

7th June 2022.

07/06/2022

07/06/2022

31/05/2022

07/06/2022

I

ACKNOWLEDGEMENT

I wish to thank my supervisors, Dr. Srivathsan Vasudevan, Associate

Professor, IIT Indore, and Dr. Satya S. Bulusu, Associate Professor,

IIT Indore for their patience, guidance, and support. I have benefited

greatly from their wealth of knowledge. I am extremely grateful that

they took me on as a student and continued to have faith in me

throughout the year.

I sincerely thank my PSPC members, Prof. Santosh Kumar

Vishvakarma, and Dr. Devendra Deshmukh, for their useful

suggestions and valuable remarks during M.Tech project work. Their

encouraging words and thoughtful, detailed feedback have been very

important to me. I also acknowledge IIT Indore for providing me the

necessary infrastructure and research facilities for the project work. I

am thankful to all the faculty members of the Discipline of Electrical

Engineering for their kind support during my M.Tech work.

Besides, I would not forget Mrs. Kritika Bhardwaj for investing all

her valuable time with me. Finally, I owe a lot to my family, friends,

and classmates for always encouraging and supporting me to stay

motivated and focused on completing the project.

HARSHIT VERMA

II

Dedicated to my
family

III

Abstract

REDUCING COMPUTATIONAL COMPLEXITIES USING GPU AND

FPGA

Computationally intensive applications such as weather forecasting,

computational biology, Molecular Dynamics etc. requires a lot of time to execute

a task, because usually these tasks are sequentially executed. Because the iterative

nature of these algorithms on a single CPU can take up a lot of computation time

for relatively basic simulations, there's a lot of pressure to find ways to improve

efficiency. As a result of present processor technology's clock restrictions,

improved computer performance is becoming increasingly reliant on parallelism.

 This project deals with exploring the different ways in which parallelism

can be inherited for calculations of Interatomic potentials of gold nanoparticle.

Phase 1 of the research focuses on computing on GPUs, which can drastically

speed up computer applications by leveraging GPU capabilities. The sequential

component of the workload in GPU-accelerated applications operates on the CPU,

which is tuned for single-threaded speed, while the compute-intensive portion of

the application runs in parallel on thousands of GPU cores. A portion of complex

algorithm is thereby studied and parallelized and subsequent comparative analysis

is done to observe whether the results are obtained accordingly or not.

 Phase 2 of the project deals with the computations being carried out on

FPGA and establishing communication between PC and FPGA using PCIe

protocol. Input data from host PC is first sent to FPGA where various calculations

such as force, energy values is being done and these values are then sent back

from FPGA to host PC and this process is done iteratively by defining the number

of steps. Finally, the total time taken in these steps is calculated. The primary goal

of our work is to reduce the computational time taken by sequential C code of

complex algorithm with the help of Parallelism using GPU and FPGA.

IV

TABLE OF CONTENTS

 TITLE PAGE……………………………………………………………. I

 DECLARATION PAGE…………………………………………............ II

 ACKNOWLEDGEMENT………………………………………………. III

 DEDICATION PAGE……………………………………………........... IV

 ABSTRACT…………………………………………………….............. V

 TABLE OF CONTENTS……………………………………………….. VI

 LIST OF FIGURES……………………………………………………... IX

 LIST OF TABLES………………………………………….................... XI

 ACRONYMS………………………..……………………....................... XII

V

Chapter 1: Introduction 1

1.1 Background 1

1.2 Motivation 1

1.3 Objective 2

1.4 Organization of the thesis 3

Chapter 2: Literature Survey 4

2.1 Parallel Computation and Graphics Processing Unit 4

2.2 The Modern GPU 7

2.3 Architecture of GPU 9

 2.3.1 Inside a Stream Multiprocessor(SM) 10

2.4 FPGA 11

 2.4.1 Why FPGAs? 12

 2.4.2 Overview 12

 2.4.3 History 13

2.5 Kintex KC 705 Evaluation Board 16

Chapter 3: Methodology 18

3.1 Problem Formulation 18

3.2 Algorithmic flow 19

3.3 CPU vs GPU 19

3.4 CUDA Programming 20

 3.4.1 Host and Device 21

 3.4.2 Porting to CUDA 22

 3.4.3 Simple Processing Flow 22

 3.4.4 Parallel Programming in CUDA C 23

 3.4.4.1 GPU Kernels: Device Code 24

 3.4.4.2 CUDA Thread Organization 25

 3.4.4.2.1 Unique index calculation for a thread in a grid 29

 3.4.4.2.2 Execution Model 30

VI

 3.4.4.3 Running Code in Parallel 31

3.5 GPU Memory Hierarchy 32

3.6 Basic Architecture of work done on FPGA 33

3.7 Communication protocol - PCIe 35

 3.7.1 Definition of BUS, DEVICE AND FUNCTION 36

 3.7.2 PCIe BUSES 36

 3.7.3 PCIe DEVICES 37

 3.7.4 PCIe FUNCTIONS 37

3.8 Implemented block design 38

 3.8.1 DMA/BRIDGE SUBSYTEM FOR PCI EXPRESS (PCIe) 38

 3.8.2 CUSTOM HLS IPs 39

3.9 Functionality 40

Chapter 4: Results and Discussion 44

4.1 Results on GPU 44

4.2 Results on FPGA 47

Chapter 5: Conclusions and Future Work 50

 References 51

VII

 LIST OF FIGURES

Figure No. Figure Title Page

No.

Fig. 2.1 Simplified 2 stage graphics pipeline 6

Fig. 2.2 Graphics Rendering Pipeline 6

Fig. 2.3 GPU Architecture 10

Fig. 2.4 Inside a Streaming Multiprocessor (SM) 11

Fig. 2.5 Basic FPGA Structure 13

Fig. 2.6 PAL(Programmable Array Logic) 14

Fig. 2.7 PLA(Programmable Logic Array) 15

Fig. 2.8 The Kintex KC 705 Evaluation Board 17

Fig. 3.1 Algorithmic flow of our code 19

Fig. 3.2 Comparison of CPU and GPU with respect to cores 20

Fig. 3.3 (a) Host and (b) GPU Device 21

Fig. 3.4 Distribution of code execution between CPU and GPU 22

Fig. 3.5 (a) Copy input data from CPU memory to GPU memory, (b)

Load and run a GPU program, caching data on the chip for

better performance, (c) Copy results from GPU memory to

CPU memory

23

Fig. 3.6 Representation of Vector addition in parallel 24

Fig. 3.7 Representation of Block and Grid in a single dimension 26

Fig. 3.8 Representation of Block and Grid in multi-dimension 26

Fig. 3.9 Limitation for number of (a) threads in a block in each

dimension, (b) blocks in a grid

26-27

VIII

Fig. 3.10 Illustration of thread index assigned to various threads 27

Fig. 3.11 Illustration of block index assigned to various threads 28

Fig. 3.12 Illustration of dimension of a block based on number of

threads

29

Fig. 3.13 Representation of local and global thread Id 29

Fig. 3.14 Hardware perspective of CUDA terminologies while

execution

30

Fig. 3.15 Group of threads in a warp before executing on

multiprocessor

31

Fig. 3.16 Organization of memory inside a GPU 34

Fig. 3.17 Flow of the work done on FPGA 34

Fig. 3.18 Transfer between host and card using PCIe communication 35

Fig. 3.19 Bidirectional connection between the two components using

PCIe

36

Fig. 3.20 Block design implemented on Xilinx Vivado 38

Fig. 3.21 Memory Mapping for storing data in DDR3 memory 41

Fig. 4.1 Performance profile showing the latency report without

directives

47

Fig. 4.2 Performance profile showing the latency report with

directives

48

IX

LIST OF TABLES

Table No. Table Title Page No.

Table 3.1 Values of thread index assigned to various threads. 28

 Table 3.2 Values of Block index assigned to various threads 28

 Table 4.1 Hardware specifications of the CPU and GPU used on

Colab

44

 Table 4.2 Computational time of CPU and GPU

44

 Table 4.3 Time taken to execute serial C code in each of the 10

iterations

45

 Table 4.4 Time taken to execute CUDA C code for 128

threads/Block

45

 Table 4.5 Time taken to execute CUDA C code for 256

threads/Block

46

 Table 4.6 Time taken to execute CUDA C code for 512

threads/Block

46

 Table 4.7 Comparison of timings on Server and FPGA 49

X

ACRONYMS

API Application Programming Interface

ASIC Application Specific Integrated Circuit

AXI Advanced Extensible Interface

CAD Computer Aided Design

CPI Cycles Per Instruction

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DDR Double Data Rate

DMA Direct Memory Access

FPGAs Field Programmable Gate Arrays

GPGPU General Purpose Computing on Graphics Processing Unit

GPUs Graphics Processing Units

GUI Graphical User Interface

H2C/C2H Host to Card/Card to Host

HDL Hardware Description Language

HLS High Level Synthesis

IP Intellectual Property

MD Molecular Dynamics

PCIe Peripheral Component Interconnect Express

PGA Professional Graphics Adapter

RTL Register Transfer Level

SFUs Special Function Units

SGI Silicon Graphics Inc.

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

SP Scalar Processor

1

Chapter 1

Introduction

1.1 Background

The size and volume of data that enterprises must cope with is expanding

quickly as technology advances. As a result, a high-performance computing

architecture is required. High performance computing is a rapidly growing field in

computer and electronics engineering. These high-performance computing

algorithms can be run in parallel on a variety of processing devices and then

combined to provide the desired output owing to parallelism. Parallel algorithms

are extremely effective for processing large amounts of data in a short amount of

time. An algorithm's analysis allows us to assess whether or not the algorithm is

useful. In general, an algorithm is evaluated based on how long it takes to execute

(Time Complexity) and how much space it takes up (Space Complexity). Storage

space is no longer an issue because sophisticated memory devices are now available

at cheap prices. Thereby, the main focus here is on reducing the computation time.

1.2 Motivation

Due to increased power consumption, frequency scaling came to an end in

caused a shift to parallel multi-core computing to increase performance. There are

a wide variety of technologies that can be used for acceleration which have

dedicated logic for specific workloads. These include Graphics Processing Units

(GPUs) [2] and Field-Programmable Gate Arrays (FPGAs) [3]. Reconfigurable and

parallel computing is a way to perform high performance computing. Suppose we

want to perform 1 million tasks, CPU will do this work in a sequential manner and

take much time. But, GPU utilizing its thousands of cores at a time takes much

lesser time. Furthermore, because we can incorporate numerous parallel execution

units into an FPGA, we may distribute data across the parallel execution units and

2

acquire the desired computational results in much less time if we have a big volume

of data to flow through the same algorithm.

1.3 Objective

The main objective of this project is to reduce the computation time taken

by executing complex C algorithm based on interatomic potential of gold

nanoparticle. Parameters such as Forces, Energy, and Distances are being

calculated by this algorithm. We will show how GPU (Graphics Processing Unit)

& FPGA (Field Programmable Gate Array) can be used efficiently in High

performance computing applications. For calculating force values, we need both

radial and angular description of that particle [4]. The major computation time of

force calculation is taken by calculating angular description. Thereby, a portion of

this algorithm till calculation of angular descriptor is studied and parallelized using

GPU. Subsequently, these results are then compared with their CPU counterpart

results.

 In this project, it is also proposed to use FPGA. The application of directives

(to reduce latency) [5] is possible with the help of Vivado High Level Synthesis

(HLS). Vivado HLS is software provided by Xilinx which converts high level

language(C, C++) to Hardware Description Language (HDL). With the help of

 In the present work, Xilinx VIVADO (2017.2) software is used and HLS IP

for calculating force and energy values is exported to VIVADO for completion of

block design which will be dumped on to FPGA board (Kintex KC 705). Then,

communication is established between host PC and FPGA board using PCIe

(peripheral component interconnect express) protocol. Input values from PC are

being sent to FPGA which calculates the force, energy values and send back these

values to PC. Finally, total time taken in the entire process is calculated.

3

1.4 Organization of the thesis

This section describes the organization of thesis. The thesis is sub- divided

into five chapters and presented as follows:

Chapter 1 provides the background, motivation, and objective of the project.

Chapter 2 contains the introduction to GPU, architecture of GPU, FPGA, its history

and details about the FPGA board used in the project.

Chapter 3 describes the methodology used to implement the project work.

Chapter 4 provides the results obtained and its related discussion.

Chapter 5 presents the project conclusion and scope for future work.

(This page is left blank intentionally)

5

Chapter 2

Literature Survey

2.1 Parallel Computation and Graphics Processing Unit

In general, computing speed is often gauged by the number of clock pulses

needed to complete an instruction, the so- -

Although a variety of techniques are used to achieve instruction-level and data-

level parallelism, and hence improve CPI, until the turn of the century the most

popular means among commodity microprocessors of improving computing speed

was to increase the clock frequency. Due to heat dissipation and energy

consumption issues, however, this strategy eventually became untenable. The

number of tasks that could be processed in each clock period within a practical

power budget stopped improving at its previous rate. Processor developers

responded to this circumstance by designing units with multiple processors or cores

per die and thus offered the possibility of executing instructions in paral

POWER4 [6], released in 2002, is the first commercial processor to explore this.

Today, two different families of processors are marketed: multi core and many

cores. In a multi core approach, a few cores (typically two to ten at present) are

integrated into a single microprocessor chip with the intention of speeding up the

execution of the programs traditionally run on commodity machines including

personal computers. In a many core approach, several hundred & thousands cores

(each with a limited computational ability and lower power needs) are oriented in

such a way that maximizes the throughput of traditionally parallel problems. The

GPU falls into the many core category and has been adopted as the parallel platform

of focus in this thesis.

When it was first conceived, the Graphics Processing Unit (GPU) was

designed for real-time graphics, as we all know. A modern GPU, on the other hand,

is not only a strong graphics processor, but also a general-purpose computing

processor that focuses on parallel processing and high data bandwidth. Since the

6

clear slowing of CPU speed over the last decade, more people are turning to GPU

for general-purpose computing, and it has become a popular topic since 2011. GPU

became a very promising rival in high performance computing with rapid increases

in both computation power and programmability. GPUs are multi-core processors

that can run a large number of threads. SIMD processors are energy efficient

because they only fetch, decode, and dispatch one instruction per a vector of

processing elements [7]. A GPU's multiple threads keep it versatile, or at least

flexible enough to handle a wide range of calculations. GPGPU stands for "General

Purpose Computing on Graphics Processing Units."

Graphics processors began as fixed-function display controllers, offloading

the rendering of a computer screen from a general-purpose CPU. Originally

graphics chips could only draw lines, arcs, and geometrical shapes like circles,

rectangles, as well as character bitmaps in 2D. Many rendering stages, particularly

those involving computations in floating point, were executed on a CPU initially.

At later stage the graphics processors could also render 3D images, which are used

mainly in computer games. With technological advancements, graphics chips

became capable of performing many steps of the rendering process on their own.

The NVIDIA GeForce 256 was released around the beginning of the century, and

it was the first graphics processor to be named a GPU. It could perform all of the

geometry calculations independently; eliminating the need for the host CPU's

floating point computations.

Fig. 2.1: Simplified 2 stage graphics pipeline

Fixed processing pipelines were used on the early GPUs. Each stage of the

pipeline had its own set of functions, which were implemented in specialized

hardware. The graphics pipeline is a diagram that depicts the flow of graphics data

via multiple stages. It's basically a method of translating coordinates from the

7

application programmer's preferred format to the display hardware's preferred

format. The pipeline converts the 3D data in the form of 20-triangle models or

shapes, as well as 3D coordinates (x, y, z), into pixels that are displayed on the

monitor's 2D space, representing the objects' surface, are stored at the top of the

pipeline. The concept of a 3D graphics pipeline can be represented in a numerous

ways, some of which are quite complicated while others are quite simple. In its

most basic form, the entire procedure can be divided into two steps. In the first step,

the geometry processing stage converts 3D object coordinates to 2D window

coordinates. The rendering step, which represents the surface of the object

represented in Figure 2.1 by filling the pixels' area between the 2D, coordinates

with pixels.

Fig. 2.2: Graphics Rendering Pipeline

 Graphics rendering pipeline [8] which is shown in Figure 2.2 consists of

the following stages:

ransformations: Converting the coordinates of objects to a common

coordinate system is a common step in such a pipeline (e.g. scaling, rotation and

translation).

The color of each triangle is calculated based on the lights in the scene.

This stage was previously done with Phong shading.

imulation: Each colored triangle is projected onto the film plane of the

virtual camera.

8

 It is the process of converting triangles to pixels and includes

clipping to the edges of the screen. The color of each pixel is calculated by

interpolating the vertices of a triangle.

exturing: If a texture is used for increased realism, it should be mapped to pixels.

In the rasterization process, texture coordinates are calculated.

2.2 The Modern GPU

The early 1980s are often regarded as the beginning of the current era of

computer graphics. The first video cards for the PC were manufactured by IBM in

1981. The monochrome display adaptor could only display monochrome text and

couldn't address a single pixel; therefore the screen had to be changed in a 9 × 14

pixel region. Despite the limitations associated with these cards and only non-

colored text being allowed, given the restrictions of the original PC, they were an

acceptable answer at the time. Although video cards improved with higher

resolutions, colour depths, and the ability to change individual pixels (known as

"All Point Addressable"), they were still constrained because they were dependent

on the main system CPU to conduct all of the calculations. These new audiovisual

capabilities put extra burden on the CPU. The first processor-based video card for

the PC was released by IBM in 1984. The Professional Graphics Adapter (PGA)

had its own Intel 8088 microprocessor onboard, which handled all video-related

operations and freed up the main CPU to focus on other things. This was a pivotal

moment in the history of the graphics processing unit (GPU), as it introduced the

idea of using a separate processor for graphics computing system computations. In

an XT or AT machine, the PGA video card required three card slots, as well as a

specific professional graphics display, and cost more than $4000 [9]. All of this

contributed to the PGA card's short lifespan; nonetheless, version 17 which was

capable of 3D animation with 60 frames per second and was aimed at high-end

corporate markets for engineering and scientific purposes rather than end users.

Larger system needs and higher processing power were necessary for the graphics

computer system family to transition and occupy a more significant place after the

release of VisiOn, the first GUI for the PC, in 1983. Silicon Graphics Inc. (SGI)

9

was a nascent computer graphics hardware business that concentrated its efforts on

developing the fastest computer graphics machines available. They were also

developing industry standards that serve as the framework for today's computer

graphics hardware and software, in addition to their technologies. The platform-

independent graphics API OpenGL [9] is one of today's software standards.

OpenGL was first launched by SGI in 1989 and has since become the most

extensively used and supported 2D and 3D API in the industry. The concept of a

graphics pipeline was also pioneered by SGI and is now a fundamental part of the

design of graphics hardware (which will be discussed later). This design approach

is quite comparable across all major GPU manufacturers, such as NVIDIA [10],

ATI[11], Matrox[12], and others, and has been a main driving force behind GPU

technology's rapid expansion. The development of three-dimensional PC games

such as Quake III, Doom, Ultimate Tournament, flight simulators, and others has

been the most recent motivation behind the GPU design and implementation boom.

These games have prompted the adoption of high-performance GPUs in PCs, and

as GPUs have become more powerful, new 3D applications have emerged. Some

applications, like geophysical visualization software for oil companies [13], are

supercomputer-class applications that have been ported to the PC. 3D games

accomplished for the PC the same task as CAD has done for high-end graphics

systems. Despite both PC graphics and high-end industrial graphics achieving

significant technological advances, it is very important to realize that they serve

different purposes. Offline rendering systems, such as those used in CAD

programmes, prioritize accuracy over frame rate, but real-time rendering systems,

such as gaming engines and simulators, prioritize frame rates for smooth and fluid

animations, even if it means sacrificing geometry and texture detail. GPUs have

become far more complicated than a general-purpose CPU as technology has

progressed. With 222 million transistors, NVIDIA's latest GeForce 6 Series GPUs

have more than doubled the transistor count of a Pentium 4. According to Moore's

Law, the density of transistors on a given die size doubles every 12 months,

however, this has now dropped to every 18 months, in fact, the performance of

processor doubles every 18 months. GPU makers have discovered that by

10

increasing the transistor count two fold on a given chip size every 6 months,

transistors have outperformed Moore's Law principles in the last 8 to 10 years. With

this rate of development and performance possibilities, it's quite easy to see why a

deeper look at the GPU for applications other than graphics is required. Multiple

processes can run over the same single threaded pipeline on a general-purpose CPU

with a single threaded processing architecture, which accesses its specialized data

over a single memory interface. Stream processing, on the other hand, is the

architecture of GPUs. This design is much better at dealing with huge data streams,

which are common in graphics applications. A GPU can have thousands of stream

processors, each of which is connected to another stream processor through an

exceptionally fast dedicated pipeline. Unlike the CPU, the stream processors are

interconnected through a specialized pipeline, therefore there are no conflicts or

delays. Every transistor on the device is active at all times in the stream processing

model. This raises the question of whether the GPU will eventually replace the CPU

as the computer's primary processor.

2.3 Architecture of GPU

i. The future of high throughput computing is streaming processor.

ii. A Architecture need to be build around the unified scalar stream processing

cores.

iii. GeForce 8800 GTX (G80) was the first GPU architecture built with this

new paradigm.

In our project, we have used NVIDIA TESLA K80 GPU device. It is based on

Kepler architecture as shown in fig.2.3. GK210 is the graphics processor used.

11

Fig. 2.3: GPU Architecture

2.3.1 Inside a Stream Multiprocessor(SM)

The streaming multiprocessors (SMs) illustrated in fig.2.4, which are a

component of the GPU, run our CUDA kernels. Each SM has the following :

 Thousands of registers that can be divided into threads of execution

o Several caches:

o Contexts switching between threads and issue commands can be

made fast using warps scheduler to ready-to-run warps.

o Shared memory allows threads to exchange data quickly. Constant

cache for quick readings from constant memory broadcast.

o Bandwidth from texture memory is aggregated using texture cache.

o Latency to local or global memory is reduced using L1 cache.

 Integer and floating-point operations execution cores:

o Double-precision floating point operations

12

o Integer and single-precision floating point operations

o Single-precision floating-point transcendental functions are

represented using Special Function Units (SFUs).

Fig. 2.4: Inside a Streaming Multiprocessor (SM)

2.4 FPGA

FPGAs are prefabricated electronically programmable silicon devices that

may build practically any form of digital circuit or system [14]. Compared to fixed-

function ASIC technologies like conventional cells, they have a number of major

advantages: FPGAs are relatively cheap in cost and can be programmed in less than

a second (and can often be changed if a mistake is made). It can take months to

build ASICs and its production can cost hundreds or millions of dollars. The

flexibility of an FPGA comes at a cost in terms of area, latency, and power

consumption: an FPGA usually takes more area than ASIC requires, but it has

13

approximately 10 times the dynamic power. These drawbacks stem mostly from

the configurable routing fabric of an FPGA, which sacrifices size, speed, and power

in exchange for immediate fabrication.

2.4.1 Why FPGAs?

Because of their quick turnaround and low volume cost, FPGAs are an

appealing solution for digital system implementation. FPGAs are the only cost-

effective way to take advantage of Moore's law's scalability and performance for

small businesses or small entities within huge firms. The ASIC design is more

difficult and costly because of the challenges faced in deep submicron techniques

The challenges provided by state-of-the-art deep submicron techniques

make ASIC design more difficult and costly as Moore's law advances. The

investment required to create an effective ASIC consists of three primary

components in terms of both time and money:

(1) Extremely expensive cutting-edge ASIC CAD tools for timing analysis,

extraction, routing, placement, synthesis, power analysis and simulation.

(2) A mask required for a fully assembled device costs millions of dollars. This cost

can be lowered by sharing the costs incurred in prototyping or by using a structured

technique so that it needs lesser masks than before for manufacturing of ASICs.

(3) Enormous cost required for an engineering team who will be working on a large

ASIC over several years. (An FPGA design team would incur a similar expense,

although it would be less.) Most digital design projects begin with FPGA

implementation because of the high expenses and the necessity for a proportionally

better return on investment.

14

2.4.2 Overview

FPGAs are made up of a network of programmable logic blocks of various

types (fig.2.5) surrounded by a routing fabric which is programmable. It allows the

interconnections of blocks to be programmable. Programmable input/output (I/O)

blocks surround the array, allowing the device to interface with the outside

environment. After silicon manufacture, the "programmable" phrase in FPGA

refers to the ability to programme a function into the chip. A mechanism called

programming technology, can induce a change in the behavior after fabrication of

a pre-fabricated chip in the "field" where this customization is enabled by the design

of system users. The programming technology for the first programmable logic

circuits was extremely small fuses. The next section on the history of programmable

logic briefly describes these devices.

Fig. 2.5: Basic FPGA structure

2.4.3 History

The foundations of the current Field-Programmable Gate Array can be

traced back in the early 1960s to the creation of the integrated circuit. In the early

days of programmable electronics, regularity in the architecture and flexible

functionality were used. Cellular arrays [15] which consists of a 2-D array made of

15

simple logic cells that interacted in a fixed, point-to-point manner. The Maitra

cascade [16] was one of the first arrays to include logic cells that could be

programmed to perform a range of two-input logic functions via metalization

during manufacture. With the introduction of "cutpoint" cellular arrays in the mid-

1960s, field-programmability, or the ability to change a chip's logic function after

it was created, was realised. The function of each logic cell in the array can be

determined by setting programmable fuses inspite of the fixed connections between

the array's parts. Using programming currents or photo-conductive exposure in the

field, these fuses could be programmed. Because of this field-customization, array

production becomes easier and it also allows for a wider range of applications. A

novel technique to implement logic functions was presented in the 1970s with a

series of read-only memory (ROM)-based programmable devices. Despite the fact

that mask-programmable ROMs and fuse-programmable ROMs (PROMs) may

implement any N-input logic function with N address inputs, area efficiency

becomes an issue for everyone due to the exponential dependence of area on the

value of N. The earliest programmable logic arrays (PLAs) improved on this by

adopting two-level AND OR logic planes that closely matched the structure of

common logic functions while being substantially more space-efficient (each plane

in a wired-AND or wired-OR configuration, along with inverters, can build any

AND or OR logic term). Figure 2.7 is an example PLA. With the understanding

that a programmable AND plane followed by a fixed OR plane gave considerable

flexibility (fig2.6) announced by Monolithic Memories Incorporated (MMI) [17]

in 1977. in PAL devices, these architectures evolved even farther. These devices

had configurable combinational logic that provided fixed sequential logic in the

form of D-type flip flop macrocells.

16

Fig. 2.6: PAL (Programmable Array Logic)

Fig. 2.7: PLA (Programmable Logic Array)

Wahlstrom [18] proposed the SRAM-based FPGA which is the first static

memory-based FPGA in 1967. Using a stream of configuration bits, both logic and

connectivity configuration is allowed in this architecture. Unlike its modern cellular

array equivalents, each logic cell could have both wide-input logic functions and

storage elements. In addition to this, to allow for a number of circuit topologies to

be implemented, the connections of programmable inter-cell could be easily

altered. Although static memory provides the maximum flexibility in terms of

17

device programmability, it does so at the expense of a significant increase in space

per programmable switch when compared to ROM solutions. This difficulty most

likely delayed the commercialization of programmable devices based on static

memory until the mid-1980s, when the cost per transistor had dropped significantly.

Xilinx released the first modern-era FPGA in 1984 [19]. It included the now-

ubiquitous Configurable Logic Blocks. FPGAs have expanded in complexity

dramatically since the first one, which had 64 logic blocks and 58 outputs and

inputs.

2.5 Kintex KC 705 Evaluation Board

The Kintex7 FPGA KC705 evaluation board provides platform for creating and

examining hardware designs called hardware platform for the Kintex-7

XC7K325T-2FFG900C FPGA [20]. This board includes DDR3 memory, an 8-lane

PCI Express interface, general purpose I/O, and a UART interface, which are all

standard characteristics in embedded computing systems. The board utilized in this

project is shown in fig.2.8. The following are some of the board's features:

 Kintex-7 XC7K325T-2FFG900C FPGA

 1 GB DDR3 memory SODIMM

 Clock generation

o Fixed 200 MHz LVDS oscillator (differential)

o Inter-integrated circuit (I2C) programmable LVDS oscillator

(differential)

o SMA connectors (differential)

o SMA connectors for GTX transceiver clocking

 PCI Express endpoint connectivity

o Gen1 8-lane (x8)

18

o Gen2 8-lane (x8)

 USB-to-UART bridge

 Status LEDs

o Ethernet status

o Power good

o FPGA INIT

o FPGA DONE

 User I/O

o USER LEDs (eight GPIO)

o User pushbuttons (five directional)

Fig. 2.8: The Kintex KC 705 Evaluation Board

19

Chapter 3

 Methodology

3.1 Problem Formulation

MD (molecular dynamics) describes physical events with a significant

parallel component, in which particles (atoms) individually assess the cumulative

forces exerted on them by their surroundings based on cutoff distance. MD

calculations are usually performed in serial, with processing loops iterating through

all particles or particle-pairs at each time step. Most of these explicit loops are no

longer required due to the availability of large-scale data parallelism. The overall

force computation for each particle, for example, can be done totally independently

and in parallel, but the fundamental addition to determine total energy is

unavoidably serial, necessitating the use of efficient, but more complicated, parallel

reduction algorithms. We require a radial and angular description of the ith particle

to determine the force operating on it owing to other particles in a nanoparticle.

An angular description of an ith particle surrounded by other particles [4]

can be given by the equation 3.1 as follows:

 (3.1)

where, Clm is angular descriptor

 is cut-off function

 is spherical harmonics given by equation 3.2 as follows:

 (3.2)

where, is legendre polynomial

20

3.2 Algorithmic flow

We want to calculate the angular description values (), and the

algorithmic flow (as shown in fig.3.1) to do so is depicted in the diagram below.

The entire computation is already done in C code, which runs on a CPU and is

executed in a sequential manner.

Fig. 3.1: Algorithmic flow of our code

3.3 CPU vs GPU

The main distinction between CPU and GPU architecture is that a CPU is

designed to do a wide range of tasks fast (as seen by CPU clock speed), but it has

a limit on the number of processes that can run at the same time(as can be seen by

comparing number of cores in fig.3.2) [21]. A GPU is a computer processor that is

capable of rendering high-resolution graphics and video in real time. GPUs are

commonly utilised for general purpose applications such as scientific computation

and machine learning because they can conduct simultaneous operations on several

sets of data. GPUs provide remarkable parallelism by allowing thousands of CPU

21

cores to run at the same time. Each core is focused on running operations as

efficiently as possible. GPUs can handle data several orders of magnitude faster

than CPUs due to their massive parallelism. GPUs, on the other hand, are not as

adaptive as CPUs. CPUs, unlike GPUs, have wide and comprehensive instruction

sets that handle all of a computer's input and output. In a server, there might be 24

to 48 very fast CPU cores. Connecting 4 to 8 GPUs to the same server can add

40,000 cores to the system. Individual CPU cores are quicker (as measured by clock

speed) and smarter (as assessed by available instruction sets), but the sheer number

of GPU cores and vast amounts of parallelism they enable more than compensate

for the single-core clock speed disparity and restricted instruction sets. Jobs that

demand a lot of repetition and parallel processing are best suited for GPUs.

Fig. 3.2: Comparison of CPU and GPU with respect to cores

3.4 CUDA Programming

CUDA is a parallel computing platform and API developed by the

company. It's an Nvidia parallel computing design that uses the GPU's capabilities

to boost processing performance dramatically. As a best practice, accelerated

computing is replacing CPU-only computing. Comprised of both CPUs and GPUs,

22

accelerated systems are also known as heterogeneous systems. Accelerated systems

run CPU applications, which then launch operations that take advantage of GPUs'

tremendous parallelism. CUDA programming includes running code on two

platforms at the same time: a host system with one or more CPUs and one or more

NVIDIA CUDA-enabled GPU devices. While NVIDIA GPUs are most often

associated with gaming and graphical aspects, they can also simultaneously execute

thousands of lightweight threads. They're well-suited to computations that gain

from parallel processing as a result of this.

3.4.1 Host and Device

In the realm of CUDA parallel programming, our CPU is known as the Host,

and our GPU is known as the Device.(fig.3.3)

(a)

(b)

Fig. 3.3: (a) Host and (b) GPU Device

The threading model and different physical memories are the main differences

between them. On host systems, execution pipelines can only handle a certain

number of simultaneous threads. Today's servers can only operate 24 threads at a

time due to their four hex-core processors (or 48 if the CPUs support Hyper

Threading). These threads are executed in a group termed as warp of threads

having 32 threads at a time. On GPUs with 16 multiprocessors, modern NVIDIA

GPUs can support up to 1536 active threads per multiprocessor, resulting in about

24,000 simultaneously active threads.

23

3.4.2 Porting to CUDA

Fig. 3.4: Distribution of code execution between CPU and GPU

Any application code can run heterogeneously on CPU and GPU, as shown

in the fig.3.4 [23]. A portion of the code that is compute heavy will run in parallel

on the GPU, while the rest will run sequentially on the CPU.

3.4.3 Simple Processing Flow

(a)

24

(b)

(c)

Fig. 3.5: (a) Copy input data from CPU memory to GPU memory, (b) Load and

run a GPU program, caching data on the chip for better performance, (c) Copy

results from GPU memory to CPU memory.

3.4.4 Parallel Programming in CUDA C

GPU computing is all about massive parallelism. It can be understood with

the help of an interesting example of vector addition.

25

Fig. 3.6: Representation of Vector addition in parallel

3.4.4.1 GPU Kernels: Device Code

__global__ void mykernel (void) {

 }

 CUDA C++ keyword __global__ indicates a function that:

o The following function will run on the GPU, and can be

invoked globally, which in this context means either by the CPU, or,

by the GPU

o It is required that functions defined with the __global__ keyword

return type void

 nvcc breaks down source code into host and device components

o Device functions (e.g. mykernel()) processed by NVIDIA compiler

o Host functions (e.g. main()) processed by standard host compiler

mykernel<<<1,1>>>();

 When a function is called to run on the GPU, it is usually referred to as a

kernel.

 Before handing the kernel any expected arguments, we must give an

execution configuration by using the<<<... >>> syntax.

26

 At a high level, execution configuration allows programmers to define the

thread hierarchy for a kernel launch, which includes the number of thread

groupings (called blocks) and the number of threads to execute in each

block. In the above example, the kernel is launching with 1 block of threads

(the first execution configuration argument) which contains 1 thread (the

second configuration argument).

cudaDeviceSynchronize();

will continue to run while the kernel is being launched.

me function, will cause the host

(CPU) code to wait until the device (GPU) code completes before resuming CPU

execution [23].

3.4.4.2 CUDA Thread Organization

There are three layers in the CUDA thread hierarchy. The basic parallel unit

is warp, which also defines the hardware memory bandwidth of the GPU device.

Each warp has a total of 32 threads, which are split into two half warps and

scheduled to the hardware scheduler's execution queue during execution. The

CUDA language extension does not provide a clear description for controlling warp

behaviour flow from the standpoint of a programmer. Thus, at the bottom of the

programmable CUDA thread hierarchy, the thread blocks are visible. Because the

existing architecture only enables one grid on device at a time when the kernel is

launched from the host, grid is a collection of thread blocks that may be considered

as a device abbreviation. The kernel function is executed by all threads in a grid.

The size and dimension of thread blocks can be determined by the programmer

using built-in variables within hard limits that vary from product to product, which

is extremely flexible in reality. Threads can use pre-defined thread indices to

distinguish themselves from one another.

27

For block and grid dimensions as below dim3 block(4, 1, 1) & dim3 grid(8, 1, 1)

can be visualized as in fig 3.7 and dim3 block(8, 2, 1) & dim3 grid(2, 2, 1) can

be visualized as shown in fig 3.8.

Fig. 3.7: Representation of Block and Grid in a single dimension

Fig. 3.8: Representation of Block and Grid in multi-dimension

28

(a)

(b)

Fig. 3.9: Limitation for number of (a) threads in a block in each dimension, (b)

blocks in a grid

There are certain limitations on determining the block size. As these block and

thread variables are three dimensional of type dim3, threads in a block can be

arranged in a 3D manner. Fig 3.9(a) shows the maximum number of threads that

can be arranged in each dimension of a threadblock whereas fig 3.9(b) shows the

maximum number of blocks that can be arranged in each dimension of a grid. Some

key terms can be defined as follows:

(a) ThreadIdx - CUDA runtime uniquely initialized threadIdx variable

(fig.3.10) for each thread depending on the coordinates of the belonging

thread in the block(Table 3.1). ThreadIdx is a dim3 type variable.

29

Fig. 3.10: Illustration of thread index assigned to various threads

Thread X Y P Q R S T U

ThreadIdx.x 1 1 0 2 0 3 1 0

ThreadIdx.y 0 1 0 1 0 1 0 1

Table. 3.1: Values of thread index assigned to various threads

(b) BlockIdx - CUDA runtime uniquely initialized blockIdx variable

(fig.3.11) for each thread depending on the coordinates of the belonging

thread block in the grid(Table 3.2). blockidx is dim3 type variable.

Fig. 3.11: Illustration of block index assigned to various threads

30

Thread P Q R S T U V X

BlockIdx.x 0 0 1 1 0 0 1 1

BlockIdx.y 0 0 0 0 1 1 1 1

Table. 3.2: Values of Block index assigned to various threads

(c) blockDim - blockDim variable consists number of threads in each

dimension of a thread block (fig.3.12). Each blue square represent a thread

and group of blue squares in a yellow border represents a block.

Fig. 3.12: Illustration of dimension of a block based on number of threads

(d) GridDim - GridDim variable consists of number of thread blocks in each

dimension of a grid.

3.4.4.2.1 Unique index calculation for a thread in a grid

There are various blocks in a grid each having same number of threads. For doing

any calculation, we need to access these threads so that they are addressed uniquely

as shown in the fig.3.13.

31

Fig. 3.13: Representation of local and global thread Id

Where tid is thread id and gid is global id.

gid = tid + offset

gid = tid + blockIdx.x*blockDim.x

Example: For thread in second thread block, blockIdx.x = 1 & blockDim.x =4

Offset = blockIdx.x * blockDim.x = 1*4 =4

3.4.4.2.2 Execution Model

 Scalar processors are used to execute threads.

 Thread blocks are not migrated and are executed on multiprocessors.

 On a single multiprocessor, multiple concurrent thread

blocks can exist, but multiprocessor resources are limited

by shared memory and register file constraints.

 A kernel is launched as a series of thread blocks in a

grid.

32

Fig.3.14: Hardware perspective of CUDA terminologies while execution [24]

 Thread blocks are divided into smaller units called warps each having

32 consecutive threads.

 Suppose number of Streaming multiprocessors(SMs) are 13 and

total number of cores per SM is 128 and the Block size we took is 512.

o Number of warps per block = Block size/ Warp size = 512/32 = 16

o 4 warps can execute parallelly in single SM.

 Warps can be defined as the basic unit of execution in a SM. Once a thread

block is scheduled to an SM, threads in the thread block are further

partitioned into warps.

 And all threads in a warp are executed in Single Instruction Multiple Thread

(SIMT) fashion.

33

Fig.3.15: Group of threads in a warp before executing on multiprocessor

3.4.4.3 Running Code in Parallel

As we were discussing about parallelization of vector addition, suppose we change

the execution parameter from 1 to N. Consequently, instead of executing add()

once, it is executed N times in parallel.

 add<<< 1, 1 >>>();

 add<<< N, 1 >>>();

Each parallel invocation of add() is referred to as a block. The set of all blocks is

referred to as a grid. Each invocation can refer to its block index using blockIdx.x

.

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

By using blockIdx.x to index into the array, each block handles a different index.

Built-in variables like blockIdx.x are zero-indexed (C/C++ style), 0,..,N-1, where

N is from the kernel execution configuration indicated at the kernel launch.

#define K 524

int main(void) {

34

int *p, *q, *r; // host instances of p, q, r

int *dev_p, *dev_q, *dev_r; // device instances of p, q, r

int size = K * sizeof(int);

// Allocate space for device instances of p, q, r

cudaMalloc((void **)&dev_p, size);

cudaMalloc((void **)&dev_q, size);

cudaMalloc((void **)&dev_r, size);

// Allocate the space for host instances of p, q, r

p = (int *)malloc(size);

q = (int *)malloc(size);

r = (int *)malloc(size);

// Inputs are copied to device for computation

cudaMemcpy(dev_p, p, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_q, q, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with K blocks

add<<>>(dev_p, dev_q, dev_r);

// Result is copied back to host

cudaMemcpy(r, dev_r, size, cudaMemcpyDeviceToHost);

// Free the occupied memory

 free(p); free(q); free(r);

 cudaFree(dev_p); cudaFree(dev_q); cudaFree(dev_r);

35

 return 0;

 }

3.5 GPU Memory Hierarchy

The CUDA programming approach implies that each device manages its

own memory area on GPU DRAM. CUDA offers three forms of memory that

programmers can use: global (device) memory, shared memory, and registers, as

shown in Figure 3.4. Each thread in a thread block has 32-bit registers that it can

read and write. Each thread block has shared memory that is visible to all threads

within it and has the same lifetime as the block. On-chip memories include registers

and shared memory. Variables in these kinds can be accessed in a highly parallel

manner at very high speeds. By sharing input data and intermediate outcomes of

processed data, shared memory allows threads to collaborate more effectively.

Appropriate accessing may allow shared memory to operate at the

Fig. 3.16: Organization of memory inside a GPU

36

same speed as registers. The global memory is shared by all threads. To access data

in device memory, many hundred clock cycles are required. Constant and texture

memory are stored off-chip as part of device memory. Constant memory, on the

other hand, is read-only and cached, and it provides low-latency, high-bandwidth

memory access by device, with all threads accessing the same address at the same

time [25].

3.6 Basic Architecture of work done on FPGA

Fig. 3.17: Flow of the work done on FPGA

As shown in the fig.3.17, input data from host PC is first sent to FPGA. We

have used PCIe (Peripheral component interconnect express) protocol so that

proper communication channel is established between host PC and FPGA endpoint.

 The architecture of the work done using FPGA can be understood with the

help of above block diagram. We need to understand how the data should be sent

from host PC to FPGA, perform the required computations and the results to go

back to the host PC. A Vivado Design Suite subsystem for PCI Express endpoint-

initiated Direct Memory Access (DMA) data transfers is demonstrated in this

project. The offered subsystems target the following devices to initiate data

transfers between DDR3 memory and an externally attached PCI Express Root

Complex Kintex -7 KC705 device (in our project). This design shows how to

leverage the AXI Memory Mapped to PCI Express IP to execute high-throughput

data transmission across a PCI Express link (see diagram below). A Scatter Gather

37

capable DMA engine is used in conjunction with the PCI Express IP to achieve

this. The DMA engine enables the FPGA to handle data transmission over the PCI

Express link, allowing it to boost throughput while lowering processor use on the

Root Complex side of the link [26].

Fig.3.18: Transfer between host and card using PCIe communication

3.7 Communication protocol - PCIe

PCI Express is a high-speed, general-purpose I/O connection standard

designed for a wide range of computing and communication devices. The usage

model, load-store architecture, and software interfaces of PCI are all preserved, but

the parallel bus implementation is substituted by a highly scalable, entirely serial

interface. PCIe has a bidirectional connection that allows it to send and receive data

at the same time [27]. Because each interface contains a simplex transmit and

receive path, the model deployed is referred to as a dual-simplex connection, as

shown in the diagram below. The communication path between two devices is

functionally full duplex because traffic can flow in both directions at the same time,

38

but the spec uses the term dual-simplex to describe the actual communication

channel.

Fig. 3.19: Bidirectional connection between the two components using PCIe

This path between the devices is referred to as a Link, and it is formed by

the combination of one or more transmit and receive pairs. A Lane is one of these

pairs, and a Link can be made up of 1, 2, 4, 8, 16, or 32 Lanes, depending on the

standard. The Link width is the number of lanes and is expressed as x1, x2, x4, x16,

and x32. The trade-off between the number of lanes to utilize in a particular

architecture is simple: more lanes increase the Link's bandwidth while also

increasing its cost, space need, and power consumption.

3.7.1 Definition of Bus, Device and Function

Every PCIe function is individually recognized by the Device it sits in and

the Bus to which it connects, just as PCI. A 'BDF' is the popular name for this

unique identification [27]. Every Bus, Device, and Function (BDF) inside a given

topology is detected by configuration software.

3.7.2 PCIe Buses

Configuration software can allocate up to 256 Bus Numbers. The Root

Complex is usually allocated Bus 0, which is the first bus number by hardware. Bus

0 is made up of a virtual PCI bus with integrated endpoints and virtual PCI-to-PCI

39

Bridges (P2P) with Device and Function numbers hard-coded. Each P2P bridge

establishes a new bus that can be used to connect more PCIe devices. A unique bus

number must be assigned to each bus [27]. The procedure of allocating bus numbers

starts with the configuration programme looking for bridges that start with Bus 0,

Device 0, Function 0. When a bridge is discovered, software provides a bus number

to the new bus that is unique and greater than the bus number on which the bridge

is located.

3.7.3 PCIe Devices

PCIe allows up to 32 device attachments on a single PCI bus, however due

to its point-to-point structure, only one device can be directly attached to a PCIe

connection, and that device is always Device 0 [27]. Virtual PCI buses on Root

Complexes and Switches allow many Devices to be joined to the bus.

3.7.4 PCIe Functions

Every device has functions built in. Each Function does have its own

configurable address space, which is used to set up the Function's resources. Each

Function has its own dedicated block of configuration address space defined by

PCI. Software can detect the existence of a Function, configure it for regular

operation, and verify its status using registers mapped into the configuration space.

Because it was initially built for PCI, the 256 bytes of PCI-compatible configuration

space has that designation. This space's configuration header takes up the first 16

dwords (64 bytes) (Header Type 0 or Header Type 1). Except for the bridge

functions, which employ Type 1 headers, Type 0 headers are required for all

functions [27]. Optional registers, such as PCI capability structures, are used with

the remaining 48 dwords.

40

3.8 Implemented block design

Figure 3.20: Block design implemented on Xilinx Vivado

Above block design is implemented with the help of some key IPs:

3.8.1 DMA/Bridge Subsytem for PCI Express (PCIe)

(PCIe) IP [28] delivers a high-performance DMA. There are two possible interfaces

available, one is AXI4 Memory Mapped and other one is AXI4-Stream.

Features:

 Supports 64, 128, 256, 512-bit datapath

 64-bit source, destination, and descriptor addresses

 Up to 4 (H2C/Read) data channels

 Up to 4 (C2H/Write) data channels

o Single AXI4 memory mapped (MM) user interface

41

o AXI4-Stream user interface

The PCI Express DMA/Bridge Subsystem allows data to be moved between

the memory of our PC and the DMA used. This is accomplished by using

descriptors. These descriptors consists of information about the source address

which is the address from where data is to be taken, destination address which is

the address where data needs to be sent, and size of data to be transferred. Host to

Card/System (H2C) and Card/System to Host (C2H) transfers are examples of

direct memory transfers. The DMA can be set up to have a single AXI4 Master

interface shared by all channels or a separate AXI4-Stream interface for each

channel. Memory transfers are described per-channel in descriptor linked lists,

which the DMA retrieves and processes from host memory. Interrupts are used to

notify events such as descriptor completion and errors.

The transactions on which bus are determined by the channel type chosen.

 A Host-to-Card (H2C) channel sends read requests to PCIe and returns

data, or sends a write request to the user application.

 A Card-to-Host (C2H) channel, on the other end either waits for data on

the user side or generates a read request on the user side and then generates

a write request containing the data received to PCIe.

3.8.2 Custom HLS IPs

The algorithms used are becoming complicated day by day. Vivado High-

Level Synthesis is available as an upgradation in the HLx edition. With the advent

of Vivado HLS, it has become easy to create an IP with complex code, as it allows

users to use C, C++ and System C languages and directly create configurations for

the programmable device without the need to develop any RTL manually. Vivado

HLS creates a similar system and design architects, providing a faster IP creation.

Our entire algorithm to calculate Force values and Energy is based on C/C++

language. By using HLS software, we can create an IP of this algorithm and later

export it to the Vivado HLx software where this IP can be used inside the Block

42

Design. This IP will receive the input coordinate values and subsequently calculates

the Energy and Force values based on the algorithm written inside it.

3.9 Functionality

After installing the drivers successfully, the following user-accessible

devices make up the XDMA driver. As a reference, the driver is given. We can edit

the driver to include particular needs, based on their requirements [26].

 xdma0_control : for accessing Xilinx DMA registers

 xdma0_h2c_0/1/2/3, xdma0_c2h_0/1/2/3 : All the 4 channels can be

accessed corresponding to the number written after h2c/c2h.

There are some script files used to perform various tasks:

 run_test.sh : Basic transfer is done by this script file(determines the

transfer size)

o After loading driver, checks if the design is AXI-MM or

AXI_ST and the number of channels enabled.

o Basic transfer can be performed to all enabled channels.

 load_driver.sh: loads driver

 dma_memory_mapped_test.sh

o Write to enabled H2C channels.

o There are 4 address offset values present in this file which

should be given appropriate values:

 First addrOffset(2151750108): Set address offset1

for writing zero(zero.bin file) at energy location.

Whenever this zero is replaced by actual value of

energy, computer understands that calculation is over

and now it has to receive the values of energy and

forces from FPGA board.

 Second addrOffset(2150629376): This is to set

address location of DDR memory where we want to

store one extra value & XYZ values (inptfile1.bin).

43

 Third addrOffset(2151750108): This is again to set

the last location of DDR memory, where energy will

get stored. We will continuously read the value of

DDR memory location set by this addrOffset and

compare it with zero(by comparing krit_out0 and

zero.bin file) and once read value is not equal to zero,

computer gets to know that energy and force

calculation is over.

 Fourth addrOffset(2151748344): Set address

offset4 to read the force and energy values.

Fig. 3.21: Memory Mapping for storing data in DDR3 memory

After doing all the above mentioned steps in host PC, input values or

coordinates of the atoms positioned in 3D space are being sent from host PC to

FPGA endpoint. On the other side, we have implemented the block design on

Vivado HLx software and burn the binary file (after generating bitstream) on the

FPGA board. The entry point of these input values on FPGA is the DMA/Bridge

Subsytem for PCIe IP. The data is moved with the help of DMA engine which uses

descriptors and allocates buffer space in system memory to do so. The descriptor

44

formats have various contents which can be determined by a number of factors,

including the DMA engine's user interface. A C2H transaction in an AXI Memory

Mapped interface has an AXI address as the source address and a PCIe address as

the destination address. The source address for an H2C transaction is a PCIe

address, and the destination address is an AXI address. The PCI Express

DMA/Bridge Subsystem uses a linked list of descriptors to identify the DMA

transfers' source, destination, and length. The driver generates and stores descriptor

lists in the host memory. The driver sets up the DMA channel with a few control

registers so that it can start fetching descriptor lists and performing DMA

operations. These descriptors describe the data transfers with memory (DDR3 in

this project) that the DMA/Bridge Subsystem for PCIe should complete. Every

channel has its own set of descriptors. The hardware registers are set with address

The descriptor channel starts

fetching descriptors from the initial address once it is enabled. It then fetches from

the Next address field of the previously fetched descriptor.

From DMA/Bridge Subsystem for PCI Express, this data is stored in DDR3

memory (Memory Interface Generator). When the complete set of data is stored in

memory, our HLS IP is turned on by asserting ap_start signal high. This task is

45

done efficiently by using separate HLS IP, named as cont_checkdata_0. Now, the

data should be fed to our custom HLS IP for various calculations such as Force,

Energy, Angular description. The data transfer can be done directly by using

memcpy() function as shown in the above code for storing 10 integer numbers.

Once HLS IP receives the data, it starts doing calculations and the results

are stored back in DDR3 memory at subsequent memory locations. When all the

data gets stored in memory, we need to send these output values to the host PC and

in this way our whole process gets completed. This process can be performed

iteratively according to the number of MD (Molecular Dynamics) steps.

\(This page is left blank intentionally)

47

Chapter 4

 Results and Discussion

4.1 Results on GPU

We have executed the sequential C code and parallelized CUDA code on

Google Colab platform where we have been provided the access to CPU and GPU

having the following hardware specifications (Table 4.1):

CPU GPU

Intel Xeon Tesla K80

1 core 2496 cores

Frequency @ 2.3GHz Frequency @ 562 MHz

12 GB RAM 13 GB RAM

Table. 4.1: Hardware specifications of the CPU and GPU used on Colab

We started with the execution of algorithm used to calculate distances

between 147 atoms positioned in 3D space. First we calculated the time taken by

sequential C code to calculate the distance values. Subsequently, we wrote the

parallel equivalent of that algorithm by using CUDA platform and after measuring

the time taken for execution, compared both the results (Table 4.2).

Processing Unit Computational time (ms)

CPU 5-10

GPU 0.9-1

Table. 4.2: Computational time of CPU and GPU

48

Firstly, we executed the sequential C code for 10 iterations. It calculates the

angular description of atoms, i.e. Clm values and our task was to calculate the time

taken by it. All the calculations are done for 147 atoms. Table 4.3 shows the time

taken in each iteration.

Iteration Number Time

Taken(sec)

Iteration1 1.370

Iteration2 1.377

Iteration3 1.382

Iteration4 1.369

Iteration5 1.343

Iteration6 1.395

Iteration7 1.427

Iteration8 1.389

Iteration9 1.380

Iteration10 1.364

Table. 4.3: Time taken to execute serial C code in each of the 10 iterations

We took the average from these 10 iterations and it came out to be 1.380

seconds. Secondly, we executed the CUDA C code for the same algorithm on GPU

by varying number of threads per block. Table 4.4, 4.5, 4.6 shows the corresponding

results:

49

For threads per block = 128

Iteration Number Time Taken(ms)

Iteration1 417.74

Iteration2 437.44

Iteration3 390.58

Iteration4 434.36

Iteration5 389.35

Iteration6 411.55

Iteration7 435.73

Iteration8 424.73

Iteration9 422.40

Iteration10 397.48

Average time = 416.13ms

Table. 4.4: Time taken to execute CUDA C code for 128 threads/Block

For threads per block = 256

Iteration Number Time Taken(ms)

Iteration1 495.69

Iteration2 470.89

Iteration3 466.67

50

Iteration4 446.83

Iteration5 488.09

Iteration6 445.43

Iteration7 472.57

Iteration8 475.98

Iteration9 446.88

Iteration10 496.85

Average time = 470.58ms

Table. 4.5: Time taken to execute CUDA C code for 256 threads/Block

For threads per block = 512

Iteration Number Time Taken(ms)

Iteration1 458.08

Iteration2 486.43

Iteration3 479.09

Iteration4 461.27

Iteration5 479.77

Iteration6 448.35

Iteration7 486.28

Iteration8 454.44

51

Iteration9 453.18

Iteration10 466.96

Average time = 467.38ms

Table. 4.6: Time taken to execute CUDA C code for 512 threads/Block

After observing the results and comparing these values obtained on CPU

and GPU by taking the ratio of time taken, we can say that we achieved 2.9 3.3

times acceleration or 2.9 3.3 times less execution time in executing the algorithm

on GPU as compared to its CPU counterpart.

 4.2 Results on FPGA

We first synthesize the C code in the Vivado HLS, and we got to know the

performance and utilization estimates sequentially. Later the directives, pipelining

and unrolling were applied, and we calculated the estimates again by the synthesis.

The results presented here show us the estimates as well as the comparison between

the sequential and optimized process.

Figure below shows the latency (clock cycles) of the HLS IP without

applying directives.

Fig. 4.1: Performance profile showing the latency report without directives

52

As can be observed, minimum latency or the minimum number of clock

cycles taken is 97708574.

Now, we will apply pipeline directive on loop 3, loop 4, loop 5, loop 6.

These loops take 84863835 clock cycles. Ratio (r) of code on which pipeline

directive is applied can be calculated as:

We can also call it as FractionEnhancement .

Figure below shows the report after applying directives:

Fig. 4.2: Performance profile showing the latency report with directives

Speed up for the enhanced fraction can be calculated as:

After substituting the above value, Speed up can be calculated as:

53

To run this HPC algorithm on FPGA, the design consists of both hardware

and software parts [5]. The software module present in the computer provides the

different XYZ coordinates to the FPGA board. The communication between the

software module and FPGA is established through PCIe communication. DMA

subsystem for PCIe IP available in Xilinx Vivado HLx edition enables host

computer to access memory that resides in the FPGA board. Force module would

calculate forces and energy and again stores these results in the DDR memory.

After storing these values, we need to transfer all the values to host PC. We need a

mechanism so that we get to know as and when these calculations are done, these

calculated values can be transferred to host PC. For the mentioned mechanism, we

are continuously checking a particular memory location described in chapter 3 of

the thesis. The software module takes up these forces and calculates the next set of

XYZ values which are again fed back to the FPGA fabric. This forms a loop that

can run multiple times. These iterations are known as MD steps. In order to get the

comparison of performance of MD simulation on FPGA with respect to

performance on HPC server, it is important to run the MD code while applying

directives as discussed above. Table 4.7 shows the total time taken to run 1, 100

and 500 MD steps and its comparison with the code (already done in past in lab)

that is parallelized using MPI on a HPC server.

MD Steps HPC Server Timings FPGA Timings

1 4.18 s 2.91 s

100 3.51 min 2.18 min

500 17.43 min 11.49 min

Table. 4.7: Comparison of timings on Server and FPGA

54

 As it can be inferred from table 4.7, time taken to run different MD steps on

FPGA is much less as compared to the time taken on HPC server. A performance

acceleration of 1.4 - 1.6x is achieved using FPGA in comparison to server timings.

55

Chapter 5

Conclusions and Future Work

In this project, we have tried to reduce the complexity during calculations,

reducing the latency by using devices, the GPU and FPGA board. The use of GPU

lets us do the calculations faster, reducing the latency as compared to our sequential

process. It has been explained above how we used CUDA, a parallel computing

platform developed for harnessing the power of NVIDIA GPUs containing

thousands of cores to achieve massive parallelism. We first parallelized the

algorithm to calculate the distance between 147 atoms positioned in 3D space.

Later, we moved to parallelize the algorithm of angular description calculation

which is being used to calculate Energy, Force values.

Thereafter, we used high end FPGA device, Kintex KC 705. The sequential

code for Energy, Force calculations is brought to HLS software where we

calculated the speed achieved after applying directives. After synthesis, created an

IP for the same, exported to Vivado HLx, implemented the block design for its

hardware implementation, and transferred the input and output values between host

PC and FPGA device using PCIe protocol.

 The future work we can apply to this project can be:

 As we have parallelized the algorithm for calculation of angular description

of atoms used to calculate Energy and Force values, the work can be

extended to parallelize the complete algorithm for calculating Energy and

Force values.

 Obviously, the architecture can be reprogrammed according to user needs

and the parallelizing techniques can always be improved according to the

increasing demand in development models of hardware implemented

computation modules.

(This page is left blank intentionally)

57

References

[1]. Moore, G. E. (1965). Cramming more components onto integrated circuits.

[2]. Nickolls, J., & Dally, W. J. (2010). The GPU computing era. IEEE micro,

30(2), 56-69.

[3]. Ouyang, J., Wu, E., Wang, J., Li, Y., & Xie, H. (2017). XPU: A

programmable FPGA accelerator for diverse workloads. 2017 IEEE Hot

Chips, 29.

[4]. Jindal, S., & Bulusu, S. S. (2018). A transferable artificial neural network

model for atomic forces in nanoparticles. The Journal of Chemical Physics,

149(19), 194101.

[5]. Bulusu, S. S., & Vasudevan, S. (2022). FPGA Accelerator for Machine

Learning Interatomic Potential-Based Molecular Dynamics of Gold

Nanoparticles. IEEE Access, 10, 40338-40347.

[6]. Tendler, J. M., Dodson, J. S., Fields, J. S., Le, H., & Sinharoy, B. (2002).

POWER4 system microarchitecture. IBM Journal of Research and

Development, 46(1), 5-25.

[7]. He, Y., Pu, Y., Kleihorst, R., Ye, Z., Abbo, A. A., Londono, S. M., &

Corporaal, H. (2010, June). Xetal-Pro: An ultra-low energy and high

throughput SIMD processor. In Proceedings of the 47th Design Automation

Conference (pp. 543-548).

[8]. Luebke, D., & Humphreys, G. (2007). How gpus work. Computer, 40(2), 96-

100.

[9]. Crow, T. S. (2004). Evolution of the graphical processing unit. A

professional paper submitted in partial fulfillment of the requirements for the

degree of Master of Science with a major in Computer Science, University

of Nevada, Reno.

[10]. NVIDIA Corp., NVIDIA Homepage retrieved November 2004

http://www.nvidia.com/page/home

[11]. ATI, ATI Homepage retrieved November 2004 http://www.ati.com/

[12]. Matrox, Matrox Homepage retrieved November 2004

http://www.matrox.com/

58

[13]. NVIDIA C

http://developer.nvidia.com/object/3d_graphics_demystified.html

[14]. Kuon, I., Tessier, R., & Rose, J. (2008). FPGA architecture: Survey and

challenges. Now Publishers Inc.

[15]. Minnick, R. C. (1967). A survey of microcellular research. Journal of the

ACM (JACM), 14(2), 203-241.

[16]. Maitra, K. K. (1962). Cascaded switching networks of two-input flexible

cells. IRE Transactions on Electronic Computers, (2), 136-143.

[17]. Birkner, J. M., & Chua, H. T. (1978). U.S. Patent No. 4,124,899.

Washington, DC: U.S. Patent and Trademark Office.

[18]. Wahlstrom, S. E. (1967). Programmable logic arrays--cheaper by the

millions.

[19]. Carter, W. (1986). A user programmable reconfigurable gate array. In Proc.

Custom Integrated Circuits Conf., May 1986.

[20]. Kintex, X. (7). FPGA KC705 evaluation kit. Accessed: Aug, 30, 2017.

[21]. Meselhi, M. A., Elsayed, S. M., Essam, D. L., & Sarker, R. A. (2017,

December). Fast differential evolution for big optimization. In 2017 11th

International Conference on Software, Knowledge, Information

Management and Applications (SKIMA) (pp. 1-6). IEEE.

[22]. How To Run CUDA C/C++ on Jupyter notebook in Google Colaboratory

(2022) https://www.geeksforgeeks.org/how-to-run-cuda-c-c-on-jupyter-

notebook-in-google-colaboratory/

[23]. CUDA TRAINING SERIES (2020) https://www.olcf.ornl.gov/cuda-

training-series/https://www.olcf.ornl.gov/wp-content/uploads/2019/12/01-

CUDA-C-Basics.pdf

[24]. GPU (2020), https://hackmd.io/@yaohsiaopid/ryHNKkxTr

[25]. CUDA Refresher: The CUDA Programming Model (2020),

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-

model/

[26]. DMA Subsystem for PCI Express - Driver and IP Debug Guide (2018)

https://support.xilinx.com/s/article/71435?language=en_US

59

[27]. Jackson, M., Budruk, R., Winkles, J., & Anderson, D. (2012). PCI Express

Technology 3.0. Mindshare press.

[28]. DMA Subsystem for PCI Express Product Guide(PG195) (2021)

https://docs.xilinx.com/v/u/en-US/pg195-pcie-dma

