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Abstract 

REDUCING COMPUTATIONAL COMPLEXITIES USING GPU AND 

FPGA 

 

Computationally intensive applications such as weather forecasting, 

computational biology, Molecular Dynamics etc. requires a lot of time to execute 

a task, because usually these tasks are sequentially executed. Because the iterative 

nature of these algorithms on a single CPU can take up a lot of computation time 

for relatively basic simulations, there's a lot of pressure to find ways to improve 

efficiency. As a result of present processor technology's clock restrictions, 

improved computer performance is becoming increasingly reliant on parallelism. 

 This project deals with exploring the different ways in which parallelism 

can be inherited for calculations of Interatomic potentials of gold nanoparticle. 

Phase 1 of the research focuses on computing on GPUs, which can drastically 

speed up computer applications by leveraging GPU capabilities. The sequential 

component of the workload in GPU-accelerated applications operates on the CPU, 

which is tuned for single-threaded speed, while the compute-intensive portion of 

the application runs in parallel on thousands of GPU cores. A portion of complex 

algorithm is thereby studied and parallelized and subsequent comparative analysis 

is done to observe whether the results are obtained accordingly or not.  

 Phase 2 of the project deals with the computations being carried out on 

FPGA and establishing communication between PC and FPGA using PCIe 

protocol. Input data from host PC is first sent to FPGA where various calculations 

such as force, energy values is being done and these values are then sent back 

from FPGA to host PC and this process is done iteratively by defining the number 

of steps. Finally, the total time taken in these steps is calculated. The primary goal 

of our work is to reduce the computational time taken by sequential C code of 

complex algorithm with the help of Parallelism using GPU and FPGA.  
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Chapter 1 

Introduction 

1.1 Background  

The size and volume of data that enterprises must cope with is expanding 

quickly as technology advances. As a result, a high-performance computing 

architecture is required. High performance computing is a rapidly growing field in 

computer and electronics engineering. These high-performance computing 

algorithms can be run in parallel on a variety of processing devices and then 

combined to provide the desired output owing to parallelism. Parallel algorithms 

are extremely effective for processing large amounts of data in a short amount of 

time. An algorithm's analysis allows us to assess whether or not the algorithm is 

useful. In general, an algorithm is evaluated based on how long it takes to execute 

(Time Complexity) and how much space it takes up (Space Complexity). Storage 

space is no longer an issue because sophisticated memory devices are now available 

at cheap prices. Thereby, the main focus here is on reducing the computation time. 

1.2 Motivation 

Due to increased power consumption, frequency scaling came to an end in 

caused a shift to parallel multi-core computing to increase performance. There are 

a wide variety of technologies that can be used for acceleration which have 

dedicated logic for specific workloads. These include Graphics Processing Units 

(GPUs) [2] and Field-Programmable Gate Arrays (FPGAs) [3]. Reconfigurable and 

parallel computing is a way to perform high performance computing. Suppose we 

want to perform 1 million tasks, CPU will do this work in a sequential manner and 

take much time. But, GPU utilizing its thousands of cores at a time takes much 

lesser time. Furthermore, because we can incorporate numerous parallel execution 

units into an FPGA, we may distribute data across the parallel execution units and 
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acquire the desired computational results in much less time if we have a big volume 

of data to flow through the same algorithm. 

1.3 Objective 

The main objective of this project is to reduce the computation time taken 

by executing complex C algorithm based on interatomic potential of gold 

nanoparticle. Parameters such as Forces, Energy, and Distances are being 

calculated by this algorithm. We will show how GPU (Graphics Processing Unit) 

& FPGA (Field Programmable Gate Array) can be used efficiently in High 

performance computing applications. For calculating force values, we need both 

radial and angular description of that particle [4]. The major computation time of 

force calculation is taken by calculating angular description. Thereby, a portion of 

this algorithm till calculation of angular descriptor is studied and parallelized using 

GPU. Subsequently, these results are then compared with their CPU counterpart 

results.  

 In this project, it is also proposed to use FPGA. The application of directives 

(to reduce latency) [5] is possible with the help of Vivado High Level Synthesis 

(HLS). Vivado HLS is software provided by Xilinx which converts high level 

language(C, C++) to Hardware Description Language (HDL). With the help of 

 

 In the present work, Xilinx VIVADO (2017.2) software is used and HLS IP 

for calculating force and energy values is exported to VIVADO for completion of 

block design which will be dumped on to FPGA board (Kintex KC 705). Then, 

communication is established between host PC and FPGA board using PCIe 

(peripheral component interconnect express) protocol. Input values from PC are 

being sent to FPGA which calculates the force, energy values and send back these 

values to PC. Finally, total time taken in the entire process is calculated. 
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1.4 Organization of the thesis 

This section describes the organization of thesis. The thesis is sub- divided 

into five chapters and presented as follows: 

Chapter 1 provides the background, motivation, and objective of the project. 

Chapter 2 contains the introduction to GPU, architecture of GPU, FPGA, its history 

and details about the FPGA board used in the project. 

Chapter 3 describes the methodology used to implement the project work.  

Chapter 4 provides the results obtained and its related discussion. 

Chapter 5 presents the project conclusion and scope for future work. 
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Chapter 2 

Literature Survey 

2.1 Parallel Computation and Graphics Processing Unit 

In general, computing speed is often gauged by the number of clock pulses 

needed to complete an instruction, the so- -

Although a variety of techniques are used to achieve instruction-level and data-

level parallelism, and hence improve CPI, until the turn of the century the most 

popular means among commodity microprocessors of improving computing speed 

was to increase the clock frequency. Due to heat dissipation and energy 

consumption issues, however, this strategy eventually became untenable. The 

number of tasks that could be processed in each clock period within a practical 

power budget stopped improving at its previous rate. Processor developers 

responded to this circumstance by designing units with multiple processors or cores 

per die and thus offered the possibility of executing instructions in paral

POWER4 [6], released in 2002, is the first commercial processor to explore this. 

Today, two different families of processors are marketed: multi core and many 

cores. In a multi core approach, a few cores (typically two to ten at present) are 

integrated into a single microprocessor chip with the intention of speeding up the 

execution of the programs traditionally run on commodity machines including 

personal computers. In a many core approach, several hundred & thousands cores 

(each with a limited computational ability and lower power needs) are oriented in 

such a way that maximizes the throughput of traditionally parallel problems. The 

GPU falls into the many core category and has been adopted as the parallel platform 

of focus in this thesis. 

When it was first conceived, the Graphics Processing Unit (GPU) was 

designed for real-time graphics, as we all know. A modern GPU, on the other hand, 

is not only a strong graphics processor, but also a general-purpose computing 

processor that focuses on parallel processing and high data bandwidth. Since the 
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clear slowing of CPU speed over the last decade, more people are turning to GPU 

for general-purpose computing, and it has become a popular topic since 2011. GPU 

became a very promising rival in high performance computing with rapid increases 

in both computation power and programmability. GPUs are multi-core processors 

that can run a large number of threads. SIMD processors are energy efficient 

because they only fetch, decode, and dispatch one instruction per a vector of 

processing elements [7]. A GPU's multiple threads keep it versatile, or at least 

flexible enough to handle a wide range of calculations. GPGPU stands for "General 

Purpose Computing on Graphics Processing Units." 

Graphics processors began as fixed-function display controllers, offloading 

the rendering of a computer screen from a general-purpose CPU. Originally 

graphics chips could only draw lines, arcs, and geometrical shapes like circles, 

rectangles, as well as character bitmaps in 2D. Many rendering stages, particularly 

those involving computations in floating point, were executed on a CPU initially. 

At later stage the graphics processors could also render 3D images, which are used 

mainly in computer games. With technological advancements, graphics chips 

became capable of performing many steps of the rendering process on their own. 

The NVIDIA GeForce 256 was released around the beginning of the century, and 

it was the first graphics processor to be named a GPU. It could perform all of the 

geometry calculations independently; eliminating the need for the host CPU's 

floating point computations. 

 

Fig. 2.1: Simplified 2 stage graphics pipeline 

Fixed processing pipelines were used on the early GPUs. Each stage of the 

pipeline had its own set of functions, which were implemented in specialized 

hardware. The graphics pipeline is a diagram that depicts the flow of graphics data 

via multiple stages. It's basically a method of translating coordinates from the 
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application programmer's preferred format to the display hardware's preferred 

format. The pipeline converts the 3D data in the form of 20-triangle models or 

shapes, as well as 3D coordinates (x, y, z), into pixels that are displayed on the 

monitor's 2D space, representing the objects' surface, are stored at the top of the 

pipeline. The concept of a 3D graphics pipeline can be represented in a numerous 

ways, some of which are quite complicated while others are quite simple. In its 

most basic form, the entire procedure can be divided into two steps. In the first step, 

the geometry processing stage converts 3D object coordinates to 2D window 

coordinates. The rendering step, which represents the surface of the object 

represented in Figure 2.1 by filling the pixels' area between the 2D, coordinates 

with pixels. 

 

Fig. 2.2: Graphics Rendering Pipeline 

 Graphics rendering pipeline [8] which is shown in Figure 2.2 consists of 

the following stages: 

ransformations: Converting the coordinates of objects to a common 

coordinate system is a common step in such a pipeline (e.g. scaling, rotation and 

translation). 

The color of each triangle is calculated based on the lights in the scene. 

This stage was previously done with Phong shading. 

imulation: Each colored triangle is projected onto the film plane of the 

virtual camera. 
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 It is the process of converting triangles to pixels and includes 

clipping to the edges of the screen. The color of each pixel is calculated by 

interpolating the vertices of a triangle. 

exturing: If a texture is used for increased realism, it should be mapped to pixels. 

In the rasterization process, texture coordinates are calculated. 

2.2 The Modern GPU 

The early 1980s are often regarded as the beginning of the current era of 

computer graphics. The first video cards for the PC were manufactured by IBM in 

1981. The monochrome display adaptor could only display monochrome text and 

couldn't address a single pixel; therefore the screen had to be changed in a 9 × 14 

pixel region. Despite the limitations associated with these cards and only non-

colored text being allowed, given the restrictions of the original PC, they were an 

acceptable answer at the time. Although video cards improved with higher 

resolutions, colour depths, and the ability to change individual pixels (known as 

"All Point Addressable"), they were still constrained because they were dependent 

on the main system CPU to conduct all of the calculations. These new audiovisual 

capabilities put extra burden on the CPU. The first processor-based video card for 

the PC was released by IBM in 1984. The Professional Graphics Adapter (PGA) 

had its own Intel 8088 microprocessor onboard, which handled all video-related 

operations and freed up the main CPU to focus on other things. This was a pivotal 

moment in the history of the graphics processing unit (GPU), as it introduced the 

idea of using a separate processor for graphics computing system computations. In 

an XT or AT machine, the PGA video card required three card slots, as well as a 

specific professional graphics display, and cost more than $4000 [9]. All of this 

contributed to the PGA card's short lifespan; nonetheless, version 17 which was 

capable of 3D animation with 60 frames per second and was aimed at high-end 

corporate markets for engineering and scientific purposes rather than end users. 

Larger system needs and higher processing power were necessary for the graphics 

computer system family to transition and occupy a more significant place after the 

release of VisiOn, the first GUI for the PC, in 1983. Silicon Graphics Inc. (SGI) 
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was a nascent computer graphics hardware business that concentrated its efforts on 

developing the fastest computer graphics machines available. They were also 

developing industry standards that serve as the framework for today's computer 

graphics hardware and software, in addition to their technologies. The platform-

independent graphics API OpenGL [9] is one of today's software standards. 

OpenGL was first launched by SGI in 1989 and has since become the most 

extensively used and supported 2D and 3D API in the industry. The concept of a 

graphics pipeline was also pioneered by SGI and is now a fundamental part of the 

design of graphics hardware (which will be discussed later). This design approach 

is quite comparable across all major GPU manufacturers, such as NVIDIA [10], 

ATI[11], Matrox[12], and others, and has been a main driving force behind GPU 

technology's rapid expansion. The development of three-dimensional PC games 

such as Quake III, Doom, Ultimate Tournament, flight simulators, and others has 

been the most recent motivation behind the GPU design and implementation boom. 

These games have prompted the adoption of high-performance GPUs in PCs, and 

as GPUs have become more powerful, new 3D applications have emerged. Some 

applications, like geophysical visualization software for oil companies [13], are 

supercomputer-class applications that have been ported to the PC. 3D games 

accomplished for the PC the same task as CAD has done for high-end graphics 

systems. Despite both PC graphics and high-end industrial graphics achieving 

significant technological advances, it is very important to realize that they serve 

different purposes. Offline rendering systems, such as those used in CAD 

programmes, prioritize accuracy over frame rate, but real-time rendering systems, 

such as gaming engines and simulators, prioritize frame rates for smooth and fluid 

animations, even if it means sacrificing geometry and texture detail. GPUs have 

become far more complicated than a general-purpose CPU as technology has 

progressed. With 222 million transistors, NVIDIA's latest GeForce 6 Series GPUs 

have more than doubled the transistor count of a Pentium 4. According to Moore's 

Law, the density of transistors on a given die size doubles every 12 months, 

however, this has now dropped to every 18 months, in fact, the performance of 

processor doubles every 18 months. GPU makers have discovered that by 
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increasing the transistor count two fold on a given chip size every 6 months, 

transistors have outperformed Moore's Law principles in the last 8 to 10 years. With 

this rate of development and performance possibilities, it's quite easy to see why a 

deeper look at the GPU for applications other than graphics is required. Multiple 

processes can run over the same single threaded pipeline on a general-purpose CPU 

with a single threaded processing architecture, which accesses its specialized data 

over a single memory interface. Stream processing, on the other hand, is the 

architecture of GPUs. This design is much better at dealing with huge data streams, 

which are common in graphics applications. A GPU can have thousands of stream 

processors, each of which is connected to another stream processor through an 

exceptionally fast dedicated pipeline. Unlike the CPU, the stream processors are 

interconnected through a specialized pipeline, therefore there are no conflicts or 

delays. Every transistor on the device is active at all times in the stream processing 

model. This raises the question of whether the GPU will eventually replace the CPU 

as the computer's primary processor. 

2.3 Architecture of GPU 

i. The future of high throughput computing is streaming processor. 

ii. A Architecture need to be build around the unified scalar stream processing 

cores.  

iii. GeForce 8800 GTX (G80) was the first GPU architecture built with this 

new paradigm. 

 

In our project, we have used NVIDIA TESLA K80 GPU device. It is based on 

Kepler architecture as shown in fig.2.3. GK210 is the graphics processor used. 

 



11 
 

 

Fig. 2.3: GPU Architecture 

2.3.1  Inside a Stream Multiprocessor(SM) 

The streaming multiprocessors (SMs) illustrated in fig.2.4, which are a 

component of the GPU, run our CUDA kernels. Each SM has the following : 

 Thousands of registers that can be divided into threads of execution 

o Several caches: 

o Contexts switching between threads and issue commands can be 

made fast using warps scheduler to ready-to-run warps. 

o Shared memory allows threads to exchange data quickly. Constant 

cache for quick readings from constant memory broadcast.  

o Bandwidth from texture memory is aggregated using texture cache. 

o Latency to local or global memory is reduced using L1 cache. 

 Integer and floating-point operations execution cores: 

o Double-precision floating point operations  
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o Integer and single-precision floating point operations 

o Single-precision floating-point transcendental functions are 

represented using Special Function Units (SFUs). 

 

Fig. 2.4: Inside a Streaming Multiprocessor (SM) 

2.4 FPGA 

FPGAs are prefabricated electronically programmable silicon devices that 

may build practically any form of digital circuit or system [14]. Compared to fixed-

function ASIC technologies like conventional cells, they have a number of major 

advantages: FPGAs are relatively cheap in cost and can be programmed in less than 

a second (and can often be changed if a mistake is made). It can take months to 

build ASICs and its production can cost hundreds or millions of dollars. The 

flexibility of an FPGA comes at a cost in terms of area, latency, and power 

consumption: an FPGA usually takes more area than  ASIC requires, but it has 



13 
 

approximately 10 times the dynamic power. These drawbacks stem mostly from 

the configurable routing fabric of an FPGA, which sacrifices size, speed, and power 

in exchange for immediate fabrication. 

2.4.1 Why FPGAs? 

Because of their quick turnaround and low volume cost, FPGAs are an 

appealing solution for digital system implementation. FPGAs are the only cost-

effective way to take advantage of Moore's law's scalability and performance for 

small businesses or small entities within huge firms. The ASIC design is more 

difficult and costly because of the challenges faced in deep submicron techniques 

 

The challenges provided by state-of-the-art deep submicron techniques 

make ASIC design more difficult and costly as Moore's law advances. The 

investment required to create an effective ASIC consists of three primary 

components in terms of both time and money:  

(1) Extremely expensive cutting-edge ASIC CAD tools for timing analysis, 

extraction, routing, placement, synthesis, power analysis and simulation. 

(2) A mask required for a fully assembled device costs millions of dollars. This cost 

can be lowered by sharing the costs incurred in prototyping or by using a structured 

technique so that it needs lesser masks than before for manufacturing of ASICs. 

(3) Enormous cost required for an engineering team who will be working on a large 

ASIC over several years. (An FPGA design team would incur a similar expense, 

although it would be less.) Most digital design projects begin with FPGA 

implementation because of the high expenses and the necessity for a proportionally 

better return on investment. 
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2.4.2 Overview 

FPGAs are made up of a network of programmable logic blocks of various 

types (fig.2.5) surrounded by a routing fabric which is programmable. It allows the 

interconnections of blocks to be programmable. Programmable input/output (I/O) 

blocks surround the array, allowing the device to interface with the outside 

environment. After silicon manufacture, the "programmable" phrase in FPGA 

refers to the ability to programme a function into the chip. A mechanism called 

programming technology, can induce a change in the behavior after fabrication of 

a pre-fabricated chip in the "field" where this customization is enabled by the design 

of system users. The programming technology for the first programmable logic 

circuits was extremely small fuses. The next section on the history of programmable 

logic briefly describes these devices. 

 

Fig. 2.5: Basic FPGA structure 

2.4.3 History 

The foundations of the current Field-Programmable Gate Array can be 

traced back in the early 1960s to the creation of the integrated circuit. In the early 

days of programmable electronics, regularity in the architecture and flexible 

functionality were used. Cellular arrays [15] which consists of a 2-D array made of 
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simple logic cells that interacted in a fixed, point-to-point manner. The Maitra 

cascade [16] was one of the first arrays to include logic cells that could be 

programmed to perform a range of two-input logic functions via metalization 

during manufacture. With the introduction of "cutpoint" cellular arrays in the mid-

1960s, field-programmability, or the ability to change a chip's logic function after 

it was created, was realised. The function of each logic cell in the array can be 

determined by setting programmable fuses inspite of the fixed connections between 

the array's parts. Using programming currents or photo-conductive exposure in the 

field, these fuses could be programmed. Because of this field-customization, array 

production becomes easier and it also allows for a wider range of applications. A 

novel technique to implement logic functions was presented in the 1970s with a 

series of read-only memory (ROM)-based programmable devices. Despite the fact 

that mask-programmable ROMs and fuse-programmable ROMs (PROMs) may 

implement any N-input logic function with N address inputs, area efficiency 

becomes an issue for everyone due to the exponential dependence of area on the 

value of N. The earliest programmable logic arrays (PLAs) improved on this by 

adopting two-level AND OR logic planes that closely matched the structure of 

common logic functions while being substantially more space-efficient (each plane 

in a wired-AND or wired-OR configuration, along with inverters, can build any 

AND or OR logic term). Figure 2.7 is an example PLA. With the understanding 

that a programmable AND plane followed by a fixed OR plane gave considerable 

flexibility (fig2.6) announced by Monolithic Memories Incorporated (MMI) [17] 

in 1977.  in PAL devices, these architectures evolved even farther. These devices 

had configurable combinational logic that provided fixed sequential logic in the 

form of D-type flip flop macrocells. 
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Fig. 2.6: PAL (Programmable Array Logic) 

 

Fig. 2.7: PLA (Programmable Logic Array) 

Wahlstrom [18] proposed the SRAM-based FPGA  which is the first static 

memory-based FPGA in 1967. Using a stream of configuration bits, both logic and 

connectivity configuration is allowed in this architecture. Unlike its modern cellular 

array equivalents, each logic cell could have both wide-input logic functions and 

storage elements. In addition to this, to allow for a number of circuit topologies to 

be implemented, the connections of programmable inter-cell could be easily 

altered. Although static memory provides the maximum flexibility in terms of 
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device programmability, it does so at the expense of a significant increase in space 

per programmable switch when compared to ROM solutions. This difficulty most 

likely delayed the commercialization of programmable devices based on static 

memory until the mid-1980s, when the cost per transistor had dropped significantly. 

Xilinx released the first modern-era FPGA in 1984 [19]. It included the now-

ubiquitous Configurable Logic Blocks. FPGAs have expanded in complexity 

dramatically since the first one, which had 64 logic blocks and 58 outputs and 

inputs.  

2.5 Kintex KC 705 Evaluation Board  

The Kintex7 FPGA KC705 evaluation board provides platform for creating and 

examining hardware designs called hardware platform for the Kintex-7 

XC7K325T-2FFG900C FPGA [20]. This board includes DDR3 memory, an 8-lane 

PCI Express interface, general purpose I/O, and a UART interface, which are all 

standard characteristics in embedded computing systems. The board utilized in this 

project is shown in fig.2.8. The following are some of the board's features: 

 Kintex-7 XC7K325T-2FFG900C FPGA 

 1 GB DDR3 memory SODIMM 

 Clock generation 

o  Fixed 200 MHz LVDS oscillator (differential) 

o  Inter-integrated circuit (I2C) programmable LVDS oscillator 

(differential) 

o  SMA connectors (differential) 

o  SMA connectors for GTX transceiver clocking 

 PCI Express endpoint connectivity 

o  Gen1 8-lane (x8) 
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o  Gen2 8-lane (x8) 

 USB-to-UART bridge 

 Status LEDs  

o Ethernet status  

o Power good  

o FPGA INIT  

o FPGA DONE 

 User I/O 

o USER LEDs (eight GPIO) 

o User pushbuttons (five directional) 

 

Fig. 2.8: The Kintex KC 705 Evaluation Board 
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Chapter 3 

 Methodology 

3.1 Problem Formulation 

MD (molecular dynamics) describes physical events with a significant 

parallel component, in which particles (atoms) individually assess the cumulative 

forces exerted on them by their surroundings based on cutoff distance. MD 

calculations are usually performed in serial, with processing loops iterating through 

all particles or particle-pairs at each time step. Most of these explicit loops are no 

longer required due to the availability of large-scale data parallelism. The overall 

force computation for each particle, for example, can be done totally independently 

and in parallel, but the fundamental addition to determine total energy is 

unavoidably serial, necessitating the use of efficient, but more complicated, parallel 

reduction algorithms. We require a radial and angular description of the ith particle 

to determine the force operating on it owing to other particles in a nanoparticle. 

An angular description of an ith particle surrounded by other particles [4] 

can be given by the equation 3.1 as follows: 

                      (3.1) 

where, Clm is angular descriptor 

  is cut-off function 

  is spherical harmonics given by equation 3.2 as follows: 

                          (3.2) 

where,  is legendre polynomial 
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3.2 Algorithmic flow 

We want to calculate the angular description values ( ), and the 

algorithmic flow (as shown in fig.3.1) to do so is depicted in the diagram below. 

The entire computation is already done in C code, which runs on a CPU and is 

executed in a sequential manner.  

 

 

Fig. 3.1: Algorithmic flow of our code 

3.3 CPU vs GPU 

The main distinction between CPU and GPU architecture is that a CPU is 

designed to do a wide range of tasks fast (as seen by CPU clock speed), but it has 

a limit on the number of processes that can run at the same time(as can be seen by 

comparing number of cores in fig.3.2) [21]. A GPU is a computer processor that is 

capable of rendering high-resolution graphics and video in real time. GPUs are 

commonly utilised for general purpose applications such as scientific computation 

and machine learning because they can conduct simultaneous operations on several 

sets of data. GPUs provide remarkable parallelism by allowing thousands of CPU 
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cores to run at the same time. Each core is focused on running operations as 

efficiently as possible. GPUs can handle data several orders of magnitude faster 

than CPUs due to their massive parallelism. GPUs, on the other hand, are not as 

adaptive as CPUs. CPUs, unlike GPUs, have wide and comprehensive instruction 

sets that handle all of a computer's input and output. In a server, there might be 24 

to 48 very fast CPU cores. Connecting 4 to 8 GPUs to the same server can add 

40,000 cores to the system. Individual CPU cores are quicker (as measured by clock 

speed) and smarter (as assessed by available instruction sets), but the sheer number 

of GPU cores and vast amounts of parallelism they enable more than compensate 

for the single-core clock speed disparity and restricted instruction sets. Jobs that 

demand a lot of repetition and parallel processing are best suited for GPUs. 

 

Fig. 3.2: Comparison of CPU and GPU with respect to cores 

3.4 CUDA Programming 

CUDA is a parallel computing platform and API developed by the 

company. It's an Nvidia parallel computing design that uses the GPU's capabilities 

to boost processing performance dramatically. As a best practice, accelerated 

computing is replacing CPU-only computing. Comprised of both CPUs and GPUs, 
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accelerated systems are also known as heterogeneous systems. Accelerated systems 

run CPU applications, which then launch operations that take advantage of GPUs' 

tremendous parallelism. CUDA programming includes running code on two 

platforms at the same time: a host system with one or more CPUs and one or more 

NVIDIA CUDA-enabled GPU devices. While NVIDIA GPUs are most often 

associated with gaming and graphical aspects, they can also simultaneously execute 

thousands of lightweight threads. They're well-suited to computations that gain 

from parallel processing as a result of this. 

3.4.1 Host and Device 

In the realm of CUDA parallel programming, our CPU is known as the Host, 

and our GPU is known as the Device.(fig.3.3) 

 

(a) 

 

(b) 

Fig. 3.3: (a) Host and (b) GPU Device 

The threading model and different physical memories are the main differences 

between them. On host systems, execution pipelines can only handle a certain 

number of simultaneous threads. Today's servers can only operate 24 threads at a 

time due to their four hex-core processors (or 48 if the CPUs support Hyper 

Threading). These threads are executed in a group termed as warp of threads 

having 32 threads at a time. On GPUs with 16 multiprocessors, modern NVIDIA 

GPUs can support up to 1536 active threads per multiprocessor, resulting in about 

24,000 simultaneously active threads. 
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3.4.2 Porting to CUDA 

 

Fig. 3.4: Distribution of code execution between CPU and GPU 

Any application code can run heterogeneously on CPU and GPU, as shown 

in the fig.3.4 [23]. A portion of the code that is compute heavy will run in parallel 

on the GPU, while the rest will run sequentially on the CPU. 

3.4.3 Simple Processing Flow 

 

(a) 
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(b) 

 

(c) 

Fig. 3.5: (a) Copy input data from CPU memory to GPU memory, (b) Load and 

run a GPU program, caching data on the chip for better performance, (c) Copy 

results from GPU memory to CPU memory. 

3.4.4 Parallel Programming in CUDA C 

GPU computing is all about massive parallelism. It can be understood with 

the help of an interesting example of vector addition. 
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Fig. 3.6: Representation of Vector addition in parallel 

3.4.4.1 GPU Kernels: Device Code 

__global__ void mykernel (void) { 

 }  

 CUDA C++ keyword __global__ indicates a function that: 

o The following function will run on the GPU, and can be 

invoked globally, which in this context means either by the CPU, or, 

by the GPU 

o It is required that functions defined with the __global__ keyword 

return type void 

 nvcc breaks down source code into host and device components  

o Device functions (e.g. mykernel()) processed by NVIDIA compiler 

o Host functions (e.g. main()) processed by standard host compiler 

mykernel<<<1,1>>>(); 

 When a function is called to run on the GPU, it is usually referred to as a 

kernel. 

 Before handing the kernel any expected arguments, we must give an 

execution configuration by using the<<<... >>> syntax. 
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 At a high level, execution configuration allows programmers to define the 

thread hierarchy for a kernel launch, which includes the number of thread 

groupings (called blocks) and the number of threads to execute in each 

block. In the above example, the kernel is launching with 1 block of threads 

(the first execution configuration argument) which contains 1 thread (the 

second configuration argument). 

cudaDeviceSynchronize(); 

will continue to run while the kernel is being launched. 

me function, will cause the host 

(CPU) code to wait until the device (GPU) code completes before resuming CPU 

execution [23]. 

3.4.4.2 CUDA Thread Organization 

There are three layers in the CUDA thread hierarchy. The basic parallel unit 

is warp, which also defines the hardware memory bandwidth of the GPU device. 

Each warp has a total of 32 threads, which are split into two half warps and 

scheduled to the hardware scheduler's execution queue during execution. The 

CUDA language extension does not provide a clear description for controlling warp 

behaviour flow from the standpoint of a programmer. Thus, at the bottom of the 

programmable CUDA thread hierarchy, the thread blocks are visible. Because the 

existing architecture only enables one grid on device at a time when the kernel is 

launched from the host, grid is a collection of thread blocks that may be considered 

as a device abbreviation. The kernel function is executed by all threads in a grid. 

The size and dimension of thread blocks can be determined by the programmer 

using built-in variables within hard limits that vary from product to product, which 

is extremely flexible in reality. Threads can use pre-defined thread indices to 

distinguish themselves from one another. 
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For block and grid dimensions as below  dim3 block( 4, 1, 1) & dim3 grid( 8, 1, 1) 

can be visualized as in fig 3.7 and dim3 block( 8, 2, 1) & dim3 grid( 2, 2, 1) can 

be visualized as shown in fig 3.8.  

 

 

Fig. 3.7: Representation of Block and Grid in a single dimension 

 

 

Fig. 3.8: Representation of Block and Grid in multi-dimension 
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(a) 

 

(b) 

Fig. 3.9: Limitation for number of (a) threads in a block in each dimension, (b) 

blocks in a grid 

There are certain limitations on determining the block size. As these block and 

thread variables are three dimensional of type dim3, threads in a block can be 

arranged in a 3D manner. Fig 3.9(a) shows the maximum number of threads that 

can be arranged in each dimension of a threadblock whereas fig 3.9(b) shows the 

maximum number of blocks that can be arranged in each dimension of a grid. Some 

key terms can be defined as follows: 

(a) ThreadIdx - CUDA runtime uniquely initialized threadIdx variable 

(fig.3.10) for each thread depending on the coordinates of the belonging 

thread in the block(Table 3.1). ThreadIdx is a dim3 type variable. 
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Fig. 3.10: Illustration of thread index assigned to various threads 

 

Thread X Y P Q R S T U 

ThreadIdx.x 1 1 0 2 0 3 1 0 

ThreadIdx.y 0 1 0 1 0 1 0 1 

Table. 3.1: Values of thread index assigned to various threads 

(b) BlockIdx - CUDA runtime uniquely initialized blockIdx variable 

(fig.3.11) for each thread depending on the coordinates of the belonging 

thread block in the grid(Table 3.2). blockidx is dim3 type variable. 

 

Fig. 3.11: Illustration of block index assigned to various threads 
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Thread P Q R S T U V X 

BlockIdx.x 0 0 1 1 0 0 1 1 

BlockIdx.y 0 0 0 0 1 1 1 1 

Table. 3.2: Values of Block index assigned to various threads 

(c) blockDim - blockDim variable consists number of threads in each 

dimension of a thread block (fig.3.12). Each blue square represent a thread 

and group of blue squares in a yellow border represents a block. 

 

Fig. 3.12: Illustration of dimension of a block based on number of threads 

(d) GridDim - GridDim variable consists of number of thread blocks in each 

dimension of a grid. 

3.4.4.2.1 Unique index calculation for a thread in a grid 

There are various blocks in a grid each having same number of threads. For doing 

any calculation, we need to access these threads so that they are addressed uniquely 

as shown in the fig.3.13. 
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Fig. 3.13: Representation of local and global thread Id 

Where tid is thread id and gid is global id.  

gid = tid + offset  

gid = tid + blockIdx.x*blockDim.x 

Example: For thread in second thread block, blockIdx.x = 1 & blockDim.x =4 

Offset = blockIdx.x * blockDim.x = 1*4 =4  

3.4.4.2.2 Execution Model 

 Scalar processors are used to execute threads. 

 Thread blocks are not migrated and are executed on multiprocessors. 

 On a single multiprocessor, multiple concurrent thread 

blocks can exist, but multiprocessor resources are limited 

by shared memory and register file constraints. 

 A kernel is launched as a series of thread blocks in a 

grid. 
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Fig.3.14: Hardware perspective of CUDA terminologies while execution [24] 

 Thread blocks are divided into smaller units called warps each having 

32 consecutive threads.  

 Suppose number of Streaming multiprocessors(SMs) are 13 and 

total number of cores per SM is 128 and the Block size we took is 512.  

o Number of warps per block = Block size/ Warp size = 512/32 = 16  

o 4 warps can execute parallelly in single SM.  

 Warps can be defined as the basic unit of execution in a SM. Once a thread 

block is scheduled to an SM, threads in the thread block are further 

partitioned into warps.  

 And all threads in a warp are executed in Single Instruction Multiple Thread 

(SIMT) fashion.  
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Fig.3.15: Group of threads in a warp before executing on multiprocessor 

3.4.4.3 Running Code in Parallel 

As we were discussing about parallelization of vector addition, suppose we change 

the execution parameter from 1 to N. Consequently, instead of executing add() 

once, it is executed N times in parallel. 

 add<<< 1, 1 >>>(); 

 

 add<<< N, 1 >>>(); 

Each parallel invocation of add() is referred to as a block. The set of all blocks is 

referred to as a grid. Each invocation can refer to its block index using blockIdx.x 

. 

 __global__ void add(int *a, int *b, int *c) { 

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

By using blockIdx.x to index into the array, each block handles a different index. 

Built-in variables like blockIdx.x are zero-indexed (C/C++ style), 0,..,N-1, where 

N is from the kernel execution configuration indicated at the kernel launch. 

#define K 524  

int main(void) { 
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int *p, *q, *r;    // host instances of p, q, r  

int *dev_p, *dev_q, *dev_r;   // device instances of p, q, r  

int size = K * sizeof(int);  

// Allocate space for device instances of p, q, r  

cudaMalloc((void **)&dev_p, size);  

cudaMalloc((void **)&dev_q, size); 

cudaMalloc((void **)&dev_r, size);  

// Allocate the space for host instances of p, q, r  

p = (int *)malloc(size); 

q = (int *)malloc(size);  

r = (int *)malloc(size); 

// Inputs are copied to device for computation 

cudaMemcpy(dev_p, p, size, cudaMemcpyHostToDevice); 

cudaMemcpy(dev_q, q, size, cudaMemcpyHostToDevice); 

// Launch add() kernel on GPU with K blocks 

add<<>>(dev_p, dev_q, dev_r); 

// Result is copied back to host 

cudaMemcpy(r, dev_r, size, cudaMemcpyDeviceToHost); 

// Free the occupied memory 

 free(p); free(q); free(r); 

 cudaFree(dev_p); cudaFree(dev_q); cudaFree(dev_r);  
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 return 0; 

 } 

3.5 GPU Memory Hierarchy 

The CUDA programming approach implies that each device manages its 

own memory area on GPU DRAM. CUDA offers three forms of memory that 

programmers can use: global (device) memory, shared memory, and registers, as 

shown in Figure 3.4. Each thread in a thread block has 32-bit registers that it can 

read and write. Each thread block has shared memory that is visible to all threads 

within it and has the same lifetime as the block. On-chip memories include registers 

and shared memory. Variables in these kinds can be accessed in a highly parallel 

manner at very high speeds. By sharing input data and intermediate outcomes of 

processed data, shared memory allows threads to collaborate more effectively. 

Appropriate accessing may allow shared memory to operate at the  

 

Fig. 3.16: Organization of memory inside a GPU 
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same speed as registers. The global memory is shared by all threads. To access data 

in device memory, many hundred clock cycles are required. Constant and texture 

memory are stored off-chip as part of device memory. Constant memory, on the 

other hand, is read-only and cached, and it provides low-latency, high-bandwidth 

memory access by device, with all threads accessing the same address at the same 

time [25]. 

3.6 Basic Architecture of work done on FPGA 

 

Fig. 3.17: Flow of the work done on FPGA 

As shown in the fig.3.17, input data from host PC is first sent to FPGA. We 

have used PCIe (Peripheral component interconnect express) protocol so that 

proper communication channel is established between host PC and FPGA endpoint. 

 The architecture of the work done using FPGA can be understood with the 

help of above block diagram. We need to understand how the data should be sent 

from host PC to FPGA, perform the required computations and the results to go 

back to the host PC. A Vivado Design Suite subsystem for PCI Express endpoint-

initiated Direct Memory Access (DMA) data transfers is demonstrated in this 

project. The offered subsystems target the following devices to initiate data 

transfers between DDR3 memory and an externally attached PCI Express Root 

Complex Kintex -7 KC705 device (in our project). This design shows how to 

leverage the AXI Memory Mapped to PCI Express IP to execute high-throughput 

data transmission across a PCI Express link (see diagram below). A Scatter Gather 
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capable DMA engine is used in conjunction with the PCI Express IP to achieve 

this. The DMA engine enables the FPGA to handle data transmission over the PCI 

Express link, allowing it to boost throughput while lowering processor use on the 

Root Complex side of the link [26]. 

 

Fig.3.18: Transfer between host and card using PCIe communication 

3.7 Communication protocol - PCIe 

PCI Express is a high-speed, general-purpose I/O connection standard 

designed for a wide range of computing and communication devices. The usage 

model, load-store architecture, and software interfaces of PCI are all preserved, but 

the parallel bus implementation is substituted by a highly scalable, entirely serial 

interface. PCIe has a bidirectional connection that allows it to send and receive data 

at the same time [27]. Because each interface contains a simplex transmit and 

receive path, the model deployed is referred to as a dual-simplex connection, as 

shown in the diagram below. The communication path between two devices is 

functionally full duplex because traffic can flow in both directions at the same time, 
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but the spec uses the term dual-simplex to describe the actual communication 

channel. 

 

Fig. 3.19: Bidirectional connection between the two components using PCIe 

This path between the devices is referred to as a Link, and it is formed by 

the combination of one or more transmit and receive pairs. A Lane is one of these 

pairs, and a Link can be made up of 1, 2, 4, 8, 16, or 32 Lanes, depending on the 

standard. The Link width is the number of lanes and is expressed as x1, x2, x4, x16, 

and x32. The trade-off between the number of lanes to utilize in a particular 

architecture is simple: more lanes increase the Link's bandwidth while also 

increasing its cost, space need, and power consumption. 

3.7.1 Definition of Bus, Device and Function 

Every PCIe function is individually recognized by the Device it sits in and 

the Bus to which it connects, just as PCI. A 'BDF' is the popular name for this 

unique identification [27]. Every Bus, Device, and Function (BDF) inside a given 

topology is detected by configuration software.  

3.7.2 PCIe Buses 

Configuration software can allocate up to 256 Bus Numbers. The Root 

Complex is usually allocated Bus 0, which is the first bus number by hardware. Bus 

0 is made up of a virtual PCI bus with integrated endpoints and virtual PCI-to-PCI 
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Bridges (P2P) with Device and Function numbers hard-coded. Each P2P bridge 

establishes a new bus that can be used to connect more PCIe devices. A unique bus 

number must be assigned to each bus [27]. The procedure of allocating bus numbers 

starts with the configuration programme looking for bridges that start with Bus 0, 

Device 0, Function 0. When a bridge is discovered, software provides a bus number 

to the new bus that is unique and greater than the bus number on which the bridge 

is located. 

3.7.3 PCIe Devices 

PCIe allows up to 32 device attachments on a single PCI bus, however due 

to its point-to-point structure, only one device can be directly attached to a PCIe 

connection, and that device is always Device 0 [27]. Virtual PCI buses on Root 

Complexes and Switches allow many Devices to be joined to the bus. 

3.7.4 PCIe Functions 

Every device has functions built in. Each Function does have its own 

configurable address space, which is used to set up the Function's resources. Each 

Function has its own dedicated block of configuration address space defined by 

PCI. Software can detect the existence of a Function, configure it for regular 

operation, and verify its status using registers mapped into the configuration space. 

Because it was initially built for PCI, the 256 bytes of PCI-compatible configuration 

space has that designation. This space's configuration header takes up the first 16 

dwords (64 bytes) (Header Type 0 or Header Type 1). Except for the bridge 

functions, which employ Type 1 headers, Type 0 headers are required for all 

functions [27]. Optional registers, such as PCI capability structures, are used with 

the remaining 48 dwords.  
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3.8 Implemented block design 

 

Figure 3.20: Block design implemented on Xilinx Vivado 

 

Above block design is implemented with the help of some key IPs: 

 

3.8.1 DMA/Bridge Subsytem for PCI Express (PCIe)  

(PCIe) IP [28] delivers a high-performance DMA. There are two possible interfaces 

available, one is AXI4 Memory Mapped and other one is AXI4-Stream. 

Features: 

 Supports 64, 128, 256, 512-bit datapath 

 64-bit source, destination, and descriptor addresses 

 Up to 4 (H2C/Read) data channels 

 Up to 4 (C2H/Write) data channels 

o Single AXI4 memory mapped (MM) user interface 
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o AXI4-Stream user interface 

The PCI Express DMA/Bridge Subsystem allows data to be moved between 

the memory of our PC and the DMA used. This is accomplished by using 

descriptors. These descriptors consists of information about the source address 

which is the address from where data is to be taken, destination address which is 

the address where data needs to be sent, and size of data to be transferred. Host to 

Card/System (H2C) and Card/System to Host (C2H) transfers are examples of 

direct memory transfers. The DMA can be set up to have a single AXI4 Master 

interface shared by all channels or a separate AXI4-Stream interface for each 

channel. Memory transfers are described per-channel in descriptor linked lists, 

which the DMA retrieves and processes from host memory. Interrupts are used to 

notify events such as descriptor completion and errors. 

The transactions on which bus are determined by the channel type chosen. 

 A Host-to-Card (H2C) channel sends read requests to PCIe and returns 

data, or sends a write request to the user application. 

 A Card-to-Host (C2H) channel, on the other end either waits for data on 

the user side or generates a read request on the user side and then generates 

a write request containing the data received to PCIe. 

 

3.8.2 Custom HLS IPs 

The algorithms used are becoming complicated day by day. Vivado High-

Level Synthesis is available as an upgradation in the HLx edition. With the advent 

of Vivado HLS, it has become easy to create an IP with complex code, as it allows 

users to use C, C++ and System C languages and directly create configurations for 

the programmable device without the need to develop any RTL manually. Vivado 

HLS creates a similar system and design architects, providing a faster IP creation. 

Our entire algorithm to calculate Force values and Energy is based on C/C++ 

language. By using HLS software, we can create an IP of this algorithm and later 

export it to the Vivado HLx software where this IP can be used inside the Block 
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Design. This IP will receive the input coordinate values and subsequently calculates 

the Energy and Force values based on the algorithm written inside it. 

 

3.9 Functionality 

After installing the drivers successfully, the following user-accessible 

devices make up the XDMA driver. As a reference, the driver is given. We can edit 

the driver to include particular needs, based on their requirements [26]. 

 xdma0_control : for accessing Xilinx DMA registers 

 xdma0_h2c_0/1/2/3, xdma0_c2h_0/1/2/3 : All the 4 channels can be 

accessed corresponding to the number written after h2c/c2h. 

There are some script files used to perform various tasks: 

 run_test.sh : Basic transfer is done by this script file(determines the 

transfer size) 

o After loading driver, checks if the design is AXI-MM or 

AXI_ST and the number of channels enabled. 

o Basic transfer can be performed to all enabled channels. 

 load_driver.sh: loads driver 

 dma_memory_mapped_test.sh 

o Write to enabled H2C channels. 

o There are 4 address offset values present in this file which 

should be given appropriate values: 

 First addrOffset(2151750108): Set address offset1 

for writing zero(zero.bin file) at energy location. 

Whenever this zero is replaced by actual value of 

energy, computer understands that calculation is over 

and now it has to receive the values of energy and 

forces from FPGA board. 

 Second addrOffset(2150629376): This is to set 

address location of DDR memory where we want to 

store one extra value & XYZ values (inptfile1.bin). 
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 Third addrOffset(2151750108): This is again to set 

the last location of DDR memory, where energy will 

get stored. We will continuously read the value of 

DDR memory location set by this addrOffset and 

compare it with zero(by comparing krit_out0 and 

zero.bin file) and once read value is not equal to zero, 

computer gets to know that energy and force 

calculation is over. 

 Fourth addrOffset(2151748344): Set address 

offset4 to read the force and energy values. 

 

 

Fig. 3.21: Memory Mapping for storing data in DDR3 memory 

After doing all the above mentioned steps in host PC, input values or 

coordinates of the atoms positioned in 3D space are being sent from host PC to 

FPGA endpoint. On the other side, we have implemented the block design on 

Vivado HLx software and burn the binary file (after generating bitstream) on the 

FPGA board. The entry point of these input values on FPGA is the DMA/Bridge 

Subsytem for PCIe IP. The data is moved with the help of DMA engine which uses 

descriptors and allocates buffer space in system memory to do so. The descriptor 
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formats have various contents which can be determined by a number of factors, 

including the DMA engine's user interface. A C2H transaction in an AXI Memory 

Mapped interface has an AXI address as the source address and a PCIe address as 

the destination address. The source address for an H2C transaction is a PCIe 

address, and the destination address is an AXI address. The PCI Express 

DMA/Bridge Subsystem uses a linked list of descriptors to identify the DMA 

transfers' source, destination, and length. The driver generates and stores descriptor 

lists in the host memory. The driver sets up the DMA channel with a few control 

registers so that it can start fetching descriptor lists and performing DMA 

operations. These descriptors describe the data transfers with memory (DDR3 in 

this project) that the DMA/Bridge Subsystem for PCIe should complete. Every 

channel has its own set of descriptors. The hardware registers are set with address 

The descriptor channel starts 

fetching descriptors from the initial address once it is enabled. It then fetches from 

the Next address field of the previously fetched descriptor. 

 

From DMA/Bridge Subsystem for PCI Express, this data is stored in DDR3 

memory (Memory Interface Generator). When the complete set of data is stored in 

memory, our HLS IP is turned on by asserting ap_start signal high. This task is 
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done efficiently by using separate HLS IP, named as cont_checkdata_0. Now, the 

data should be fed to our custom HLS IP for various calculations such as Force, 

Energy, Angular description. The data transfer can be done directly by using 

memcpy() function as shown in the above code for storing 10 integer numbers. 

Once HLS IP receives the data, it starts doing calculations and the results 

are stored back in DDR3 memory at subsequent memory locations. When all the 

data gets stored in memory, we need to send these output values to the host PC and 

in this way our whole process gets completed. This process can be performed 

iteratively according to the number of MD (Molecular Dynamics) steps. 
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Chapter 4 

 Results and Discussion 

4.1 Results on GPU 

We have executed the sequential C code and parallelized CUDA code on 

Google Colab platform where we have been provided the access to CPU and GPU 

having the following hardware specifications (Table 4.1): 

CPU GPU 

Intel Xeon Tesla K80 

1 core 2496 cores 

Frequency @ 2.3GHz Frequency @ 562 MHz 

12 GB RAM 13 GB RAM 

Table. 4.1: Hardware specifications of the CPU and GPU used on Colab 

We started with the execution of algorithm used to calculate distances 

between 147 atoms positioned in 3D space. First we calculated the time taken by 

sequential C code to calculate the distance values. Subsequently, we wrote the 

parallel equivalent of that algorithm by using CUDA platform and after measuring 

the time taken for execution, compared both the results (Table 4.2). 

Processing Unit Computational time (ms) 

CPU 5-10 

GPU 0.9-1 

Table. 4.2: Computational time of CPU and GPU 
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Firstly, we executed the sequential C code for 10 iterations. It calculates the 

angular description of atoms, i.e. Clm values and our task was to calculate the time 

taken by it. All the calculations are done for 147 atoms. Table 4.3 shows the time 

taken in each iteration. 

 

Iteration Number Time 

Taken(sec) 

Iteration1 1.370 

Iteration2 1.377 

Iteration3 1.382 

Iteration4 1.369 

Iteration5 1.343 

Iteration6 1.395 

Iteration7 1.427 

Iteration8 1.389 

Iteration9 1.380 

Iteration10 1.364 

Table. 4.3: Time taken to execute serial C code in each of the 10 iterations 

We took the average from these 10 iterations and it came out to be 1.380 

seconds. Secondly, we executed the CUDA C code for the same algorithm on GPU 

by varying number of threads per block. Table 4.4, 4.5, 4.6 shows the corresponding 

results:  
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For threads per block = 128 

Iteration Number Time Taken(ms) 

Iteration1 417.74 

Iteration2 437.44 

Iteration3 390.58 

Iteration4 434.36 

Iteration5 389.35 

Iteration6 411.55 

Iteration7 435.73 

Iteration8 424.73 

Iteration9 422.40 

Iteration10 397.48 

Average time = 416.13ms 

Table. 4.4: Time taken to execute CUDA C code for 128 threads/Block 

 

For threads per block = 256 

Iteration Number Time Taken(ms) 

Iteration1 495.69 

Iteration2 470.89 

Iteration3 466.67 
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Iteration4 446.83 

Iteration5 488.09 

Iteration6 445.43 

Iteration7 472.57 

Iteration8 475.98 

Iteration9 446.88 

Iteration10 496.85 

Average time = 470.58ms 

Table. 4.5: Time taken to execute CUDA C code for 256 threads/Block 

 

For threads per block = 512 

Iteration Number Time Taken(ms) 

Iteration1 458.08 

Iteration2 486.43 

Iteration3 479.09 

Iteration4 461.27 

Iteration5 479.77 

Iteration6 448.35 

Iteration7 486.28 

Iteration8 454.44 
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Iteration9 453.18 

Iteration10 466.96 

Average time = 467.38ms 

Table. 4.6: Time taken to execute CUDA C code for 512 threads/Block 

After observing the results and comparing these values obtained on CPU 

and GPU by taking the ratio of time taken, we can say that we achieved 2.9  3.3 

times acceleration or 2.9  3.3 times less execution time in executing the algorithm 

on GPU as compared to its CPU counterpart.  

 4.2 Results on FPGA 

We first synthesize the C code in the Vivado HLS, and we got to know the 

performance and utilization estimates sequentially. Later the directives, pipelining 

and unrolling were applied, and we calculated the estimates again by the synthesis. 

The results presented here show us the estimates as well as the comparison between 

the sequential and optimized process. 

Figure below shows the latency (clock cycles) of the HLS IP without 

applying directives.  

 

Fig. 4.1: Performance profile showing the latency report without directives 
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As can be observed, minimum latency or the minimum number of clock 

cycles taken is 97708574. 

Now, we will apply pipeline directive on loop 3, loop 4, loop 5, loop 6. 

These loops take 84863835 clock cycles. Ratio (r) of code on which pipeline 

directive is applied can be calculated as: 

     

We can also call it as FractionEnhancement . 

Figure below shows the report after applying directives: 

 

Fig. 4.2: Performance profile showing the latency report with directives 

 

 

Speed up for the enhanced fraction can be calculated as: 

  

   

After substituting the above value, Speed up can be calculated as: 
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To run this HPC algorithm on FPGA, the design consists of both hardware 

and software parts [5]. The software module present in the computer provides the 

different XYZ coordinates to the FPGA board. The communication between the 

software module and FPGA is established through PCIe communication. DMA 

subsystem for PCIe IP available in Xilinx Vivado HLx edition enables host 

computer to access memory that resides in the FPGA board. Force module would 

calculate forces and energy and again stores these results in the DDR memory. 

After storing these values, we need to transfer all the values to host PC. We need a 

mechanism so that we get to know as and when these calculations are done, these 

calculated values can be transferred to host PC. For the mentioned mechanism, we 

are continuously checking a particular memory location described in chapter 3 of 

the thesis. The software module takes up these forces and calculates the next set of 

XYZ values which are again fed back to the FPGA fabric. This forms a loop that 

can run multiple times. These iterations are known as MD steps. In order to get the 

comparison of performance of MD simulation on FPGA with respect to 

performance on HPC server, it is important to run the MD code while applying 

directives as discussed above. Table 4.7 shows the total time taken to run 1, 100 

and 500 MD steps and its comparison with the code (already done in past in lab) 

that is parallelized using MPI on a HPC server. 

MD Steps HPC Server Timings FPGA Timings 

1 4.18 s 2.91 s 

100 3.51 min 2.18 min 

500 17.43 min 11.49 min 

Table. 4.7: Comparison of timings on Server and FPGA 
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 As it can be inferred from table 4.7, time taken to run different MD steps on 

FPGA is much less as compared to the time taken on HPC server. A performance 

acceleration of 1.4 - 1.6x is achieved using FPGA in comparison to server timings. 
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Chapter 5 

Conclusions and Future Work  

In this project, we have tried to reduce the complexity during calculations, 

reducing the latency by using devices, the GPU and FPGA board. The use of GPU 

lets us do the calculations faster, reducing the latency as compared to our sequential 

process. It has been explained above how we used CUDA, a parallel computing 

platform developed for harnessing the power of NVIDIA GPUs containing 

thousands of cores to achieve massive parallelism. We first parallelized the 

algorithm to calculate the distance between 147 atoms positioned in 3D space. 

Later, we moved to parallelize the algorithm of angular description calculation 

which is being used to calculate Energy, Force values.  

Thereafter, we used high end FPGA device, Kintex KC 705. The sequential 

code for Energy, Force calculations is brought to HLS software where we 

calculated the speed achieved after applying directives. After synthesis, created an 

IP for the same, exported to Vivado HLx, implemented the block design for its 

hardware implementation, and transferred the input and output values between host 

PC and FPGA device using PCIe protocol. 

 The future work we can apply to this project can be: 

 As we have parallelized the algorithm for calculation of angular description 

of atoms used to calculate Energy and Force values, the work can be 

extended to parallelize the complete algorithm for calculating Energy and 

Force values. 

 Obviously, the architecture can be reprogrammed according to user needs 

and the parallelizing techniques can always be improved according to the 

increasing demand in development models of hardware implemented 

computation modules.  
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