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Abstract 

HARDWARE NEURAL ACCELERATOR FOR IoT BASED 

APPLICATIONS 

          In recent years, on-chip Neural Network Accelerators have grown in 

popularity as one of the best algorithms for numerous key detection and 

classification problems in image, speech, and a variety of other never-ending 

applications in intelligent system design. While their on-chip presence is 

desirable, their high computational demands continue to be a roadblock in the 

development of the next generation of System on Chips. Although hardware 

accelerators for Convolutional Neural Networks are frequently simple designs, a 

traditional design approach has not been very successful, as they often require a 

lot of silicon area and power. Fixed point processing, according to researchers, 

can result in a large reduction in resource use while having a negligible influence 

on accuracy. Many issues that are challenging for other computational models, 

such as image processing, pattern recognition, prediction, and classification, are 

well-suited to a Convolutional Neural Network. Hardware designs can feature a 

more parallel structure of CNNs to improve performance or lower implementation 

costs, especially for applications that require high parallel computation. However, 

hardware platforms have a lot of unique disadvantages, including limits with high 

data precision, which is related to the hardware cost of the necessary computation, 

and the hardware implementation's lack of reconfigurability compared to 

software. Due to resource-intensive parts such as multipliers, current 

Convolutional Neural Network hardware implementations have an excess area 

need.  The present work addresses this challenge by proposing a Co-ordinate 

Rotation Digital Computer (CORDIC)- based neuron architecture (RECON) 

implemented using In-SRAM In-Memory Computing and modified Static 

Manchester Carry Adder, which can be configured to compute multiply-

accumulate (MAC).  The CORDIC-based architecture uses linear relationship to 

realize MAC, whereas CORDIC algorithm uses minimum resources to realize 
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different mathematical operations. The CORDIC architecture is area and power-

efficient with the overhead of lower throughput. In this project, we propose a 

Pipelined CORDIC based MAC using In-Memory Computing and modified Static 

Manchester Carry adder. This proposed design significantly increases the 

throughput by 40% when compared with conventional methods. Choosing 8-bit 

precision improves the power consumption and area utilization. When operated at 

1V, the power consumption decreases by 38%. Hence, the proposed design offers 

the best throughput among the state of art and consumes lesser power and area 

when designed at 8-bit precision and operated at 1 V. 
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Chapter 1 

INTRODUCTION 

 

1.1 Artificial Intelligence 

In recent years, artificial intelligence (AI) has gained traction. The modern 

world has been transformed by artificial intelligence (AI) and machine 

learning (ML). There has been great improvement in this field during the last 

twenty to thirty years. AI and machine learning are now applied in a variety of 

industries, including cancer detection and speech recognition. The immense 

quantity of processing power and the vast amount of data available have 

enabled this phenomenal expansion. Computers can learn from data and 

improve themselves using AI and machine learning techniques. These 

algorithms are capable of foreseeing the future. 

 

Artificial intelligence (AI) is the simulation of human intelligence in 

machines that are programmed to think and act like humans. AI is a term used 

to describe any machine that mimics human mental functions such as learning 

and problem-solving. Beyond artificial intelligence, rationalizing and acting 

with the best possibility of achieving a given goal is a desirable characteristic. 

Machine learning is a subset of artificial intelligence that refers to the concept 

of computer programs learning and adapting to new data without the need for 

human intervention. Deep learning technology automates learning by 

ingesting massive volumes of unstructured data including text, photos, and 

videos. 

 

When most people hear the term "artificial intelligence," they immediately 

think of a robot. This is due to the fact that high-budget films and novels depict 
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human machines destroying the planet. Nothing, however, can conceal the 

reality. 

Artificial intelligence is founded on the idea that human intelligence may be 

described in such a way that machines can readily copy and accomplish 

activities ranging from simple to sophisticated. The purpose of artificial 

intelligence is to mimic human cognitive capacities. Researchers and 

developers in this discipline are making rapid progress in precisely defining 

behaviors like learning, reasoning, and cognition. Some experts think that in 

the near future, developers will create systems that can learn or reason about 

any subject beyond human capabilities. Others, on the other hand, are skeptical 

because all cognitive activity have values derived from human experience.  

 

As technology progresses, earlier artificial intelligence criteria become 

obsolete. Machines that calculate basic calculations or recognize text using 

optical character recognition, for example, are no longer called artificial 

intelligence because these functions are now regarded standard computer 

functions. 

 

AI is constantly improving to benefit a wide range of sectors. A 

multidisciplinary approach based on mathematics, computer science, 

linguistics, psychology, and other disciplines is used to wire machines. 

 

1.1.1 Applications of Artificial Intelligence 
 

The possibilities for AI are infinite. This technology is utilised in numerous 

domains and industries. In the healthcare industry, AI is being tested and used 

to dispense drugs and treatments to patients as well as execute surgical 

procedures in the operating room. 

Computer chess and self-driving automobiles are two further instances of 

artificial intelligence machines. Because each action has an impact on the final 

result, each of these machines must evaluate the results of one of the tasks. 
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The outcome in chess is victory. To operate in anti-collision mode, 

autonomous vehicles' computer systems must consider and calculate all 

external data.  

Artificial intelligence can also be used in the finance sector. It helps banks 

fight fraud by detecting and marking debit cards and big account deposits that 

engage in unusual banking and financial activity. Trading was made easier and 

simpler with AI software. This is accomplished through expediting the 

appraisal of securities' supply, demand, and price. 

 
1.1.2 Categorization of Artificial Intelligence 
 

Artificial intelligence can be classified into two types: weak and powerful. 

Weak artificial intelligence is a system that is meant to perform a single task. 

Video games, such as the chess example above, and personal assistants, such 

as Amazon's Alexa and Apple's Siri, are examples of weak AI systems. When 

you ask the assistant a question, it responds. Artificial intelligence systems that 

are robust perform tasks that are considered human-like. These are typically 

more complex and difficult systems. They are programmed to handle 

circumstances in which they may be required to solve problems without the 

assistance of a human. Self-driving cars and hospital operating rooms are 

examples of uses for these technologies. 

1.2 Machine Learning 
 

Machine learning is an artificial intelligence (AI) technology that allows 

systems to learn and improve on their own, without the need for programming. 

Machine learning tries to create computer algorithms that can utilise data to 

learn for themselves. The learning process starts with observations or data, 

such as examples, direct experience, or instruction, in order to find patterns in 

data and make better decisions in the future based on the examples we provide. 

The basic goal is for computers to learn on their own, without the need for 

human involvement, and to change their behavior accordingly. 
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1.2.1 Supervised Machine Learning algorithms 
 

This method includes a label identifying the desired solution for each case 

in the training data entered into the system. The data is primarily divided into 

two categories: training data and test data (score data). A model or theory is 

refined via training packages. This assumption is nothing more than a 

pedagogical mathematical statement. We examine the mistake while 

evaluating the model (the difference between the expected value and the value 

collected by the model). The goal of the training is to refine the model to 

achieve the lowest possible error. Training tests are used to evaluate education. 

The actual data can then be used to perform the appropriate function 

(prediction, distribution, etc.). 

 

1.2.2 Unsupervised Learning 
 

The polar opposite of supervised learning is unsupervised learning. The 

training data does not include labels in this case. The system must learn on its 

own. These are essentially data point grouping strategies. Let's imagine you 

have a lot of client information on your website or in your store. You can use 

the clustering method to locate a group of clients who are similar to each other. 

You may see which customers you've worked with the most using this method. 

This categorization can be used to create marketing campaigns. 

Detecting discrepancies is another crucial challenge. Credit card fraud 

detection, industrial defect detection, and data analytics data detection and 

discovery are just a few examples. 

 

 

1.2.3 Semi-supervised Learning 
 

This is when the majority of the training data is unlabeled, with only a few 

labelled. As a result, most semi-supervised learning algorithms combine 
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supervised and unsupervised learning techniques. One of the better instances 

of supervised learning is Google Photos. If you tag a person's name on a photo, 

Google Photos can detect that person's face and display all of their photos. 

 

1.2.4 Reinforcement Learning 

Reinforcement learning differs significantly. This is the area where the system 

can work. You are awarded or punished depending on your actions. The 

system then changes the policy with recommended and prohibited behaviours. 

This process continues until you determine the best course of action for your 

scenario. Booster learning is commonly used by robots to learn how to walk. 

 

1.3 Deep Neural Network 

Many recent AI applications are built on the foundation of deep neural 

networks (DNNs). The number of applications using DNNs has exploded 

since the creative use of DNNs for image classification and speech 

recognition. DNNs are employed in a variety of applications, including self-

driving automobiles and cancer diagnosis. DNNs can now outperform humans 

in many of these domains. DNN's outstanding performance stems from its 

capacity to extract high-level features from raw sensory data after statistical 

training on vast volumes of data in order to efficiently represent the input 

space. This is in contrast to the prior approach, which relied on pre-made 

features or regulations. Higher DNN accuracy, on the other hand, increases 

computational complexity. Although general-purpose computers, particularly 

graphics processing units (GPUs), have long formed the backbone of DNN 

processing, there is growing interest in giving more specialized acceleration to 

DNN computers. D.N.N. (also known as deep learning) is a large branch of 

AI, science, and technology that aims to create intelligent machines that can 

attain human-made goals, according to computer scientist John McCarthy. 

Figure 1.1 depicts deep learning relationships with all artificial intelligence. 
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The brain is continually being studied by scientists. Neurons, on the other 

hand, are commonly recognized as the brain's primary computing component. 

The human brain has roughly 86 billion neurons on average. As illustrated in 

Figure 1.2, neurons are connected to multiple pieces called dendrites and 

contain output elements called axons. Neurons receive signals from the 

dendrites and process them in order to generate signals in the axons. Activation 

is the term for these inputs and outputs. Neuron axons spread out and connect 

to the dendrites of numerous other neurons. A synapse is the connection 

between the axon's branches and the dendrites. The typical number of synapses 

in the human brain is 1014 to 1015. The advantages of efficient machine 

learning algorithms are apparent. Instead of the laborious and random  

 
 

Figure 1.1: Deep learning in the context of artificial 

intelligence [91] 

 

way of creating one individual program to solve each problem in the domain, 

a single machine learning algorithm must learn how to handle each new 

problem through a process called learning. A branch of machine learning 

known as brain-inspired computing exists. Because the brain is the most well-

known "machine" for learning and problem solving, it's only reasonable to 

explore for machine learning techniques. Thus, brain-inspired computing is a 

ARTFICIAL INTELLIGENCE 

MACHINE LEARNING 

DNN 
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program or algorithm that works in some way similar to how the brain works 

in its most basic form. This is not an attempt to build a brain; rather, the 

program seeks to simulate some parts of learning how the brain works. 

The synapse's most important function is to modify the scale it goes through 

(xi), as seen in Figure 1.2. This evaluation actor may relate to weight (wi). It 

is thought that the brain learns through changes in synaptic pressure. As a 

result, different input responses correspond to different weights. The tissues in 

the brain (what we call programs) remain the same as learning regulates 

pressure in response to learning cues. This property makes the brain an 

excellent source of ideas for machine learning systems. Peak computing is a 

sub-domain of the brain-inspired computing paradigm. The interaction 

between dendrites and axons is analogous to nail stimulation, which provides 

inspiration for this sub-area. The information delivered is not exclusively 

dependent on the spine's amplitude. Instead, it relies on the pulse's time and 

the fact that the neuron's calculations are based on a single value and the time 

link between the pulse width and additional pulses. IBM True North [65] is an 

example of a brain game-inspired initiative.  

Figure 1.2: Connections to a neuron in the brain. xi , wi , f() , and b are the 

activations, weights, nonlinear function, and bias, respectively [91] 

 

 

 
1.3.1 Neural Networks and DNNs 
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The idea of weighted inputs in neuron computations influenced neural 

networks. These weighted sums correspond to synaptic scaling values, which 

are then aggregated by neurons. Neurons only create weighted sums since the 

calculations involving the cascade of neurons are simple linear algebraic 

operations. Neurons, on the other hand, have functional operations that act on 

their combined inputs. This looks to be a nonlinear function, with neurons 

producing output only when the input exceeds a portion of the threshold. As a 

result, the neural network uses a nonlinear function that equals the weighted 

sum of the input values. A schematic example of a computational neural 

network is shown in Figure 1.3. 

Finally, the user receives the final network output after the weighted amount 

is delivered from one or more hidden layers to the outgoing layer. The 

output of nerve cells is called activation to blend the brain-inspired phrase 

with a neural network. Activation/pressure designation is used in this article. 

 In Figure 1.3 shows an example calculation at each level: 𝑦𝑗 =

𝑓(∑ 𝑊𝑖𝑗 ∗ 𝑥𝑖 + 𝑏)3
𝑖=1 , where 𝑊𝑖𝑗, 𝑥𝑖 and 𝑦𝑗 are the weights, activate the 

input, activate the output. For simplicity, the phrase bias b has been 

removed from Figure 1.3. 

 

 

  

Figure 1.3: simple neural network  

 

Deep learning is a branch of neural networks in which the neural networks 

comprise three or more layers, i.e. two or more hidden layers. The number 
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of network layers employed in deep learning today varies between 5 and over 

1,000. The term Deep Neural Network (DNN) is used in this article to refer 

to neural networks typically employed in deep learning. DNNs can learn 

higher-level functions that are more complicated and abstracted than tiny 

neural networks. The usage of DNNs to process visual data is an example of 

this. Image pixels are fed into the DNN's first layer in such applications. The 

output of the layer can show different low-level image elements including 

lines and edges. These elements were blended at the next level based on the 

likelihood of the higher-level elements. Lines, for example, are blended into 

shapes, which are then combined into a set of shapes. Finally, given all of 

this data, the network is likely to contain specific objects or scenes. DNNs 

can achieve good performance in a variety of applications thanks to this deep 

layer of capability. 

 

1.4 Overview of DNNs 
 

Depending on the application, DNNs come in a range of shapes and sizes. 

Popular shapes and sizes are also continually evolving to improve precision 

and efficiency. The input to the DNN in both circumstances is a set of values 

that reflect the data to be evaluated by the network. Image pixels, sampling 

amplitudes for sound waves, or numerical representations of any system or 

game state are examples of these values. 

Input processing networks are divided into two categories: feed and 

flatness. All calculations in the feedforward network are done as a sequence 

of actions on the previous output level. The final set of operations generates 

network output such as the likelihood that an image will contain a specific 

object, the likelihood that an audio sequence will contain a specific word, a 

bounding box around the object in the picture, or the steps that should be 

taken. The network in such a DNN has no memory. Regardless of the 

sequence of inputs previously delivered to the network, the input-output is 

always the same. 
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The circulatory neural network (RNN), also known as the short-term 

memory network (LSTM), on the other hand, has an internal memory where 

long-term dependency might affect outcomes. Some intermediate jobs are 

stored within these networks and generate values that are utilised as inputs to 

other input processing activities. The feed network will be the subject of this 

article since 1) the RNN's core calculation is still the weighted sum (i.e. 

matrix-vector multiplication) of the feed network. 2) Hardware acceleration 

of RNNs has received relatively little attention to far. 

Only fully connected layers (FCs) [also known as multi-layer sensors 

(MLPs)] can be found in DNNs. Each output activation at the CC level 

comprises the sum of the weights of all input activations (i.e. all outputs are 

connected to all inputs). This necessitates a great deal of memory and 

bookkeeping. Fortunately, in many cases, the link between activations may 

be erased without impacting accuracy by setting the pressure to zero. As a 

result, a thin sticky coating is created. Bearings with thin contact. 

Limit the number of weights that affect the outcome to make the 

calculation more efficient. Only if each output is a fixed size input window 

function can there be structural sparsity. Calculating each output with the 

same set of weights results in much improved efficiency. Weight sharing 

refers to the reuse of the same weight value and can greatly reduce balance 

sheet storage requirements. 

Structured calculations in convolutions produce in a fashionable DNN 

layer with weight shared and windowed splitting, as shown in Figure 1.7. 

Only a small area of input activation is used to generate the weighted total 

for each output activation (i.e. all pressures out of range are set to zero). This 

area is also known as the "permitted area." Furthermore, all outputs use the 

same set of weights (e.g. the filter is an unchanged space). CONV stands for 

persuasion-based layers (Conv layers). 

 

1.4.1 Convolutional Neural Networks 
 

As shown in Figure 1.6, a Converged Neural Network (CNN) is a 
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common type of DNN made up of multiple CONV layers. Each layer in such 

a network produces a function map, which is a higher abstraction of input 

data (fmap). It saves crucial but unique data. Using very deep hierarchies, 

modern CNNs can achieve good performance. Image recognition [48], 

speech recognition [82], gaming [88], and robotics [55] are just a few of the 

areas where CNNs are employed. 

 

As demonstrated in Figure 1.7, each CONV layer in a CNN is mostly 

made up of multidimensional beliefs. The layer input operation in this 

calculation is made up of two-dimensional input function maps (ifmaps), 

each of which is referred to as a channel. Each channel is combined into a 

filter bank and a separate 2D filter. A single 3D filter is typically referred to 

as a collection of 2D filters. The conviction findings are summarized in each 

channel at each point. You can also give the filter results a one-dimensional 

offset. Some modern networks [34] do not allow them to be used in storage 

compartments. This calculation is the activation of the output data in the 

output function map., which forms a channel (ofmap). 

 

Additional output channels for the same input can be formed using 

additional 3D filters. Finally, multi-input function maps can be combined 

into a package that reuses filter weights. 
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Figure 1.5: Dimensionality of convolutions. (a) 2-D 

convolution in traditional image processing. (b) High 

dimensional convolutions in CNN [91] 

 

 

Figure 1.6: Convolutional neural networks  
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DNNs feature extra levels such as nonlinearity, aggregation, and 

normalization in addition to the CONV and CC levels. Each of these layers' 

functions and calculations are outlined below. 

1) Nonlinearity: After each CONV or CC level, the nonlinear activation 

function is frequently used. Figure 1.7 shows how to introduce nonlinearities 

for DNNs using various nonlinear functions. Traditional nonlinear functions 

like sigmoid or hyperbolic tangent, as well as modified linear units (ReLU) 

[68], have recently gained prominence. Because of its simplicity and capacity 

to deliver quick learning, it has been popular throughout time. To increase 

accuracy, many ReLU variations such as ReLU leakage [62], parametric 

ReLU [35], and exponential LU [16] have been examined. Finally, in speech 

recognition difficulties, a nonlinearity known as max out, which takes the 

maximum value of two intersecting linear functions, is effective [107], [108] 

2) Pooling: A unit is a calculation of variables that reduces the dimension 

of a function map. The network can endure slight changes and distortions 

because to individual channel bonding. Unions reduce the number of values 

in the receiving field by combining or matching them. It can be changed to 

fit the size of the receiving fields (e.g. 2x2) and join procedures indicated in 

Figure 1.10. (e.g. max or average). When blocks, not blocks, overlap, 

interconnection occurs (i.e. the steps are the same). Pool Dimensions) One 

or more summits are usually used, resulting in limited views (e.g. functional 

maps). 

3) Normalization: Managing the distribution of input data across multiple 

layers can significantly speeding up training and increase accuracy. As a 

result, the layer’s input activation distribution (σ, µ) is normalized to have 

a mean value of 0 and standard deviation. In batch normalization (BN), 

the normalized values are shifted and scaled, as shown in the figure. 

Here the parameters (γ, β) 
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              Figure 1.7: Various forms of nonlinear activation functions  

 

is learned during training. is a small constant to avoid numerical problems. In 

the past, local response normalization (LRN) was used, inspired by lateral 

neuroscience suppression. The nerve cells fired here (i.e., high-value 

activation) must weaken neighboring cells (i.e., stimulate low-value 

activation). However, BN is now considered standard practice in CNN design, 

while LRN is mainly out of date. LRN is usually done after the nonlinear 

function. However, BN is mainly done between the CONV or CC level and 

the nonlinear function. Suppose BN is implemented immediately after the 

CONV or CC level. In that case, its calculation can be combined with the 

CONV or CC level pressure without further calculation. 

 

1.5 DNN Development Resources 
 

Several deep learning frameworks have been developed to make DNN creation 

easier and to share trained networks from multiple sources. The DNN 

programming library is one of these open-source libraries. The University of 

California at Berkeley (UC Berkeley) [42] opened Caffe in 2014. C, C++, 

Python, and MATLAB are all supported. Google introduced Tensorflow in 

2015, which supported C++ and Python. It is more flexible than Caffe and 

supports multiprocessors and GPUs, with computations described as dataflow 
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charts to handle tensors (multidimensional matrices). Torch, created by 

Mozilla, is another prominent framework. 

 

 

Figure 1.8: . Various forms of pooling [91] 

 

 

1.5.1 Frameworks 
 

The existence of these Frameworks is beneficial not only to DNN 

researchers and developers. It is, nonetheless, critical for the development of 

high-performance or more efficient DNN computing processes. Because they 

make substantial use of a set of basic operations such as CONV level 

manipulation, frames can include optimised software or hardware accelerators. 

The frame user is unaware of the acceleration. Most frames, for example, can 

take advantage of Nvidia's cuvNN library to operate Nvidia GPUs quickly. 

Unique hardware accelerators can also be transparently integrated, as with the 

Eyeriss chip [11]. 

Finally, these Frameworks provide hardware researchers with a rich source 

of workload. It can create prototype projects for various workloads, profile 

various workloads, and investigate software and hardware trade-offs. 

 

1.5.2 Popular Data Sets for Classification 
 

When comparing different DNN models, it's vital to keep the data 

complexity in mind. For example, in the MNIST dataset [51], writing numbers 

is significantly easier than assigning an object to one of the 1000 classes 
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required in the ImageNet dataset [81]. ( Figure 1.9). For complex tasks, the 

DNN size (number of weights) and number of MACs are predicted to be bigger 

than for simple computations, requiring more power and bandwidth. For 

instance, LeNet-5 [53] is intended for image classification, while AlexNet 

[48], VGG-16 [89], GoogLeNet [94], and ResNet [34] are intended for image 

classification. 

There is a large amount of AI data accessible that may be used to assess 

the accuracy of a certain DNN. Comparing the accuracy of various methods 

requires public data sets. Classifying your images is the simplest and most 

common process. To put it another way, select the 1N class that the image 

belongs to. There is no location or way to locate it. 

MNIST is a numerical classification system that was introduced in 1998 

[51]. It has a handwritten number image of 28x28 pixels. There are ten lessons 

(10 digits), 60,000 instructional images, and 10,000 test images in all. When 

MNIST was originally introduced, LeNet-5 had a 99.05 percent accuracy rate. 

Drop Connect has improved neural network management accuracy to 99.79 

percent [99] since then. As a result, MNIST is currently considered a 

fundamental data collection. 

CIFAR is a 2009 dataset of 32 by 32-pixel colour photographs of a variety 

of things [47]. CIFAR is a subset of 80 million Tiny Images data [95]. CIFAR-

10 has ten classifications that are mutually exclusive. 50,000 class photographs 

(5,000 per class) and 10,000 test photos are available (1,000 per class). When 

it was first introduced, the two-part deep belief network had a CIFAR-10 

accuracy of 64.84 percent [46]. Since then, using fractional max join [67], the 

accuracy has been increased to 96.53 percent. 
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Figure 1.9: MNIST (10 classes, 60000 training, 10000 testing)  versus 

ImageNet (1000 classes, 1.3 million training, 100000 testing)  data set  

 

     ImageNet is a massive data set that was originally released in 2010. Dataset 

from 2012. It has 1000 classes and a 256 256-pixel colour picture. The basis for 

grouping synonyms and manipulating ambiguous words in the same object 

category is WordNet classification. That is, ImageNet categories are organized 

in a hierarchy. The ImageNet hierarchy has been divided into 1,000 classes to 

avoid any overlap. There are many subcategories in the ImageNet dataset, 

including 120 different dog breeds. I have 1.3 million command images (732-

1300 per class), 100,000 test photos (100 per class), and 50,000 test images in 

total (50 per class). The ImageNet Challenge reports the accuracy of the picture 

categorization task using two measures: Top-5 and Top-1 error. 

 The top 5 error indicates that if one of the top 5-point categories is the correct 

one, the classification is correct. Top 1 must be the category with the highest 

score. In 2012, the ImageNet Challenge winner had an accuracy of 83.6 percent 

in the top five categories (much better than 73.8 percent, second place this year 

without using DNN). Among 2017, the best accuracy in the top five was 97.7%. 

MNIST is a rather basic data collection, as evidenced by the summary of the 

various picture categorization data sets. ImageNet is a large data set with a wide 

range of classes. As a result, while assessing the accuracy of a given DNN, it's 

critical to consider the amount of data being evaluated. 
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1.6 Hardware of DNN Processing 

Many current hardware systems offer particular features for controlling DNNs 

as a result of their popularity. The Intel Knights Mill processor, for example, 

has unique deep learning vector instructions [20], and the Nvidia PASCAL 

GP100 GPU offers 16-bit Pour Point Count (FP16), which speeds up deep 

learning computations by doing two FP16 operations on a single high-

precision core. There are also systems created expressly to manage DNNs, 

such as the Nvidia DGX-1 server and a specialised Facebook Big Basin DNN 

server [18]. DNN pins have also been seen in programmable gate arrays and 

other chip embedded (SoC) systems as as Nvidia Tegra and Samsung Exynos 

(FPGAs). As a result, it's critical to understand how these platforms handle 

data and how application-specific DNN accelerators can be created to boost 

throughput and reduce energy consumption. 

MAC (multiplication and accumulation operation), which may be easily 

parallelized, is the essential component of CONV and FC bearings. To achieve 

high performance, an extremely parallel data paradigm is frequently utilised, 

including temporal and spatial structures, as shown in Figure 1.12. The timing 

architecture is mostly implemented on the CPU or GPU, and it employs vector 

(SIMD) or parallel approaches to increase concurrency. Yarn (SIMT). The 

central control of many ALUs is used in this ad hoc architecture. 

These ALUs can only receive data from other ALUs in the memory hierarchy 

and cannot communicate directly. The spatial architecture, on the other hand, 

employs data flow processing. In other words, the ALU can build a processing 

chain, allowing data to flow from one location to another. A memo file or 

registry file can be used to store control logic and local memory for each LA. 

The Processing Machine refers to an ALU with local memory (PE). In ASIC 

and FPGA designs, spatial architecture is frequently employed for DNNs. This 

section discusses various design concepts for efficient machining on various 

platforms without compromising precision (i.e. all methods in this section give 
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the same result). We explore how the computational transformation of the core 

minimizes the amount of multiplications to boost throughput for ad hoc 

architectures like CPU’s and GPU’s.We examine how data streams improve 

energy consumption by enhancing the memory hierarchy's reuse of 

inexpensive memory data for spatial topologies utilized in accelerators. 

 

1.6.1 Accelerate Kernel Computation on CPU and GPU 

Platforms 

Parallel technologies such as SIMD or SIMT are used to run MACs in parallel 

on the CPU and GPU. The same controls and memory are used by all LAs 

(registration file). The CC and CONV levels are frequently translated to matrix 

multiplication on various platforms (i.e. core computing). Matrix multiplication 

is shown in Figure 1.13 for NC layers. The number of 3D filters determines the 

filter matrix's height. The width is the number of weights per 3D filter [Input 

Channel (C) × Width (W) × Height (H), R = W and S = H are CC layers]; The 

height of the input function map matrix is the number of activations per 3D input 

function map (C × W × H). The width is the number of 3D input function maps 

[Figure 1.13]; Finally, the matrix height of the output function map is the 

number of channels in the output function map (M). The width is the number 

of three-dimensional (N) output function maps. Each function here has a map 

function. CC layer dimension 1 × 1 × number of output channels (M). 

The CONV layer of the DNN can also be mapped to multiply the matrix 

with the weaker Toeplitz matrix depicted in the figure. 19. The input function 

map contains redundant data when matrix multiplication is used on the CONV 

layer. Figure 1.14 shows the matrix. This can result in inefficient storage or 

complicated memory access patterns. 

The software library is optimised for matrix multiplication processors 

(such as Open-BLAS, Intel MKL, and GPUs) (e.g. cuBLAS, cuDNN, etc.). 

Matrix multiplication refers to the storage tier of these platforms, which is 

measured in megabytes at the highest level. 
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    Figure 1.10: Mapping to matrix multiplication for fully 

connected layers(a) Matrix Vector multiplication is used when 

computing a single output feature map from a single input feature 

map. (b) Matrix Multiplications is used when computing N output 

feature maps from N input feature maps  
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Figure 1.11: Mapping to matrix multiplication for 

convolutional layers. (a) Mapping convolution to Toeplitz 

matrix. (b) Extend Toeplitz matrix to multiple channels and 

filters  

1.7 Machine Learning Accelerators 
 

Machine learning algorithms, particularly Neural Networks, are 

processed or co-processed by ML accelerators. Earlier attempts at machine 

learning accelerators used digital signal processing to do pixel-to-pixel 

multiplication and accumulation. On computers, graphic processing units, or 

GPUs, provide acceleration. More specialized chips are being developed since 

the development of CNN. A quick explanation of various ML accelerator 

methodologies follows. 
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1.7.1 Heterogeneous Computing Platforms 
 

Heterogeneous computing refers to a platform that combines many types 

of dedicated hardware, such as a CPU with GPU and DSPs. Over a single chip, 

an FPGA with a processor is embedded. Because the technique of ANN or 

CNN is similar to that of image processing, GPUs, which are built to handle 

image and video processing, are particularly efficient in implementing these 

algorithms. However, there are other trade-offs, including expense, area, and 

space. Because GPUs cannot be used as coprocessors in smartphone SoCs, the 

industry is collaborating with ASICs to integrate them into their platforms. 

 
1.7.2 ASICs and FPGA 

In the research field of ML accelerators, ASIC and FPGA are obvious 

alternatives. FPGAs are commonly utilised in servers and other applications. 

Furthermore, newer FPGA chips contain a processor, enabling for SW-HW 

co-design. Intel created Nervana and Movidius, two ASICs. NVIDIA has a 

division dedicated to smart vehicle hardware development. Novel Hardware 

for Artificial Neural Networks for FPGA or ASICs is discussed in the 

following chapters. 
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Chapter 2 

IN MEMORY COMPUTING 

 

The approach of performing computer calculations entirely in computer 

memory is known as in-memory computation (or in-memory computing) 

(e.g., in RAM). This word usually refers to large-scale, sophisticated 

calculations that necessitate specialized systems software to execute on multiple 

computers in a cluster. As part of a cluster, the computers pool their RAM so 

that the calculation is essentially done over multiple computers and takes 

advantage of the combined RAM space of all the machines. 

 

    In-Memory Computing permits for remarkable results (multiple times faster) 

and indeed the extent of never-ending amounts of data, but also greater 

accessibility to an increase in information sources. It provides real-time insights 

by backing up through RAM but also encoding it in parallel, allowing providers 

to connect immediate responses to events. This creates opportunities that could 

be used in descriptive and predictive programs that share the same technology 

platform, as well as transaction - oriented data management guided by legit 

analytics. 

 

2.1 The Emergence of In-Memory Computing 

 

            In-memory computing, or IMC, is becoming increasingly prevalent. 

This is attributable to higher demand for accelerated big information processing 

and predictive analysis, the need to refine layout as the number of data 

references rises, and advancements in technology that are lowering TCO. 

 

2.2 Objective of In-Memory Computing 

 

To achieve a sustainable competitive advantage and fulfil present and future 
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needs for highest quality of service, manufacturers must cope with the steady 

increase in the efficiency statistics and the never-ending perceptions for faster 

and accurate performance.   

 

As a result, In-Memory cloud services technologies are gaining traction. 

Because the primary objective of In-Memory computing is to acquire and 

scrutinize a vast amount of information in a brief period. 

 

         Traditional business intelligence (BI) programs, which are typically 

focused on disc    storage and database systems which use the SQL database 

language, are impractical for today's BI requirements, that include super-fast 

query processing and reliable data scalability. 

In-memory processing relies solely on data stored in RAM and eliminates 

all slow data accesses. By eliminating the latency that is common when 

accessing hard disc drives or SSDs, overall computing performance is 

considerably enhanced. The calculation as well as the data in memory are 

managed by software running on one or more computers, and in the event of 

multiple computers, the programme breaks the computation into smaller jobs 

that are sent to each computer to run in parallel. In-memory computing is 

frequently performed using in-memory data grids (IMDG). Hazelcast IMDG is 

one such example, which allows users to conduct sophisticated computations 

on massive data sets over a cluster of hardware servers at breakneck speed.  

 

2.3 IMC's Fundamental Principles and Prominence 

Data storage and expandability — a software's, network's, or 

application's capacity to maintain consistently advancing amounts of 

information, or its potential to be elastically enhanced to accommodate that 

expansion — are the foundations of in-memory computing. This is 

accomplished using two major technologies: Parallelization and random-

access memory (RAM). 
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                        Figure 2.1: Basic Principles and Significance of IMC 

High Speed and Scalability:  In-Memory Computer technology exhibits 

excellent functionality and reliability by gathering data in RAM and archiving 

it. This is more than 100 times faster than any other solution for data processing 

and querying, guaranteeing effective and unparalleled functionality for any 

task. 

For scalability, In-Memory Computing hinges on parallelized distributed 

processing, which is vital for massive data processing. Distributed data 

transformation, as opposed to a single, centralized database managing and 

providing computing technology to all linked systems, is a computer-

networking platform where several computers located in different locations 

share computing resources. 

Real-time Insights: IMC incorporates business logic, predictive analysis, 

and collected from a range of source information (multi-model store). In this 

context, In-Memory Computing is so much more than just providing a faster 

analysis than before; but also, about becoming significant predictors during the 

analysis process! 

By addressing massive amounts of broadcasting, hot, and historical data 

in real - time, IMC enables for real-time experienced data analysis and machine 

learning for quick perspectives that are instantaneously used by networked 
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business logic with the memory fabric. Whenever something ends up happening 

that has the potential to impact company's operations, customer behaviour, 

regulatory compliance, and other factors, an instant acknowledgment of the 

effects and consequences is provided, allowing for quick reaction and decision-

making. 

Furthermore, consistent predictive modelling, which takes advantage of 

the opportunity to process and analyse millions of events per second, helps to 

minimize undesirable consequences such as equipment breakdown, customer 

churn, and computer hackers, among other things. 

A Wide Range of Applications: Of course, in-memory computing is 

beneficial to companies that deal with large amounts of data, particularly those 

in consumer-facing sectors such as retail, financial sectors, insurance, 

transportation, telecommunications, and utilities. Risk and transaction 

management in financial institutions, payment and insurance fraud detection, 

consumer product trade promotion simulations, and real-time/personalized 

advertising are all examples. In-Memory Computing, on the other hand, can 

profit greatly any industry or market where proper analysis, perspectives, and 

predictions based on broadcasting and historical data deliver economic 

potential, such as geographic information analysis, preventive analytics, and 

network optimization in transportation. 

Enabling Technology: Without the implementation of IMC, many of 

today's methods and services would not be possible. Applications that use 

blockchain based (which enables digital information to be distributed but not 

duplicated) or apps that use geospatial/GIS processing for transportation 

contain this enabling technology function (such as real-time direction on 

recommended route, traffic congestion and hazard). 

2.4 SRAM Based IMC 

Data transport consumes over a hundred times as much energy as math. 

As a result, data-movement overheads have significantly limited the 

performance of traditional "von-Neumann type" compute-centric processors. 
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When using SRAM-IMC in pattern-matching applications, the automata 

state transitions take place entirely within the memory. This eliminates the 

expense of division mispredictions and unusual memory accesses in CPU-based 

processing. We can also use a connector with high fan-in and fan-out to connect 

an input vector with several candidate sequences. SRAM-IMC can thus provide 

significant parallelism. Operations can help with cryptographic techniques, 

graph indexing, and database applications. Executing search and comparison 

activities in memory can help compression, encrypting, and search engines. 

IMC-based logical procedures can help with cryptography, graph indexing, and 

database applications. 

The IMC based on SRAM can use 6T, 8T, or 10T SRAM. However, 

there are serious concerns with read disturbance and read noise margin erosion. 

The next sections go over several SRAM architectures. 

 

2.4.1 6T SRAM 

 
  SRAM known as static random-access memory and provides bistable 

latching circuitry to store each bit. The term "static RAM" distinguishes it 

from "dynamic RAM," which includes constant replenishment. SRAM can 

store data, but it is still volatile in the sense that data will be lost when the 

memory is turned off. 

 

Fig 2.2 Schematic of 6T SRAM 
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Three modalities are available for the 6T SRAM cell: (1) Standby mode (2) Read 

Operation  

(3) Write Operation 

 

(1) Standby mode 

Word line is not asserted in standby mode (word line=0), so the pass 

transistors M5 and M6, which connect the 6t cell to the bit lines, are 

disabled. This indicates that the cell can't be accessed. As long as the two 

cross-coupled inverters are connected to the supply, they will continue to 

feedback each other, and data will remain in the latch. 

 

 

(2) Read Operation 

In read mode, the word line (word line=1) is asserted, enabling both the 

access transistors that connect the cell to the bit lines. Values in nodes (Q 

and Q bar) are now moved to bit lines. Assume 1 is stored at node 'Q,' 

therefore the bit line bar will discharge through the driver transistor (M1) 

and is pulled up through the Load transistors (M2) toward VDD, resulting 

in a logical 1. SRAM cell design necessitates read stability (do not disturb 

data when reading). 

 

(3) Write Operation 

Assume that the cell was originally set to store a 1 and that we want to change it 

to a 0. To do so, lower the bit line to 0V and elevate the bit bar to VDD, 

then pick the cell by elevating the word line to VDD. 

Inverter threshold is often fixed at VDD/2 since each inverter is designed to match 

PMOS and NMOS. M5 functions in saturation if we want to write 0 at node 

a. Its source voltage is set at 1 at first. M3's drain terminal is originally set 

to 1, but M5 pulls it down because M5 is a stronger access transistor than 



29 
 
 

M1. Now that M3 is on and M2 is off, a new value has been written, causing 

the bit line to be dropped to 0V and the bit bar to be set to VDD. To operate 

in write mode, SRAM must have write-ability, which is defined as the 

minimal bit line voltage required to flip a cell's state. 

 

Disadvantages of 6T SRAM 

Two separate back-to-back inverters (two pull-up PMOS and two pull-down 

NMOS transistors) and two NMOS connect transistors associated to the bitlines 

with the gates linked to the wordline can be seen in Figure 2.2. During read, the 

wordline has been stated, and the change in voltage between bitlines is detected 

by a sensing amplifier. In the read cycle, access transistors and pull-down 

transistors are being used. Greater pull-down transistors (PDL and PDR) and 

poorer access transistors enhance RSNM. On the other hand, WM is improved 

by better access transistors and poorer pull-up transistors. Because of the added 

capacity, the SRAM cell can implement at quite low supply voltages (i.e. low 

VDDmin) with negligible threshold voltage volatility, albeit at the cost of much 

more space. SRAM cell stability had already deteriorated markedly, particularly 

at lower voltages, as process variations through sub-100 nm technologies 

continue to grow.6T SRAM memory-based IMC solutions struggle with read 

disturb information leakage, restricting profitability for low-power or high-

performance applications. 

 

 

2.5 SRAM based IMC using local and global bit lines 

 

 

Following a precharge phase to Vdd, IMC operations can be performed in 

standard SRAM memories by additively accessing two WLs. Based on the 

states of the available bitcells, either of the BLs are discharged, as shown in 

Figure 2.3. Finally, the outcome of an AND implementation is contained in the 

BL (or BL bar) (respectively NOR). These processes are the foundation of 
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bitline computing. As implemented to typical 6T bitcells in contrary states, the 

PMOS  transistor of one bitcell seems to be poorer than that of the connectivity 

and pulldown transistors of all other bitcell, the cell may swap, associated with 

information corruption. This impact can indeed be illustrated using variation 

models, notably as in slowP-FastN CMOS corner. 

 

 

Fig 2.3: 6T SRAM based IMC schematic showing bitline computing 

                     

Fig2.4: Schematic of SRAM based IMC using local and global bit lines showing 

bitline computing. 
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SRAM centered IMC utilizes local and global bit lines to perform bitline 

computing-based IMC activities with 6T SRAM bitcells while ignoring read 

disturb issues. The two major bitcells in this architecture have always been 

connected to multiple LBLs, as shown in fig 2.4, reducing the risk of bitcell 

shorting. Within an LBL, an IMC procedure is much like a conventional read. 

Both of the GRBLs then are discharged through the read ports, based on the 

states of the convenient bitcells. As earlier stated, the GRBL (resp. GRBL) 

presents the conclusion of an AND (resp. NOR) in between two operands. This 

method allows the WL to cover its entire dynamic voltage range while avoiding 

the use of 10T bitcells. 

 

2.5.1 Advantages of fast and reliable IMC design 

With this innovative in-SRAM IMC design, you can perform bitwise, addition, 

shift, and copy activities in memory. It could be used to make a 28nm mass 

elevated CMOS technology PDK, and its functionality can be demonstrated 

utilising CMOS variance and layout aware simulations. 

• Local read bitlines are used to 

(i) clear corruption of data issues during in-SRAM processing operation and 

  (ii) facilitate to operate at a high frequency (2.2Ghz at 1V). 

• This design also aids in masking the latency of in-memory addition carry 

transmission and instituting a fast carry adder to improve accuracy (60-70 

percent improvement). 

 

2.5.2 𝑨𝒃𝒂𝒓 . 𝑩 generation using IMC 

 

The global bitlines of proposed IMC architecture, will not be generating  

(𝐴𝑏𝑎𝑟 . 𝐵) value. For this, we need to take help of the local bitlines, as the local 

bitlines contains operand value and its complemented value. So, the idea is to 
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perform ‘AND’ operation of local bitlines of the two operands. Suppose local 

bitline (Lbly0) contains the value of 𝐴 and Lblby0 contains 𝐴𝑏𝑎𝑟 . Similarly, 

local bitline (Lblx0) contains the value of B and Lblby0 contains B𝑏𝑎𝑟. 

 

 

Fig 2.5 Schematic for generating (𝐴𝑏𝑎𝑟 . 𝐵) using local bitlines 

 

As shown in fig 2.5, ‘AND’ operation is performed for local bitlines Lblx0 

(contains B) and Lblby0 (contains 𝐴𝑏𝑎𝑟) which results in generation of 

(𝐴𝑏𝑎𝑟 . 𝐵). This result is very much useful when designing Add/Sub- block 

which will be discussed in next chapters. 

 

2.5.3 Read Enable and Write Drivers 

The precharge circuitry charges the global bitlines and local bitlines to VDD 

before every read operation as shown in fig 2.6. The write drivers are used to 

write data into the memory cell using the local bitlines. The schematic of write 

driver is shown in fig 2.7.  
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Fig 2.6 Schematic of Pre-charge circuitry for read operation 

 

 

Fig 2.7 Schematic of write driver 

This way the In-SRAM IMC architecture can be used for performing various 

logical operations. 
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Chapter 3 

CORDIC ALGORITHM 

 

CORDIC (Coordinate Rotation Digital Computer) is a technique for 

calculating the values of trigonometric functions. CORDIC is unique among 

computation algorithms in that it can be constructed quickly using only 

addition, subtraction, and bit shift operations. It isn't as fast as the riding 

approach, but it can save a lot of space, making it ideal for applications where 

space is more critical than speed. 

 

3.1 Background 

 
Walder first suggested the CORDIC method in 1959 in his article CORDIC 

Trigonometric Computing Technique. Walter demonstrated in 1971 that the 

algorithm's scope could be expanded to incorporate hyperbolic and linear 

functions in addition to derived trigonometric equations. 

With three n-bit registers, three n-bit adders/subtractors, three shifters, and a 

small lookup table, Walter demonstrated a hardware operation. Three n-bit 

registers, three 1-bit adders/subtractors, and a sequence of shift gates 

determining which part of the register is supplied to the adder/subtractor are all 

part of Volder's sequential circuit. Both strategies are discussed in this study, as 

well as the prospect of applying this algorithm in neural networks. 

 

3.2 Algorithm 
 

Rotation or vectoring are the two ways in which the algorithm operates. The 

set of functions that the algorithm may compute is determined by both modes. 

The initial vector, as well as the x and y components of the rotation angle, are 

given in rotation mode. After the vector is rotated by the specified rotation 

angle, the hardware continuously computes the x and y components of the 

vector. 
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The two components are input in Vectoring mode, and the magnitude and angle 

of the original vector are determined. This is accomplished by rotating the 

input vector until the x axis is aligned. By noting the angle of rotation to obtain 

this alignment, you may determine the angle of the initial vector. The x 

component of the vector is identical to the value of the starting vector when 

the method is completed. 

The CORDIC algorithm uses only addition, subtraction, and shift to execute 

calculations. This is accomplished by alternately rotating the input vector and 

gradually converge to the final rotation vector. This is done in a set of steps 

that are well-defined. The first rotation step sees the vector rotated radian π/4. 

𝑦1 = ±𝑋0  = 𝑅0 · sin(θ0± π/4) 

                                  𝑥1  = ±𝑌0  = 𝑅0 · cos(θ0 ± π/4)                        (3.1) 

Where x0 and y0 represent the input vector aligned at the origin with 

magnitude R0 and angle θ0 : 

 

                                                     xi = Ri· cos θi 

                                                     yi = Ri· sin θi                                (3.2) 

 

In each following step, new angle of rotation αi is calculated such that: 

                                αi = tan−1(2−1), where i > 0                     (3.3)  

This constraint is necessary because it allows the rotation computations in 

each step to be completed with simply an add/subtract and a shift. 

 

Figure 3.1 depicts the appearance of each step iteration. The cordic 

algorithm will select whether to rotate the vector by +αi or −αi. at each 

iteration. The outcome of both decisions is depicted in the diagram. In the 

(𝑖 + 1)𝑡ℎ step, the expression for the rotated vector is 
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                                              Figure 3.1: ith step iteration for cordic algorithm 

 

 

𝑥𝑖+1 = √1 + 2−2𝑖 .  cos(θ𝑖 ± 𝛼𝑖) 

                                   𝑦𝑖+1 = √1 + 2−2𝑖 .  sin(θ𝑖 ± 𝛼𝑖)                       (3.4)                      

when applying the constraint in eq3.3 the shifting and adding becomes 

evident. 

 

𝑥𝑖+1 =
1

𝐾
 (𝑥𝑖  𝑑𝑖. 2−𝑖. 𝑦𝑖)  

𝑦𝑖+1 =
1

𝐾
 (𝑦𝑖 𝑑𝑖 . 2−𝑖. 𝑥𝑖)  

                                       where 𝐾𝑖 = √1 + 2−2𝑖 , 𝑑𝑖   = ±1                                    (3.5) 

 

Ki is for magnitude error term, and di stands for direction. The shifting action 

of a constant term corresponds to the 2−𝑖 terms. This shifted value is added or 

subtracted from the component's current value. Cross addition was the term 

used by Volder to describe this procedure. The algorithm's ability to be used 

in digital hardware is due to the Cross addition. 
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As shown in Figure 3.1, each rotation step increases the magnitude of 

the input vector by a factor of √1 + 2−2𝑖 . The algorithms derivation from the 

supplied transform, which rotates a vector by a specific angle, introduces this 

inaccuracy. 

x
′  

= x· cos φ − y· sin φ 

                                                y
′  

= y· cos φ + x· sin φ                                     (3.6) 

 

These terms can be arranged using the basic trigonometric identity tan α = 
𝑠𝑖𝑛𝛼

𝑐𝑜𝑠𝛼
. 

 

                                              x
′  

= cos α(x − y· tan α) 

                                              y
′  

= cos α(y + x· tan α)                                  (3 .7) 

We get the same relationship in eq3.3 as we did in eq3.5 by applying the same 

limitation. The error term arises from the presence of a cosine term in eq3.7, 

which is independent of rotation direction because cosine is symmetric around 

the y-axis. Furthermore, because this error increases with each step, the 

overall error in the algorithm is independent of the input angle if the number 

of iterations is set. 

          if the first rotation is given by, 

𝑥1 = √1 + 2−2(1) 𝑅0cos (𝜃0 + 𝑑1𝛼1) 

                               𝑦1 = √1 + 2−2(1) 𝑅0sin (𝜃0 + 𝑑1𝛼1)                        (3.8) 

then the second rotation is given by 

𝑥1 = √1 + 2−2(1) . √1 + 2−2(2) . 𝑅0. cos (𝜃 + 𝑑0𝛼0 + 𝑑1𝛼1)   

    𝑦1 = √1 + 2−2(1) . √1 + 2−2(2) . 𝑅0. sin (𝜃 + 𝑑0𝛼0 + 𝑑1𝛼1)       (3.9) 
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 n-th rotation extended and definition arrived 

𝑥𝑛+1 = [√1 + 2−2(1) . √1 + 2−2(2) … . √1 + 2−2(1) ] . 𝑅0. cos (𝜃 + 𝑑0𝛼0

+ 𝑑1𝛼1+. … + 𝑑𝑛𝛼𝑛)   

𝑦𝑛+1 = [√1 + 2−2(1) . √1 + 2−2(2) … . √1 + 2−2(1) ] . 𝑅0. sin (𝜃 + 𝑑0𝛼0

+ 𝑑1𝛼1+. … + 𝑑𝑛𝛼𝑛)   

 

3.3 Accumulator Registers 
 

Three accumulator registers are required by the Cordic Design: the X register, 

the Y register, and the angle accumulator Z. As it rotates, the X and Y registers 

contain the current x and y component vectors. The overall rotation amount 

performed at the current iteration is stored in the angle accumulator. 

In eq3.10. Zn=d0α0 + d1α1 + . . . + dnαn, the angle accumulator contains 

the arguments to the sine and cosine terms. The Z register must always 

include the expression because this term is comparable to the desired 

rotation angle-constrained to αi= tan−1(2−1). 

 

A small lookup table can be used to store the arctangent terms. Since d = ±1, 

all that is required to compute the next value in the Z register is an addition or 

a subtraction. This table is relatively short, as each iteration of the algorithm 

only requires one row. Because the number of iterations is fixed in hardware, 

the table's size remains constant. 

 

The direction of rotation is also determined by the accumulator register. In 

rotation mode, the direction is determined by the sign of the Z register. The Y 

register regulates the direction in Vectoring mode. 

 

3.4     Computation Modes 
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There are two modes of operation for the Cordic algorithm: rotation and 

vectoring. Which set of functions can be computed and how the values in the 

X, Y, and Z registers change each iteration are determined by the mode of 

operation. 

3.4.1 Rotation Mode 
 

 

 

                                     Figure 3.2: The CORDIC Rotation mode 

 
 

The input vector is rotated over a defined angle in Rotation mode. The initial 

value of the X and Y registers is used as the input vector. The amount of 

rotation is entered into the Z register. The purpose of each iteration should be 

to reduce the value in the angle accumulator to 0 in order to rotate the input 

vector over the input angle. The only way to control the value in the Z register 

is through the d values, because the arctangent values for each iteration are 

fixed. The decision values in Rotation Mode are set to 

 

                 𝑑𝑖 = +1 𝑖𝑓 𝑍𝑖 ≥ 0 else 𝑑𝑖 = −1                                              (3.12) 

with this definition of the decision function, after n iterations of the 

algorithms, it is known what the values in each of the registers will be: 

𝑋𝑛 = 𝐾𝑛[𝑋0 cos(𝑍0) − 𝑌0 sin(𝑍0)] 

𝑌𝑛 = 𝐾𝑛[𝑌0 cos(𝑍0) + 𝑋0 sin(𝑍0)] 

𝑍𝑛 = 0 
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                                𝐾𝑛 = ∏ √1 + 2−2𝑛
𝑛                                                (3.13)                                      

 

In Figure 3.2 shows what happens to input vector each iteration in the 

algorithm. In this example, the vector is initially aligned with the x-axis. The 

magnitude of the vector is initially aligned with the x-axis. The magnitude of 

the vector increases with each step, as the angle of the vector converges on 

30◦. The values of the X,Y, and Z registers are also shown. In the following 

sections, descriptions of how various functions can be computed using 

Rotation mode will be discussed. 

 

Sine, Cosine and Polar-Cartesian Transformation  

The sine and cosine functions are integral to the Rotation mode, and can be 

easily deduced from eq3.13. All that is required is to set the Y register to 0 and 

the X register to the scaling factor needed. If the magnitude of the input vector 

had no gain, the X register could be set to 1, and sine and cosine values could 

be read directly from the Y and X registers, respectively. The gain, on the other 

hand, necessitates some scaling prior to computation. The contents of register 

will be determined after n iterations of the method. 

𝑋𝑛 = 𝐾𝑛 𝑋0 cos (𝑍0) 

𝑌𝑛 = 𝐾𝑛 𝑌0 sin (𝑍0) 

                                                  𝑍𝑛 = 0                                                  (3.14) 

 

To account for the gain, the Z register will be initialized with θ, the Y register 

with 0, and the X register with Kn in order to determine the sine or cosine of 

an angle. The CORDIC procedure for computing sine and cosine is shown in 

Figure 3.1. As necessary, the initial vector is aligned. The scale cosine value is 

represented by the X register, whereas the scale sine value is represented by 
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the Y register. By dividing the final numbers by K10 = 1.6468, we can get the 

unscaled value. The method, for example, produces after 11 iterations. 

 

For Polar-to-Cartesian coordinate transformation, the approach to compute 

sine and cosine in the same way. since the transformation is described as 

x = r · cos θ 

 

   

 

                                           Figure 3.3: Cordic Vectoring Mode 

 

                                                                y = r · sin θ 

All that is necessary to perform the transformation is to once again load 

θ in to Z and load X with rKn, and Y with 0. 

 

3.4.2 Vectoring Mode 

The equations used to update the registers stay the same in Vectoring mode, 

but the function used to determine the rotation direction changes. The 

algorithm in Vectoring mode aims to align the input vector with the x axis, 

which means the Y register values should converge on zero. In rotating mode, 

the decision function is 
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                        𝑑𝑖 = +1 𝑖𝑓 𝑍𝑖 ≥ 0else 𝑑𝑖 = −1                                                (3.16) 

The input vector converges on the x-axis with each iteration of the algorithm, 

as shown in Figure 3.3. The magnitude of the vector rises with each iteration 

of the algorithm, just as it does in rotation mode. The direction of rotation is 

determined by the sign of Y, with the purpose of bringing the value to 0. The 

angle of the input vector with respect to the x-axis is computed and determined 

in this example. 

 

 

3.4.3 Arctangent 
 

When in Vectoring mode, the arctangent function is computed intrinsically in 

the Z register, as shown in eq3.17. Angle must be stated as a ratio of the two 

values in the X and Y registers in order to compute the arc-tangent of an angle. 

As seen in Figure 3.3, it is feasible to initialise X with 1.0 and Y with α. The 

result of arctan(√3 ) is calculated accurately as 60. 

 

 

𝑍𝑛 = 𝑍0 + tan−1(
𝑌0

𝑋0

) 

𝑍𝑛 = 0 + tan−1(√3) 

                                                       𝑍𝑛 = 60𝑜                                                                  

(3.18) 
 

3.4.4 Vector Magnitude and Cartesian-Polar Transformation 
 

As previously stated, the scaled magnitude of the input vector is contained in 

the final value in the X register. This fact, together with the intrinsic 

computation of arctangent at the same time, means that the CORDIC vectoring 

mode performs a Cartesian to Polar coordinate transformation automatically, 

exactly as the Rotation mode does.  

 

 

3.5 Expanding The Computation Domain 

The CORDIC algorithm as presented thus far can only compute functions 



44 
 
 

based on the sine and cosine functions. This is a Consequence of the circular 

rotations performed in each step. The algorithm is capable of performing linear 

and hyperbolic rotations as well, which expands the set of functions that the 

algorithm can compute. To allow for these new domains, a new factor is 

introduced to the set of cordic equations. Its value determines in which 

coordinate system the algorithm will operate. This factor is defined as 

                                                         m𝜖{-1,0,1}                         (3.20)                 

The hyperbolic domain has a m value of -1, the linear domain has a m value of 

0, and the circular domain has a m value of +1. When this factor is used to 

eq3.5, the cordic algorithm has the following general-purpose definition 

(assuming n iterations): 

 

𝑋𝑛 = 𝐾𝑛[𝑋0 cos(𝛼𝑛√𝑚) + 𝑌0√𝑚 sin(𝛼𝑛√𝑚)] 

𝑌𝑛 = 𝐾𝑛[𝑋0 cos(𝛼𝑛√𝑚) − 𝑋0√𝑚 sin(𝛼𝑛√𝑚)] 

                                                       𝑍𝑛 = 𝑍0 +(𝛼𝑛)                                                                                                    

(3.21) 

 

As indicated in section 3.2, is the basic rotation executed at each stage, and n 

is the total number of rotations performed. This rotation is defined in such a 

way that the operations for each step in the algorithm are reduced to shifts 

and additions: 

 

                                                        𝛼𝑖={

tan−1(2−𝑖),   𝑚 = +1

2−𝑖,           𝑚 = 0

tanh−1(2−𝑖), 𝑚 = −1
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When these requirements are met, the algorithm becomes: 

 

𝑥𝑖+1 =
1

𝐾𝑖
(𝑥𝑖 − 𝑚. 𝑑𝑖. 2−𝑖. 𝑦𝑖) 

𝑦𝑖+1 =
1

𝐾𝑖
(𝑦𝑖 − 𝑚. 𝑑𝑖. 2−𝑖. 𝑥𝑖) 

𝑧𝑖+1 = 𝑧𝑖 −  𝑑𝑖 . 𝛼𝑖 

                               Where 𝐾𝑖 = √1 + 𝑚. 2−2𝑖, 𝑑𝑖 = ±, m 𝜖 {-1,0,1}                                                                       

(3.23)               

The CORDIC growth factors' values are shown in 3.1. The numbers have 

been rounded to the nearest nine decimal places. The number of iterations till 

the displayed value remains constant is shown in the constant after column. 

The displayed number can be used for any implementation with 15 or more 

iterations, with the exception of the linear domain, which always has a factor 

of 1. 

 

 The x and y components are kept in X and Y registers, as before. When working 

in the hyperbolic domain, the hyperbolic tangent is employed instead of the 

standard tan function. 
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Figure 3.4: Functions that can be computed using the 

CORDIC algorithm 
 

What functions can be computed, and in which mode and domain can they be 

computed, are summarized in the figure above. 

In addition to the addition of the m domain selector, the algorithm must be 

modified in a few other ways when used in various modes. 

The method begins in the circular domain with the registers in their initialized 

states and a sequence of I values of the form 0,1,2,3,4,... and so on until the 

desired number of iterations has been accomplished. Because I is equal to 0, 

no shift is performed in the first step. The sequences in the linear domain go 

1,2,3,4,5,... and so on, with a shift in the first step. 
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Chapter 4 

MODIFIED STATIC MANCHESTER 

CARRY ADDER/SUBTRACTOR 

 

As mentioned in chapter 2, the In-SRAM IMC using local bitlines and global 

bitlines is useful in obtaining ‘AND’ and ‘NOR’ operation results at the global 

bitlines (𝐺𝑅𝐵𝐿 𝑎𝑛𝑑 𝐺𝑅𝐵𝐿_𝑏𝑎𝑟). This is very much helpful as ‘AND’ operation 

of the two operands can be used as carry generation when designing multi-bit 

adder. Further, if we perform ‘NOR’ operation of the two bitlines we get ‘XOR’ 

operation as shown fig 2.4.     

𝐺𝑅𝐵𝐿 =  𝐴 . 𝐵 = 𝐺 

                                             𝐺𝑅𝐵𝐿_𝑏𝑎𝑟 = 𝐴𝑏𝑎𝑟 . 𝐵𝑏𝑎𝑟                                       (4.1) 

 

Now performing NOR operation on GRBL and GRBL_bar, 

(𝐺𝑅𝐵𝐿 +  𝐺𝑅𝐵𝐿_𝑏𝑎𝑟)𝑏𝑎𝑟 =  ((𝐴 . 𝐵)  +  (𝐴𝑏𝑎𝑟 . 𝐵𝑏𝑎𝑟))𝑏𝑎𝑟 

= 𝑃(𝐶𝑎𝑟𝑟𝑦 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛) 

𝑃 =  (𝐴 . 𝐵)𝑏𝑎𝑟 . (𝐴𝑏𝑎𝑟 . 𝐵𝑏𝑎𝑟)𝑏𝑎𝑟 

𝑃 =  (𝐴𝑏𝑎𝑟 . 𝐵𝑏𝑎𝑟) . (𝐴 +  𝐵) 

𝑃 = 𝐴𝑏𝑎𝑟 . 𝐵 +  𝐴 . 𝐵𝑏𝑎𝑟 

                                                𝑃 = 𝐴 ^ 𝐵                                                     (4.2) 
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Fig4.1: Schematic for obtaining carry propagator(P) and sum output from 

global bitlines and carry input 

 

Hence, we obtain ‘XOR’ operation on performing ‘NOR’ operation on the 

global bitlines. This can be used as carry propagator (P). With carry generator 

(G) and carry propagator (P), we proceed to design “Modified Static 

Manchester Carry Adder/Subtractor” block. This circuit increases the speed of 

adder/subtractor operation by obtaining the following stages carry input with 

the help of carry generator (𝐺) and carry propagator (𝑃). 

Once the propagator (P) and carry input (𝐶𝑖) are available, sum output can be 

obtained by performing XOR operation of P and 𝐶𝑖. 

 

Fig 4.2: Schematic for obtaining sum output by performing XOR operation of 

P and 𝐶𝑖 
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4.1    Adders and Carry-Skip Adders 
 

The adder is the most critical component in an ALU and for creating a MAC 

using the cordic algorithm. For conventional number systems, there are many 

different types of adders; we'll go over some of them according to Blaauw's 

classification. The synonym and asymptotic time complexity of the adders are 

also given: 

1) simple carry-ripple adder : O(n), 

 2) carry-predict (look-ahead) adder : O(1og n),  

3) carry-skip (bypass) adder : O(𝑛
1

𝑙 ), where “𝑙" represents the number of skip 

layers and  

4) carry-select (conditional sum) adder : O(1og n) 

Carry-predict adders increase the performance of the simple carry-ripple adder 

by making the slow signals come earlier. The carry skip adders increase the 

performance of the standard carry-ripple adder by increasing the availability of 

early signals while trading time for resources. To reduce the number of levels 

in the carry-select adder, the early signals are replicated at the expense of 

additional resources. In a Manchester adder block, the carry-skip delay is 

proportional to block size. 

 

4.2    Dynamic Manchester Carry Chain Adder 
 

A chain of pass-transistors is utilised to implement the carry chain in the 

Manchester Carry-Chain Adder. The Manchester carry chain, as shown in 

fig. 4.3, is developed using dynamic logic and implement the essential 

logical function: 

𝐶𝑖+1 = 𝐺𝑖 = +𝑃𝑖 . 𝐶𝑖  

where 𝐶𝑖 is the carry out. 
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Fig 4.3: Schematic of Dynamic Manchester carry adder 

 

All intermediate nodes (such as 𝐶𝑖+1) are charged to Vdd during precharge. 

Cout k is discharged during the evaluation phase if Cin0 is an incoming carry 

and the prior propagate signal (𝑃𝑖) is high. 

 

Because the dynamic Manchester Carry Adder is built using domino logic, if 

𝑃𝑖  and 𝐺𝑖 are both '0' during the evaluation phase, the intermediate node will be 

floating. As a result, the value at the node discharges continually, causing value 

at the node to be distorted. This distortion causes glitches by affecting the value 

at other intermediary nodes. As a result of these glitches, we proposed a 

modified Static Manchester Carry Adder. 
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Fig 4.4: Glitches due to floating intermediate node 

 

 

 

4.3    Modified Static Manchester Carry Chain Adder 
 

Modified Static Manchester Carry Adder can overcome the problems of floating 

node caused due to Dynamic Manchester Carry Adder. In modified Static 

Manchester Carry Adder, the pass transistors will pass the inverted value of 

carry when carry propagation (𝑃𝑠) is high. When carry generation (G) is high, 

the intermediate node pulled down to ‘0’. On inverting the value, we can obtain 

the value of  𝐶𝑖+1. Table 4.1 shows the operation of Manchester Carry adder. 
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Fig 4.5: Schematic of Modified Static Manchester carry adder 

 

4.3.1 Sizing of the transistors 
 

The operation of static Manchester carry adder is explained in table 4.1. From 

table 4.1, it’s clear that when P=1 and G=0, the value of 𝐶𝑖+1 must be equal to 

𝐶𝑖. When P=1 and G=0, the pass transistor(M1496) and pmos 

transistor(M1497) both are on. So, switched on pmos transistor tries to pull up 

the intermediate node and turned-on pass transistor tries to pass the inverted 

value of 𝐶𝑖 as shown in fig 4.5. If 𝐶𝑖=0, both the pass transistor and pmos 

transistor pulls the intermediate node value to high.  

If 𝐶𝑖=1, then the pmos transistor pulls the intermediate node to high and pass 

transistor pulls down to ‘0’. Whereas the intermediate node needs to obtain the 

value of ‘0’. 

To achieve this, the strength of pass-transistor is increased i.e the width of pass 

transistor is increased and the pmos transistor is made weaker by decreasing its 

width. 
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A  B G P K 𝐶𝑖+1 

0 0 0 0 0 0 

0 1 0 1 0 𝐶𝑖 

1 0 0 1 0 𝐶𝑖 

1 1 1 0 0 1 

Table 4.1: Operation of Manchester Carry Adder 

 

4.4    Modified Static Manchester Carry Adder as 

Subtractor  
 

Table 4.2 shows that sum and difference output is same for adder and subtractor. 

The equation for borrow generation can be changed as follows, 

𝐵_𝑜𝑢𝑡 = ~(𝑋 ^ 𝑌) . 𝐵_𝑖𝑛 +  𝑋𝑏𝑎𝑟 . 𝑌 

                               𝐵_𝑜𝑢𝑡 =  (𝑋𝑏𝑎𝑟 ^ 𝑌) . 𝐵_𝑖𝑛 +  𝑋𝑏𝑎𝑟 . 𝑌               (4.3) 

Equation 4.3 is similar to carry output equation with one of the input (X) 

inverted. 

                               𝐶_𝑜𝑢𝑡 =  (𝑋 ^ 𝑌) . 𝐶_𝑖𝑛 +  𝑋 . 𝑌                           (4.4) 

 

 

Table 4.2: Adder and subtractor outputs for X and Y operands 

This logic can used to get subtraction output from modified static Manchester 

carry adder. This can be used to obtain Static Manchester carry subtractor. 
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For Manchester carry subtractor, we need borrow propagation (𝑃𝑏) and borrow 

generation (𝐺𝑏). From equation 4.3, we obtain, 

                          𝐵_𝑜𝑢𝑡 =  (𝑋𝑏𝑎𝑟 ^ 𝑌) . 𝐵_𝑖𝑛 +  𝑋𝑏𝑎𝑟 . 𝑌                                                        

                            𝐵_𝑜𝑢𝑡 =  𝑃𝑏  . 𝐵_𝑖𝑛 +  𝐺𝑏                                              (4.5) 

 

Hence, we need to obtain 𝑃𝑏 and 𝐺𝑏. For obtaining 𝐺𝑏, the local biltlines of the 

proposed In-SRAM IMC architecture used as shown in fig. 𝑃𝑏 is already 

obtained in the design generating sum output as shown in fig 4.2. 

 

 

Fig 4.6: 𝐺𝑠𝑢𝑏 𝑜𝑟 𝐺𝑏 𝑜𝑟(𝑋𝑏𝑎𝑟 . 𝑌) generation using local bitlines of proposed 

In-SRAM IMC architecture 

This way modified Static Manchester Carry Chain Adder can be used as both 

adder and subtractor. 
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Chapter 5 

MAC Design using CORDIC Algorithm 

 

5.1 CORDIC Algorithm 

 
CORDIC (Coordinate Rotation Digital Computer) is an iterative algorithm that 

calculates 2-dimensional vector rotation in various coordinate systems to 

calculate a variety of mathematical relationships; the beauty of CORDIC 

algorithm is that it only uses shift, addition/subtraction operations, and memory 

elements. The focus of this thesis is to compute multiplication in a linear 

coordinate system using the CORDIC method. Figure 5.1 depicts the 

generalised CORDIC hardware design. The CORDIC employs a scaled form of 

real rotation calculation called pseudo rotation. The pseudo rotation co-ordinate 

calculation equations are: 

𝑋𝑛+1 = 𝑋𝑛 −  𝑌𝑛 . tan(𝛼𝑛) 

𝑌𝑛+1 = 𝑌𝑛 +  𝑋𝑛 . tan(𝛼𝑛) 

                                                            𝑍𝑛+1 = 𝑍𝑛 −  𝛼𝑛                                                               

(5.1) 

The pseudo rotation is computed using trigonometric calculations in the 

CORDIC equations provided in Eq. 5.1. As illustrated in Eq.5.2, the linear 

converges CORDIC equations form of the pseudo rotation coordinate 

equations. For CORDIC computing, three components are required: a 

multiplexer, shift register and an adder/subtractor. 

𝑋𝑛+1 = 𝑋𝑛 −  𝑚. 𝑌𝑛 . 𝑑𝑛. 2−𝑛 

𝑌𝑛+1 = 𝑌𝑛 +  𝑋𝑛 . 𝑑𝑛. 2−𝑛 

                                                            𝑍𝑛+1 = 𝑍𝑛 −  𝑑𝑛. 𝐸𝑛                                                             

(5.2) 
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                                   𝑑𝑛  ∈  {−1, + 1};  𝑖 = 0,1,2, … . . , 𝑛 − 1 

A circular, linear, and hyperbolic coordinate system are shown by the modes 

m ∈ {1, 0, −1} respectively. 

 

En is the memory elements which are different with respect to computation 

mode at each nth iteration which is equal to 2−n, tan−1(2−n) and tanh−1(2−n) 

for linear, circular and hyperbolic rotation mode respectively. 

 

Fig 5.1 Sign N-bit precision recursive CORDIC architecture that can realize 

multiply- accumulate computation in linear mode (m = 0 & Ei = 2−i) 

 

 
5.1.1 CORDIC configuration to MAC 

At each iteration, the CORDIC will be placed in linear rotation mode with 

variable mode m set to zero and En set as 2−n pre-calculated memory element. 

Eq. 5.3 shows the revised CORDIC equations for pseudo rotation calculations 

in linear rotation mode. For the ith iteration, the output at Yi+1 is an accumulation 

of Yi and the Xi shifted version. It should also be highlighted that the 

computation can be used to multiply and accumulate data. 

𝑋𝑖+1 = 𝑋𝑖 
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𝑌𝑖+1 = 𝑌𝑖 +  𝑋𝑖 . 𝑑𝑖. 2−𝑖 

                                            𝑍𝑖+1 = 𝑍𝑖 −  𝑑𝑖 . 2−𝑖                                 (5.3) 

                                   𝑑𝑛  ∈  {−1, + 1};  𝑖 = 0,1,2, … . . , 𝑛 − 1 

The convolutional neural network's main processing block is multiplication 

and accumulation. In addition, comparable operations can be computed using 

the CORDIC method in linear rotation mode, which uses shift registers and 

adders instead of multipliers.  

The computation insights    multiply-accumulate operation at Yi+1 is 

valid when the Z0 → 0. The input, bias value, and matching weight are 

represented by Xin, Yin, Zin, respectively. Both Xin (input) and Zin (weight) are 

assumed to be fractions with an 8-bit fixed-point representation in this 

calculation. In order to compute with 8-bit accuracy, we must iterate a set of 

equations until Z=0 or a maximum of 8 iterations. The barrel shifter can be 

used to achieve the i-bit right shift input X0 during the ith iteration. With the 

exception of bit-shift and direction, this implementation technique is 

equivalent to normal shift and add multiplication. The CORDIC algorithm for 

multiplication of X0 and Z0 is shown in Eq. 5.4, which is derived from Eq. 5.3. 

Input (X0), bias value (Y0), and matching weight (Z0) are represented by Xin, 

Yin, and Zin as illustrated in fig 5.1. 

 

 

Fig 5.2: n-stage pipelined MAC design using CORDIC algorithm 
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𝐻𝑒𝑟𝑒, 𝑋𝑜𝑢𝑡 = 𝑋𝑖𝑛 &      𝑤ℎ𝑒𝑛,     𝑍𝑜𝑢𝑡  → 0 

                                          𝑌𝑜𝑢𝑡 =  𝑌𝑖𝑛 +  𝑋𝑖𝑛 ∗  𝑍𝑖𝑛                 (5.4) 

The multiplication at Yout i.e (Xin ∗ Zin) can be achieve through addition of 

shifted version of X0 

with input X0 as explained below using Eq.5.5. 

𝑥𝑗 = 𝑥𝑗𝑁 ∗ 𝑤𝑁 = 𝑥𝑗𝑁 ∗  ∑ 𝑎𝑖 ∗  2−𝑖

𝑗

𝑖=1

 

                                       𝑥𝑗 =  ∑ 𝑎𝑖 ∗  𝑥𝑗𝑁 ∗ 2−𝑖𝑗
𝑖=1                                                (5.5) 

𝑥𝑗 is made up of a shifted form of input 𝑥0 with regard to weight 𝑧0, according 

to Eq. 5.5. The typical right shift and add based multiplication is used in this 

approach. By pushing ai to zero one bit at a time, the unknown coefficient ai 

can be discovered. In CORDIC architecture, if the ith bit of input N is non-zero, 

𝑥𝑖 is first right-shifted by ‘i’ bits and then added to the current value of 𝑦𝑖. When 

𝑥𝑗 (Yn in Eq. 5.3) is set to zero, all bits are checked, and 𝑥𝑗 includes the signed 

product of input feature 𝑥0 and weight 𝑧0. Due to its iterative structure, a single 

MAC operation requires ‘i’ iterations to compute the final desired output, which 

is the only reason for its low speed. 

 

5.2 Pipelining to increase performance of MAC 
 

Different hardware architectures for 2D rotational CORDIC in linear rotation 

have been devised to make hardware more efficient and boost throughput. 

Furthermore, the CORDIC iteration is mutually exclusive, implying that they 

are independent of one another. As a result, pipelining for high throughput 

applications at the expense of area overhead is desirable. Figure 5.2 depicts a 

modified n-stage pipeline CORDIC architecture that improves performance. 

After the initial (n-1) clock cycles, it generates the desired output at each clock. 
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For the intended output, CORDIC-based work input is n-bit right shifting at 

the nth stage. It necessitated the use of a barrel shifter, which increased the 

amount of space available overhead. We employed single bit shift at each level 

in our project, which eliminated the requirement for a barrel shifter. 

Furthermore, each level has only two adder/subtractor logic blocks, as shown 

in Figure5.2. 

As demonstrated in Figure5.3, we improved the performance of the MAC by 

using pipeline CORDIC stages for multiplication. The suggested multiplier uses 

dynamic fixed-point encoding and has the same input and output precision. We 

utilise the same input and output format, therefore ib in=ib out=w,, where w is the 

number of integer bits omitting the sign bit. However, in the case of fixed-point 

formats, the final decision must be made depending on the target application that 

requires the most accuracy and precision. 

The output of the multiplier is added together using an adder with additional 

overhead bits, i.e. log2N. 

 

5.2.1 Designing of Adder/Subtractor block using IMC 
 

As illustrated in Fig. 5.2, the MAC operation is carried out using the CORDIC 

method. The mode variable, m, is set to 0 in linear mode, while 𝐸𝑖 is set to 2−𝑖. 

The overall output is then translated using equation 5.2, as seen below. 

𝑌𝑖+1 = 𝑌𝑖 +  𝑋𝑖 . 𝑑𝑖. 2−𝑖 

                                                            𝑍𝑖+1 = 𝑍𝑖 −  𝑑𝑖 . 2−𝑖                                                      

(5.2) 

The direction signal 𝑑𝑖 is determined by 𝑍𝑖 's sign bit. The d i direction 

determines the capability of the add/sub-block utilised in CORDIC architecture. 

The direction signal is significant since it aids in iterative convergence of the 

algorithm. The rotation direction for the 𝑖𝑡ℎ iteration is 𝑑𝑖, and the output at Z 

converges to 0. 
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Add/sub–block can be designed using IMC as mentioned in chapter 2 and 4. 

Based on the value of  𝑑𝑖, the IN-SRAM IMC using local bitlines and global 

bitlines (proposed design) and Modified Static Manchester Carry Adder 

operates as an add/sub block. 

As seen in chapter 4, the static Manchester carry adder can operate as subtractor 

when one of the input is inverted and then carry generator(G) and carry 

propagator(P) values are obtained. 

Hence, we need to obtain 𝑃𝑏(borrow propagator) and 𝐺𝑏(borrow generator). For 

obtaining 𝐺𝑏, the local biltlines of the proposed In-SRAM IMC architecture 

used. 𝑃𝑏 is already obtained in the design while generating sum output as shown 

in fig 4.2. 

For this operation, a mux is designed to operate in addition/subtraction mode 

with 𝑑𝑖(sign bit of 𝑍𝑖) as select bit as shown in fig 5.3. 

 

 

Fig 5.3: MUX for selecting 𝑃0(adder) or 𝑃0𝑏(subtractor) with select pin 
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5.3 Number of pipelining stages 

To compute the N bit data for the iterative CORDIC, we must complete N 

clock cycles to obtain the output data. For example, if we use cordic to do an 

8-bit multiplication operation, we must wait for 8 clock cycles to get the right 

result. This is the problem with iterative CORDIC MAC, but we can get around 

it by using pipelining. However, we should not use 8 step pipelining to boost 

throughput because this is not the best method. As a result, we ran an 

experiment to determine the number of clock cycles required to provide 

accurate output values. The experiment revealed that roughly 4 or 5 clock 

cycles are required to obtain the output value, with precision saturating after 4 

or 5 values. We get the same accuracy with 5 clock cycles instead of 8 clock 

cycles. Table 5.1 shows that after 5 clock cycles, the desired result is obtained. 

 
 

 

Table 5.1: For high-performance MAC operation, iteration-level calculation is given 

for MAC computation using CORDIC in linear mode for fixed (8, 7) representation 

Processing at each nth stage in pipeline architecture. 
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5.4 Generation of MAC symbol 

 

A symbol for MAC is created containing input, bias, weights, and read enable 

as input to the MAC and bias output at the end of 3rd stage gives the MAC output 

which is represented in the MAC symbol and weight output of 3rd stage of 

pipeline is also obtained which will be tending to zero. 

 

Fig 5.4 : MAC symbol generated for 3 stage pipelined CORDIC based MAC 

design using In-Memory Computing and Static Manchester Carry Adder 

 

In the next chapter, we will be discussing the results of proposed MAC design.  
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Chapter 6 

Results and Discussions 

 

We covered the difficulties of a hardware implementation of CNN in FPGA 

in the previous chapters. The use of resources and the precision of data bits are 

the two most pressing concerns. The two difficulties are addressed by our 

proposed architecture. For example, more bit precision is required for better 

accuracy, but with the suggested architecture, we can achieve acceptable 

accuracy with lower bit precision. 

In this chapter, we discuss the validation of the proposed architecture and 

how it is better compared to other architecture. 

We investigated the inference accuracy on LeNet using MNIST and CIFAR-10 

datasets to validate the compatibility of suggested architecture in a CNN model. 

Both fixed point and multi-bit precision (i.e. 2,4,8,16,32-bit) precision are 

observed. We can see that the accuracy loss for 8-bit and 32-bit precision is 

quite small (less than 2%). In comparison to 32-bit precision, 8-bit calculation 

reduced 4 computational costs. Furthermore, the proposed high-performance 

MAC is built with a pipelined CORDIC architecture and a modified LeNet 

architecture. Table 6.1 compares the inference accuracy of the proposed and 

tensor library-based computations. 

We've fixed the precision at 'fixed 8, 7' for further discussion. For physical 

parameters, the VLSI design should be efficient, and computation 

approximation is one option. Furthermore, deep neural network algorithm 

learning is error-resistant. According to the results of a Pareto analysis of 

pipeline stages, a five-stage pipeline architecture is efficient for MAC 

calculation and provides the requisite final accuracy. Because it is responsible 

for chip-area and on-chip power consumption, the best pipeline stages have 

been used. In addition, as previously mentioned, the computation of five 

pipeline stages involves approximation. Different error metric formulae are 

used to check the output calculation. Table 6.2 shows the error metric equations 
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for mean square error, mean absolute error, average error, and standard 

deviation. 

 

 

 

 

 

 

Table 6.1: Network Inference 

Accuracy 
 
 

Dynamic MNIST CIFAR-10 

Fixed-Point   Tensor CoMAC   Tensor CoMAC 
 

32-bit 99.1 97.8 81.7 77.1 

16-bit 98.7 97.1 81.2 76.8 

8-bit 98.2 96.1 80.7 76.1 

4-bit 97.6 94.2 79.6 75.1 

2-bit 85.9 80.1 48.0 44.2 

 

6.1 Delay Estimations 

 
The proposed 3-stage pipelined CORDIC based MAC architecture increases the 

speed of operation of MAC because of pipelining and adder/subtractor design 

using IMC and modified Static Manchester Carry Adder. In case of IMC, the 

necessary computations take place while reading data from the memory itself. 

Further, when these computations are given to the modified Static Manchester 

Carry Adder, the delay is further reduced. Pipelining, results in parallel 

computing of data. Result of these, significant improved in the delay is observed 

compared to state of the art. Table 6.3 justifies significant improvement in 

delay. 

 

Bit-Precision LeNet Inference Accuracy (%) 
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Table 6.3: Delay comparison for the proposed design and the state-of-the-art 

for MAC computation @45nm TT process corner for 8-bit precision. 

 Delay(ns) 

Wallace Tree 6.54 

Shift-add 4.27 

Vedic multiplier 7.66 

Proposed CORDIC MAC using IMC 1.59 

 

6.2 Power Estimation 

 
Table 6.4: Variation of Dynamic power with voltage TT process corner for 8-

bit precision 

Voltage Dynamic Power(µW) 

1.8 385 

1.7 320.8 

1 144.4 

 

Table 7.4 shows the variation of dynamic power for Typical-Typical (TT) 

process corner for 8-bit precision with different voltages. As the voltage comes 

down, we can observe significant decrease in the dynamic power of MAC. In 

order to reduce the dynamic power, it’s best suited to operate MAC at 1V. When 

operated at 1V, both the dynamic power and delay are significantly reduced. 
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6.3 Functional Verification 

 
The MAC is also functionally verified for various inputs, bias and weights. It is 

verified on 3-stage pipelined architecture. The following tables shows the 

results at each stage for various input, bias and weight. The tables also shows 

that 𝑍𝑛+1 converging to zero at the end of 3rd stage of pipelined architecture. 

With MAC output obtaining at 𝑌𝑛+1, at the end of 3rd stage of pipelined 

architecture. 

Table 6.5: Computation of MAC using CORDIC and IMC for fixed point 

representation 

 

 

Table 6.6: Computation of MAC using CORDIC and IMC for fixed point 

representation for different input, bias and weight 

n 

(Pipelined 

stage) 

dn 

(𝑛 +

1)𝑡ℎ 

iteration 

𝑋𝑛+1 → 𝑋0 

Input 

𝑌𝑛+1 → 𝑌𝑛

+  𝑋𝑛 . 𝑑𝑖 . 2−𝑖 

Bias 

𝑍𝑛+1 → 0 

Weight 

Initial - 0.1011000 0.0011000 0.1110100 

0 +1 0.0101100 0.1110000 1.1110100 

1 -1 0.0010110 0.1000100 0.0110100 

2 +1 0.0001011 0.1011000 0.0010100 
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6.4 Conclusion 
 

The CNN accelerator design is implemented using GPUs, FPGAs, and ASICs. 

GPUs have the advantage of design freedom, but they are inefficient in terms 

of energy consumption. The number of hardware resources available to FPGAs, 

such as MAC units and on-chip memory, is restricted. Convolution was difficult 

due to a lack of MAC units on the FPGA. ASICs use less power and take up 

less area. As a result, it's excellent for MAC design. Higher bit precision 

computation (32 bit or 64 bit) is likewise more expensive in terms of area and 

power. As a result, a decrease in hardware complexity (i.e., bit precision) and a 

faster response time without sacrificing accuracy are highly desirable. To 

overcome the above limitations, we propose a Pipelined CORDIC based MAC 

using In-Memory Computing and modified Static Manchester Carry adder. This 

proposed design significantly increases the throughput by 40% when compared 

with “Shift and Add”. Choosing 8-bit precision improves the power 

consumption and area utilization. When operated at 1V, the power consumption 

decreases by 38%. Hence, the proposed design offers the best throughput among 

the state of art as shown in table 7.3 and consumes lesser power and area when 

designed at 8-bit precision and operated at 1 V. 
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