanes corresponding to each class. For LSTSVM and

ELSTSVM, the values of c1 and c2 are chosen from the range of values {2�5, · · · , 25}. Also,

for avoiding the computational overhead we used c1 = c2.

195

Table 7.1: Classification accuracy1 of RVFL, LSTSVM and proposed ELSTSVM.

Datasets RVFL LSTSVM Proposed ELSTSVM

(N , Train time) (c1 = c2, Train time) (c1 = c2, N , Train time)

ionosphere 89.3525 86.0996 86.7989

(282, 0.003386) (0.03125, 0.003754) (16, 2, 0.006414)

balance-scale 91.1994 87.5231 89.2175

(142, 0.002542) (0.5, 0.006866) (32, 202, 0.055909)

balloons 71.25 65 86.25

(162, 0.00038) (8, 0.000321) (0.03125, 162, 0.003972)

blood 77.6203 77.4866 79.4652

(282, 0.007962) (8, 0.003094) (1, 262, 0.039643)

lenses 83.3333 81.6667 85

(282, 0.000425) (32, 0.00084) (1, 102, 0.004598)

low-res-spect 83.0741 81.6094 84.9646

(102, 0.002821) (0.0625, 0.080298) (0.0625, 22, 0.099788)

lung-cancer 39.375 33.75 42.5

(302, 0.00063) (4, 0.002093) (0.25, 202, 0.015731)

mammographic 80.374 80.1451 82.9135

(242, 0.008085) (32, 0.004224) (1, 62, 0.018453)

musk-1 85.5882 81.6807 83.1933

(282, 0.011921) (16, 0.010593) (1, 42, 0.023578)

oocytes-merluccius-nucleus-

4d

72.4253 80.9612 84.0722

(182, 0.007133) (0.25, 0.010624) (8, 182, 0.053457)

oocytes-trisopterus-nucleus-

2f

71.5351 78.7719 83.114

(222, 0.007288) (0.5, 0.006334) (16, 302, 0.054958)

oocytes-trisopterus-states-

5b

83.7061 92.0614 93.8816

Continued on next page

1Average accuracy and average training time obtained in 5-times four fold cross validation

196

Table 7.1 – continued from previous page

Datasets RVFL LSTSVM Proposed ELSTSVM

(N , Train time) (c1 = c2, Train time) (c1 = c2, N , Train time)

(82, 0.002218) (2, 0.023235) (4, 162, 0.103041)

pima 78.2552 76.0938 78.2292

(302, 0.008921) (0.5, 0.003748) (1, 22, 0.009555)

pittsburg-bridges-T-OR-D 87.2815 86.6074 87.4222

(22, 0.000293) (0.0625, 0.000632) (0.0625, 2, 0.000998)

planning 71.461 69.3688 69.4752

(2, 0.000238) (1, 0.000967) (1, 2, 0.001782)

car 90.8681 77.2106 96.2037

(262, 0.014531) (1, 0.032452) (32, 302, 2.69924)

cardiotocography-10clases 72.5944 66.4889 80.7028

(302, 0.020928) (32, 0.222755) (0.25, 282, 11.9054)

cardiotocography-3clases 88.2864 86.4522 91.9557

(302, 0.021185) (16, 0.064246) (0.125, 282, 3.19593)

congressional-voting 61.5728 62.9542 62.769

(302, 0.004425) (1, 0.00262) (1, 2, 0.004761)

cylinder-bands 70.6641 73.7109 73.5938

(62, 0.001239) (0.25, 0.00347) (8, 42, 0.009301)

ecoli 80.3571 84.4048 87.7976

(282, 0.002273) (16, 0.010527) (1, 22, 0.017743)

energy-y1 88.6719 83.5417 96.0677

(302, 0.009105) (8, 0.009983) (0.25, 282, 0.116303)

energy-y2 89.1146 86.1198 92.7083

(42, 0.000928) (0.125, 0.008758) (0.5, 202, 0.070699)

glass 59.5146 56.8405 63.9794

(202, 0.0013) (0.03125, 0.005071) (8, 22, 0.008152)

heart-va 36.6 33.4 35.7

(242, 0.001263) (0.0625, 0.004301) (2, 22, 0.007655)

hepatitis 82.8466 80.5071 81.7843

Continued on next page

197

Table 7.1 – continued from previous page

Datasets RVFL LSTSVM Proposed ELSTSVM

(N , Train time) (c1 = c2, Train time) (c1 = c2, N , Train time)

(202, 0.000943) (0.03125, 0.00106) (0.5, 2, 0.002004)

statlog-image 84.9524 84.3732 94.84

(302, 0.02231) (8, 0.149564) (0.5, 262, 8.00946)

statlog-vehicle 72.5695 76.3095 82.4529

(222, 0.006938) (16, 0.019444) (32, 242, 0.14479)

synthetic-control 95.5667 80.3 93.7

(162, 0.00329) (4, 0.042724) (16, 82, 0.083962)

teaching 57.6385 55.7365 55.8716

(282, 0.001034) (1, 0.002089) (0.5, 222, 0.017315)

tic-tac-toe 93.6317 98.3293 99.4156

(202, 0.00675) (1, 0.004479) (1, 302, 0.079665)

vertebral-column-2clases 83.2722 84.8159 85.808

(202, 0.001777) (0.25, 0.001308) (1, 22, 0.003362)

vertebral-column-3clases 80.7529 82.313 83.735

(202, 0.001949) (8, 0.003832) (0.5, 42, 0.010193)

Average Accuracy 77.4335 76.14041818 81.07826667

Overall Win-Tie-Loss 9-0-10 2-0-23 22-0-0

7.2.2 Computational complexity analysis

Let M ⇥ n be a binary class training dataset with M1 number of samples belonging to

positive class andM2 number of samples belonging to negative class such thatM = M1+M2.

By standard mathematical implementation, the inversion of n⇥n matrix requires O(n3) time

complexity [312]. In case of RVFL, single matrix inversion of size (n+J)⇥(n+J) is required,

thus time complexity is given as

T = O((n+ J)3) ⇠= O((n0)3), (7.4)

198

where J is the number of hidden neurons and n0 = n+ J .

In LSTSVM model, two matrix inversions are required each of size (n + 1) ⇥ (n + 1).

Thus, time complexity of LSTSVM is given as:

T = 2⇥O((n+ 1)3) ⇠= 2⇥O(n3). (7.5)

The proposed ELSTSVM model involves four matrix inversions with two in hidden layer

and two in output layer. In hidden layer, two matrix inversions of size (n + 1) ⇥ (n + 1)

are required and in output layer two matrix inversions of size (n+ J + 1)⇥ (n+ J + 1) are

required. Hence, the time complexity of the proposed ELSTSVM is given as:

T = 2⇥O((n+ 1)3) + 2⇥O((n+ J + 1)3),

⇠= 2⇥O(n3) + 2⇥O((n0 + 1)3),

⇠= 2(O(n3) +O((n0)3)), (7.6)

where J is the number of enhanced features and n0 = n+ J .

One can see from above equations that the complexity of the proposed model is a function

of original features and the number of hidden nodes. Thus, it provides better control over

complexity and memory issues compared to the kernel trick.

7.2.3 Significant di↵erences among classifiers with Nemenyi

test

The main motive in this subsection is to verify whether the proposed ELSTSVM improves

with respect to other baseline classifiers. Thus, we want to ensure that the improvement, if

any observed, is due to di↵erent random strategies or not. Researchers readily use Friedman

test for evaluating the performance of multiple classifiers as it proved to be more robust

among other statistical tests [53].

Table 7.1 represents the average values of accuracy and training time obtained from five

times four-fold cross validation.

We first rank the performance of RVFL, LSTSVM and the proposed ELSTSVM on each

dataset and take average across all the datasets. After calculations, the average ranks of

RVFL, LSTSVM and the proposed ELSTSVM are 2.0303, 2.6364 and 1.3333, respectively.

199

Then

�2

F =
12N

k(k + 1)

2

4
X

j

R2

j �
k(k + 1)2

4

3

5 ,

=
12⇥ 33

3⇥ 4

�
2.03032 + 2.63642 + 1.33332 � 3⇥ 4⇥ 4

4

�
= 28.0636,

FF =
(N � 1)�2

F

N(k � 1)� �2

F

,

=
32⇥ 28.0636

33⇥ 2� 28.0636
= 23.6721,

with three algorithms and 33 datasets, FF is distributed according to the F-distribution

with (3� 1) = 2 and (3� 1)(33� 1) = 64 degrees of freedom. The critical value of F(2,64) for

↵ = 0.5 is 2.895. So, we reject the null hypothesis. Based on the Nemenyi test with ↵ = 0.5,

the critical value is given as:

CD = q↵

r
k(k + 1)

6N
,

= 2.343⇥
r

3⇥ 4

6⇥ 33
,

= 0.5768.

The di↵erence between the average ranks of (RVFL, ELSTSVM), (LSTSVM, RVFL)

and (LSTSVM, ELSTSVM) are (2.0303-1.3333), (2.6364-2.0303) and (2.6364-1.3333), re-

spectively which is greater than 0.5768. So, we conclude that RVFL is significantly better

than LSTSVM while the proposed ELSTSVM is significantly better than both LSTSVM

and RVFL models.

From Table 7.1, one can observe that the proposed ELSTSVM takes more time as com-

pared to the other models. This is due to the time taken in the generation of extended

features and output layer weight optimization in enhanced feature space.

Table 7.2 shows the statistically significant di↵erences among the di↵erent classifier mod-

els. From the table, it is clear that the proposed ELSTSVM shows statistically significant

di↵erence from the other baseline methods. The proposed ELSTSVM achieves better av-

erage accuracy among the baseline methods. Also, the proposed ELSTSVM achieves lower

rank and hence better performance as compared to other classifier models.

200

Table 7.2: Statistical di↵erence among the RVFL, LSTSVM and proposed ELSTSVM
model based on the Friedman ranking and Nemenyi test.

Method RVFL
(2.0303)

LSTSVM
(2.6364)

ELSTSVM
(1.3333)

RVFL (2.0303) 4
LSTSVM (2.6364)
ELSTSVM (1.3333) 4 4

The average ranks of the algorithms are given in braces. The rows with 4 entry
shows that the two methods are statistically di↵erent and the method in row is
better than the method in column. Blank entries show that no statistical di↵erence
exists among the methods given in the column and row.

Table 7.3: Statistical di↵erence among the RVFL, LSTSVM and proposed ELSTSVM
model based on pairwise sign test.

Method Significance
(RVFL, LSTSVM) (23, 10) 4

(ELSTSVM, LSTSVM) (31, 2) 4
(ELSTSVM, RVFL) (24, 9) 4

The method in the bracket for (A,B) (say) method represent the number of times A
wins w.r.t. method B, 4 means there is significant di↵erence between this pair of

algorithms.

201

Figure 7.2: Impact of varying the number of enhanced patterns on the performance
of RVFL network and the proposed model.

(a) Car.

0 50 100 150 200 250 300 350

Number of Neurons

78

80

82

84

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

ELSTSVM

RVFL

(b) Glass.

0 50 100 150 200 250 300 350

Number of Neurons

45

50

55

60

65

70

75

A
cc

u
ra

cy
 (

%
)

ELSTSVM

RVFL

(c) Cylinder-bands.

0 50 100 150 200 250 300 350

Number of Neurons

66

67

68

69

70

71

72

73

74

75

A
cc

u
ra

cy
 (

%
)

ELSTSVM

RVFL

(d) Blood.

0 50 100 150 200 250 300 350

Number of Neurons

77

77.5

78

78.5

79

79.5

80

A
cc

u
ra

cy
 (

%
)

ELSTSVM

RVFL

202

0 50 100 150 200 250 300 350

Number of Neurons

83

84

85

86

87

88

89

90

91

92

93

A
cc

u
ra

cy
 (

%
)

ELSTSVM

RVFL

(e) Cardiotocography-3clases.

0 50 100 150 200 250 300 350

Number of Neurons

92

93

94

95

96

97

98

99

A
cc

u
ra

cy
 (

%
)

ELSTSVM

RVFL

(f) Dermatology.

0 50 100 150 200 250 300 350

Number of Neurons

28

29

30

31

32

33

34

35

36

37

A
cc

u
ra

cy
 (

%
)

ELSTSVM

RVFL

(g) Heart-va.

0 50 100 150 200 250 300 350

Number of Neurons

52

54

56

58

60

62

64

66

68

70

72

A
cc

u
ra

cy
 (

%
)

ELSTSVM

RVFL

(h) Planning.

203

F
ig
u
re

7.
3:

C
om

p
ar
is
on

of
th
e
nu

m
b
er

of
en
h
an

ce
d
fe
at
u
re
s
u
se
d
by

R
V
F
L
n
et
w
or
k
an

d
th
e
p
ro
p
os
ed

m
od

el
co
rr
es
p
on

d
in
g
to

m
ax

im
u
m

ac
cu
ra
cy
.

204

7.2.4 Win-tie-loss: sign test

To analyze the classification performance of di↵erent classifier models, we count the

number of datasets on which algorithm is the overall winner. We use sign test or the pairwise

comparison of algorithms. Table 7.3 gives the pairwise win-tie-loss comparison among the

methods. From Table 7.3, it is clear that significant di↵erence exits in (RVFL, LSTSVM),

(ELSTSVM, LSTSVM) and (ELSTSVM, RVFL). Also, in most of the datasets the proposed

ELSTSVM model emerged as a winner in comparison to other baseline methods.

7.2.5 Comparative analysis of number of enhanced patterns

on the RVFL network and the proposed ELSTSVM

model

The objective here is to analyze the e↵ect of the number of enhanced patterns introduced

in both RVFL network and the proposed ELSTSVM. Figure (7.2(a)) to Figure (7.2(h)) show

the e↵ect of number of enhanced patterns on the performance of the proposed ELSTSVM

model and RVFL network.

From Figures 7.2(a) and 7.2(e), one can see the e↵ect of increase in number of hidden

neurons. It is clear that increasing the number of hidden neuron increases the performance

of the classifiers. At higher number of hidden neurons the performance is better as compared

to the lower number of hidden neurons.

From Figure (7.2(b)), one can see that the performance of the methods is fluctuating

across all the number of hidden neurons. However, from the given figure it is clear that the

proposed ELSTSVM outperforms the RVFL network across all the number of neurons.

From Figure (7.2(c)), one can see that the performance of the proposed ELSTSVM

initially high and decreases with the increase of enhanced patterns and then increases again

at the end. The possible reason for this could be that the enhanced patterns doesn’t increase

the information given to the model. However, the proposed ELSTSVM model perform better

as compared to the RVFL network.

From Figure (7.2(d)), it is clear that performance is initially low and varies with varying

the number of hidden neurons. At higher number of hidden neurons the performance is

better.

205

In Figures 7.2(f) and 7.2(g), one can see that the performance of the proposed ELSTSVM

model is initially high while as that of RVFL is low. However, with the increase in number of

hidden neurons the performance of RVFL increases while as the performance of the proposed

ELSTSVM model decreases. Figure (7.2(h)) corresponding to the Planning dataset shows

that RVFL outperforms ELSTSVM model across all the number of datasets.

From the given plots, one can see that models are sensitive to the number of hidden

neurons. Hence, this parameter should be chosen appropriately to obtain reasonable perfor-

mance on di↵erent datasets.

With respect to RVFL network, the proposed ELSTSVM gives better performance with

lower number of hidden neurons in most of the datasets. One can see from the Figure (7.3)

that out of 33 datasets, the proposed ELSTSVM uses lesser number of hidden neurons in

most of the datasets and at the same time achieves better or comparable performance.

7.3 Summary

In this chapter, we presented an improved model for the classification problems using

the LSTSVM and enhanced features from the pre-trained functional link network. Inspired

by the direct link benefits and impact of randomization range on the performance of the

random vector functional link network. We constructed a model with LSTSVM as the

basic unit for classification. The proposed ELSTSVM provides the advantages of implicit

feature representation. The original input data is fed into the input layer. At hidden layer,

LSTSVM generates the weights and a non-linear function is applied to get the enhanced

feature space. Finally, the optimal decision boundary is generated by LSTSVM based on

the extended features (input features+enhanced features) to get the final labels. In oocytes-

merluccius-nucleus-4d dataset, the proposed ELSTSVM achieved approximately 12% and 4%

increase in accuracy with respect to RVFL and LSTSVM model, respectively. In statlog-

image dataset, the proposed ELSTSVM achieved approximately 10% increase in accuracy

with respect to both the baseline models. Furthermore, the proposed ELSTSVM uses lesser

number of hidden neurons and achieves better or comparable performance as that of RVFL

network. The proposed model provides better control over computation time and complexity

compared to the kernel trick approach. The numerical experiments and the statistical tests

performed show that the proposed ELSTSVM gives improved performance as compared to

206

RVFL and LSTSVM models. From experimental results, one can see that the enhanced

features in combination with the original features improved the classification performance.

In this chapter, we explored the LSTSVM model for the projection of the data and

optimised the weights via solving the system of equations. However, the hidden layer weights

and biases have a great impact on the performance of the models. The next chapter presents

variants of the twin SVM based models wherein the hidden layer weights and biases are

generated from a specific randomised range and evaluates its e↵ect over multiple twin SVM

based models.

207

Chapter 8

Ensemble of classification models with

weighted functional link network

In the previous chapter, least squares twin support vector machine (LSTSVM) model

determined the initialization of the hidden layer weights and avoided the computation and

memory issues. In this chapter, we present the ensemble of original and the non-linearly

projected features via randomization for multiple twin SVM based models.

Ensemble classifiers with random vector functional link network have shown improved

performance in classification problems. In this chapter, we present two approaches to solve

the classification problems. In the first approach, the original input space’s data points are

mapped explicitly into a randomized feature space via neural network wherein the weights of

the hidden layer are generated randomly. After feature projection, classification models twin

bounded support vector machine (TBSVM), least squares twin SVM (LSTSVM), twin k-class

support vector classification (TWKSVC), least squares TWKSVC (LSTWKSVC) and robust

energy based least squares twin SVM are trained on the extended features (original features

and randomized features). In the second approach, twin bounded support vector machine,

least squares twin SVM, twin k-class SVM, least squares twin k-class SVM and robust

energy based least squares twin SVM models are used to generate the weights of the hidden

layer architecture and the weights of output layer are optimized via closed form solution.

The performance of both the proposed architectures is evaluated on 33 datasets- including

datasets from the UCI repository and fisheries data (not in UCI). Both the experimental

results and statistical tests conducted demonstrate that the proposed approaches perform

significantly better than the other baseline models. We also analyze the e↵ect of the number

209

of enhanced features on the performance of the given models.

Generally, input data samples provide a multitude of information from di↵erent feature

representations, such as compressed feature representation obtained from a lower dimen-

sional feature space representation and the sparse feature representation obtained via higher

dimensional feature space [101, 102]. With di↵erent feature representations, plenty of under-

lying information is explored by the di↵erent learning algorithms. An ensemble of feature

spaces with random forest [305] used di↵erent feature representations: principal component

analysis (PCA) and linear discriminant analysis (LDA), at each node to provide diverse

information and hence, diverse decisions improve the overall performance. Zhang and Sug-

anthan [305] showed that with feature transformations, the information is increased which

leads to better generalization performance. Also, random vector functional link network

(RVFL) [202] uses random feature transformation in combination with the original input

space and has been successfully used in classification and regression tasks. Motivated by the

success of di↵erent feature representations, we propose two architectures for the classifica-

tion problems. In the first method, we investigate the performance of the proposed ensemble

classifiers with random weighted network based enhanced features and di↵erent classification

models. Since the proposed approach maps the original input space to a randomized feature

space, we name the models as random vector classification models, like if we use random

weighted features and LSTSVM, we name it as random vector LSTSVM (RV-LSTSVM)

and so on. RV-classification models consist of two phases: Enhancement phase and Clas-

sification phase. In the enhancement phase, enhanced feature vector pattern is generated.

In this phase, random weights H are generated from the input layer to the enhancement

layer. Then, an activation function g([X e][H s]0) is applied to obtain the enhanced feature

vector, here X represents the original features, e is a vector of ones, H is a random weight

matrix and s is a bias vector. Both the input feature vector and the enhanced feature vector

are concatenated to get the extended feature space. Based on this extended feature space,

di↵erent classification models are applied thereafter for generating the decision hyperplanes.

In the second method, we use di↵erent classification models to initialize the hidden layer

of the proposed architecture. Based on the di↵erent models used for initializing the hidden

layer, we name the models accordingly, like in TBSVM with functional link (TBSVM-FL

model), TBSVM is used for generation of hidden layer weights. Closed form solution is used

to optimize the weights of the output layer architecture.

210

8.1 Proposed random weighted models

The proposed method can be elaborated in two steps: first step is initial feature map-

ping, from the input data to the implicit feature representation and the second step is the

generation of classification models. Here, we apply the transformation on the original in-

put feature pattern to map onto randomized feature space. Figure 8.1 shows the proposed

architecture. Initially, nonlinear transformation g(·) on the random weighted input feature

pattern X is applied to map it into a randomized feature space. After the random feature

projection, the weights of the output layer are optimized to get the optimal decision hy-

perplane. In the proposed architecture, we used the enhanced feature pattern (randomized

feature space) together with the original features and fed them as input feature vector to

the classification model for the optimization of the output layer weights. The addition of

the enhanced pattern provides additional knowledge about the sample and hence aids in

classification. The concatenation of original features and the randomized features, known

as extended features, are used for training. Thus, the rationale of this architecture is to

enhance the generalization ability of the models via randomized mapping that are obtained

by applying the nonlinear transformation on product of input features and weights between

the input and the hidden layer. The weight matrix H from the input layer to the hidden

layer are randomly generated such that the activation function g([A e][H s]0) is not satu-

rated, where g(·) is an activation function operating element wise on the resulting matrix.

To be more specific, let the dimensions of the matrices be AM⇥n, HL⇥n and s is the bias

vector of size L and e is the vector of ones of appropriate dimensions. Then, the resulting

enhanced feature matrix (say, K) will be of size M ⇥ L. Activation function g(·) is applied

elementwise on the matrix K to get the output matrix of the size M ⇥ L. Let n represent

the number of features of each data sample and L represents the number of hidden neurons

(features in the enhanced pattern), then the total number of features corresponding to each

sample after concatenation is n+ L.

Based on the di↵erent classification base models, we name the proposed models as the

random vector TBSVM (RV-TBSVM), random vector twin k-class support vector classifi-

cation (RV-TWKSVC), random vector least squares TWKSVC (RV-LSTWKSVC), random

vector robust energy based least square TWSVM (RV-RELSTSVM) and random vector

LSTSVM (RV-LSTSVM). The modified formulation of the proposed models are given as

211

Input
Features

Enhanced
Features,

g(aT
j
X+bj)

Extended Feature
Matrix, F = [Z;X]

Model
(For classification)

X

Z

X

Figure 8.1: Proposed architecture of random weighted models.

follows:

8.1.1 RV-TBSVM

The primal formulation of RV-TBSVM is given as follows:

min
w1,b1,⇠,⇠

⇤

1

2
c3(||w1||2 + b21) +

1

2
k⇠⇤k2 + c1e

T ⇠ (8.1)

s.t. ([A g([A e][H s]0)])w1 + eb1 = ⇠⇤,

� (([B g([B e][H s]0)])w1 + eb1) + ⇠ � e, ⇠ � 0

and

min
w2,b2,⌘,⌘

⇤

1

2
c4(||w2||2 + b22) +

1

2
k⌘⇤k2 + c2e

T ⌘ (8.2)

s.t. ([B g([B e][H s]0)])w2 + eb2 = ⌘⇤,

(([A g([A e][H s]0)])w2 + eb2) + ⌘ � e, ⌘ � 0.

212

8.1.2 RV-LSTSVM

The primal formulation of RV-LSTSVM is given as follows:

min
w1,b1,⇠

⇤

1

2

��([A g([A e][H s]0)])w1 + eb1
��2 + c1

2
k⇠⇤k2

s.t. � (([B g([B e][H s]0)])w1 + eb1) + ⇠⇤ = e

(8.3)

and

min
w2,b2,⌘

⇤

1

2

��([B g([B e][H s]0)])w2 + eb2
��2 + c2

2
k⌘⇤k2

s.t. (([A g([A e][H s]0)])w2 + eb2) + ⌘⇤ = e.

(8.4)

8.1.3 RV-RELSTSVM

The primal formulation of RV-RELSTSVM is given as follows:

min
w1,b1,⇠

⇤

1

2

��([A g([A e][H s]0)])w1 + eb1
��2 + c1

2
k⇠⇤k2 + c3

2

������

2

4w1

b1

3

5

������

2

s.t. � (([B g([B e][H s]0)])w1 + eb1) + ⇠⇤ = e (8.5)

and

min
w2,b2,⌘

⇤

1

2

��([B g([B e][H s]0)])w2 + eb2
��2 + c2

2
k⌘⇤k2 + c4

2

������

2

4w2

b2

3

5

������

2

s.t. (([A g([A e][H s]0)])w2 + eb2) + ⌘⇤ = E2. (8.6)

8.1.4 RV-TWKSVC

The primal formulation of RV-TWKSVC is given as follows:

min
w1,b1,⇠,⇠

⇤

1

2

��([A g([A e][H s]0)])w1 + eb1
��2 + c1e

t⇠⇤ + c2e
t

3⇠

s.t. � (([B g([B e][H s]0)])w1 + eb1) + ⇠⇤ � e,

� (([C g([C e3][H s]0)])w1 + e3b1) + ⇠ � e3(1� ✏),

⇠⇤ � 0, ⇠ � 0 (8.7)

213

and

min
w2,b2,⌘,⌘

⇤

1

2

��([B g([B e][H s]0)])w2 + eb2
��2 + c3e

t⌘⇤ + c4e
t

3⌘

s.t. (([A g([A e][H s]0)])w2 + eb2) + ⌘⇤ � e,

(([C g([C e3][H s]0)])w2 + e3b2) + ⌘ � e3(1� ✏),

⌘⇤ � 0, ⌘ � 0. (8.8)

8.1.5 RV-LSTWKSVC

The primal problems of RV-LSTWKSVC is given as follows:

min
w1,b1,⇠,⇠

⇤

1

2

��([A g([A e][H s]0)])w1 + eb1
��2 + c1

2
k⇠⇤k2 + c2

2
k⇠k2

s.t. � (([B g([B e][H s]0)])w1 + eb1) + ⇠⇤ = e,

� (([C g([C e3][H s]0)])w1 + e3b1) + ⇠ = e3(1� ✏) (8.9)

and

min
w2,b2,⌘,⌘

⇤

1

2

��([B g([B e][H s]0)])w2 + eb2
��2 + c3

2
k⌘⇤k2 + c4

2
k⌘k2

s.t. (([A g([A e][H s]0)])w2 + eb2) + ⌘⇤ = e,

(([C g([C e3][H s]0)])w2 + e3b2) + ⌘ = e3(1� ✏). (8.10)

8.2 Proposed twin weighted models

In this section, we will elaborate the parameter learning process of the proposed models.

The learning process of the proposed approach using di↵erent models like twin bounded SVM

(TBSVM), twin k-class support vector classification (TWKSVC), least square TWKSVC

(LSTWKSVC), robust energy based LSTSVM (RELSTSVM) and LSTSVM models is a

three step process. The main three steps involved are

• Weight generation phase.

• Training of models.

• Output value prediction.

214

Figure 8.2: Proposed architecture of twin weighted models.

8.2.1 Weight generation phase

The performance of the random vector functional link model is sensitive to the parameter

selection. Hence, the e�cient selection of model parameters can improve the performance of

the model. We use TBSVM, TWKSVC, LSTWKSVC, RELSTSVM and LSTSVM models

to generate the weights by solving their corresponding optimization problems. The weights

generated by solving the objective functions of the TBSVM, TWKSVC, LSTWKSVC, REL-

STSVM and LSTSVM are known as pre-trained weights. These weights are used to initial-

ize the hidden layer of the proposed architecture. Based on the di↵erent models, we name

these classifiers as TBSVM based functional link (TBSVM-FL), TWKSVC based functional

link (TWKSVC-FL), LSTWKSVC based functional link (LSTWKSVC-FL), RELSTSVM

based functional link (RELSTSVM-FL) and LSTSVM based functional link (LSTSVM-

FL) as they solve the optimization problems of TBSVM, TWKSVC, LSTWKSVC, REL-

STSVM and LSTSVM for initializing the hidden layer. The optimization problems solved

by TBSVM-FL, TWKSVC-FL, LSTWKSVC-FL, RELSTSVM-FL and LSTSVM-FL are the

QPPs (2.22, 2.23), (2.38, 2.39), (2.44, 2.45), (2.33, 2.34) and (2.29, 2.30) respectively.

215

8.2.2 Training of models

In this subsection, we focus on learning the e�cient model via optimal parameter tun-

ing. The learning of parameters via di↵erent models gives the appropriate weights for ini-

tialization of the hidden layer of the network. For multiclass problems, binary class models

are extended to multiclass via ‘one-vs-all’ approach. We randomly selected the first class

as the class ‘one’ and the rest classes in ‘all’ class, and generate optimal weight hyper-

planes corresponding to these classes. This optimal weight matrix can be represented as

Ŵ = [w1, b1;w2, b2]. With the weight matrix W̄ and biases b̄ chosen randomly from the

weight matrix Ŵ for the initialization of the hidden layer parameters. The objective func-

tion of the proposed architecture with L enhancement nodes (i.e., hidden nodes) is given

as:

f⇤(x) =
X

j

(�̄j .g(W̄
T

j x+ b̄j)),

where �̄j are the output layer weights that need to be optimized.

We use ridge regression to optimize the weights of the output layer as:

X

i

(yi � dTi �̄)
2 + �||�̄||2, i = 1, 2, · · · ,M. (8.11)

Now, �̄ = (DTD+�I)�1DTY gives the solution, here �, D and Y represent the regularization

parameter, sample features and target responses, respectively.

8.2.3 Output value prediction

Here, the testing data samples are firstly projected into the hidden layer to get the

enhanced feature representation. After learning the parameters W̄ , b̄ and �̄, the labels of the

samples can be predicted as:

ytesti = [�̄.g(W̄ txtesti + b̄)], (8.12)

where ytest
i

is the predicted target value for testing sample xtest
i

.

The proposed twin weighted architecture is depicted in Figure (8.2) and the detailed

steps are given in Algorithm 8.1.

216

Algorithm 8.1 Proposed twin weighted models.
Input:
X = M ⇥ n is the dataset with M samples each with feature length n.
Y = M ⇥ 1 are data labels corresponding to the training dataset.
N is number of hidden neurons.

[1] Training with di↵erent classification models: Solve the optimization prob-
lems corresponding to TBSVM, TWKSVC, LSTWKSVC, RELSTSVM and
LSTSVM.

[2] For each model, choose the weights randomly from the weights of the corre-
sponding hyperplane generated in step � 1, to assign as weights of input layer
weights of the proposed architecture.

[3] For each model, apply the non-linear function (radbas function)

y = exp(�s2)

on the weighted sum generated from the input layer to the hidden layer. Here,
s and y are the input and output variables respectively.

[4] For each model, optimize the weights �̄ of the output layer. For obtaining the
weights of the output layer, we used regularized least square (ridge regression)
method as: X

i

(yi � dT
i
�̄)2 + �||�̄||2, i = 1, 2, · · · ,M. (8.13)

�̄ = (DTD+�I)�1DTY gives the optimal output layer weights, here �, D and Y
represents the regularization parameter, sample features and target responses,
respectively.

[5] For each model, predict the output label:

ytest
i

= [�̄.g(W̄ txtest

i
+ b̄)], (8.14)

where ytest
i

is the predicted target value for testing sample xtest

i
.

8.3 Experiments

In this section, we discuss the experimental setup and analyse the performance of the

classification models.

217

8.3.1 Experimental setup

Experimental study was done to evaluate the performances of di↵erent classifiers. The

di↵erent classification models evaluated are RVFL, TBSVM, RV-TBSVM, TWKSVC, RV-

TWKSVC, LSTWKSVC, RV-LSTWKSVC, RELSTSVM, RV-RELSTSVM, LSTSVM and

RV-LSTSVM.

We evaluate the proposed and baseline methods based on the benchmark datasets from

the UCI repository [60, 62] and real world non-UCI datasets which are about fecundity

estimation of fisheries: namely, oocMerl2F (3-class classification according to the stage of

development of the oocyte) for fish species Merluccius; and oocTris5B (stages) for fish species

Trisopterus [81]. All the experiments were performed in MATLAB R2017a on the machine

Intel(R) core(TM) i7 � 6700 processor with 8GB RAM and windows-10 platform. The

experimental setting of parameters used in the chapter are given as follows

• Enhanced number of patterns (L) was chosen from the range [2 : 20 : 300].

• Radbas activation function is used in all the methods. The performance of radbas

function is comparatively better than other activation functions [304].

• For the given methods, we performed grid search over the parameters of c1 and c3 with

the parameters varying from {2�5, 2�4, 2�3, 2�2, 2�1, 20, 21, 22, 23, 24, 25}. To reduce

the computation, we set the optimal parameters as c1 = c2 and c3 = c4.

8.3.2 Computational complexity analysis

Consider a binary class problem with dataset size M ⇥ n, where M is the number of

samples and n is the number of features corresponding to each sample. Let L be the number

of enhanced features. Following the standard mathematical approach, the inversion of the

n⇥ n matrix requires O(n3) complexity.

In the first proposed approach, wherein the enhanced features are generated via random

mapping, inverting the matrix of size (n + L + 1) ⇥ (n + L + 1) are involved while as in

baseline models (TBSVM, TWKSVC, LSTWKSVC, RELSTSVM, LSTSVM) inverting the

matrix of size (n + 1) ⇥ (n + 1) are involved. Thus, in the proposed random based feature

generation approach, matrix inversions of large size are involved.

218

In linear twin weighted models, hidden layer feature generation involves the inversion of

matrix size (n + 1) ⇥ (n + 1) and the output layer involves the inversion of matrix of size

(n+ L+ 1)⇥ (n+ L+ 1). Hence, in twin weighted models additional matrix inversions are

calculated while as in random weighted feature generation approach no such matrix inversion

is required as it involves random mapping.

From the above analysis, it is clear that the complexity of the proposed models is a

function of n and L. Hence, L provided better control over complexity compared to the

complexity involved by the kernel matrix.

8.3.3 Performance analysis

The classification performance of the models are reported in Table 8.2 and Table 8.3.

Table 8.2 corresponds to the classification of the proposed random weighted and the baseline

models while the Table 8.3 reports the classification accuracies corresponding to the second

proposed method and the classification models.

From Table 8.2, one can see that the classification accuracy of the proposed RV-

RELSTSVM model is highest among the given classification models. Also, the average rank

of the proposed RV-RELSTSVM model is lowest (2.2727) among the given classification

models.

From Table 8.3, one can see that the TBSVM-FL is highest among the given classification

models. Also, the average rank of the proposed TBSVM-FL is 3.8788 which is lowest among

the given classification models. The second highest accuracy corresponds to the proposed

RELSTSVM-FL model with 75.6584. Hence, the proposed TBSVM-FL and RELSTSVM-FL

models showed better generalization performance among the given classification models.

From the above analysis, it is clear that the performance of the classification models is

improved with the extended feature space comprising of both the enhanced features and the

original features. Hence, enhanced features lead to improved generalization performance of

the classification models.

219

Dataset Patterns Features Classes
balance-scale 625 4 3
breast-tissue 106 9 6

contrac 1473 9 3
dermatology 366 34 6

ecoli 336 7 8
energy-y1 768 8 3
energy-y2 768 8 3

flags 194 28 8
glass 214 9 6

heart-cleveland 303 13 5
heart-switzerland 123 12 2

heart-va 200 12 5
iris 150 4 3

led-display 1000 7 10
lenses 24 4 3
libras 360 90 15

low-res-spect 531 100 9
lung-cancer 32 56 3

lymphography 148 18 4
oocytes-merluccius-states-2f 1022 25 3
oocytes-trisopterus-states-5b 912 32 3
pittsburg-bridges-MATERIAL 106 4 3

pittsburg-bridges-REL-L 103 4 3
pittsburg-bridges-SPAN 92 4 3
pittsburg-bridges-TYPE 105 4 6

primary-tumor 330 17 15
seeds 210 7 3

statlog-vehicle 846 18 4
synthetic-control 600 60 6

teaching 151 5 3
vertebral-column-3clases 310 6 3

wine 179 13 3
zoo 101 16 7

Table 8.1: Summary of the datasets used for evaluation.

220

Table 8.2: Classification accuracy of RVFL [202], TBSVM [233], TWKSVC [294], LSTWKSVC [191], RELSTSVM [260],
LSTSVM [144] and proposed classification models.

Dataset RVFL TBSVM RV-

TBSVM⇤

TWKSVC RV-

TWKSVC⇤

LSTWKSVC RV-

LSTWKSVC⇤

RELSTSVM RV-

RELSTSVM⇤

LSTSVM RV-

LSTSVM⇤

balance-scale 91.5191 87.5196 95.2634 87.4875 95.7415 87.806 91.2629 87.232 91.9027 87.0396 91.072

breast-tissue 60.2335 62.0879 64.9038 68.6813 72.5275 63.9423 70.6731 64.011 67.7885 64.011 67.7885

contrac 55.1931 51.7328 56.2809 52.0021 55.6023 50.5777 55.9403 51.2563 56.4172 51.1882 55.8728

dermatology 96.9839 97.2646 97.8081 93.7286 93.7109 97.2764 98.0769 98.0769 98.6323 98.0769 98.0769

ecoli 81.8452 84.8214 87.7976 87.5 86.0119 85.7143 87.7976 85.119 88.6905 84.8214 88.3929

energy-y1 89.0625 85.8073 93.75 88.5417 96.4844 88.6719 95.5729 83.9844 94.6615 83.9844 95.8333

energy-y2 88.8021 87.7604 92.3177 88.9323 92.4479 87.5 93.3594 86.7187 92.9688 86.0677 93.2292

flags 50.0208 47.9167 53.125 35.0417 37.6875 46.875 51.4792 51 53.0417 49.4583 47.8333

glass 65.3345 57.9074 68.6364 63.5678 67.8302 61.5437 68.2161 62.5214 69.1424 61.1407 69.1595

heart-cleveland 57.7179 59.7436 59.0769 59.0641 58.3846 59.0513 59.3846 60.7308 59.7436 59.4231 57.1154

heart-

switzerland

46.0606 43.7879 48.7121 41.0606 33.9394 41.0606 47.0455 42.7273 47.803 41.1364 40.6061

heart-va 32 30 36.5 29 31 31 36.5 28.5 36.5 28.5 34

Continued on next page

221

Table 8.2 – continued from previous page

Dataset RVFL TBSVM RV-

TBSVM⇤

TWKSVC RV-

TWKSVC⇤

LSTWKSVC RV-

LSTWKSVC⇤

RELSTSVM RV-

RELSTSVM⇤

LSTSVM RV-

LSTSVM⇤

iris 95.9806 93.3818 98.0076 98.0423 97.3666 96.6909 97.3666 90.6791 98.6833 90.6791 97.3666

led-display 72.8 72.5 73.4 72.8 72.3 71.6 72.7 72.7 73.6 72.5 72.9

lenses 87.5 87.5 87.5 83.3333 83.3333 87.5 87.5 91.6667 91.6667 91.6667 91.6667

libras 73.8889 56.3889 82.7778 45.5556 77.2222 62.7778 85.5556 64.1667 87.5 56.6667 82.5

low-res-spect 83.6237 85.7155 88.1524 73.2407 81.5446 82.6936 87.9588 87.3864 89.0783 82.1086 86.8182

lung-cancer 43.75 34.375 43.75 37.5 37.5 37.5 50 50 46.875 43.75 43.75

lymphography 85.8108 64.8649 66.2162 83.1081 82.4324 83.7838 82.4324 66.2162 66.2162 66.2162 65.5405

oocytes-

merluccius-

states-2f

92.1767 92.6646 93.3501 92.6646 94.0364 90.6134 92.7619 92.1759 93.74 92.1752 93.7407

oocytes-

trisopterus-

states-5b

84.6491 93.0921 94.0789 92.9825 94.1886 91.6667 94.8465 92.2149 94.7368 92.1053 94.6272

Continued on next page

222

Table 8.2 – continued from previous page

Dataset RVFL TBSVM RV-

TBSVM⇤

TWKSVC RV-

TWKSVC⇤

LSTWKSVC RV-

LSTWKSVC⇤

RELSTSVM RV-

RELSTSVM⇤

LSTSVM RV-

LSTSVM⇤

pittsburg-

bridges-

MATERIAL

84.0659 86.8132 86.8132 84.1346 85.0962 85.8516 86.8819 85.0275 85.9203 85.0275 85.9203

pittsburg-

bridges-REL-L

69.75 69.75 73.75 70.75 68.0714 71.9643 73.75 69.75 73.5357 68.8571 71.4286

pittsburg-

bridges-SPAN

68.4783 67.3913 72.8261 63.0435 65.2174 63.0435 64.1304 65.2174 71.7391 65.2174 64.1304

pittsburg-

bridges-TYPE

58.084 57.0869 59.0456 57.0869 55.1638 60.8974 59.01 58.0484 60.933 58.0484 58.0484

primary-tumor 45.6809 43.2491 44.4977 42.378 42.0877 46.3124 47.2198 46.9077 47.5174 46.0003 46.9077

seeds 92.3967 96.1895 96.2429 96.2251 97.6496 94.3198 95.7621 97.1688 97.1866 97.1688 96.688

statlog-vehicle 72.924 77.783 85.9383 79.2037 84.635 77.4364 85.2318 78.372 86.0601 78.2536 85.5895

synthetic-

control

95.5 88.1667 97.6667 89.5 91.8333 87.5 94.6667 85.6667 97.3333 82.8333 95.6667

Continued on next page

223

Table 8.2 – continued from previous page

Dataset RVFL TBSVM RV-

TBSVM⇤

TWKSVC RV-

TWKSVC⇤

LSTWKSVC RV-

LSTWKSVC⇤

RELSTSVM RV-

RELSTSVM⇤

LSTSVM RV-

LSTSVM⇤

teaching 55.0676 55.1689 55.0676 53.0912 62.8716 53.8176 59.6453 54.4932 58.8176 54.4932 57.0946

vertebral-

column-3clases

81.0414 75.2137 85.854 85.2293 85.5047 81.0332 86.4952 83.9388 86.4869 83.9306 86.8116

wine 98.3202 97.752 97.1838 97.2085 98.3202 97.2332 96.1215 97.752 98.8883 97.752 97.1591

zoo 94.1154 93.1154 95.1154 91.1154 93.0769 95.1154 96.0385 93.1154 96.0385 91.1923 90.1923

Average-

Accuracy

74.2539 72.2579 76.7093 72.2061 74.8733 73.3446 77.3147 73.471 77.5711 72.4694 75.8645

Average-Rank 6.8182 7.7121 3.9242 7.7576 6.1818 7.8182 3.7879 6.8182 2.2727 7.9545 4.9545

Overall-Win-

Tie-Loss

1-0-6 0-0-4 4-0-0 0-0-4 6-0-5 0-0-3 3-0-1 1-0-0 11-0-0 0-0-3 2-0-1

Here, ⇤ denote the proposed methods.

224

Table 8.3: Classification accuracy of RVFL [202], RVFL-AE [311], TBSVM [233], TWKSVC [294], LSTWKSVC [191], REL-
STSVM [260], LSTSVM [144] and proposed classification models.

Dataset RVFL RVFL-AE TBSVM TBSVM-

FL⇤

TWKSVC TWKSVC-

FL⇤

LSTWKSVC LSTWKSVC-

FL⇤

RELSTSVM RELSTSVM-

FL⇤

LSTSVM LSTSVM-

FL⇤

balance-scale 91.5191 91.8103 87.5196 91.9716 87.4875 91.4998 87.806 91.8223 87.232 91.649 87.0396 91.3264

breast-tissue 60.2335 62.25 62.0879 61.875 68.6813 55.625 63.9423 65.25 64.011 66.25 64.011 59.625

contrac 55.1931 54.9224 51.7328 57.0231 52.0021 56.6218 50.5777 56.8245 51.2563 55.9456 51.1882 56.415

dermatology 96.9839 98.0556 97.2646 98.3333 93.7286 96.6667 97.2764 97.7778 98.0769 98.0556 98.0769 97.7778

ecoli 81.8452 84.2657 84.8214 86.5967 87.5 81.0256 85.7143 87.0396 85.119 85.7343 84.8214 83.007

energy-y1 89.0625 88.2331 85.8073 89.5363 88.5417 89.0226 88.6719 88.4962 83.9844 88.8659 83.9844 89.1541

energy-y2 88.8021 88.891 87.7604 89.4173 88.9323 88.7594 87.5 88.7594 86.7187 89.1541 86.0677 89.1541

flags 50.0208 49.3364 47.9167 51.5332 35.0417 50.2975 46.875 51.968 51 51.8764 49.4583 51.8764

glass 65.3345 66.8762 57.9074 65.9238 63.5678 60.2095 61.5437 62.5905 62.5214 63.9429 61.1407 64.5714

heart-cleveland 57.7179 60.4848 59.7436 59.4242 59.0641 60.1212 59.0513 61.4545 60.7308 60.1212 59.4231 61.7576

heart-switzerland 46.0606 44.5 43.7879 42.8333 41.0606 42 41.0606 46.1667 42.7273 45.3333 41.1364 44.5

heart-va 32 34 30 32.5 29 32.5 31 33.5 28.5 34.5 28.5 37

iris 95.9806 97.3333 93.3818 96 98.0423 97.3333 96.6909 96 90.6791 96.6667 90.6791 97.3333

led-display 72.8 73.4 72.5 73.1 72.8 73.6 71.6 74.1 72.7 74.1 72.5 74.3

lenses 87.5 88.3333 87.5 83.3333 83.3333 71.6667 87.5 88.3333 91.6667 73.3333 91.6667 78.3333

libras 73.8889 75.2778 56.3889 80.8333 45.5556 74.7222 62.7778 79.4444 64.1667 81.3889 56.6667 79.4444

low-res-spect 83.6237 87.5856 85.7155 88.5255 73.2407 85.7163 82.6936 88.1481 87.3864 88.3368 82.1086 88.1481

lung-cancer 43.75 48.6667 34.375 54 37.5 35.3333 37.5 35.3333 50 38.6667 43.75 45.3333

Continued on next page

225

Table 8.3 – continued from previous page

Dataset RVFL RVFL-AE TBSVM TBSVM-

FL⇤

TWKSVC TWKSVC-

FL⇤

LSTWKSVC LSTWKSVC-

FL⇤

RELSTSVM RELSTSVM-

FL⇤

LSTSVM LSTSVM-

FL⇤

lymphogra-phy 85.8108 82.987 64.8649 84.8701 83.1081 88.1818 83.7838 86.4935 66.2162 83.4416 66.2162 86.2987

oocytes-

merluccius-states-

2f

92.1767 91.8722 92.6646 92.2662 92.6646 91.8722 90.6134 91.776 92.1759 92.3624 92.1752 91.5818

oocytes-

trisopterus-states-

5b

84.6491 91.9875 93.0921 92.5393 92.9825 88.0385 91.6667 91.8799 92.2149 92.6492 92.1053 90.1241

pittsburg-bridges-

MATERIAL

84.0659 86.125 86.8132 86.125 84.1346 85.125 85.8516 87.125 85.0275 87.125 85.0275 84.125

pittsburg-bridges-

REL-L

69.75 67.9231 69.75 68.3846 70.75 67.1538 71.9643 65.3846 69.75 69.1538 68.8571 70.6923

pittsburg-bridges-

SPAN

68.4783 73.9394 67.3913 72.8283 63.0435 74.8485 63.0435 72.8283 65.2174 72.8283 65.2174 73.9394

pittsburg-bridges-

TYPE

58.084 58 57.0869 60.6667 57.0869 61.6667 60.8974 56.3333 58.0484 62.3333 58.0484 61

primary-tumor 45.6809 46.0606 43.2491 47.5758 42.378 44.5455 46.3124 46.0606 46.9077 46.6667 46.0003 46.3636

seeds 92.3967 95.7143 96.1895 96.6667 96.2251 93.8095 94.3198 96.6667 97.1688 96.1905 97.1688 97.619

statlog-vehicle 72.924 77.2698 77.783 79.4127 79.2037 74.8333 77.4364 77.8571 78.372 77.6111 78.2536 76.6746

synthetic-control 95.5 94.8333 88.1667 96.8333 89.5 96.1667 87.5 97.1667 85.6667 96.3333 82.8333 96.5

teaching 55.0676 55.7083 55.1689 58.3333 53.0912 55.0417 53.8176 58.375 54.4932 57 54.4932 55.0417

Continued on next page

226

Table 8.3 – continued from previous page

Dataset RVFL RVFL-AE TBSVM TBSVM-

FL⇤

TWKSVC TWKSVC-

FL⇤

LSTWKSVC LSTWKSVC-

FL⇤

RELSTSVM RELSTSVM-

FL⇤

LSTSVM LSTSVM-

FL⇤

vertebral-column-

3clases

81.0414 83.5484 75.2137 82.9032 85.2293 81.2903 81.0332 83.871 83.9388 84.5161 83.9306 82.2581

wine 98.3202 100 97.752 99.0118 97.2085 98.8235 97.2332 98.4235 97.752 99.4118 97.752 98.2353

zoo 94.1154 95.1818 93.1154 96.0909 91.1154 94.0909 95.1154 96.0909 93.1154 95.1818 91.1923 94.0909

Average-

Accuracy

74.2539 75.6174 72.2579 76.2808 72.2061 73.8851 73.3446 75.7376 73.471 75.6584 72.4694 75.5637

Average Rank 7.3939 5.6667 8.2879 3.8788 7.6515 7.3182 8.3788 4.7576 7.0152 4.0455 8.3788 5.2273

Overall-Win-

Tie-Loss

0-0-5 2-0-0 1-0-4 9-0-0 4-0-7 2-0-3 1-0-3 4-0-2 0-0-0 2-0-0 0 -0-3 4-0-0

Here, ⇤ denotes the proposed methods.

227

8.3.4 Statistical analysis based on the Friedman test

The objective here is to perform the statistical analysis of the proposed models and

the baseline models. It ensures whether the improvement observed in di↵erent models is

statistically significant or not.

8.3.4.1 Random weighted models

The performance of the models corresponding to di↵erent datasets is given in Table 8.2.

On each dataset, the classification models are ranked based on their performance with the

lower performing model being assigned higher rank and the higher performing model being

assigned lower rank. Average rank of a classifier across all the datasets is given as the rank

of the classifier.

With simple calculations, the average ranks of RVFL, TB-

SVM, RV-TBSVM, TWKSVC, RV-TWKSVC, LSTWKSVC, RV-

LSTWKSVC, RELSTSVM, RV-RELSTSVM, LSTSVM and RV-LSTSVM are

6.8182, 7.7121, 3.9242, 7.7576, 6.1818, 7.8182, 3.7879, 6.8182, 2.2727, 7.9545 and 4.9545,

respectively. Then based on simple calculations, we get �2

F
= 116.1159, FF = 17.3725

while evaluating the 11 algorithms on 33 datasets, FF is distributed according to the

F-distribution with 11 � 1 = 10 and (11 � 1)(33 � 1) = 320 degrees of freedom. Since

F(10,320) for ↵ = 0.05 is 1.8550. So, we reject the null hypothesis. With ↵ = 0.05, the

critical value based on Nemenyi test is given as:

CD = q↵

r
k(k + 1)

6N
= 3.219⇥

r
11⇥ 12

6⇥ 33
= 2.6283.

Table 8.4 shows the statistical significance of di↵erent classification models. From the

given table, one can see that the proposed approach based models are significantly better

compared to other models. The proposed approach based models achieved better accuracy

and lower average rank in comparison to the given baseline models.

228

Table 8.4: Statistical comparison of RVFL [202], TBSVM [233], TWKSVC [294], LSTWKSVC [191], RELSTSVM [260],
LSTSVM [144] and proposed classification models.

Method RVFL TBSVM RV-TBSVM
⇤

TWKSVC RV-TWKSVC
⇤

LSTWKSVC RV-

LSTWKSVC
⇤

RELSTSVM RV-RELSTSVM
⇤

LSTSVM RV-

LSTSVM
⇤

(6.8182) (7.7121) (3.9242) (7.7576) (6.1818) (7.8182) (3.7879) (6.8182) (2.2727) (7.9545) (4.9545)

RVFL

(6.8182)

TBSVM

(7.7121)

RV-TBSVM
⇤

(3.9242) 4 4 4 4 4 4

TWKSVC

(7.7576)

RV-TWKSVC
⇤

(6.1818)

LSTWKSVC

(7.8182)

RV-

LSTWKSVC
⇤

Continued on next page

229

Table 8.4 – continued from previous page

Method RVFL TBSVM RV-TBSVM
⇤

TWKSVC RV-TWKSVC
⇤

LSTWKSVC RV-

LSTWKSVC
⇤

RELSTSVM RV-RELSTSVM
⇤

LSTSVM RV-

LSTSVM
⇤

(6.8182) (7.7121) (3.9242) (7.7576) (6.1818) (7.8182) (3.7879) (6.8182) (2.2727) (7.9545) (4.9545)

(3.7879) 4 4 4 4 4 4

RELSTSVM

(6.8182)

RV-

RELSTSVM
⇤

(2.2727) 4 4 4 4 4 4 4 4

LSTSVM

(7.9545)

RV-LSTSVM
⇤

(4.9545) 4 4 4 4

Here,
⇤
denote the proposed methods.

230

8.3.4.2 Twin weighted models

The performance of the models corresponding to di↵erent datasets is given in Ta-

ble 8.3. We proceed in the same manner to rank the classifiers. The average

ranks of RVFL, RVFL-AE , TBSVM, TBSVM-FL, TWKSVC, TWKSVC-FL, LST-

WKSVC, LSTWKSVC-FL, RELSTSVM, RELSTSVM-FL, LSTSVM and LSTSVM-FL are

7.3939, 5.6667, 8.2879, 3.8788, 7.6515, 7.3182, 8.3788, 4.7576, 7.0152, 4.0455, 8.3788 and

5.2273, respectively. The Friedman statistics are �2

F
= 80.1246 and FF = 9.0640 with 12

algorithms evaluated on 33 datasets. FF is distributed according to the F-distribution with

(12 � 1) = 11 and (12 � 1)(33 � 1) = 352 degrees of freedom. For ↵ = 0.05, F(11 ,352) is

1.78. Hence, we reject the null hypothesis. Using simple calculations with ↵ = 0.05, critical

di↵erence is given as CD = 2.9008.

231

Table 8.5: Statistical comparison of RVFL [202], RVFL-AE [311], TBSVM [233], TWKSVC [294], LSTWKSVC [191], REL-
STSVM [260], LSTSVM [144] and proposed classification models.

Method RVFL RVFL-AE TBSVM TBSVM-FL
⇤

TWKSVC TWKSVC-FL
⇤

LSTWKSVC LSTWKSVC-

FL
⇤

RELSTSVM RELSTSVM-

FL
⇤

LSTSVM LSTSVM-FL
⇤

(7.3939) (5.6667) (8.2879) (3.8788) (7.6515) (7.3182) (8.3788) (4.7576) (7.0152) (4.0455) (8.3788) (5.2273)

RVFL

7.3939

RVFL-AE

5.6667

TBSVM

8.2879

TBSVM-FL
⇤

3.8788 4 4 4 4 4 4 4

TWKSVC

7.6515

TWKSVC-FL
⇤

7.3182

LSTWKSVC

8.3788

LSTWKSVC-FL
⇤

4.7576 4 4 4

RELSTSVM

Continued on next page

232

Table 8.5 – continued from previous page

Method RVFL RVFL-AE TBSVM TBSVM-FL
⇤

TWKSVC TWKSVC-FL
⇤

LSTWKSVC LSTWKSVC-

FL
⇤

RELSTSVM RELSTSVM-

FL
⇤

LSTSVM LSTSVM-FL
⇤

(7.3939) (5.6667) (8.2879) (3.8788) (7.6515) (7.3182) (8.3788) (4.7576) (7.0152) (4.0455) (8.3788) (5.2273)

7.0152

RELSTSVM-FL
⇤

4.0455 4 4 4 4 4 4 4

LSTSVM

8.3788

LSTSVM-FL
⇤

5.2273 4 4 4

Here,
⇤
denote the proposed methods.

233

Table 8.6: Significant di↵erence between TBSVM, RV-TBSVM, TWKSVC, RV-
TWKSVC, LSTWKSVC, RV-LSTWKSVC, RELSTSVM, RV-RELSTSVM, LSTSVM
and RV-LSTSVM based on pair-wise sign test.

Method Significance
(RV-TBSVM, TBSVM) (28,4) 4

(RV-TWKSVC, TWKSVC) (21,11)
(RV-LSTWKSVC, LSTWKSVC) (28,3) 4
(RV-RELSTSVM, RELSTSVM) (29,3) 4

(RV-LSTSVM, LSTSVM) (23,9) 4

The meaning of two pairs of brackets (A,B)(m,n) in each row means that while
evaluating the methods (A,B) pairwise, method A performs better in m number of
datasets while as method B performs better in n number of datasets. Corresponding

to each pairwise test, 4 means significant di↵erence exists between the given
methods. Blank entries denote that no significant di↵erence exists among the given

models.

Table 8.5 shows the statistical significance of the classification algorithms. From the given

table, it is evident that the proposed approach based models show better performance and

are significantly better compared to other models. The proposed approach based models

achieved better average accuracy and lower average rank as compared to other classifier

models.

8.3.5 Win-tie-loss: sign test

Sign test or the pairwise comparison of algorithms is used here to access the overall

performance of classifiers. Here, the number of datasets in which a given algorithm is

absolute winner among the given algorithms is counted.

8.3.5.1 Random weighted models

From the Table 8.6, it is evident that significant di↵erence exist between each pairs

of classifiers (except RV-TWKSVC,TWKSVC), with the proposed models emerging as the

overall winner in most of the datasets.

8.3.5.2 Twin weighted models

From the Table 8.7, it is evident that significant di↵erence exist between each pairs of

classifiers (except TWKSVC-FL, TWSKVC), with the proposed models emerging as the

234

Table 8.7: Significant di↵erence between RVFL, RVFL-AE, TBSVM, TBSVM-
FL, TWKSVC, TWKSVC-FL, LSTWKSVC, LSTWKSVC-FL, RELSTSVM,
RELSTSVM-FL, LSTSVM and LSTSVM-FL based on pair-wise sign test.

Method Significance
(RVFL-AE, RVFL)(23, 9) 4

(TBSVM-FL, TBSVM)(24, 8) 4
(TWKSVC-FL, TWSKVC)(19, 13)

(LSTWKSVC-FL, LSTWKSVC)(26, 6) 4
(RELSTSVM-FL, RELSTSVM)(24, 8) 4

(LSTSVM-FL, LSTSVM)(23, 9) 4
The meaning of two pairs of brackets (A,B)(m,n) in each row means that while

evaluating the methods (A,B) pairwise, method A performs better in m number of
datasets while as method B performs better in n number of datasets. Corresponding

to each pairwise test, 4 means significant di↵erence exists between the given
methods. Blank entries denote that no significant di↵erence exists among the given

models.

overall winner in most of the datasets.

8.3.6 Analyzing the e↵ect of enhanced patterns

In this subsection, we will analyze the e↵ect of enhanced number of features on the

performance of the classification models.

8.3.6.1 Random-weighted models

Figure (8.3(a)) to Figure (8.3(h)) signify the e↵ect of enhanced features on the perfor-

mance of given classification models.

From Figures (8.3(a)), (8.3(c)) and (8.3(d)), one can see that increasing the number

of enhanced patterns leads to better generalization of the proposed models. Thus, adding

the number of enhanced features upto a certain level increases the generalization ability of

the proposed models. Also, one can see that RVFL model in Figures (8.3(c)) and (8.3(d))

achieved lower performance as compared to the proposed models.

Figure (8.3(b)) shows the consistent performance of the proposed models with the varying

number of enhanced features. The reason could be that the hidden features doesn’t increase

the generalization ability of the model.

Figure (8.3(e)) indicates that the RVFL model outperforms the proposed models across

all the number of enhanced patterns.

235

Figure 8.3: E↵ect of enhanced features on the performance of proposed random
weighted classification models and baseline models.

(a) Balance-scale.

0 50 100 150 200 250 300 350

Number of Neurons

80

82

84

86

88

90

92

94

96

A
cc

u
ra

cy
 (

%
)

RVFL

RV-TBSVM

RV-LSTSVM

RV-RELSTSVM

RV-TWKSVC

RV-LSTWKSVC

(b) Ecoli.

0 50 100 150 200 250 300 350

Number of Neurons

50

55

60

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

RVFL

RV-TBSVM

RV-LSTSVM

RV-RELSTSVM

RV-TWKSVC

RV-LSTWKSVC

(c) Energy-y2.

0 50 100 150 200 250 300 350

Number of Neurons

78

80

82

84

86

88

90

92

94

A
cc

u
ra

cy
 (

%
)

RVFL

RV-TBSVM

RV-LSTSVM

RV-RELSTSVM

RV-TWKSVC

RV-LSTWKSVC

(d) Libras.

0 50 100 150 200 250 300 350

Number of Neurons

50

55

60

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

RVFL

RV-TBSVM

RV-LSTSVM

RV-RELSTSVM

RV-TWKSVC

RV-LSTWKSVC

236

0 50 100 150 200 250 300 350

Number of Neurons

45

50

55

60

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

RVFL

RV-TBSVM

RV-LSTSVM

RV-RELSTSVM

RV-TWKSVC

RV-LSTWKSVC

(e) Lymphography.

0 50 100 150 200 250 300 350

Number of Neurons

55

60

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

RVFL

RV-TBSVM

RV-LSTSVM

RV-RELSTSVM

RV-TWKSVC

RV-LSTWKSVC

(f) Pittsburg-bridges-MATERIAL.

0 50 100 150 200 250 300 350

Number of Neurons

40

45

50

55

60

65

70

75

A
cc

u
ra

cy
 (

%
)

RVFL

RV-TBSVM

RV-LSTSVM

RV-RELSTSVM

RV-TWKSVC

RV-LSTWKSVC

(g) Pittsburg-bridges-SPAN.

0 50 100 150 200 250 300 350

Number of Neurons

82

84

86

88

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

RVFL

RV-TBSVM

RV-LSTSVM

RV-RELSTSVM

RV-TWKSVC

RV-LSTWKSVC

(h) wine.

237

In Figure (8.3(f)), it is evident that initially proposed approach shows higher performance

compared to the RVFL model. However, as enhanced features increase the performance of

RVFL model remains consistent while as that of proposed models decreases as the number

of hidden features increase.

Figure (8.3(g)) shows that the RVFL model performs lower than the RV-TBSVM and

RV-RELSTSVM when the number of hidden neurons is large. Other models (RV-LSTSVM,

RV-TWKSVC, and RV-LSTWKSVC) have lower performance as compared to the RVFL

model. Initially, the performance of RVFL model is lower in comparison with other models.

In Figure (8.3(h)), one can see the that the proposed RV-TBSVM and RV-RELSTSVM

achieves better performance as compared to the RVFL across all the number of hidden

features. However, the RVFL model performs better as compared to the RV-LSTSVM,

RV-TWKSVC and RV-LSTWKSVC models.

8.3.6.2 Twin-weighted models

Figures (8.4(a)), (8.4(c)) and (8.4(d)) show that the performance is initially lower for

lower number of enhanced features and increases with the increase in number of enhanced

features. However, in Figure (8.4(b)) the performance of the models is almost consistent

across all the number of enhanced features except TWKSVC-FL, where performance is

initially higher at lower number of hidden neurons and then decreases as enhanced features

increase and again increases with increase of enhanced features.

Figure (8.4(e)) shows that increasing the number of enhanced features improves the

performance of the models while as Figure (8.4(g)) shows that increasing the number of

enhanced features decreases the performance and the di↵erent models show varying perfor-

mance across varying number of enhanced features.

In Figure (8.4(f)), the performance is initially lower and the performance increases ini-

tially with the increase in number of enhanced features and remains almost consistent after

100 number of hidden features.

In Figure (8.4(h)), TBSVM-FL and RELSTSVM-FL show almost consistent performance

across all the number of enhanced features while as the performance of RVFL-AE is low ini-

tially and increases as the enhanced features increase. One can observe that the performance

of LSTSVM-FL and LSTWKSVC-FL is initially higher and decreases as the number of en-

hanced features increase while as the performance of TWKSVC-FL initially decreases and

238

Figure 8.4: E↵ect of enhanced features on the performance of proposed twin weighted
classification models and baseline models.

(a) Balance-scale.

0 50 100 150 200 250 300 350

Number of Neurons

87.5

88

88.5

89

89.5

90

90.5

91

91.5

92

92.5

A
cc

u
ra

cy
 (

%
)

RVFL-AE

TBSVM-FL

LSTSVM-FL

RELSTSVM-FL

TWKSVC-FL

LSTWKSVC-FL

(b) Ecoli.

0 50 100 150 200 250 300 350

Number of Neurons

60

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

RVFL-AE

TBSVM-FL

LSTSVM-FL

RELSTSVM-FL

TWKSVC-FL

LSTWKSVC-FL

(c) Glass.

0 50 100 150 200 250 300 350

Number of Neurons

30

35

40

45

50

55

60

65

70

A
cc

u
ra

cy
 (

%
)

RVFL-AE

TBSVM-FL

LSTSVM-FL

RELSTSVM-FL

TWKSVC-FL

LSTWKSVC-FL

(d) Energy-y1.

0 50 100 150 200 250 300 350

Number of Neurons

81

82

83

84

85

86

87

88

89

90

91

A
cc

u
ra

cy
 (

%
)

RVFL-AE

TBSVM-FL

LSTSVM-FL

RELSTSVM-FL

TWKSVC-FL

LSTWKSVC-FL

239

0 50 100 150 200 250 300 350

Number of Neurons

30

40

50

60

70

80

90

A
cc

u
ra

cy
 (

%
)

RVFL-AE

TBSVM-FL

LSTSVM-FL

RELSTSVM-FL

TWKSVC-FL

LSTWKSVC-FL

(e) Libras.

0 50 100 150 200 250 300 350

Number of Neurons

40

45

50

55

60

65

70

75

80

85

A
cc

u
ra

cy
 (

%
)

RVFL-AE

TBSVM-FL

LSTSVM-FL

RELSTSVM-FL

TWKSVC-FL

LSTWKSVC-FL

(f) Statlog-vehicle.

0 50 100 150 200 250 300 350

Number of Neurons

62

64

66

68

70

72

74

76

A
cc

u
ra

cy
 (

%
)

RVFL-AE

TBSVM-FL

LSTSVM-FL

RELSTSVM-FL

TWKSVC-FL

LSTWKSVC-FL

(g) Pittsburg-bridges-SPAN.

0 50 100 150 200 250 300 350

Number of Neurons

78

80

82

84

86

88

90

92

94

A
cc

u
ra

cy
 (

%
)

RVFL-AE

TBSVM-FL

LSTSVM-FL

RELSTSVM-FL

TWKSVC-FL

LSTWKSVC-FL

(h) Oocytes-trisopterus-states-5b.

240

then increases again with the increase in number of enhanced features.

Hence, to get the better generalization performance the number of hidden neurons need

to be selected optimally.

8.4 Summary

In this chapter, we presented two approaches for classification problems. The first ar-

chitecture is based on the random weighted extended feature space and solves di↵erent

optimization problems corresponding to the models based on these extended feature spaces.

Based on the extended features obtained via random weights, one can see that the per-

formance of the proposed models is increased. The performance improvement of the RV-

TBSVM and RV-TWKSVC models achieved approximately 8% increase in balance-scale,

energy-y1 dataset and 6% increase by RV-LSTWKSVC in energy-y2 dataset as compared

to their corresponding base models. The proposed RV-RELSTSVM achieved lowest average

rank and emerged as the overall winner in most of the datasets (11 datasets). In the sec-

ond proposed method, di↵erent models are used to generate the hidden layer weights of the

architecture and weights in the output layer are optimized via closed form solution. The

proposed TBSVM-FL achieved highest accuracy and lower rank in comparison with other

models. All the baseline models and the proposed models are evaluated on 33 benchmark

datasets from the UCI repository and fecundity estimation of fisheries datasets. The experi-

mental results show that the average accuracy of the proposed classification models is better

as compared to the baseline models. Moreover, both the models avoid the computation and

memory issues of kernel trick as the presented models are e�cient compared to the kernel

trick based projections. We analyzed the performance of the classifiers based on varying

number of enhanced features and conclude that the number of hidden neurons need to be

chosen optimally for better performance of the classification models.

The model presented in this chapter and the previous chapter provided an alternate for

the non-linear projections, which resulted in better control over complexity and memory

issues.

241

Chapter 9

Conclusions and future work

In this thesis, we focused on random forest (RaF), random vector functional link network

(RVFL) and their ensembles. All these algorithms have been successfully employed in diverse

domain of applications. Random forest is an ensemble of decision trees. Each decision tree

is a sequence of If-Then rules which are intuitive to humans. It is composed of terminal

and non-terminal nodes, here terminal nodes give the classes of the samples while as each

non-terminal evaluates the best split. Based on the split functions used in the non-terminal

nodes of decision trees, there are two categories: axis-parallel and oblique decision trees. In

this thesis, we have explored axis parallel, oblique decision trees and their ensembles. In

neural networks, we have focused on randomized neural networks, more specifically RVFL

which is a shallow neural network architecture composed of input layer, hidden layer and

the output layer. The weights of the hidden layer are initialized randomly and kept fixed

while as the output layer weights are optimized via closed form method. In the context of

support vector machine (SVM), we have focused on the improvement of the twin SVM based

models. We proposed the variants of twin SVM to overcome the issues of memory and time.

The summary of this thesis is as follows:

9.1 Conclusions

[1] Literature review: We presented the comprehensive reviews of ensemble deep learning

strategies and twin SVM based models. We explored the di↵erent strategies followed

in the literature for ensembling the models. Furthermore, we also presented the review

of twin SVM based models.

243

[2] Oblique ensembles of decision tree: We presented a novel approach to generate the

decision tree ensembles with di↵erent base models like RaF, rotation forest (RoF)

and random sub-rotation forest (RRoF). Here, the splitting plane is decided based on

multivariate features in each non-leaf node. This splitting is based on the hyperplanes

generated by twin bounded support vector machine (TBSVM). Unlike multi-surface

proximal support vector machine (MPSVM) based oblique decision trees, the proposed

twin bounded random forest (TBRaF), twin bounded rotation forest (TBRoF) and

twin bounded random sub-rotation forest (TBRRoF) require no explicit regularization

techniques. This is due to the reason that in TBSVM based oblique decision trees, the

matrices appearing in the dual formulation are positive-definite. Also, the structural

risk minimization principle is implemented in the proposed models. The proposed

models show consistent performance with all the three baseline methods (RaF, RoF,

RRoF). Among all the models, the proposed TBRaF and TBRRoF models emerged

as the overall winner in 21 datasets in terms of accuracy while as other models show

lower number of overall wins (less than or equal to 9 datasets). Also, average accuracy

of the proposed TBRaF and TBRRoF is 84% while as all the other variants of RaF,

RoF and RRoF have less than 84% accuracy. The proposed TBRaF, TBRoF and

TBRRoF show consistent performance with di↵erent base classifiers.

[3] Oblique and rotation based ensembles of double random forest: We presented two

approaches for generating the double random forest models. In the first approach,

we presented oblique double random forest and in the second approach, we presented

rotation based double random forest. In oblique double random forest models, the

splitting hyperplane at each non-leaf node is generated via MPSVM. This leads to

the incorporation of geometric structure and hence, leads to better generalization per-

formance. As the decision tree grows, the problem of sample size may arise. Hence,

we use Tikhonov regularization and axis parallel split regularization for generating

decision trees to full depth. In rotation based double random forest models, we used

two transformations - principal component analysis and linear discriminant analysis

on randomly chosen feature subspace at each non-leaf node. Rotations on di↵erent

random features subspace leads to more diverse decision tree ensemble and hence,

results in better generalization performance. Unlike standard random forest where

244

the bootstrap aggregation is used at root node only, the proposed oblique and rota-

tion double random forest use bootstrap aggregation at each non-terminal node for

choosing the best split and then the original samples are sent down the decision tree.

Experimental results and the statistical analysis show the e�cacy of the proposed

oblique and rotation double random forest over standard baseline classifiers.

[4] RVFL, ensemble of RVFL: We presented variance embedded RVFL and co-trained

RVFL model. We propose total variance minimization based RVFL (Total-Var-RVFL)

and intraclass variance minimization based RVFL (Class-Var-RVFL). The proposed

methods exploit the training data dispersion in the original feature space as well as

the randomized feature space while optimizing the output layer weights. Experimental

analysis revealed that the incorporation of total variance and class variance improved

the generalization performance of the proposed RVFL based models. In comparison

to given baseline models, the proposed Total-Var-RVFL and Class-Var-RVFL models

achieved better average accuracy. Also, the average rank of the proposed Class-Var-

RVFL is better than other baseline models except minimum class variance extreme

learning machine (MCVELM).

In co-trained RVFL (coRVFL), two RVFL models are trained jointly such that each

RVFL model is predicting the target label as closely as possible. Since, two RVFL

models are trained on di↵erent feature representations and hence, it is unlikely for the

outcome of two models to agree on a particular data sample resulting in forcing the less

accurate model to be as close as possible to the more accurate model. Experiments

conducted on publicly available datasets show that the proposed coRVFL is better

as compared to the baseline models. Furthermore, statistical analysis show that the

proposed coRVFL-avg is statistically significantly better compared to the baseline

models.

[5] Learning using privileged information (LUPI) framework for deep RVFL and its ensem-

ble: We proposed deep RVFL using privileged information (dRVFL+) and ensemble

deep RVFL using privileged information (edRVFL+) for the diagnosis of Alzheimer’s

disease. Standard RVFL, deep architectures of RVFL and its ensemble versions have

shown better generalization performance, however, these models use only normal infor-

mation for optimizing the network parameters. The proposed dRVFL+ and edRVFL+

245

are enabled to incorporate the privileged information, which is sidelined by the stan-

dard RVFL and its deep models. Both dRVFL+ and edRVFL+ e�ciently utilize the

privileged information in combination with the original features to get better gener-

alization performance. Unlike the standard LUPI based models (like RVFL+) which

normally utilize the half of the available features as normal features and rest as the

privileged features. We proposed a novel approach for the generation of privileged

information. We utilize di↵erent activation functions while processing the normal

and privileged information in the proposed deep architectures. To the best of our

knowledge, this is first time that all the features are utilized in the LUPI framework

and a separate information is generated as the privileged information. The proposed

dRVFL+ and edRVFL+ models are employed for the diagnosis of Alzheimer’s disease.

Experiments demonstrate the superiority of the proposed dRVFL+ and edRVFL+

models over baseline models.

[6] Improvements of twin SVM based algorithms: We proposed two approaches for twin

SVM: pre-trained functional link network based twin SVM and ensemble of classi-

fication models with weighted functional link network. Pre-trained functional link

network based twin SVM is an improved model for the classification problems using

the least squares twin support vector machine (LSTSVM) and enhanced features from

the pre-trained functional link network. Inspired by the direct link benefits and im-

pact of randomization range on the performance of the RVFL. We proposed a model

with LSTSVM as the basic unit for classification. The proposed enhanced feature

based least squares twin support vector machine (ELSTSVM) provides the advan-

tages of implicit feature representation. The original input data is fed into the input

layer. At hidden layer, LSTSVM generates the weights and a non-linear function is

applied to get the enhanced feature space. Finally, the optimal decision boundary is

generated by LSTSVM based on the extended features (input features + enhanced fea-

tures) to get the final labels. In oocytes-merluccius-nucleus-4d dataset, the proposed

ELSTSVM achieved approximately 12% and 4% increase in accuracy with respect

to RVFL and LSTSVM model, respectively. In statlog-image dataset, the proposed

ELSTSVM achieved approximately 10% increase in accuracy with respect to both

the baseline models. Furthermore, the proposed ELSTSVM uses lesser number of

246

hidden neurons and achieves better or comparable performance as that of RVFL net-

work. The numerical experiments and the statistical tests show that the proposed

ELSTSVM gives improved performance as compared to RVFL and LSTSVM models.

From experiments, one can see that the enhanced features in combination with the

original features improved the classification performance.

In ensemble of classification models with weighted functional link network, we pre-

sented two architectures for classification problems. The first architecture is based on

the random weighted extended feature space and solves di↵erent optimization prob-

lems corresponding to the models based on these extended feature spaces. Based

on the extended features obtained via random weights, one can see that the perfor-

mance of the proposed models is increased. The performance improvement of the

random vector TBSVM (RV-TBSVM) and random vector TWKSVC (RV-TWKSVC)

models achieved approximately 8% increase in balance-scale, energy-y1 dataset and

6% increase by random vector least square TWKSVC (RV-LSTWKSVC) in energy-

y2 dataset as compared to their corresponding base models. The proposed RV-

RELSTSVM achieved lowest average rank and emerged as the overall winner in most

of the datasets (11 datasets). In the second proposed method, di↵erent models are

used to generate the hidden layer weights of the architecture and weights in the out-

put layer are optimized via closed form solution. The proposed TBSVM-FL achieved

highest accuracy and lower rank in comparison with existing models. All the base-

line models and the proposed models are evaluated on 33 benchmark datasets from

the UCI repository and fecundity estimation of fisheries datasets. The experimental

results show that the average accuracy of the proposed classification models is better

as compared to the baseline models.

9.2 Future directions

In this section, we present the possible future directions emanating from this thesis.

[1] E�cient oblique random forest: The oblique random forest via TBSVM presented in

this thesis solves QPPs at each node, however, one can explore the e�cient variants

to generate the oblique hyperplane and hence, improve the generalization process of

the models.

247

[2] Robust and diverse oblique double random forest: We presented oblique double ran-

dom forest with MPSVM based hyperplane being used for splitting the nodes. How-

ever, limiting the splitting planes to one single classifier may results in suboptimal

performance. Hence, one can explore the use of multiple linear classifiers like SVM,

LDA so that more diverse splits results in better generalization performance.

[3] Robust RVFL: The RVFL uses l2 norm which may su↵er in presence of noise and

outliers. Hence, one can explore the other loss functions like l1 loss or pinball loss

based models which are robust to noise and outliers.

[4] Diverse deep RVFL: In this thesis, we proposed deep RVFL and ensemble deep RVFL

model with LUPI framework. One can explore the negative correlation framework

based RVFL and its ensembles for both shallow and deep models. For improving the

generalization performance of the models, diversity is of utmost importance, hence,

one can explore diversity inducing approaches like bagging, boosting etc.

[5] Applications of classification models in other domains: The classification models pre-

sented in this thesis have been evaluated on the benchmark UCI [60] datasets. More-

over, the deep RVFL with LUPI framework has shown better e�ciency in diagnosing

the AD. One can explore the application of the presented models in regression, fore-

casting and other biomedical applications.

248

Bibliography

[1] Euijoon Ahn, Ashnil Kumar, Dagan Feng, Michael Fulham, and Jinman Kim. Unsu-

pervised feature learning with k-means and an ensemble of deep convolutional neural

networks for medical image classification. arXiv preprint arXiv:1906.03359, 2019.

[2] Nabil Alami, Mohammed Meknassi, and Noureddine En-nahnahi. Enhancing unsuper-

vised neural networks based text summarization with word embedding and ensemble

learning. Expert Systems with Applications, 123:195–211, 2019.

[3] Monther Alhamdoosh and Dianhui Wang. Fast decorrelated neural network ensembles

with random weights. Information Sciences, 264:104–117, 2014.

[4] Ricardo F Alvear-Sandoval and Ańıbal R Figueiras-Vidal. On building ensembles of

stacked denoising auto-encoding classifiers and their further improvement. Information

Fusion, 39:41–52, 2018.

[5] Terry Anderson. The theory and practice of online learning. Athabasca University

Press, 2008.

[6] Robert E Banfield, Lawrence O Hall, Kevin W Bowyer, and W Philip Kegelmeyer.

A comparison of decision tree ensemble creation techniques. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 29(1):173–180, 2006.

[7] Iñigo Barandiaran. The random subspace method for constructing decision forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 1998.

[8] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. The power

of ensembles for active learning in image classification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 9368–9377, 2018.

249

[9] Yoshua Bengio. Learning deep architectures for AI. Now Publishers Inc, 2009.

[10] Kristin P Bennett, Ayhan Demiriz, and Richard Maclin. Exploiting unlabeled data in

ensemble methods. In Proceedings of the eighth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 289–296, 2002.

[11] Hugues Berry and Mathias Quoy. Structure and dynamics of random recurrent neural

networks. Adaptive Behavior, 14(2):129–137, 2006.

[12] Alina Beygelzimer, Elad Hazan, Satyen Kale, and Haipeng Luo. Online Gradient

Boosting. Technical report.

[13] Anil Bhattacharyya. On a measure of divergence between two statistical populations

defined by their probability distributions. Bull. Calcutta Math. Soc., 35:99–109, 1943.

[14] Shun Bian and Wenjia Wang. On diversity and accuracy of homogeneous and hetero-

geneous ensembles. International Journal of Hybrid Intelligent Systems, 4(2):103–128,

2007.

[15] Jerzy B laszczyński and Jerzy Stefanowski. Neighbourhood sampling in bagging for

imbalanced data. Neurocomputing, 150:529–542, 2015.

[16] Léon Bottou, Corinna Cortes, John S Denker, Harris Drucker, Isabelle Guyon, Larry D

Jackel, Yann LeCun, Urs A Muller, Edward Sackinger, Patrice Simard, et al. Compari-

son of classifier methods: a case study in handwritten digit recognition. In Proceedings

of the 12th IAPR International Conference on Pattern Recognition, Vol. 3-Conference

C: Signal Processing (Cat. No. 94CH3440-5), volume 2, pages 77–82. IEEE, 1994.

[17] Anne-Laure Boulesteix, Silke Janitza, Jochen Kruppa, and Inke R König. Overview of

random forest methodology and practical guidance with emphasis on computational

biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowl-

edge Discovery, 2(6):493–507, 2012.

[18] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[19] Leo Breiman. Bias, variance, and arcing classifiers. 1996.

[20] Leo Breiman. Stacked regressions. Machine Learning, 24(1):49–64, 1996.

250

[21] Leo Breiman. Arcing classifier (with discussion and a rejoinder by the author). The

Annals of Statistics, 26(3):801–849, 1998.

[22] Leo Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning,

40(3):229–242, 2000.

[23] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[24] Leo Breiman. Classification and regression trees. Routledge, 2017.

[25] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification

and regression trees. CRC press, 1984.

[26] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. Diversity creation methods:

a survey and categorisation. Information Fusion, 6(1):5–20, 2005.

[27] Gavin Brown, Jeremy L Wyatt, and Peter Tiňo. Managing diversity in regression

ensembles. Journal of Machine Learning Research, 6(Sep):1621–1650, 2005.

[28] Peter Bühlmann, Bin Yu, et al. Analyzing bagging. The Annals of Statistics, 30(4):

927–961, 2002.

[29] Andreas Buja and Werner Stuetzle. Smoothing e↵ects of bagging. Preprint. AT&T

Labs-Research, 2000.

[30] Sebastian Buschjäger, Lukas Pfahler, and Katharina Morik. Generalized negative

correlation learning for deep ensembling. arXiv preprint arXiv:2011.02952, 2020.

[31] Yue Cao, Thomas Andrew Geddes, Jean Yee Hwa Yang, and Pengyi Yang. Ensemble

deep learning in bioinformatics. Nature Machine Intelligence, 2(9):500–508, 2020.

[32] Zhen Cao, Xiaoyong Pan, Yang Yang, Yan Huang, and Hong-Bin Shen. The lncloca-

tor: a subcellular localization predictor for long non-coding RNAs based on a stacked

ensemble classifier. Bioinformatics, 34(13):2185–2194, 2018.

[33] Miguel A Carreira-Perpinán and Pooya Tavallali. Alternating optimization of decision

trees, with application to learning sparse oblique trees. Advances in Neural Information

Processing Systems, 31:1211–1221, 2018.

251

[34] Salvatore Carta, Andrea Corriga, Anselmo Ferreira, Alessandro Sebastian Podda, and

Diego Reforgiato Recupero. A multi-layer and multi-ensemble stock trader using deep

learning and deep reinforcement learning. Applied Intelligence, pages 1–17, 2020.

[35] Sung-Hyuk Cha and Charles C Tappert. A genetic algorithm for constructing compact

binary decision trees. Journal of Pattern Recognition Research, 4(1):1–13, 2009.

[36] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning

(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,

20(3):542–542, 2009.

[37] Chang Chen, Zhiwei Xiong, Xinmei Tian, and Feng Wu. Deep boosting for image

denoising. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 3–18, 2018.

[38] Chang Chen, Zhiwei Xiong, Xinmei Tian, Zheng-Jun Zha, and Feng Wu. Real-world

image denoising with deep boosting. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2019.

[39] Guibin Chen, Deheng Ye, Zhenchang Xing, Jieshan Chen, and Erik Cambria. En-

semble application of convolutional and recurrent neural networks for multi-label text

categorization. In 2017 International Joint Conference on Neural Networks (IJCNN),

pages 2377–2383. IEEE, 2017.

[40] Li-Fen Chen, Hong-Yuan Mark Liao, Ming-Tat Ko, Ja-Chen Lin, and Gwo-Jong Yu. A

new LDA-based face recognition system which can solve the small sample size problem.

Pattern Recognition, 33(10):1713–1726, 2000.

[41] Xi-liang Chen, Lei Cao, Chen-xi Li, Zhi-xiong Xu, and Jun Lai. Ensemble network

architecture for deep reinforcement learning. Mathematical Problems in Engineering,

2018, 2018.

[42] Hoi-Ming Chi and Okan K Ersoy. A statistical self-organizing learning system for

remote sensing classification. IEEE Transactions on Geoscience and Remote Sensing,

43(8):1890–1900, 2005.

252

[43] Anna Choromanska, Mikael Hena↵, Michael Mathieu, Gérard Ben Arous, and Yann

LeCun. The loss surfaces of multilayer networks. In Artificial Intelligence and Statis-

tics, pages 192–204, 2015.

[44] Cheng Chu, Sang Kyun Kim, Yian Lin, YuanYuan Yu, Gary Bradski, Andrew Y Ng,

and Kunle Olukotun. Map-reduce for machine learning on multicore. Advances in

Neural Information Processing Systems, 19:281, 2007.

[45] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural net-

works for image classification. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3642–3649. IEEE, 2012.

[46] Marquis de Condorcet. Essay on the application of analysis to the probability of

majority decisions. Paris: Imprimerie Royale, 1785.

[47] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, 1995.

[48] Corinna Cortes, Mehryar Mohri, and Umar Syed. Deep boosting. In 31st International

Conference on Machine Learning, ICML 2014, 2014. ISBN 9781634393973.

[49] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang.

AdaNet: Adaptive Structural Learning of Artificial Neural Networks. Technical report,

2017.

[50] Heriberto Cuayáhuitl, Donghyeon Lee, Seonghan Ryu, Yongjin Cho, Sungja Choi,

Satish Indurthi, Seunghak Yu, Hyungtak Choi, Inchul Hwang, and Jihie Kim.

Ensemble-based deep reinforcement learning for chatbots. Neurocomputing, 366:118–

130, 2019.

[51] Ron Tor Das, Kai Keng Ang, and Chai Quek. ierspop: A novel incremental rough

set-based pseudo outer-product with ensemble learning. Applied Soft Computing, 46:

170 – 186, 2016. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2016.04.015.

URL http://www.sciencedirect.com/science/article/pii/S1568494616301636.

253

http://www.sciencedirect.com/science/article/pii/S1568494616301636

[52] Yajnaseni Dash, Saroj Kanta Mishra, Sandeep Sahany, and Bijaya Ketan Panigrahi.

Indian summer monsoon rainfall prediction: a comparison of iterative and non-iterative

approaches. Applied Soft Computing, 70:1122–1134, 2018.

[53] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research, 7(Jan):1–30, 2006.

[54] L. Li Deng, Dong Yu, and John Platt. Scalable stacking and learning for building

deep architectures. ICASSP, IEEE International Conference on Acoustics, Speech and

Signal Processing - Proceedings, (February 2015):2133–2136, 2012. ISSN 15206149. doi:

10.1109/ICASSP.2012.6288333.

[55] Li Deng and Dong Yu. Deep convex net: A scalable architecture for speech pattern

classification. Proceedings of the Annual Conference of the International Speech Com-

munication Association, INTERSPEECH, (August):2285–2288, 2011. ISSN 19909772.

[56] Li Deng, Gokhan Tur, Xiaodong He, and Dilek Hakkani-Tur. Use of kernel deep

convex networks and end-to-end learning for spoken language understanding. In 2012

IEEE Workshop on Spoken Language Technology, SLT 2012 - Proceedings, pages 210–

215. IEEE, 12 2012. ISBN 9781467351263. doi: 10.1109/SLT.2012.6424224. URL

http://ieeexplore.ieee.org/document/6424224/.

[57] Thomas G Dietterich. Ensemble methods in machine learning. In International Work-

shop on Multiple Classifier Systems, pages 1–15. Springer, 2000.

[58] Thomas G Dietterich and Ghulum Bakiri. Solving multiclass learning problems via

error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–286,

1994.

[59] Thomas G Dietterich and Ghulum Bakiri. Solving multiclass learning problems via

error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–286,

1994.

[60] Dheeru Dua and Casey Gra↵. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

254

http://ieeexplore.ieee.org/document/6424224/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[61] F. Duan and L. Dai. Recognizing the gradual changes in sEMG characteristics based

on incremental learning of wavelet neural network ensemble. IEEE Transactions on

Industrial Electronics, 64(5):4276–4286, 2017. doi: 10.1109/TIE.2016.2593693.

[62] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we

need hundreds of classifiers to solve real world classification problems? The Journal

of Machine Learning Research, 15(1):3133–3181, 2014.

[63] Elizabeth A Freeman, Gretchen G Moisen, John W Coulston, and Barry T Wilson.

Random forests and stochastic gradient boosting for predicting tree canopy cover:

comparing tuning processes and model performance. Canadian Journal of Forest Re-

search, 46(3):323–339, 2016.

[64] Benôıt Frénay and Michel Verleysen. Using SVMs with randomised feature spaces: an

extreme learning approach. In ESANN, 2010.

[65] Yoav Freund and Robert E Schapire. Experiments with a new boosting algorithm. In

Icml, volume 96, pages 148–156. Citeseer, 1996.

[66] Yoav Freund and Robert E Schapire. Experiments with a new boosting algorithm. In

icml, volume 96, pages 148–156. Citeseer, 1996.

[67] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:

a statistical view of boosting. The Annals of Statistics, 28(2):337–407, 2000.

[68] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer Series in Statistics New York, NY, USA:, 2001.

[69] Jerome H Friedman. On bias, variance, 0/1—loss, and the curse-of-dimensionality.

Data Mining and Knowledge Discovery, 1(1):55–77, 1997.

[70] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.

Annals of Statistics, pages 1189–1232, 2001.

[71] Milton Friedman. The use of ranks to avoid the assumption of normality implicit

in the analysis of variance. Journal of the American Statistical Association, 32(200):

675–701, 1937.

255

[72] Milton Friedman. A comparison of alternative tests of significance for the problem of

m rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

[73] M A Ganaie, M Tanveer, and P N Suganthan. Regularized robust fuzzy least squares

twin support vector machine for class imbalance learning. In 2020 International Joint

Conference on Neural Networks, IJCNN, pages 1–8. IEEE, 2020.

[74] MA Ganaie, Saptarshi Ghosh, Naveen Mendola, M Tanveer, and Sarika Jalan. Iden-

tification of chimera using machine learning. Chaos: An Interdisciplinary Journal of

Nonlinear Science, 30(6):063128, 2020.

[75] MA Ganaie, M Tanveer, and Alzheimer’s Disease Neuroimaging Initiative. Fuzzy least

squares projection twin support vector machines for class imbalance learning. Applied

Soft Computing, 113:107933, 2021.

[76] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

[77] Ramazan Gençay and Min Qi. Pricing and hedging derivative securities with neural

networks: Bayesian regularization, early stopping, and bagging. IEEE Transactions

on Neural Networks, 12(4):726–734, 2001.

[78] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Ma-

chine Learning, 63(1):3–42, 2006.

[79] James S Goerss. Tropical cyclone track forecasts using an ensemble of dynamical

models. Monthly Weather Review, 128(4):1187–1193, 2000.

[80] Sergio González, Salvador Garćıa, Javier Del Ser, Lior Rokach, and Francisco Herrera.

A practical tutorial on bagging and boosting based ensembles for machine learning: Al-

gorithms, software tools, performance study, practical perspectives and opportunities.

Information Fusion, 64:205–237, 2020.

[81] Encarnación González-Rufino, Pilar Carrión, Eva Cernadas, Manuel Fernández-

Delgado, and Rosario Domı́nguez-Petit. Exhaustive comparison of colour texture fea-

tures and classification methods to discriminate cells categories in histological images

of fish ovary. Pattern Recognition, 46(9):2391–2407, 2013.

256

[82] Felix Grassmann, Judith Mengelkamp, Caroline Brandl, Sebastian Harsch, Martina E

Zimmermann, Birgit Linkohr, Annette Peters, Iris M Heid, Christoph Palm, and Bern-

hard HF Weber. A deep learning algorithm for prediction of age-related eye disease

study severity scale for age-related macular degeneration from color fundus photogra-

phy. Ophthalmology, 125(9):1410–1420, 2018.

[83] Gabriela Grmanová, Peter Laurinec, Viera Rozinajová, Anna Bou Ezzeddine,

M. Lucká, P. Lacko, Petra Vrablecová, and P. Návrat. Incremental ensemble learning

for electricity load forecasting. 2016.

[84] Ping Guo. A vest of the pseudoinverse learning algorithm. arXiv preprint

arXiv:1805.07828, 2018.

[85] Ping Guo, CL Philip Chen, and Yinguan Sun. An exact supervised learning for a three-

layer supervised neural network. In Proceedings of 1995 International Conference on

Neural Information Processing, pages 1041–1044, 1995.

[86] Xiaotong Guo, Fulin Liu, Ying Ju, Zhen Wang, and Chunyu Wang. Human pro-

tein subcellular localization with integrated source and multi-label ensemble classifier.

Scientific Reports, 6:28087, 2016.

[87] Kyoungnam Ha, Sungzoon Cho, and Douglas MacLachlan. Response models based on

bagging neural networks. Journal of Interactive Marketing, 19(1):17–30, 2005.

[88] Bohyung Han, Jack Sim, and Hartwig Adam. Branchout: Regularization for online

ensemble tracking with convolutional neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3356–3365, 2017.

[89] Shizhong Han, Zibo Meng, Ahmed Shehab Khan, and Yan Tong. Incremental boost-

ing convolutional neural network for facial action unit recognition. arXiv preprint

arXiv:1707.05395, 2017.

[90] Sunwoo Han and Hyunjoong Kim. On the optimal size of candidate feature set in

random forest. Applied Sciences, 9(5):898, 2019.

[91] Sunwoo Han, Hyunjoong Kim, and Yung-Seop Lee. Double random forest. Machine

Learning, 109(8):1569–1586, 2020.

257

[92] Alexander Hans and Ste↵en Udluft. Ensembles of neural networks for robust rein-

forcement learning. In 2010 Ninth International Conference on Machine Learning and

Applications, pages 401–406. IEEE, 2010.

[93] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[94] Basma Hassan, Samir E Abdelrahman, Reem Bahgat, and Ibrahim Farag. Uests: An

unsupervised ensemble semantic textual similarity method. IEEE Access, 7:85462–

85482, 2019.

[95] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. In Advances

in Neural Information Processing Systems, pages 507–513, 1998.

[96] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 770–778, 2016.

[97] Pablo A Henŕıquez and Gonzalo A Ruz. A non-iterative method for pruning hidden

neurons in neural networks with random weights. Applied Soft Computing, 70:1109–

1121, 2018.

[98] Daniel Hernández-Lobato, Gonzalo Mart́ıNez-MuñOz, and Alberto Suárez. How large

should ensembles of classifiers be? Pattern Recognition, 46(5):1323–1336, 2013.

[99] Shohei Hido, Hisashi Kashima, and Yutaka Takahashi. Roughly balanced bagging

for imbalanced data. Statistical Analysis and Data Mining: The ASA Data Science

Journal, 2(5-6):412–426, 2009.

[100] Geo↵rey Hinton, Oriol Vinyals, and Je↵ Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.

[101] Geo↵rey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507, 2006.

[102] Geo↵rey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for

deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

258

[103] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[104] Torsten Hothorn, Berthold Lausen, Axel Benner, and Martin Radespiel-Tröger. Bag-

ging survival trees. Statistics in Medicine, 23(1):77–91, 2004.

[105] Torsten Hothorn, Friedrich Leisch, Achim Zeileis, and Kurt Hornik. The design and

analysis of benchmark experiments. Journal of Computational and Graphical Statistics,

14(3):675–699, 2005.

[106] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support

vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

[107] Barbara FF Huang and Paul C Boutros. The parameter sensitivity of random forests.

BMC Bioinformatics, 17(1):331, 2016.

[108] Dong Huang, Jianhuang Lai, and Chang-Dong Wang. Ensemble clustering using factor

graph. Pattern Recognition, 50:131–142, 2016.

[109] Dong Huang, Chang-Dong Wang, and Jian-Huang Lai. Locally weighted ensemble

clustering. IEEE Transactions on Cybernetics, 48(5):1460–1473, 2017.

[110] Furong Huang, Jordan T Ash, John Langford, and Robert E Schapire. Learning Deep

ResNet Blocks Sequentially using Boosting Theory. Technical report, 2018. URL

https://arxiv.org/pdf/1706.04964.pdf.

[111] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep

networks with stochastic depth. In European Conference on Computer Vision, pages

646–661. Springer, 2016.

[112] Gao Huang, Yixuan Li, Geo↵ Pleiss, Zhuang Liu, John E Hopcroft, and Kilian QWein-

berger. Snapshot ensembles: Train 1, get M for free. arXiv preprint arXiv:1704.00109,

2017.

[113] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang. Extreme learning

machine for regression and multiclass classification. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 42(2):513–529, 2011.

259

https://arxiv.org/pdf/1706.04964.pdf

[114] Po-Sen Huang, Li Deng, Mark Hasegawa-Johnson, and Xiaodong He. Random fea-

tures for Kernel Deep Convex Network. In 2013 IEEE International Conference

on Acoustics, Speech and Signal Processing, number 2, pages 3143–3147. IEEE, 5

2013. ISBN 978-1-4799-0356-6. doi: 10.1109/ICASSP.2013.6638237. URL http:

//ieeexplore.ieee.org/document/6638237/.

[115] Dirk Husmeier and John G Taylor. Neural networks for predicting conditional proba-

bility densities: Improved training scheme combining EM and RVFL. Neural Networks,

11(1):89–116, 1998.

[116] Brian Hutchinson, Li Deng, and Dong Yu. A deep architecture with bilinear modeling

of hidden representations: Applications to phonetic recognition. In 2012 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4805–

4808. IEEE, 3 2012. ISBN 978-1-4673-0046-9. doi: 10.1109/ICASSP.2012.6288994.

URL http://ieeexplore.ieee.org/document/6288994/.

[117] Brian Hutchinson, L. Li Deng, and Dong Yu. Tensor deep stacking networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 35(8):1944–1957, 2013.

ISSN 01628828. doi: 10.1109/TPAMI.2012.268.

[118] Boris Igelnik and Yoh-Han Pao. Stochastic choice of basis functions in adaptive func-

tion approximation and the functional-link net. IEEE Transactions on Neural Net-

works, 6(6):1320–1329, 1995.

[119] Alexandros Iosifidis, Anastasios Tefas, and Ioannis Pitas. Minimum class variance ex-

treme learning machine for human action recognition. IEEE Transactions on Circuits

and Systems for Video Technology, 23(11):1968–1979, 2013.

[120] Alexandros Iosifidis, Anastasios Tefas, and Ioannis Pitas. Minimum variance extreme

learning machine for human action recognition. In 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 5427–5431. IEEE, 2014.

[121] Gareth M James. Variance and bias for general loss functions. Machine Learning, 51

(2):115–135, 2003.

260

http://ieeexplore.ieee.org/document/6638237/
http://ieeexplore.ieee.org/document/6638237/
http://ieeexplore.ieee.org/document/6288994/

[122] Jayadeva, R. Khemchandani, and S. Chandra. Twin support vector machines for pat-

tern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(5):905–910, 2007.

[123] Hongying Jiang, Youping Deng, Huann-Sheng Chen, Lin Tao, Qiuying Sha, Jun

Chen, Chung-Jui Tsai, and Shuanglin Zhang. Joint analysis of two microarray gene-

expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics,

5(1):81, 2004.

[124] Xudong Jiang. Linear subspace learning-based dimensionality reduction. IEEE Signal

Processing Magazine, 28(2):16–26, 2011.

[125] Thorsten Joachims. Text categorization with support vector machines: Learning with

many relevant features. In European Conference on Machine Learning, pages 137–142.

Springer, 1998.

[126] Cheng Ju, Aurélien Bibaut, and Mark van der Laan. The relative performance of

ensemble methods with deep convolutional neural networks for image classification.

Journal of Applied Statistics, 45(15):2800–2818, 2018.

[127] Cheng Ju, Mary Combs, Samuel D Lendle, Jessica M Franklin, Richard Wyss, Sebas-

tian Schneeweiss, and Mark J van der Laan. Propensity score prediction for electronic

healthcare databases using super learner and high-dimensional propensity score meth-

ods. Journal of Applied Statistics, 46(12):2216–2236, 2019.

[128] Tianyu Kang, Ping Chen, John Quackenbush, and Wei Ding. A novel deep learning

model by stacking conditional restricted boltzmann machine and deep neural network.

In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 1316–1324, 2020.

[129] Rakesh Katuwal and Ponnuthurai N Suganthan. Enhancing multi-class classification

of random forest using random vector functional neural network and oblique decision

surfaces. In 2018 International Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2018.

[130] Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An introduction

to computational learning theory. MIT press, 1994.

261

[131] AS Khwaja, M Naeem, A Anpalagan, A Venetsanopoulos, and B Venkatesh. Improved

short-term load forecasting using bagged neural networks. Electric Power Systems

Research, 125:109–115, 2015.

[132] Zeynep H Kilimci and Selim Akyokus. Deep learning-and word embedding-based het-

erogeneous classifier ensembles for text classification. Complexity, 2018, 2018.

[133] Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, and Sung-Yang Bang.

Support vector machine ensemble with bagging. In International Workshop on Support

Vector Machines, pages 397–408. Springer, 2002.

[134] Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, and Sung Yang Bang.

Constructing support vector machine ensemble. Pattern Recognition, 36(12):2757–

2767, 2003.

[135] Keigo Kimura, Mineichi Kudo, Lu Sun, and Sadamori Koujaku. Fast random k-

labelsets for large-scale multi-label classification. In 2016 23rd International Confer-

ence on Pattern Recognition (ICPR), pages 438–443. IEEE, 2016.

[136] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-

normalizing neural networks. In Proceedings of the 31st International Conference on

Neural Information Processing Systems, pages 972–981, 2017.

[137] EM Kleinberg. Stochastic discrimination. Annals of Mathematics and Artificial intel-

ligence, 1(1):207–239, 1990.

[138] Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Single-layer learning revisited: a

stepwise procedure for building and training a neural network. In Neurocomputing,

pages 41–50. Springer, 1990.

[139] Ron Kohavi, David H Wolpert, et al. Bias plus variance decomposition for zero-one

loss functions. In ICML, volume 96, pages 275–83, 1996.

[140] Eun Bae Kong and Thomas G Dietterich. Error-correcting output coding corrects bias

and variance. In Machine Learning Proceedings 1995, pages 313–321. Elsevier, 1995.

[141] UH-G Krebel. Pairwise classification and support vector machines. Advances in Kernel

Methods: Support Vector Learning, pages 255–268, 1999.

262

[142] Daniel Kreßner. Numerical methods and software for general and structured eigenvalue

problems. 2004. doi: 10.14279/depositonce-983.

[143] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and

active learning. In Advances in Neural Information Processing Systems, pages 231–238,

1995.

[144] M Arun Kumar and Madan Gopal. Least squares twin support vector machines for

pattern classification. Expert Systems with Applications, 36(4):7535–7543, 2009.

[145] Ludmila I Kuncheva and Juan J Rodriguez. Classifier ensembles with a random linear

oracle. IEEE Transactions on Knowledge and Data Engineering, 19(4):500–508, 2007.

[146] Ludmila I Kuncheva, Christopher J Whitaker, Catherine A Shipp, and Robert PW

Duin. Limits on the majority vote accuracy in classifier fusion. Pattern Analysis &

Applications, 6(1):22–31, 2003.

[147] Vitaly Kuznetsov, Mehryar Mohri, and Umar Syed. Multi-class deep boosting. Ad-

vances in Neural Information Processing Systems, 3(January):2501–2509, 2014. ISSN

10495258.

[148] Avisek Lahiri, Abhijit Guha Roy, Debdoot Sheet, and Prabir Kumar Biswas. Deep

neural ensemble for retinal vessel segmentation in fundus images towards achieving

label-free angiography. In 2016 38th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pages 1340–1343. IEEE, 2016.

[149] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv

preprint arXiv:1610.02242, 2016.

[150] Michael Leblanc and Robert Tibshirani. Combining Estimates in Regression and

Classification. Journal of the American Statistical Association, 91(436):1641–1650,

12 1996. ISSN 0162-1459. doi: 10.1080/01621459.1996.10476733. URL http:

//www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476733.

[151] Yuh-Jye Lee and Olvi L Mangasarian. RSVM: Reduced support vector machines. In

Proceedings of the 2001 SIAM International Conference on Data Mining, pages 1–17.

SIAM, 2001.

263

http://www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476733
http://www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476733

[152] Jichang Li, Si Wu, Cheng Liu, Zhiwen Yu, and Hau-San Wong. Semi-supervised deep

coupled ensemble learning with classification landmark exploration. IEEE Transac-

tions on Image Processing, 29:538–550, 2019.

[153] Jun Li, Heyou Chang, and Jian Yang. Sparse deep stacking network for image classi-

fication. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[154] Jun Li, Heyou Chang, Jian Yang, Wei Luo, and Yun Fu. Visual representation and

classification by learning group sparse deep stacking network. IEEE Transactions on

Image Processing, 27(1):464–476, 2017.

[155] Ping Li, Hong Li, and Min Wu. Multi-label ensemble based on variable pairwise

constraint projection. Information Sciences, 222:269 – 281, 2013. ISSN 0020-0255.

doi: https://doi.org/10.1016/j.ins.2012.07.066. URL http://www.sciencedirect.

com/science/article/pii/S0020025512005385. Including Special Section on New

Trends in Ambient Intelligence and Bio-inspired Systems.

[156] Sheng Li, Xugang Lu, Shinsuke Sakai, Masato Mimura, and Tatsuya Kawahara. Semi-

supervised ensemble DNN acoustic model training. In 2017 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pages 5270–5274. IEEE,

2017.

[157] Wei Li, Shuai Ding, Yi Chen, and Shanlin Yang. Heterogeneous ensemble for default

prediction of peer-to-peer lending in china. IEEE Access, 6:54396–54406, 2018.

[158] Weitao Li, Dianhui Wang, and Tianyou Chai. Multisource data ensemble modeling for

clinker free lime content estimate in rotary kiln sintering processes. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 45(2):303–314, 2014.

[159] Xin Li, Yu Yang, Haiyang Pan, Jian Cheng, and Junsheng Cheng. A novel deep stack-

ing least squares support vector machine for rolling bearing fault diagnosis. Computers

in Industry, 110:36–47, 9 2019. ISSN 01663615. doi: 10.1016/j.compind.2019.05.005.

URL https://linkinghub.elsevier.com/retrieve/pii/S0166361519300533.

[160] Yuanqing Li and Cuntai Guan. Joint feature re-extraction and classification using an

iterative semi-supervised support vector machine algorithm. Machine Learning, 71(1):

33–53, 2008.

264

http://www.sciencedirect.com/science/article/pii/S0020025512005385
http://www.sciencedirect.com/science/article/pii/S0020025512005385
https://linkinghub.elsevier.com/retrieve/pii/S0166361519300533

[161] Andy Liaw and Matthew Wiener. Classification and regression by random forest. R

news, 2(3):18–22, 2002.

[162] Yi Lin and Yongho Jeon. Random forests and adaptive nearest neighbors. Journal of

The American Statistical Association, 101(474):578–590, 2006.

[163] Bo Liu, Lin Gu, and Feng Lu. Unsupervised ensemble strategy for retinal vessel seg-

mentation. In International Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 111–119. Springer, 2019.

[164] Hongfu Liu, Tongliang Liu, Junjie Wu, Dacheng Tao, and Yun Fu. Spectral ensemble

clustering. In Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 715–724, 2015.

[165] Hongfu Liu, Ming Shao, Sheng Li, and Yun Fu. Infinite ensemble for image clustering.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 1745–1754, 2016.

[166] Jing Liu, Songzheng Zhao, and Gang Wang. SSEL-ADE: a semi-supervised ensemble

learning framework for extracting adverse drug events from social media. Artificial

Intelligence in Medicine, 84:34–49, 2018.

[167] Kun-Hong Liu and De-Shuang Huang. Cancer classification using rotation forest.

Computers in Biology and Medicine, 38(5):601–610, 2008.

[168] Ping Liu, Shizhong Han, Zibo Meng, and Yan Tong. Facial expression recognition via

a boosted deep belief network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1805–1812, 2014.

[169] Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural Networks,

12(10):1399–1404, 1999.

[170] Cheng-Yaw Low, Jaewoo Park, and Andrew Beng-Jin Teoh. Stacking-based deep

neural network: Deep analytic network for pattern classification. IEEE Transactions

on Cybernetics, 2019.

265

[171] Justin Ma, Lawrence K Saul, Stefan Savage, and Geo↵rey M Voelker. Identifying

suspicious urls: an application of large-scale online learning. In Proceedings of the

26th Annual International Conference on Machine Learning, pages 681–688, 2009.

[172] Olvi L Mangasarian and Edward W Wild. Multisurface proximal support vector ma-

chine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(1):69–74, 2005.

[173] Naresh Manwani and PS Sastry. Geometric decision tree. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 42(1):181–192, 2011.

[174] Jianchang Mao. A case study on bagging, boosting and basic ensembles of neural

networks for OCR. In 1998 IEEE International Joint Conference on Neural Net-

works Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.

98CH36227), volume 3, pages 1828–1833. IEEE, 1998.

[175] Dragos D Margineantu and Thomas G Dietterich. Pruning adaptive boosting. In

ICML, volume 97, pages 211–218. Citeseer, 1997.

[176] Gonzalo Mart́ınez-Muñoz and Alberto Suárez. Out-of-bag estimation of the optimal

sample size in bagging. Pattern Recognition, 43(1):143–152, 2010.

[177] Prem Melville and Raymond J Mooney. Constructing diverse classifier ensembles using

artificial training examples. In IJCAI, volume 3, pages 505–510, 2003.

[178] Prem Melville and Raymond J Mooney. Diverse ensembles for active learning. In Pro-

ceedings of the Twenty-First International Conference on Machine Learning, page 74,

2004.

[179] Bjoern H Menze, B Michael Kelm, Ralf Masuch, Uwe Himmelreich, Peter Bachert,

Wolfgang Petrich, and Fred A Hamprecht. A comparison of random forest and its

gini importance with standard chemometric methods for the feature selection and

classification of spectral data. BMC Bioinformatics, 10(1):213, 2009.

[180] Diego PP Mesquita, Joao Paulo P Gomes, Leonardo R Rodrigues, Saulo AF Oliveira,

and Roberto KH Galvão. Building selective ensembles of randomization based neural

266

networks with the successive projections algorithm. Applied Soft Computing, 70:1135–

1145, 2018.

[181] Leandro L Minku, Allan P White, and Xin Yao. The impact of diversity on online

ensemble learning in the presence of concept drift. IEEE Transactions on Knowledge

and Data Engineering, 22(5):730–742, 2009.

[182] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.

arXiv preprint arXiv:1312.5602, 2013.

[183] Mohammad Moghimi, Serge J Belongie, Mohammad J Saberian, Jian Yang, Nuno

Vasconcelos, and Li-Jia Li. Boosted convolutional neural networks. In BMVC, pages

24–1, 2016.

[184] Alan Mosca and George D Magoulas. Deep incremental boosting. arXiv preprint

arXiv:1708.03704, 2017.

[185] Jose M Moyano, Eva L Gibaja, Krzysztof J Cios, and Sebastián Ventura. An evolu-

tionary approach to build ensembles of multi-label classifiers. Information Fusion, 50:

168–180, 2019.

[186] M. D. Muhlbaier, A. Topalis, and R. Polikar. Learn++ .NC: combining ensemble of

classifiers with dynamically weighted consult-and-vote for e�cient incremental learning

of new classes. IEEE Transactions on Neural Networks, 20(1):152–168, 2009. doi:

10.1109/TNN.2008.2008326.

[187] Michael D. Muhlbaier and Robi Polikar. An ensemble approach for incremental learn-

ing in nonstationary environments. In Michal Haindl, Josef Kittler, and Fabio Roli,

editors, Multiple Classifier Systems, pages 490–500, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg. ISBN 978-3-540-72523-7.

[188] Kolluru Venkata Sreerama Murthy and Steven L Salzberg. On growing better decision

trees from data. PhD thesis, Citeseer, 1995.

267

[189] Sreerama K Murthy, Simon Kasif, Steven Salzberg, and Richard Beigel. Oc1: A

randomized algorithm for building oblique decision trees. In Proceedings of AAAI,

volume 93, pages 322–327. Citeseer, 1993.

[190] Jalal A Nasiri, Nasrollah Moghadam Charkari, and Kourosh Mozafari. Energy-based

model of least squares twin support vector machines for human action recognition.

Signal Processing, 104:248–257, 2014.

[191] Jalal A Nasiri, Nasrollah Moghadam Charkari, and Saeed Jalili. Least squares twin

multi-class classification support vector machine. Pattern Recognition, 48(3):984–992,

2015.

[192] Peter Bjorn Nemenyi. Distribution-free multiple comparisons. Princeton University,

1963.

[193] Matthew Olson, Abraham J Wyner, and Richard Berk. Modern neural networks

generalize on small data sets. In Proceedings of the 32nd International Conference on

Neural Information Processing Systems, pages 3623–3632, 2018.

[194] David Opitz and Richard Maclin. Popular ensemble methods: An empirical study.

Journal of Artificial Intelligence Research, 11:169–198, 1999.

[195] Michael Opitz, Georg Waltner, Horst Possegger, and Horst Bischof. Bier-boosting in-

dependent embeddings robustly. In Proceedings of the IEEE International Conference

on Computer Vision, pages 5189–5198, 2017.

[196] Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas. How

many trees in a random forest? In International Workshop on Machine Learning and

Data Mining in Pattern Recognition, pages 154–168. Springer, 2012.

[197] Edgar Osuna, Robert Freund, and Federico Girosit. Training support vector machines:

an application to face detection. In Proceedings of IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 130–136. IEEE, 1997.

[198] Nikunj C Oza. Online bagging and boosting. In 2005 IEEE International Conference

on Systems, Man and Cybernetics, volume 3, pages 2340–2345. Ieee, 2005.

268

[199] Akin Ozcift. SVM feature selection based rotation forest ensemble classifiers to improve

computer-aided diagnosis of Parkinson disease. Journal of Medical Systems, 36(4):

2141–2147, 2012.

[200] Hamid Palangi, Li Deng, and Rabab K. Ward. Recurrent Deep-Stacking Networks for

sequence classification. 2014 IEEE China Summit and International Conference on

Signal and Information Processing, IEEE ChinaSIP 2014 - Proceedings, (Xi):510–514,

2014. doi: 10.1109/ChinaSIP.2014.6889295.

[201] Y-H Pao and Yoshiyasu Takefuji. Functional-link net computing: theory, system

architecture, and functionalities. Computer, 25(5):76–79, 1992.

[202] Yoh-Han Pao, Stephen M Phillips, and Dejan J Sobajic. Neural-net computing and

the intelligent control of systems. International Journal of Control, 56(2):263–289,

1992.

[203] Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic. Learning and generalization

characteristics of the random vector functional-link net. Neurocomputing, 6(2):163–

180, 1994.

[204] D. Parikh and R. Polikar. An ensemble-based incremental learning approach to data

fusion. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

37(2):437–450, 2007. doi: 10.1109/TSMCB.2006.883873.

[205] Gwang Hoon Park and Yoh Han Pao. Unconstrained word-based approach for o↵-line

script recognition using density-based random-vector functional-link net. Neurocom-

puting, 31(1-4):45–65, 2000.

[206] Gwang Hoon Park, Yoon Jin Lee, and Steven R LeClair. Intelligent rate control for

MPEG-4 coders. Engineering Applications of Artificial Intelligence, 13(5):565–575,

2000.

[207] Ioannis Partalas, Grigorios Tsoumakas, and Ioannis Vlahavas. Pruning an ensemble

of classifiers via reinforcement learning. Neurocomputing, 72(7-9):1900–1909, 2009.

[208] Domingos Pedro. A unified bias-variance decomposition and its applications. In 17th

International Conference on Machine Learning, pages 231–238, 2000.

269

[209] Witold Pedrycz and Zenon A Sosnowski. Genetically optimized fuzzy decision trees.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(3):

633–641, 2005.

[210] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 701–710, 2014.

[211] Gianvito Pio, Donato Malerba, Domenica D’Elia, and Michelangelo Ceci. Integrating

microRNA target predictions for the discovery of gene regulatory networks: a semi-

supervised ensemble learning approach. BMC Bioinformatics, 15(S1):S4, 2014.

[212] Vincent Pisetta. New Insights into Decision Trees Ensembles. PhD thesis, Lyon 2,

2012.

[213] John Platt, Nello Cristianini, and John Shawe-Taylor. Large margin DAGs for multi-

class classification. Advances in Neural Information Processing Systems, 12:547–553,

1999.

[214] John C Platt, Nello Cristianini, and John Shawe-Taylor. Large margin DAGs for

multiclass classification. In Advances in Neural Information Processing Systems, pages

547–553, 2000.

[215] R. Polikar, L. Upda, S. S. Upda, and V. Honavar. Learn++: an incremental learning

algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 31(4):497–508, 2001. doi: 10.1109/

5326.983933.

[216] Philipp Probst and Anne-Laure Boulesteix. To tune or not to tune the number of trees

in random forest. The Journal of Machine Learning Research, 18(1):6673–6690, 2017.

[217] Xueheng Qiu, Ponnuthurai Nagaratnam Suganthan, and Gehan A.J. Amaratunga.

Ensemble incremental learning random vector functional link network for short-term

electric load forecasting. Knowledge-Based Systems, 145:182 – 196, 2018. ISSN

0950-7051. doi: https://doi.org/10.1016/j.knosys.2018.01.015. URL http://www.

sciencedirect.com/science/article/pii/S0950705118300236.

270

http://www.sciencedirect.com/science/article/pii/S0950705118300236
http://www.sciencedirect.com/science/article/pii/S0950705118300236

[218] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In

NIPS, volume 3, page 5. Citeseer, 2007.

[219] Jesse Read, Bernhard Pfahringer, Geo↵ Holmes, and Eibe Frank. Classifier chains for

multi-label classification. Machine Learning, 85(3):333, 2011.

[220] Ye Ren, Le Zhang, and P N Suganthan. Ensemble Classification and Regression-Recent

Developments, Applications and Future Directions. (February):41–53, 2016.

[221] Ye Ren, Le Zhang, and Ponnuthurai N Suganthan. Ensemble classification and

regression-recent developments, applications and future directions. IEEE Computa-

tional Intelligence Magazine, 11(1):41–53, 2016.

[222] B Richhariya, M Tanveer, AH Rashid, and Alzheimer’s Disease Neuroimaging Initia-

tive. Diagnosis of alzheimer’s disease using universum support vector machine based

recursive feature elimination (USVM-RFE). Biomedical Signal Processing and Control,

59:101903, 2020.

[223] Bharat Richhariya and M. Tanveer. EEG signal classification using universum support

vector machine. Expert Systems with Applications, 106:169–182, 2018.

[224] Juan José Rodriguez, Ludmila I Kuncheva, and Carlos J Alonso. Rotation forest: A

new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(10):1619–1630, 2006.

[225] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39,

2010.

[226] Lior Rokach and Oded Maimon. Top-down induction of decision trees classifiers-a

survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 35(4):476–487, 2005.

[227] Louis B Rosenberg. Human swarms, a real-time method for collective intelligence. In

ECAL 2015: the 13th European Conference on Artificial Life, pages 658–659. MIT

Press, 2015.

271

[228] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist

systems, volume 37. University of Cambridge, Department of Engineering Cambridge,

UK, 1994.

[229] Robert E Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee, et al. Boosting the

margin: A new explanation for the e↵ectiveness of voting methods. The Annals of

Statistics, 26(5):1651–1686, 1998.

[230] Leander Schietgat, Celine Vens, Jan Struyf, Hendrik Blockeel, Dragi Kocev, and Sašo

Džeroski. Predicting gene function using hierarchical multi-label decision tree ensem-

bles. BMC Bioinformatics, 11(1):2, 2010.

[231] Wouter F Schmidt, Martin A Kraaijveld, Robert PW Duin, et al. Feed forward neural

networks with random weights. In International Conference on Pattern Recognition,

pages 1–1. IEEE Computer Society Press, 1992.

[232] Uri Shaham, Xiuyuan Cheng, Omer Dror, Ariel Ja↵e, Boaz Nadler, Joseph Chang,

and Yuval Kluger. A deep learning approach to unsupervised ensemble learning. In

International Conference on Machine Learning, pages 30–39, 2016.

[233] Yuan-Hai Shao, Chun-Hua Zhang, Xiao-Bo Wang, and Nai-Yang Deng. Improvements

on twin support vector machines. IEEE Transactions on Neural Networks, 22(6):962–

968, 2011.

[234] Aman Sharma and Rinkle Rani. BE-DTI’: ensemble framework for drug target interac-

tion prediction using dimensionality reduction and active learning. Computer Methods

and Programs in Biomedicine, 165:151–162, 2018.

[235] Rahul Sharma, Tripti Goel, M Tanveer, Shubham Dwivedi, and R Murugan. FAF-

DRVFL: Fuzzy activation function based deep random vector functional links network

for early diagnosis of Alzheimer disease. Applied Soft Computing, page 107371, 2021.

[236] Ira Shavitt and Eran Segal. Regularization learning networks: deep learning for tabular

datasets. arXiv preprint arXiv:1805.06440, 2018.

272

[237] Kai-Quan Shen, Chong-Jin Ong, Xiao-Ping Li, Zheng Hui, and Einar PV Wilder-

Smith. A feature selection method for multilevel mental fatigue EEG classification.

IEEE Transactions on Biomedical Engineering, 54(7):1231–1237, 2007.

[238] Chuan Shi, Xiangnan Kong, Philip S. Yu, and Bai Wang. Multi-label ensemble learn-

ing. In Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazir-

giannis, editors, Machine Learning and Knowledge Discovery in Databases, pages 223–

239, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[239] Qiushi Shi, Rakesh Katuwal, P.N. Suganthan, and M. Tanveer. Random vec-

tor functional link neural network based ensemble deep learning. Pattern Recog-

nition, page 107978, 2021. ISSN 0031-3203. doi: https://doi.org/10.1016/

j.patcog.2021.107978. URL https://www.sciencedirect.com/science/article/

pii/S0031320321001655.

[240] Zenglin Shi, Le Zhang, Yun Liu, Xiaofeng Cao, Yangdong Ye, Ming-Ming Cheng, and

Guoyan Zheng. Crowd counting with deep negative correlation learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5382–

5390, 2018.

[241] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[242] Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout: Learning an ensemble

of deep architectures. Technical report, 2016. URL http://papers.nips.cc/paper/

6205-swapout-learning-an-ensemble-of-deep-architectures.pdf.

[243] Chapman Siu. Residual Networks Behave Like Boosting Algorithms *. Technical

report.

[244] Leslie N Smith, Emily M Hand, and Timothy Doster. Gradual dropin of layers to

train very deep neural networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4763–4771, 2016.

[245] Nitish Srivastava, Geo↵rey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhut-

dinov, Barbara Mele, and Guido Altarelli. Dropout: a simple way to prevent neural

273

https://www.sciencedirect.com/science/article/pii/S0031320321001655
https://www.sciencedirect.com/science/article/pii/S0031320321001655
http://papers.nips.cc/paper/6205-swapout-learning-an-ensemble-of-deep-architectures.pdf
http://papers.nips.cc/paper/6205-swapout-learning-an-ensemble-of-deep-architectures.pdf

networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–

1958, 2014. ISSN 03702693. doi: 10.1016/0370-2693(93)90272-J.

[246] Gregor Stiglic and Peter Kokol. E↵ectiveness of rotation forest in meta-learning based

gene expression classification. In Computer-Based Medical Systems, 2007. CBMS’07.

Twentieth IEEE International Symposium on, pages 243–250. IEEE, 2007.

[247] José L Subirats, José M Jerez, Iván Gómez, and Leonardo Franco. Multiclass pattern

recognition extension for the new C-Mantec constructive neural network algorithm.

Cognitive Computation, 2(4):285–290, 2010.

[248] Ponnuthurai Nagaratnam Suganthan. On non-iterative learning algorithms with

closed-form solution. Applied Soft Computing, 70:1078–1082, 2018.

[249] Chuang Sun, Meng Ma, Zhibin Zhao, and Xuefeng Chen. Sparse deep stacking network

for fault diagnosis of motor. IEEE Transactions on Industrial Informatics, 14(7):3261–

3270, 2018.

[250] James Surowiecki. The wisdom of crowds. Anchor, 2005.

[251] Richard S Sutton. Generalization in reinforcement learning: Successful examples using

sparse coarse coding. In Advances in Neural Information Processing Systems, pages

1038–1044, 1996.

[252] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT Press, 2018.

[253] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1–9, 2015.

[254] Siham Tabik, Ricardo F Alvear-Sandoval, Maŕıa M Ruiz, José-Luis Sancho-Gómez,

Ańıbal R Figueiras-Vidal, and Francisco Herrera. MNIST-NET10: a heterogeneous

deep networks fusion based on the degree of certainty to reach 0.1% error rate. ensem-

bles overview and proposal. Information Fusion, 2020.

274

[255] Jiexiong Tang, Chenwei Deng, and Guang-Bin Huang. Extreme learning machine for

multilayer perceptron. IEEE Transactions on Neural Networks and Learning Systems,

27(4):809–821, 2015.

[256] Kai-Fu Tang, Hao-Cheng Kao, Chun-Nan Chou, and Edward Y Chang. Inquire and

diagnose: Neural symptom checking ensemble using deep reinforcement learning. In

Proceedings of NIPS Workshop on Deep Reinforcement Learning, 2016.

[257] Ke Tang, Minlong Lin, Fernanda L. Minku, and Xin Yao. Selective negative correla-

tion learning approach to incremental learning. Neurocomputing, 72(13):2796 – 2805,

2009. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2008.09.022. URL

http://www.sciencedirect.com/science/article/pii/S0925231209001192. Hy-

brid Learning Machines (HAIS 2007) / Recent Developments in Natural Computation

(ICNC 2007).

[258] Ling Tang, Yao Wu, and Lean Yu. A non-iterative decomposition-ensemble learning

paradigm using RVFL network for crude oil price forecasting. Applied Soft Computing,

70:1097–1108, 2018.

[259] M. Tanveer. Robust and sparse linear programming twin support vector machines.

Cognitive Computation, 7(1):137–149, 2015.

[260] M. Tanveer, Mohammad Asif Khan, and Shen-Shyang Ho. Robust energy-based least

squares twin support vector machines. Applied Intelligence, 45(1):174–186, 2016.

[261] M Tanveer, C Gautam, and Ponnuthurai N Suganthan. Comprehensive evaluation of

twin SVM based classifiers on UCI datasets. Applied Soft Computing, page 105617,

2019.

[262] Dacheng Tao, Xiaoou Tang, Xuelong Li, and Xindong Wu. Asymmetric bagging and

random subspace for support vector machines-based relevance feedback in image re-

trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7):1088–

1099, 2006.

[263] Hubert AB Te Braake and Gerrit Van Straten. Random activation weight neural

net (RAWN) for fast non-iterative training. Engineering Applications of Artificial

Intelligence, 8(1):71–80, 1995.

275

http://www.sciencedirect.com/science/article/pii/S0925231209001192

[264] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.

International Journal of Data Warehousing and Mining (IJDWM), 3(3):1–13, 2007.

[265] Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An ensemble method

for multilabel classification. In European Conference on Machine Learning, pages 406–

417. Springer, 2007.

[266] Giorgio Valentini and Francesco Masulli. Ensembles of learning machines. In Italian

Workshop on Neural Nets, pages 3–20. Springer, 2002.

[267] Mark J Van der Laan, Eric C Polley, and Alan E Hubbard. Super learner. Statistical

Applications in Genetics and Molecular Biology, 6(1), 2007.

[268] Vladimir N Vapnik. An overview of statistical learning theory. IEEE Transactions on

Neural Networks, 10(5):988–999, 1999.

[269] Sandro Vega-Pons and José Ruiz-Shulcloper. A survey of clustering ensemble algo-

rithms. International Journal of Pattern Recognition and Artificial Intelligence, 25

(03):337–372, 2011.

[270] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like

ensembles of relatively shallow networks. In Advances in Neural Information Processing

Systems, pages 550–558, 2016.

[271] Najdan Vuković, Milica Petrović, and Zoran Miljković. A comprehensive experimental

evaluation of orthogonal polynomial expanded random vector functional link neural

networks for regression. Applied Soft Computing, 70:1083–1096, 2018.

[272] Elad Walach and Lior Wolf. Learning to count with cnn boosting. In European

Conference on Computer Vision, pages 660–676. Springer, 2016.

[273] Georg Waltner, Michael Opitz, Horst Possegger, and Horst Bischof. Hibster: Hierarchi-

cal boosted deep metric learning for image retrieval. In 2019 IEEE Winter Conference

on Applications of Computer Vision (WACV), pages 599–608. IEEE, 2019.

[274] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regular-

ization of Neural Networks using DropConnect. In Sanjoy Dasgupta and David

276

McAllester, editors, Proceedings of the 30th International Conference on Machine

Learning, volume 28 of Proceedings of Machine Learning Research, pages 1058–1066,

Atlanta, Georgia, USA, 2013. PMLR. doi: 10.1109/TPAMI.2017.2703082. URL

http://proceedings.mlr.press/v28/wan13.html.

[275] Bin Wang, Bing Xue, and Mengjie Zhang. Particle swarm optimisation for evolving

deep neural networks for image classification by evolving and stacking transferable

blocks. In 2020 IEEE Congress on Evolutionary Computation (CEC), pages 1–8.

IEEE, 2020.

[276] Guanjin Wang, Guangquan Zhang, Kup Sze Choi, and Jie Lu. Deep Additive Least

Squares Support Vector Machines for Classification with Model Transfer. IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems, 49(7):1527–1540, 2019. ISSN

21682232. doi: 10.1109/TSMC.2017.2759090.

[277] Jingyuan Wang, Kai Feng, and Junjie Wu. SVM-Based Deep Stacking Networks.

Proceedings of the AAAI Conference on Artificial Intelligence, 33:5273–5280, 2019.

ISSN 2159-5399. doi: 10.1609/aaai.v33i01.33015273.

[278] Ran Wang, Sam Kwong, Xu Wang, and Yuheng Jia. Active k-labelsets ensemble for

multi-label classification. Pattern Recognition, 109:107583, 2021.

[279] Xiao Wang, Daisuke Kihara, Jiebo Luo, and Guo-Jun Qi. Enaet: Self-trained en-

semble autoencoding transformations for semi-supervised learning. arXiv preprint

arXiv:1911.09265, 2019.

[280] Zhihui Wang, Sook Yoon, Shan Juan Xie, Yu Lu, and Dong Sun Park. Random vector

functional-link net based pedestrian detection using multi-feature combination. In

2013 6th International Congress on Image and Signal Processing (CISP), volume 2,

pages 773–777. IEEE, 2013.

[281] Zhihui Wang, Sook Yoon, Shan Juan Xie, Yu Lu, and Dong Sun Park. A high accu-

racy pedestrian detection system combining a cascade AdaBoost detector and random

vector functional-link net. The Scientific World Journal, 2014, 2014.

[282] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):

279–292, 1992.

277

http://proceedings.mlr.press/v28/wan13.html

[283] Thomas Welchowski and Matthias Schmid. A framework for parameter estimation and

model selection in kernel deep stacking networks. Artificial Intelligence in Medicine,

70:31–40, 6 2016. ISSN 09333657. doi: 10.1016/j.artmed.2016.04.002. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0933365715300713.

[284] Halbert White. Approximate nonlinear forecasting methods. Handbook of Economic

Forecasting, 1:459–512, 2006.

[285] Bernard Widrow, Aaron Greenblatt, Youngsik Kim, and Dookun Park. The no-prop

algorithm: A new learning algorithm for multilayer neural networks. Neural Networks,

37:182–188, 2013.

[286] Marco A Wiering and Hado Van Hasselt. Two novel on-policy reinforcement learning

algorithms based on td (�)-methods. In 2007 IEEE International Symposium on Ap-

proximate Dynamic Programming and Reinforcement Learning, pages 280–287. IEEE,

2007.

[287] Marco A Wiering and Hado Van Hasselt. Ensemble algorithms in reinforcement learn-

ing. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38

(4):930–936, 2008.

[288] David H Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

[289] David H Wolpert. On bias plus variance. Neural Computation, 9(6):1211–1243, 1997.

[290] Jun-Feng Xia, Kyungsook Han, and De-Shuang Huang. Sequence-based prediction of

protein-protein interactions by means of rotation forest and autocorrelation descriptor.

Protein and Peptide Letters, 17(1):137–145, 2010.

[291] Yuelong Xia, Ke Chen, and Yun Yang. Multi-label classification with weighted classifier

selection and stacked ensemble. Information Sciences, 557:421–442, 2021.

[292] Jingjing Xie, Bing Xu, and Zhang Chuang. Horizontal and vertical ensemble with

deep representation for classification. arXiv preprint arXiv:1306.2759, 2013.

[293] Jie Xu, Lixing Chen, and Shaolei Ren. Online learning for o✏oading and autoscal-

ing in energy harvesting mobile edge computing. IEEE Transactions on Cognitive

Communications and Networking, 3(3):361–373, 2017.

278

https://linkinghub.elsevier.com/retrieve/pii/S0933365715300713
https://linkinghub.elsevier.com/retrieve/pii/S0933365715300713

[294] Yitian Xu, Rui Guo, and Laisheng Wang. A twin multi-class classification support

vector machine. Cognitive Computation, 5(4):580–588, 2013.

[295] Jie Xue, Zhuo Wang, Deting Kong, Yuan Wang, Xiyu Liu, Wen Fan, Songtao Yuan,

Sijie Niu, and Dengwang Li. Deep ensemble neural-like p systems for segmentation of

central serous chorioretinopathy lesion. Information Fusion, 65:84–94, 2021.

[296] Bin Yang, Junjie Yan, Zhen Lei, and Stan Z Li. Convolutional channel features. In

Proceedings of the IEEE International Conference on Computer Vision, pages 82–90,

2015.

[297] Hongyang Yang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. Deep reinforcement

learning for automated stock trading: An ensemble strategy. Available at SSRN, 2020.

[298] Guoxian Yu, Carlotta Domeniconi, Huzefa Rangwala, Guoji Zhang, and Zhiwen Yu.

Transductive multi-label ensemble classification for protein function prediction. In Pro-

ceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 1077–1085, 2012.

[299] Chun-Xia Zhang and Jiang-She Zhang. RotBoost: a technique for combining rotation

forest and AdaBoost. Pattern Recognition Letters, 29(10):1524–1536, 2008.

[300] H. Zhang, W. Liu, J. Shan, and Q. Liu. Online active learning paired ensemble for

concept drift and class imbalance. IEEE Access, 6:73815–73828, 2018. doi: 10.1109/

ACCESS.2018.2882872.

[301] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Koniusz. Deep stacked hier-

archical multi-patch network for image deblurring. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 5978–5986, 2019.

[302] Junhao Zhang, Wei Zhang, Ran Song, Lin Ma, and Yibin Li. Grasp for stacking via

deep reinforcement learning. pages 2543–2549, 2020.

[303] Le Zhang and Ponnuthurai N Suganthan. Oblique decision tree ensemble via multi-

surface proximal support vector machine. IEEE Transactions on Cybernetics, 45(10):

2165–2176, 2014.

279

[304] Le Zhang and Ponnuthurai N Suganthan. A comprehensive evaluation of random

vector functional link networks. Information Sciences, 367:1094–1105, 2016.

[305] Le Zhang and Ponnuthurai Nagaratnam Suganthan. Random forests with ensemble

of feature spaces. Pattern Recognition, 47(10):3429–3437, 2014.

[306] Le Zhang and Ponnuthurai Nagaratnam Suganthan. Benchmarking ensemble classi-

fiers with novel co-trained kernel ridge regression and random vector functional link

ensembles [research frontier]. IEEE Computational Intelligence Magazine, 12(4):61–72,

2017.

[307] Le Zhang, Zenglin Shi, Ming-Ming Cheng, Yun Liu, Jia-Wang Bian, Joey Tianyi Zhou,

Guoyan Zheng, and Zeng Zeng. Nonlinear Regression via Deep Negative Correlation

Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP(c):

1–1, 2019. ISSN 0162-8828. doi: 10.1109/tpami.2019.2943860.

[308] Li Zhang, Wei-Da Zhou, Tian-Tian Su, and Li-Cheng Jiao. Decision tree support

vector machine. International Journal on Artificial Intelligence Tools, 16(01):1–15,

2007.

[309] Wen Zhang, Feng Liu, Longqiang Luo, and Jingxia Zhang. Predicting drug side e↵ects

by multi-label learning and ensemble learning. BMC Bioinformatics, 16(1):365, 2015.

[310] Wentao Zhang, Jiawei Jiang, Yingxia Shao, and Bin Cui. Snapshot boosting: a fast

ensemble framework for deep neural networks. Science China Information Sciences,

63(1):112102, 2020.

[311] Yongshan Zhang, Jia Wu, Zhihua Cai, Bo Du, and S Yu Philip. An unsupervised

parameter learning model for RVFL neural network. Neural Networks, 112:85–97,

2019.

[312] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge

regression. In Conference on Learning Theory, pages 592–617, 2013.

[313] Qiang Li Zhao, Yan Huang Jiang, and Ming Xu. Incremental learning by heterogeneous

bagging ensemble. In Longbing Cao, Jiang Zhong, and Yong Feng, editors, Advanced

280

Data Mining and Applications, pages 1–12, Berlin, Heidelberg, 2010. Springer Berlin

Heidelberg. ISBN 978-3-642-17313-4.

[314] Li Zheng, Tao Li, and Chris Ding. Hierarchical ensemble clustering. In 2010 IEEE

International Conference on Data Mining, pages 1199–1204. IEEE, 2010.

[315] Hongming Zhou, Guang Bin Huang, Zhiping Lin, Han Wang, and Yeng Chai Soh.

Stacked extreme learning machines. IEEE Transactions on Cybernetics, 45(9):2013–

2025, 9 2015. ISSN 21682267. doi: 10.1109/TCYB.2014.2363492. URL http://

ieeexplore.ieee.org/document/6937189/.

[316] Zhi-Hua Zhou. When semi-supervised learning meets ensemble learning. In Interna-

tional Workshop on Multiple Classifier Systems, pages 529–538. Springer, 2009.

[317] Zhi-Hua Zhou and Ji Feng. Deep forest. arXiv preprint arXiv:1702.08835, 2017.

[318] Zhi-Hua Zhou and Wei Tang. Clusterer ensemble. Knowledge-Based Systems, 19(1):

77–83, 2006.

[319] Zhi-Hua Zhou, Fabio Roli, Josef Kittler, et al. Multiple classifier systems. In Proc.

2013 11th Int. Workshop Mult. Classifier Syst.(MCS), page 24. Springer, 2013.

[320] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, Uni-

versity of Wisconsin-Madison Department of Computer Sciences, 2005.

281

http://ieeexplore.ieee.org/document/6937189/
http://ieeexplore.ieee.org/document/6937189/

	 Abstract
	 List of Publications
	 List of Figures
	 List of Tables
	 List of Abbreviations and Acronyms
	Introduction
	Background
	Motivation
	Objectives
	Contributions of the thesis
	Organization of the thesis

	Literature survey and research methodology
	Ensemble learning
	Bias-variance decomposition
	Statistical, computational and representational aspects
	Diversity

	Ensemble strategies
	Bagging
	Boosting
	Stacking
	Negative correlation based ensembles
	Explicit/Implicit ensembles
	Homogeneous/Heterogeneous ensembles
	Decision fusion strategies
	Unsupervised learning
	Semi-supervised and active learning
	Reinforcement learning
	Online/Incremental, multi-label learning

	Decision trees and their ensembles
	Random forest
	Rotation forest
	Double random forest
	Rotation random forest
	Oblique decision tree ensemble via multisurface proximal support vector machine

	Artificial neural networks
	Random vector functional link network
	Extreme learning machine
	Minimum class variance extreme learning machine
	Autoencoder
	Sparse pre-trained random vector functional link network

	Support vector machines
	Twin bounded support vector machine
	Least squares twin support vector machines
	Robust energy based least squares twin support vector machines
	Twin k-class support vector classification
	Least squares twin k-class support vector classification

	Statistical tests
	Friedman test
	Win-tie-loss: sign test

	Oblique decision tree ensemble via twin bounded SVM
	Oblique decision tree ensemble via twin bounded SVM
	Experiments
	Experimental setup
	Computational complexity analysis
	Influence of the parameters c1,c2,c3 and c4
	Does TBSVM improve the decision tree ensemble?
	Comparison among the proposed ensemble models and MPSVM based ensemble models
	Win-tie-loss: sign test
	On the effect of minleaf

	Summary

	Oblique and rotation double random forest
	Handling multiclass problems
	Proposed oblique and rotation double random forest
	Oblique double random forest with MPSVM
	Double random forest with PCA/LDA

	Comparison of the proposed oblique and rotation based double random forest models with the existing baseline models
	Experiments
	Experimental setup
	Statistical analysis
	Win-tie-loss: sign test
	Effect of ``mtry" parameter
	Effect of ``minleaf" parameter
	Average number of nodes

	Diversity error diagrams
	Analysis of computational complexity
	Bias variance analysis
	Summary

	Minimum variance embedded RVFL and co-trained RVFL network
	Minimum variance embedded RVFL network
	Proposed formulation
	Experiments
	Analysis of the number of hidden neurons

	Co-trained RVFL network
	Proposed formulation
	Experiments
	Computational complexity analysis
	Friedman test
	Pairwise win-tie-loss: sign test
	Parameter sensitivity

	Summary

	Ensemble deep random vector functional link network using privileged information
	Proposed deep RVFL+ and its ensemble
	Deep random vector functional link network using privileged information
	Ensemble deep RVFL network using privileged information

	Experiments
	Experimental setup
	Evaluation on ADNI dataset
	Results and discussion

	Summary

	LSTSVM classifier with enhanced features from pre-trained functional link network
	LSTSVM classifier with enhanced features from pre-trained functional link network
	Experiments
	Experimental setup
	Computational complexity analysis
	Significant differences among classifiers with Nemenyi test
	Win-tie-loss: sign test
	Comparative analysis of number of enhanced patterns on the RVFL network and the proposed ELSTSVM model

	Summary

	Ensemble of classification models with weighted functional link network
	Proposed random weighted models
	RV-TBSVM
	RV-LSTSVM
	RV-RELSTSVM
	RV-TWKSVC
	RV-LSTWKSVC

	Proposed twin weighted models
	Weight generation phase
	Training of models
	Output value prediction

	Experiments
	Experimental setup
	Computational complexity analysis
	Performance analysis
	Statistical analysis based on the Friedman test
	Win-tie-loss: sign test
	Analyzing the effect of enhanced patterns

	Summary

	Conclusions and future work
	Conclusions
	Future directions

	Bibliography
	Untitled

