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Abstract 

 
This work is the amalgamation of analytical and physical modelling of Y2O3-based memristor crossbar array 

for neuromorphic computation. Firstly, in the case of analytical modelling, the advancement has been 

implemented in the existing analytical model and remove the limitations to make the new memristive device 

more dedicated towards the neuromorphic applications by introducing two novel internal state variables 

namely as forgetting rate and retention. The newly introduced parameters greatly helped in investigation of 

the working of the system and improved the synaptic behavior in terms of potentiation and depression 

processes by enabling re-stimulation process effectively.  

 

The developed analytical model is fully capable to emulate the highly dense memristive crossbar array-based 

neural network of biological synapses and can implement the learning capability of the neurons. These 

biological synapses control the communication efficiency between neurons by varying the synaptic weight 

between to neurons during effective communication process. During electrical stimulation of the memristive 

devices, the memory transition is exhibited along with the number of applied voltage pulses, which is 

analogous to the real human brain functionality. Further, to obtain the forgetting and retention behaviors of the 

memristive devices, a modified window function is proposed by incorporating two novel internal state 

variables. The obtained results confirm that the effect of variation in electrical stimuli on forgetting and 

retention is similar to that of the biological brain. The modelled data is well fitted with the fabricated Y2O3-

based memristive crossbar array to evaluate the performance of the memristive array system and helps to 

understand the synaptic behavior in the neuromorphic computation. The developed analytical memristive 

model can further be utilized in the memristive system to develop real-world applications in neuromorphic 

domains.  

 

On the other hand, a physical electro-thermal modelling of nanoscale Y2O3-based memristor devices has also 

been carried out to understand and analyze the effect of symmetric and asymmetric electrodes variation on the 

resistive switching (RS) properties and device synaptic properties. The physical modelling of memristor device 

is carried out in a semiconductor physics-based tool i.e., COMSOL Multiphysics and MATLAB Livelink with 

a well-defined MATLAB script. The RS responses for the reported physical model show low values of 

coefficient of variability (CV) i.e., 6.69 and 7.11% in SET and RESET voltages, respectively, during cycle-to-

cycle variation which eventually confirms the stability of the modelled device. 



 

VI 

The physics-based simulation is carried out by considering minimum free energy of the materials at an applied 

certain voltage. The simulated results also exhibit a stable pinched hysteresis loop in the RS responses in 

symmetric and asymmetric electrodes combinations with an efficient ON/OFF ratio. Moreover, the simulated 

devices show the synaptic plasticity functionalities in terms of potentiation and depression processes with 

almost ideal linearity factor for symmetric and asymmetric electrodes combinations. Therefore, the presented 

work efficiently depicted the electrode material's suitability with the Y2O3 switching layer which shows better 

device performance and can also help the researchers to develop a perfect Y2O3-based memristor device for 

neuromorphic, digital, and logic applications. 
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Chapter 1 

Introduction 

1.1 Background 

Artificial neural networks are inspired by the remarkable efficacy of 

biological systems, and can be practically realized by utilizing two-terminal 

memristive devices [1]. Further, the emulation of the synapse is a promising 

step toward the enhancement of efficiency of artificial neural networks [2]. 

The synapse is one of the fundamental cellular units of the biological neural 

unit [3]. More specifically, in the biological nervous system, neurons are 

interconnected with one another through synapses, and information gets 

transferred from presynaptic to post-synaptic neurons via synapses [3, 4]. 

During this transfer, the synaptic weight of the synapse, which is analogous 

to the memristive device conductance, can be modulated under the 

application of electrical stimuli [5]. The synaptic weight is strengthened 

under the application of positive electrical stimuli, while in the case of 

negative electrical stimuli, the synaptic weight is debilitated [4].  

In neuromorphic computation, the strengthened and debilitated processes 

are termed as the potentiation and depression mechanism, respectively [4, 

5]. The synaptic weight of the memristive device can be dynamically varied 

according to the use of electrical pulse excitations [6, 7]. Synaptic plasticity 

is the fundamental functionality of the biological brain to change and 

receive new information, and plays vital role in the learning and forgetting 

process in the human brain [8].  

Neuromorphic computation requires ultralow power, high-density 

networks, remarkable efficiency and complementary metal oxide 

semiconductor-compatible devices and systems [7, 9]. A memristive 

system fulfilling all these requirements would make it a highly suitable 

candidate for neuromorphic computation [5], synaptic functionality [10] 

and data storage applications [11]. Besides these, memristive systems are 

able to show various synaptic functionalities, such as nonlinear 
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transmission characteristics [12], spike-rate-dependent plasticity [2], spike-

timing-dependent plasticity [2], long-term potentiation (LTP) [13], short-

term plasticity (STP) [13], learning behavior [14] and forgetting behavior 

[14], and short-term memory (STM) [15] and long-term memory (LTM) 

[15] behaviors of the real biological synapse.  

Due to the versatile nature and competent characteristics of memristive 

devices, it is the need of new era to do the comprehensive study and 

modelling of the memristors which could eventually leads to tackle the 

substantial chaOOHQJHV� LQ� WKH�QHZ�ZRUOG�RI�QDQRWHFKQRORJ\� L�H���0RRUH¶V�

Law. 

1.2 Motivation 

 

Figure 1.1: Detailed Schematic illustration in the process form of a Biological Synapse 

and the ion channels neuron membrane. In an extremely simplified model, the signal 

transmission strength from the presynaptic neuron to the postsynaptic neuron. 

Memory is a vital fundamental building block in learning and decision-

making process in biological systems. Human memory is not permanent, 

not like semiconductor memories.  Forgetfulness is the key characteristic 

of learning behavior; it is not always seen as a disadvantage since it free up 

space memory storage for more valuable or more often approached data 

and necessary to adjust to new condition. Eventually, only memories that 
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are important enough are transformed from short-term memory (STM) into 

long-term memory (LTM) through continual stimulation. Stimulus could 

be anything that could be sensed by our senses. In the neuromorphic 

computation applications, on the essential basis device must be ideal to the 

human brain which possess characteristics as the human brain does. 

Through incorporating the forgetting behavior in the existing device 

models, leads to the advancement in the endeavor to successfully achieve 

the milestone of silicon brain. Retention loss in a nanoscale memristor 

device bear striking resemblance to memory loss in biological systems. 

Conventional models of the memristor attempted to bring the 

characteristics of the device closer to the ideal brain but suffered due to 

V\QDSWLF� ERWWOHQHFNV� WLOO� QRZ� KLJKHU� LGHDOLW\� KDVQ¶W� DFKLHYHG� \HW�� 7R�

overcome the bottleneck and to bring closer to the human biological 

system, retention and forgetting ability must be incorporated in the 

memristive systems. Memristive devices with forgetting and retention 

effect support artificial neural network structures with the potential to 

support application in neuromorphic in-memory computation. 

 

1.3 Memristor 
Memristors can be used in extensive range of applications due to its 

versatile and characteristic properties. For each different application, 

memristor should possess different characteristics. For an instance, 

memory design, an element that have the ability to compute, control and 

store the data after computation is needed. They need to have fast read and 

write times. The reading mechanism shouldn't change the data while 

reading. The difference between stored data should be large enough to 

avoid bad noise margins and have better sensitivity. Needed high loop areas 

in order to achieve larger window for multiple levels so that number of bits 

can be stored. Also, for storing Boolean data or design logic in a memristor, 

the ratio between Ron and Roff or Ion and Ioff resistances should be high 

enough. There are other characteristics that are important for memristor 

applications, such as good scalability, switching speed, retention, ON/OFF 
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ratio, endurance, low power consumption, flexibility and compatibility 

with conventional CMOS. 

 

Memristor, the fourth fundamental two-terminal element other than 

resistor, capacitor and inductor, was first described by Leon Chua in 1971 

element when combining the fundamental physical quantities in 

electromagnetism i.e., current (I), charge (Q), flux ( ), voltage (V) and 

time (t). Figure 1.2 shows the relation between each pair formed from these 

quantities. Out of the possible six combinations, three elements were 

already known prior to his work; i.e., capacitor, inductor and resistor and 

two are based on well-established Ampere and Lens law. The relation 

between flux ( ) and charge (Q) was identified as the missing element as 

pointed out in Figure 1.2. This implies that this missing element keeps track 

of not only the amount and direction but also, the history of charge flown 

through that element Regardless of the discovery, memristive device 

technology underwent a long period of silence due to strong dominance of 

CMOS technology in computing systems. However, since the successful 

demonstration of TiO2-based memristor device by HP labs in 2008, amid 

recent stagnation faced by CMOS technology, memristive device 

technology is considered as a potential to replace/- complement CMOS 

technology. Some of the attractive attributes offered by memristive device 

technology are non-volatility, high scalability and good compatibility with 

CMOS technology. The shared characteristics of the family of memristive 

devices include the property to switch between stable resistance states and 

retain the state even without any voltage supply (non-volatility). Some of 

the well-known memristor-based memories are phase change memories 

(PCM), spin-torque transfer magnetic RAM (STT-MRAM), conductive 

bridge RAM (CB-RAM), redox oxide-based RAM (ReRAM). 
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Figure 1.2: Linkage among four fundamental elements and basic circuit 

parameter [16]. 

 

Memristor-based applications require an appropriate model for analysis 

and simulation of the system. Going through the literature, we can see that 

HP memristor model works on the principle of the drift of oxygen 

vacancies. The HP Lab memristor model composed of Pt/TiO2/Pt structure, 

as shown in Figure 1.3. In HP labs model, a positively charged oxygen 

vacancies are present at one side of the TiO2 oxide layer, which is 

sandwiched between the two noble metallic layers, i.e., platinum [16]. 

 

 
 

Figure 1.3: The structure of TiO2-based memristor developed by HP Labs. 

 

The doped part of oxide layer shows the low resistance behavior while the 

high resistance behavior is demonstrated by an undoped portion of the 

oxide layer. On an application of appropriate supply, the ionic drift between 

the doped portion and therefore the undoped portion leads to a change in 
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the width of the doped region. Here the width of the doped region is taken 

as a state variable. Also, when the width of the doped region approaches 

zero, the memristor goes to a high resistance state (HRS). When the width 

of the doped region approaches a boundary, the memristor goes to a low 

resistance state (LRS). Since the dimensions of memristor are very small 

(~nm), a low excitation in the supply can cause a change in the doped 

region. Thus, the resistance of the memristor varies between HRS and LRS 

[17]. Negative bias electroforming drives O2- ions to the lower electrode, 

where they discharge to form O2. The conducting channel thus formed is 

the Magneli phase Ti4O7, which acts as a source/sink of oxygen vacancies 

in TiO2. TiO2 is an insulator TiO4 is a conductor. Initial cell resistance is 

high (e.g., bit =0). Voltage causes TiO4 to migrate, producing lower cell 

resistance. This state is stable when voltage removed. (e.g., bit =1). Reverse 

voltage cause TiO4 to migrate back, causing higher cell resistance. This 

state is stable when voltage is removed. (e.g., bit =0)  

 

The relationship between voltage, current, charge, and flux for the 

memristor is given by: 

 

 (1)  (ݐ)݅ ((ݐ)ݍ)ܯ = (ݐ)ݒ

 

ௗԄሺ�ሻ= (ݍ)ܯ
ௗ௤

   (2) 

 

 (3)  (ݐ)ݒ ((ݐ)߶)ܹ = (ݐ)݅

 

ܹ(߶) =ௗ௤ሺԄሻ
ௗԄ

  (4) 

where ܹ (߶) has the unit of conductance and (ݍ)ܯ has the unit of resistance. 

Memristor shows different properties compared from other fundamental 

circuit elements that are pinched hysteresis loop, passivity, and non-volatile 

memory effect. 
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When Equation (1) and (2) are analyzed, Equation (5) and (6) can be written 

as follows: 

 

ሺ�ሻݒ �ൌ ܯ ቀ׬ ݅ሺݐሻ݀ݐ௧
ିஶ ቁ ݅ሺݐሻ      (5) 

 

݅ሺ�ሻ �ൌ ܯ ቀ׬ ௧ݐሻ݀ݐሺݒ
ିஶ ቁ  ሻ     (6)ݐሺݒ

 

The current passing through the memristor tells about the Memristance 

value. That means, when the current flow through memristor is off, it 

retains the value of the Memristance, and when the current flow through 

the memristor is passed again, Memristance value will change from the last 

retained value, i.e., before the cutoff. That shows the non-volatile property 

of memristor and also tells about that, the memristor is not an energy 

storage element [17, 18]. Memristor is analogous to a resistor with memory 

[19]. The I-V curve of memristor shows the pinched hysteresis loop 

characteristic. 

 

If a bipolar signal periodic in nature is applied to a memristor it shows a 

pinched hysteresis I-V characteristic that always crosses the origin. As the 

frequency of the applied signal increases the pinched hysteresis loop shows 

the singled valued function and behaves as a linear resistor. When the 

frequency reaches to infinity, the pinched hysteresis loop behaves as a 

single-valued function which has resemblance with resistor following ohms 

law [20, 21]. 

 

The memristor is a passive circuit element which can remember the state 

of resistance because of the voltage-current integral relationship. Because 

of these features, they are used soft computing, in resistive memories, 

neurocomputing, etc. 

 

Resistive random-access memory (RRAM) or memristor has been widely 

investigated as one of the promising and leading candidates for scale limits 

of typical electron storage-based memories [22-25]. Based on its resistive 
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switching mechanisms, the memristor can be simply categorized into two 

types: filamentary-type and interfacial-type [24,26]. The filamentary-type 

memristor device can be operated in a local region and due to this, it shows 

a high switching speed as well as higher device scalability as compared to 

interfacial-type memristor [26]. However, to fulfill the desired 

requirements for the synaptic device, the interfacial-type memristor is 

comparatively more suitable than the filamentary-type memristor [27,28]. 

The interfacial-type memristor has extremely stable and analog resistance 

change as it comes from electrochemical reactions between the reactive 

metal layer and resistive switching layer. The resistive synaptic devices 

need to be evaluated in different ways with the non-volatile memories 

(NVMs). To implement the hardware for the neuro-inspired computing 

system, millions of resistive synaptic devices are necessarily required to 

integrate with other complementary metal oxide semiconductor (CMOS) 

device components. Therefore, the device scalability is one of the most 

critical factors for hardware implementation. From the scalability point of 

view, the Y2O3-based synaptic device offers numerous advantages such as 

it is simple metal-insulator-metal (MIM) structure which can be highly 

stable and efficiently integrated into the crossbar array architecture. 

 

1.3.1 Resistive Switching (RS) Mechanisms of 

RRAM Devices 
 

To provide a comprehensive overview of RRAM devices, it is necessary to 

implement and study in-depth survey on different RS mechanisms. The 

current investigation of RS mechanisms for RRAM devices is linked to not 

only materials selection of electrode/RS medium but also utilized operation 

modes. Now, profoundly opted switching mechanism is established on 

conductive filaments (CFs). This section is focused on the research of 

several working mechanisms related to anion/cation migration and thermal-

chemical reaction, including thermal-chemical mechanism (TCM), valance 

change mechanism (VCM) and electrochemical metallization (ECM). 

 



9 
 

1.3.1.1 Thermal-Chemical Mechanism (TCM) 
 

TCM can be applied to explain the formation and rupture of CFs resulted 

from ions (oxygen or metal ion) migration induced by thermal-chemical 

reaction (Joule heating), which is independent of the switching mode 

(unipolar and bipolar) for RRAM devices [29±31]. Zhang et al. explained 

the working principle of their Pt/Al/AlOx/ITO RRAM device with TCM 

theory [29]. As illustrated in Figure 3, oxygen ions driven by Joule heating 

effect drifted to TE and left oxygen vacancies in the AlOx layer; CFs based 

on the accumulation of oxygen vacancies set the device to LRS. For the 

RESET process of unipolar device, the current steadily increased with the 

increasing positive voltage bias, the formed CFs finally broke when it 

reached the critical temperature induced by Joule heating, which made the 

device switch back to HRS. Similarly, for the RESET process of bipolar 

device, the oxygen ions drifted back to the AlOx layer due to the melting 

of CFs and switched the device to HRS again. TCM based on Joule heating 

reaction is related to the formation and rupture of CFs. The filament based 

on metal Ag played a dominating role during the RS process. The formation 

of Ag CF made the device from HRS to LRS during the SET process. Due 

to the Joule-heating-based oxidation, the Ag CF ruptured by the thermal 

dissolution and completed the RESET operation. In general, with the 

SET/Forming operation, the thermal decomposition process that occurs in 

the RS medium generates the ions migration in the RRAM device and the 

resulting formation process of CFs transforms the device from HRS to 

LRS. With the reversed voltage bias applied onto the electrode, the existing 

CFs rupture due to the thermal melting reaction, which transforms the 

device back to HRS and completes the RESET process accordingly. 
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Figure 1.4: Switching mechanism of unipolar (a, b) and (c, d) AlOx -based RRAM devices, 

reproduced from [39], with the permission from Springer Nature, 2020. 

 

1.3.1.2 Valence Change Mechanism (VCM) 
 

VCM has oxygen-related defects/vacancies and their electrochemical 

reaction occurred in the RS medium [32-37]. In addition, it is not necessary 

for an RRAM device to operate with the structure that consists of an active 

electrode and an inert electrode, namely, the activity difference between TE 

and BE is not required [38]. Chen et al. researched the unipolar 

performance of Pt/SiOx/Pt RRAM device with VCM and dangling bond 

(DB) [33]. With the effect of ternal electric field, the strength of the polar 

covalent Si-O bond was weakened and finally broken. With the much 

higher concentration of DB near the middle of the silicon band gap, the 

hopping process could make the transportation of the electron through the 

discontinuation of DB, which was similar to the initial state (HRS) of their 

devices. If the DB concentration arose up to the threshold value of the 

percolation path, the electron transport could occur in the mini-band of DBs 

and the device switched into LRS, which accordingly indicated the SET 

process. Munjal also initiated the analysis process of CoFe2O4-based 

RRAM devices with the VCM theory [37]. In most cases, for VCM RRAM 

devices, the resistance change performance is attributed to the formation 

and rupture process of CF based on oxygen vacancies in the RS layer [32±

37]. With the positive voltage bias applied onto the inert electrode, oxygen 

ions drift from where they stayed before with the effect of external electric 
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field and oxygen vacancies left in the RS medium. The consequent CF path 

made up of leftover oxygen vacancies connects TE and BE through the 

functional layer, which increases the electric conductivity of the RS thin 

film and switches the device from HRS to LRS. Whereas, with the reversed 

voltage bias onto the same electrode, oxygen ions drift back to the RS layer 

and result in the rupture of formed CF, which makes the device switch back 

to HRS again. Therefore, oxygen defects/vacancies and oxygen may be the 

dominating aspect during the growth and destruction of CF in the functional 

layer. 

 

 
Figure 1.5: Schematic of discontinuous and continuous states of mini-band DBs, 

reproduced from [], with permission.  

 

1.3.1.3 Electrochemical Metallization (ECM) 

 

Compared with TCM and VCM, ECM based on electrochemical reaction 

and cation migration, as 

the most recognized mechanism, is always used to explain the working 

principle of RRAM device with an active electrode, which is similar to 

VCM [39±45]. Generally, most active electrodes for ECM devices are 

active metal such as Cu [40±42] and Ag [39,43±45]. Tsuruoka et al. 

investigated Cu/Ta2O5/Pt RRAM device based on Cu filaments [40]. With 

a positive voltage bias applied onto Cu TE, Cu atoms near the interface 

between Cu layer and Ta2O5 layer were dissolved into Cu ions (Cu2+) and 

electron (e-) due to the electrochemical reaction. These Cu2+ ions drifted 

towards the RS layer with the effect of external electric field, which 

induced the Cu2+ ions supersaturation near the Ta2O5/Pt interface. Then 

continuous cathodic deposition reaction occurred between Cu2+ and e- led 

the formation of Cu-based filament and switched the device into ON state. 
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Yu et al. also confirmed that multiple Ag filaments attributed to the 

multilevel RESET behavior of RRAM device with a switching layer based 

on nonmetal materials (Ag/SiO2/Pt) [39]. With a small negative voltage 

bias, the Ag/SiO2/Pt device exhibited gradual resistance increasement. 

When the voltage bias continued to increase beyond a threshold value, the 

resistance of device was increased to a higher state sharply, which 

suggested that multiple Ag filaments were effective as predicted. As 

demonstrated in Figure 1.6, in the SET process, Ag CFs with different sizes 

existed under a big CC after several switching cycles. During the RESET 

process, Ag from Ag CFs transferred into Ag+ due to the dissolution 

reaction, which resulted in a gradual resistance increase of device. When 

these smaller CFs were broken, the resistance changed significantly. After 

that, CFs with larger sizes were getting thinner until they ruptured, which 

further induced the multilevel performance of RESET process. Long et al. 

also used ECM based on Ag filament to explain the switching mechanism 

of Ag/ZrO2: Cu/Pt RRAM device [43]. With the effect of external electric 

field induced by voltage bias applied onto TE Ag, the oxidation process 

occurred on Ag atoms and Ag atoms transferred into Ag ions (Ag ń Ag+ 

+ e-). Then Ag+ migrated gradually to BE Pt as the electric field increased 

in the ZrO2 thin film and ions were reduced back to atoms (Ag+ + e- ń�Ag). 

Finally, the formed Ag filament switched the device into LRS when the 

voltage reached VSET, which showed the related metallic transportation 

behavior. However, for the RESET process, when the voltage bias with 

reversed polarity was applied onto the active electrode, the existing Ag 

filament was broken within the oxide layer due to the electrochemical 

reaction w/o Joule heat assistance. Similarly, research reported by 

Tsuruoka et al. also presented the same perspective, which indicated that 

the RESET process related to formed metallic filaments might be related to 

electrochemical reaction w/o Joule heat assistance [40]. 
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Figure 1.6: Illustration of multilevel RESET process of Ag/SiO2/Pt RRAM device. 

 

1.4 Organization 
This chapter has introduced the background, motivation of the thesis and 

introduction of the memristive devices including device switching 

mechanism and its interrelation with other circuit parameters. The 

remainder of this thesis report is organized as follows:  

 

In Chapter 2, we have discussed the analytical modelling, physical 

modelling and experimental demonstration for the Y2O3-based memristive 

crossbar array, in detail. Analytical model consists two internal state 

variables introduced in time derivative of the internal state variable (w(t)) 

and according formulated the differential equations of forgetting rate and 

retention. 3-D electrothermal physical model has been created and studied 

the switching response of symmetric and asymmetric electrodes 

combinations along with the synaptic behavior. Obtained experimental data 

fitted with analytically generated. 

 

In Chapter 3, we have discussed results of proposed analytical model which 

involves study of effect of newly introduced internal state variable, namely 

viz the forgetting rate (Ĳ� and retention (tr) and results exhibit a stable 

pinched hysteresis loop in the resistive switching (RS) responses in 

symmetric and asymmetric electrodes combinations with an efficient 

ON/OFF current ratio of numerical model RRAM. 

 

In Chapter 4, Conclusion and Future Work. 
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Chapter 2 

Analytical, Physical and Experimental 

Demonstration 

In this chapter, we discussed Analytical, physical and experimental 

demonstration in detail. Firstly, discussed the detailed description of 

already existing, non-linear analytical memristive model, which is based on 

interfacial switching mechanism and confabulate the current-voltage 

equation, its effect on the V-I characteristics and other part includes the 

proposed modified analytical model in which 2 novel the internal state 

variable (w(t)) and two important parameters, namely viz the forgetting rate 

(Ĳ� and retention (tr) to emulate the retention and forgetting behavior of the 

memristive crossbar array. Next section, discussed the developed physical 

model of memristor which was modelled on physics-based software i.e., 

COMSOL Multiphysics with a defined MATLAB script and effect of 

symmetric and asymmetric electrode variation on the resistive switching 

properties of the nanoscale Y2O3-based memristor devices is also 

investigated. Lastly, experimental section is discussed in detail in which 

fabrication process to realize the Y2O3-based memristive crossbar array 

using the DIBS system is weighed up and done the R2-fitting accuracy of 

99.2% with corresponding experimentally obtained data of the fabricated 

crossbar array with analytically obtained data from the model. 
 

2.1 Analytical Model for Memristive Systems for 

Neuromorphic Computation 

2.1.1 Current-Voltage Equation 
 

Equation (1) describes the current-voltage (I-V) relationship for the Non-

Linear Analytical model which is nearly related to the equations of the 

model reported by Yang at al [3]. 
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ሻݐሺܫ ൌ � ቊ
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ቋ  (1) 

 

Figure 2.1: Resistive switching characteristic of a memristive device (sweep rate: 1.042 

9�Ví����,QVHW-1 and inset-2 show parallel connection of rectifier and memristor and 

piecewise window function, respectively. 

 

The first term on the right side of equation (1) describes the flux-controlled 

memristive behavior and it is dominated by the interfacial switching 

mechanism which is not incorporated by various previously reported 

models [1, 3, 4]. The parameters a1 and a2 are the degrees of influence of 

the state variable on current for positive and negative voltage biases, 

respectively and also contribute in the control of loop area of the hysteresis 

loop. b1 and b2 are the experimental fitting parameters which define the 

slope of conductivity in I±V characteristics, w is the state variable, 

 

Figure 2.2: (a) I-V Characteristics (b) Log(I) -V Characteristics. 
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Į1 DQG�Į2 are the major hysteresis loop area controlling parameters. The 

second term on the right side of equation (1) is linked with the ideal diode 

behavior in I±V characteristics which plays a vital role when the state 

variable (w) approaches zero i.e., non-conducting state or OFF state and 

SDUDPHWHUV� Ȥ� DQG� Ȗ� GHQRWH� WKH� QHW� HOHFWURQLF� EDUULHU� RI� WKH� PHPULVWLYH�

device. Vi(t) is the applied input voltage and in the case of I±V 

characteristics, a triangular waveform and while in the case of synaptic 

functionality, rectangular voltage pulses are used. Analytical model is 

applicable for both unipolar and bipolar memristive systems while 

previously reported models [2, 3] are utilized only for bipolar memristive 

system.  

2.1.2 Window Function 
A new piecewise window function, f (w) is described by equation (2), as 

shown in the inset of Figure 1, which ensures that the state variable (w) is 

limited between 0 and 1. In the analytical modeling, a constant value of p=2 

is used. The range of parameter p defines the limit of the f (w) {1 ,0} א 

(seen in Figure 2.3) and if the value of p > 10, the upper limit of the f (w) 

is beyond 1 thus violating the essential conditions reported by Prodromakis 

et al [2]: 

 

݂ሺݓሻ ൌ ݃݋݈ ቐ
ሺͳ ൅ ሻ௉ǡ���Ͳݓ ൑ ݓ ൑ ͲǤͳ
ሺͳǤͳሻ௉ǡ���ͲǤͳ ൏ ݓ ൑ ͲǤͻ
ሺʹ െ ሻ௉ǡݓ ͲǤͻ ൏ ݓ ൑ ͳ

ቑ (2) 

 

 Figure 2.3: Piecewise window function. 

 

0.0 0.5 1.0
0.0

0.5

1.0

 

 

W
in

do
w

 F
un

ct
io

n 
(f

(w
))

State Variable (w)

p = 2

p = 4

p = 6

p = 8

p = 10
p = 11 (a)



22 
 

2.1.3 Time-Derivative Equation of State Variable 

The time derivative of the state variable (w(t)) is governed by the equation 

(3) in which it depicts the rate of variation of the state variable with respect 

to time in the memristive devices and depends upon the nature of input 

voltage and window function. 

 
ௗ௪
ௗ௧

ൌ ܣ ൈ ௜ܸ
௠ሺݐሻ ൈ ݂ሺݓሻ         (3) 

 

where, A and m are the parameters that determine the dependence of the 

state variable on the input voltage and m is always an odd integer to ensure 

that the opposite polarity of the applied voltage leads to opposite change in 

the rate of change of state variable. Table 1 presents the physical 

significance and numerical values of all parameters used in analytical 

modeling. 

 

Table 1. Physical interpretation and values of parameters for analytical 

modeling. 

Parameters Values for Y2O3 Physical Significance 

b1 1.59 x 10-3 Experimental fitting parameters 

b2 -6.2 Experimental fitting parameters 

a1 1.2 Degrees of influence of the state 

variable under positive bias 

a2 0.3 Degrees of influence of the state 

variable under negative bias 

1 0.60 Hysteresis loop area controlling 

parameters under positive bias 

2 -0.68 Hysteresis loop area controlling 

parameters under negative bias 
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߯ 1 x 10-11 Magnitude of ideal diode behavior 

Ǆ 1 Diode parameters like thermal 

voltage and ideality factor 

A 5 x 10-4 Control the effect of the window 

function 

m 5 Control the effect of input on the 

state variable 

P 0<P��� Bounding parameter for window 

function between 0 and 1 

 

2.2 Analysis of the Proposed Analytical Model 

Synaptic Learning 

2.2.1 Current-Voltage Equation 

Equation (4) describes the current±voltage (I±V) relationship that governs 

the switching characteristics of the augmented Y2O3-based memristor [9]: 

 

ሻݐሺܫ ൌ � ቊ
ܾଵݓ௔భ�൫݁ఈభ௏೔ሺ௧ሻ െ ͳ൯ ൅ ߯൫݁ఊ௏೔ሺ௧ሻ െ ͳ൯ǡ ௜ܸሺݐሻ ൒ Ͳ
ܾଶݓ௔మ�൫݁ఈమ௏೔ሺ௧ሻ െ ͳ൯ ൅ ߯൫݁ఊ௏೔ሺ௧ሻ െ ͳ൯ǡ ௜ܸሺݐሻ ൏ Ͳ

ቋ  (4) 

Here, the first term described on the right-hand side of (4) is associated with 

the flux-controlled memristive behavior due to the interfacial switching 

mechanism and is not reported in previously reported models [14±15]. 

Here, the parameters a1 and a2 determine the degrees of influence of the 

state variable on the device current for positive and negative polarities of 

the applied bias voltage, respectively. b1 and b2 are designated as the 

experimental fitting parameters, which describe the conductivity slope in 

resistive switcKLQJ�FKDUDFWHULVWLFV��Z�LV�WKH�LQWHUQDO�VWDWH�YDULDEOH��DQG�Į1 

DQG� Į2 are the pinched hysteresis loop area controlling parameters. The 

second term on the right-hand side of (4) stands for the ideal diode behavior 
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in resistive switching characteristics and plays a key role when the internal 

VWDWH�YDULDEOH��Z��DSSURDFKHV�]HUR��DQG�SDUDPHWHUV�Ȥ�DQG�Ȗ�GHQRWH�WKH�QHW�

electronic barrier of the memristive device. Vi(t) is the applied input bias 

voltage. 

 

2.2.2 Window Function 

A piecewise window function f (w) is utilized as described in equation (5) 

[9]. The window function ensures that w is restricted between 0 and 1. In 

the analytical modeling, a constant value of p = 2 is used. The value of the 

parameter p helps one to limit the value of f(w�İ�^����`��+RZHYHU��IRU�p > 

10, the upper limit of f (w) is beyond 1, and thus violates the essential 

conditions for f (w), which is defined between 0 and 1, as reported by 

Kumar et al [7] and Prodromakis et al [10]: 

 

݂ሺݓሻ ൌ ݃݋݈ ቐ
ሺͳ ൅ ሻ௉ǡ���Ͳݓ ൑ ݓ ൑ ͲǤͳ
ሺͳǤͳሻ௉ǡ���ͲǤͳ ൏ ݓ ൑ ͲǤͻ
ሺʹ െ ሻ௉ǡݓ ͲǤͻ ൏ ݓ ൑ ͳ

ቑ (5) 

 

Figure 2.4: Piecewise window function. 
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2.2.3 Modified Time-Derivative Equation of State 

Variable 

Equation (6) describes the time derivative of the internal state variable 

(w(t)) [9] and is further modified by incorporating two important 

parameters, namely viz the forgetting rate (ʏ) and retention (tr) to emulate 

the retention and forgetting behavior of the memristive crossbar array. The 

time derivative of the (w(t)) is dependent on the nature of the input voltage, 

window function and forgetting and retention terms of the memristive 

crossbar model. However, the previously reported model [6] has not been 

experimentally validated for the switching response of the memristive 

crossbar array: 
ௗ௪
ௗ௧

ൌ ቄܣ ൈ ௜ܸ
௠ሺݐሻ ൈ ݂ሺݓሻ െ ቀ௪ି௧ೝ

ఛ
ቁቅ     (6) 

where A and m are the parameters that define the dependence of the state 

variable on the input voltage, and m ensures that the opposite polarity of 

the applied voltage leads to an opposite change in the rate of change of the 

state variable. The last term on the right-hand side of (6) is associated with 

the memory forgetting rate (ʏͿ and retention (tr) behavior of the memristive 

device.  

 

2.2.3 Proposed Internal State Variables  

The voltage derivative of forgetting rate and retention can be defined by 

(7) and (8), respectively: 

 
ௗఛ
ௗ௧
ൌ ሺ݁ఎଵ௩ߠ െ ݁ିఎଶ௩ሻ  (7) 

ௗ௧ೝ
ௗ௧

ൌ ሺ݁ఎଵ௩ߪ െ ݁ିఎଶ௩ሻ ൈ ݂ሺݓሻ  (8) 

where ɻ1 expresses the interface effect with positive and negative voltage 

and is considered as positive-valued fitting parameter, and ɻ2 represents the 

material properties, such as activation energy [5]. The value of tr is limited 

between 0 and 1, i.e., tr ɸ [0, 1], and ʍ� and ɽ� are the corresponding 
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parameters for tr and ʏ�and are considered as constants during the analytical 

modeling. 

 

Equations (7) and (8) are used to accurately model the synaptic plasticity; 

more specifically, the STM and LTM properties. The value of ʏ�denotes the 

forgetting rate, which is greater than 0 (ʏ�> 0), and ɽ�and ʍ�are always 

positive-valued parameters to analyze the forgetting rate and the retention 

behavior of the memristive crossbar array systems. Table 2 presents the 

physical interpretation and numerical values of all parameters used in the 

analytical modeling. 

 

Table 2. Modeling parameter values and their physical interpretation. 

Parameters Values Physical interpretation 

b1 1.59 × 10í3 Experimental fitting parameters 

b2 í6.2 × 10í4 Experimental fitting parameters 

a1 1.2 Degrees of influence of the state 

variable under positive bias 

a2 0.3 Degrees of influence of the state 

variable under negative bias 

1 0.60 Hysteresis loop area controlling 

parameters under positive bias 

2 -0.68 Hysteresis loop area controlling 

parameters under negative bias 

߯ 10-11 Magnitude of ideal diode behavior 

Ȗ 1 Diode parameters such as thermal 

voltage and ideality factor 
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A 5 × 10í4 Control the effect of the window 

function 

m 5 Control the effect of input on the state 

variable 

p 0 < p င 10 Bounding parameter for window 

function between 0 and 1 

 0.15 Forgetting rate 

tr 0.1 Retention; tU�İ�>���@z 

 10-6 Corresponding parameters for tr and Ĳ 

ș 10-7 Corresponding parameters for tr and Ĳ 

Ș1 4 Interface effect with positive and 

negative voltage and independent of w 

Ș2 2 Interface effect with positive and 

negative voltage with positive-valued 

parameters and determined by the SL 

material properties and independent of 

w 

 

2.3 Analysis of the Physical Electro-Thermal 

Modelling 

2.3.1 Numerical Electro-Thermal Model and 

Specification 

 

As Figure 2.5 (a-b) represents the 2D axisymmetric model of the memristor 

in COMSOL for RESET (or OFF) and SET (or ON) processes, 
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respectively. The 2D geometry of memristive device in COMSOL helps to 

reduce the volume integrals in equation (9) to area integrals. 

 

 
 

Figure 2.5: (a) 2D structure of memristive device under SET operation, and (b) 2D 

structure of memristive device under RESET operation. In addition, the sketches indicate 

number of boundary conditions, materials, and regular parameters. (Figures are not 

sketched to their true scales) 

 

Resistive Switching equivalent to the SET process is an amalgamation of 2 

processes: 

x Formation of filament between the electrodes. 

o Nucleation and  

o Longitudinal growth of CFs due to their probabilistic nature 

[15]  

x Radial development of Conducting Filament. 

 

Equivalently, Resistive Switching for RESET process is also formed of 2 

processes:  

x Nucleation and  

x Growth of the gap (or rupturing of the CFs). Nature of the growth 

of the gap is also of stochastic nature [15]. 

 

As seen from Fig. 1(a-b), a layer of SiO2 is used as a thermally insulated 

layer surrounding the memristor device. The yttrium metal used as an 
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oxygen reservoir layer and enhance the formation of stable CFs during the 

SET process. The numerical analysis is rooted on the concept of minimum 

free energy (FE) of memristive device which increases on the application 

of external voltage. At the same time, the device evolves in such a way to 

minimize its free energy due to phase transition in oxide material by 

braking chemical bonds. The free energy in a memristive device can be 

expressed as [16]: 

 

ܨ ൌ׬� ୔ܥߩ ଷݔ݀ܶߜ ൅
ଵ
ଶ ׬ ȁܧȁߝ

ଶ݀ݔଷ ൅ ୗߪ݄ݎߨʹ ൅  ρ           (9)ߜଶ݄ݎߨ

 

The area integrals associated with SET and RESET processes in COMSOL 

are expressed as [16-17]: 

 

ୗ୉୘ܨ ൌ ݖ݀ݎ݀ܶߜ௉ܥߩ׭� ൅
ଵ
ଶߝ׭ȁܧȁଶ݀ݖ݀ݎ ൅ ௌߪ݄ݎߨʹ ൅  ρଵ    (10)ߜଶ݄ݎߨ

 

ܨୖ ୉ୗ୉୘ ൌ ݖ݀ݎ݀ܶߜ௉ܥߩ׭� ൅
ଵ
ଶߝ׭ȁܧȁଶ݀ݖ݀ݎ ൅ ௌߪ݄ݎߨʹ ൅  ρଶ (11)ߜଶ݈ݎߨ

 

where, ȡ� is the mass density, Cp is the specific heat capacity at constant 

pressure, į7� is the change in temperature, İ� is the permittivity, E is the 

electric field, r is the radius of conducting filament, h is the conducting 

filament height in SET process (referred as: l is gap length in the case of 

RESET process), ıs is the interfacial energy, and įȝ is the difference in 

chemical potential between unstable conductive phase and insulating phase 

during SET process (įȝ1) and between unstable conductive phase and 

metastable conductive phase during RESET process (įȝ2) [16-17].The first 

and second terms of equation (9) describe the thermal and electrostatic 

energy, respectively, while the last two terms of equation (9) can be 

correlated to the phase transformation energy. 
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Figure 2.6: One dimensional (1D) presentation of the system where chemical potentials 

in unspecified configurational coordinates showing three distinct minima corresponding 

to the insulating (i), unstable conductive (uc), and metastable conductive (mc) phases and 

their related barriers. Arrows represent transformations between mc and uc and the uc 

and i phases where energy barriers are relatively low [18]. 

 

2.3.2 Implementation in COMSOL Multiphysics:

  

2.3.2.1 COMSOL Algorithm: 

1. Open the COMSOL Model Wizard. 

2. Select 2D Axisymmetric in Space Dimension section. 

3. Select AC/DC module 

x add Electric Currents submodule. 

x electrical Circuit submodules. 

4. Select Heat Transfer Module 

x add Heat Transfer in Solids submodule. 

5. Select Done. 

6. Create Geometry of the device from schematic as shown in Figure 2.5. 

7. Add Blank Materials in the Materials junction and add material 

properties from Table 3. 

8. Add the temperature-dependent electric conductivity, 
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x In Definitions junction, select Functions then Interpolation, and 

then insert temperature and corresponding conductivity values in 

the given Table 3. 

x Select Linear for both Interpolation and Extrapolation option. 

9. Add the temperature and voltage dependent hopping conductivity, 

x In Definitions junction, select Variables, add the formula from 

Table 3, and then select the corresponding domain. 

10. Select the materials to the respective domains. 

11. In Electric Currents submodule 

x add Terminal boundary condition. 

x select the top boundary of the top electrode. 

x select Circuit as the Terminal type. 

x add Ground boundary condition. 

x select the bottom boundary of the bottom electrode. 

12. In Electric Circuit submodule, 

x add Resistor and value of load resistance, 

x add External I Vs. U from External Coupling. 

x select Terminal voltage from Electric potential option. 

x add Voltage Source for OFF and ON modules. 

x select Pulse source as Source type for ON and OFF modules and 

define the pulse length according to the different ramp-rate as listed 

in Table. III 

x Add Current Source for RESET and SET modules. 

x select DC-Source as Source type for SET and RESET modules. 

13. In Heat Transfer in Solids submodule, 

x add Temperature boundary condition.  

x select the top of the SiO2 superstrate and bottom boundary of the 

SiO2 substrate. 

x add Diffusive Surface boundary condition.  

x select all the inner boundaries, and then choose 298K in the user 

defined temperature section and 0.9 Surface emissivity for the user 

defined value. 
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14. In Multiphysics node, to couple the Electric Currents and Heat Transfer 

in Solids submodule, 

x select all the domains and boundaries in Electromagnetic Heating 

sub-node. 

x select Heat Transfer in Solid as Source and Electric Currents as 

Destination in Temperature sub-node 

15. Create Mesh 

x select Build All 

16. Select Study type 

x select Time Dependent study for ON and OFF modules. 

x add Times corresponding to the pulse lengths. 

x select Stationary study for SET and RESET modules. 

17. Select Compute 

18. Obtain results from the Results node as shown in Figure (2.7-2.10) 
 

The following sections describe the modules that are considered during 

WKH�PRGHO¶V process in COMSOL:  
[i] Electric Current Module: 

 

Ǥ׏ ܬ ൌ Ͳ���������                 (12) 

ܬ ൌ  (13)                         ܧߪ�

ܧ ൌ �െ(14)                     ܸ׏ 

where E represents the electric field, J depicts the electric current density, 

 defines the three-dimensional gradient ׏ ,Ǥ shows the divergence operator׏

operator, and V denotes the electric potential. 

 

[ii] Heat Transfer Module (solids): 

 

െ׏ߢଶܶ ൌ �ܳୗ                (15) 

௉ܥߩ
డ்
డ௧
െ ଶܶ׏ߢ ൌ �ܳୗ  (16) 

where absolute temperature in Kelvin is given by T, k is the thermal 

conductivity, the specific heat capacity is depicted by CP, the 
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electromagnetic heat source is given by QS, and the density is represented 

by ߩ. 

 

[iii] Multiphysics Module: 

ܳୗ ൌ Ǥܬ  (17)                      ܧ

 

 

 

 

Figure 2.7: (a) 2-D Electric Potential Plot. (b) 3-D Electric Potential Plot. (c) 3-D 

Electric Potential Plot of Cutout section. (d) 3-D Temperature Plot. (e) Temperature 

Contour Plot. (f) 2-D Electric Field Plot. For the OFF Process. 
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Figure 2.8: (a) 2-D Electric Potential Plot. (b) 3-D Electric Potential Plot. (c) 3-D 

Electric Potential Plot of Cutout section. (d) 3-D Temperature Plot. (e) Temperature 

Contour Plot. (f) 2-D Electric Field Plot. For the SET Process. 
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Figure 2.9: (a) 2-D Electric Potential Plot. (b) 3-D Electric Potential Plot. (c) 3-D 

Electric Potential Plot of Cutout section. (d) 3-D Temperature Plot. (e) Temperature 

Contour Plot. (f) 2-D Electric Field Plot. For the ON Process. 
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Figure 2.10: (a) 2-D Electric Potential Plot. (b) 3-D Electric Potential Plot. (c) 3-D 

Electric Potential Plot of Cutout section. (d) 3-D Temperature Plot. (e) Temperature 

Contour Plot. (f) 2-D Electric Field Plot. For the RESET Process. 
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Table 3: Values of the coefficients of the differential equations and FE used in 

electro-thermal modelling 
 
Materials 

 
Electrical Conductivity (ı) [S/m] 

Thermal 
Conductivity 
(ț) [W/K.m] 

Specific 
Heat 
Capacity 
[J/kg. K] 

Relative 
Permittivity 
 (ܚࢿ)

Mass 
Density 
(ȡ) 
[kg/m3] 

SiO2 1×103 1.38 703 3.9 2.20 ×103 

Al 3.8×107 235 904 -�1 2.70×103 
Y 1.8×106 17 298 -�1 4.47×103 

Y2O3 10-11 0.3 440 15 5.01×103 
 

Y2O3-x ߪ୧୤ ��� ቆߪ୤��� ൬
ݐ
୧ݐ
൰ቇ ���� ቌඨ

ܸ݁
݇ܶ

ቍ 
 
ୡሺܶǡߪ ܸሻܶܮ 

 
528 

 
-�1 

 
6.01×103 

 
Gap ߪ୧୥݁݌ݔ ቆെߪ୥݈݊ ൬

ݐ
୧ݐ
൰ቇ ݌ݔ݁ ቌඨ

ܸ݁
݇ܶ

ቍ 
 

݇ୣ୤୤ߪୡሺܶǡ ܸሻܶܮ 
 

440 
 

15 
 

5.01×103 

TiN 1.00×106 11.9 543.33 -�1 5.22×103 
Cu 5.90×107 400 386 -�1 8.96×103 
Au 4.50×107 320 126 -�1 1.93×104 
Pd 9.49×106 71.2 240 -�1 1.20×104 
Ag 6.20×107 430 233 -�1 1.05×104 
Al 3.80×107 235 921 -�1 2.70×104 
Pt 9.40×106 71 125 -�1 2.15×104 

Mo 2.00×107 139 251 -�1 1.03×104 
Ta 7.70×106 57 140 -�1 1.67×104 

 
 
 

Electrical 
Conductivity 

Parameters Values  
 
 

Circuitry 

Parameters Values 
 ୧୤ 5 kS/m RL ����Nȍߪ
 ୧୥ 3 kS/m V (+) 1.5 Vߪ
 ୤ -0.05 V (-) -1.5 Vߙ
 9�V� 102, 103,106�୥ 0.05 ȁߙ
t 9��Ȝ Thermal 

Conductivity 
(Gap) 

݇ୣ୤୤ 10 
 ୧ 0.1psݐ

1106 ZDV�XVHG�IRU�SUDFWLFDO�SXUSRVH�DV�DQ�DOWHUQDWLYH�WR�í�� 

 

2.4 Memristor Device Structure and Modelling 
To simulate the Y2O3-based memristor structure, symmetric and 

asymmetric top and bottom electrodes have been utilized, as depicted in 

Figure 2.11 (a) shows the various symmetric electrodes combinations with 

Y2O3 as a resistive switching layer while Figure 2.11 (b) shows the 

asymmetric electrodes combinations with Y2O3 as a switching layer. The 

cross-sectional area of the simulated device structure is 314 nm2. As seen 

in Figure 2.11, a thick layer of SiO2 insulating layer is used in which the 

width of the SiO2 layer is 490 nm, and top and bottom thickness of 300 nm. 

The thick layer of SiO2 acts as a heat shield layer surrounding the memristor 

device to prevent the uncontrollable heat flow from the device to outside 

ambient (i.e., air) during the device switching operation [19]. Also, this 

passivation layer helps to maintain a stable temperature all around the 

device [20] which is advantageous to achieve the stable resistive switching 

response of the device. Further, the effective thickness of the memristor 

device is 100 nm, in which 65 nm thickness is of the bottom electrode (BE), 
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5 nm thickness of Y2O3 which acts as the switching layer, and 30 nm 

thickness of the top electrode (TE). It should be noted that, in the case of 

symmetric electrodes combinations, the same metal is used for TE and BE, 

as depicted in Figure 2.11 (a) while in the case of asymmetric electrodes 

combinations, active metal Ag is used as a TE and different metals such as 

Al, Au, Mo, Pd, Ta, and TiN have been used as a BE of the simulated 

memristor structure, as depicted in Figure 2.11 (b). 

 

On the other hand, the resistive switching (RS) process in the memristor 

device is majorly categorizHG�LQWR�WZR�VHFWLRQV�VXFK�DV�µ6(7¶�SURFHVV�DQG�

µ5(6(7¶� SURFHVV�� 7KH� 6(7� SURFHVV� LV� WKH� FRPELQDWLRQ� RI� WZR� VXE-

processes such as fast shunting of electrodes and the radial growth of 

conductive filaments (CFs), as depicted in Figure 2.12 (a) The shunting 

process can be further divided into two ways such as nucleation and 

longitudinal growth of CFs due to their stochastic nature [21]. While the 

RESET process is also categorized into two sub-processes such as 

nucleation and growth of the gap. The growth of the gap originated due to 

rupturing of the CFs, as shown in Figure 2.12 (b) The formation of the gap 

in the RESET process is also of stochastic nature [21].  

 
 
Figure 2.11: Y2O3-based memristor device with (a) Symmetric electrodes (similar metal is 

used for the top and bottom electrodes), (a) Asymmetric electrodes (different metal is used 

for top and bottom electrodes). 
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Figure 2.12: Formation and rupture of the CFs in a generic metal-insulator-metal (MIM) 

memristor device where (a) SET and (b) RESET process. 

Here, under the positive applied voltage, step a(i) shows the initial stage of 

the device and in stage a (ii and iii) the nucleation process is started with 

radial growth of the CFs and device switches into SET state. On the other 

hand, under the negative applied voltage, step b(i) shows the shrinkage of 

CFs and in stage b(ii and iii) the dissolution of CFs is started and due to 

which the device switches into RESET state. The VS, RL and RD shows the 

applied input voltage, load resistance and device resistance, respectively. 

The simulation of the memristor device is based on the thermodynamic 

numerical analysis which is further related to the principle of minimum free 

energy (FE) of the memristor device. The minimum FE increases due to an 

applied external voltage. However, at the same time, the device evolves in 

such a way to minimize its free energy due to phase transition in oxide 

material by breaking chemical bonds. The free energy in a memristor 

device can be expressed by equation (18) [22].  

ܨ ൌ׬� ୔ܥߩ ଷݔ݀ܶߜ ൅
ଵ
ଶ ׬ ȁܧȁߝ

ଶ݀ݔଷ ൅ ୗߪ݄ݎߨʹ ൅  ρ      (18)ߜଶ݄ݎߨ

where, ȡ� �mass density, Cp = specific heat capacity at constant pressure, 

į7�= change in temperature, İ�= permittivity, E = electric field, r = radius 

of CF, h = CF height in SET process (l is gap length in the case of RESET 
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process), ıs = interfacial energy, and įȝ�= difference in chemical potential 

between unstable conductive phase and insulating phase during the SET 

process (įȝ1) and between unstable conductive phase and metastable 

conductive phase during RESET process (įȝ2) [22-23]. The first and second 

terms of equation (18) are associated with the thermal and electrostatic 

energies, respectively, while the last two terms of equation (18) can be 

correlated to the phase transformation energy. The electrostatic energy of 

the conductive components such as electrodes and filaments are negligible, 

as compared to that of the insulating layer, which is the dominant candidate 

for higher capacitance in the memristor device. Hence, the electrostatic 

energy contribution in the overall value of FE is typically dominated by the 

insulator layer and the thermal contribution is dominated by the conducting 

filament that helps in the flow of current through insulating placed between 

the top and bottom electrodes. A detailed explanation of adopted simulation 

steps, an algorithm for the device design and the various partial differential 

equations and their boundary conditions have already been reported in our 

previous report [24]. 
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2.5 Experimental Demonstration 

 

 

 
 
Figure 2.13: Schematic diagram of (a) cleaned Si substrate, (b) deposition of insulating 

Y2O3 layer on top of Si, (c) BE deposition via DIBS system, (d) SL deposition via DIBS 

system, (e) TE deposition via DC magnetron sputtering. (f) A schematic, digital camera 

photograph of the finally fabricated 4 × 4 crossbar array architecture and (g) schematic 

diagram of finally fabricated 4×4 crossbar array architecture. 
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s 

 
Figure 2.14: (a) Magnified optical microscopy images of developed memristive crossbar 

array architecture, (b) FESEM images of top surface of Y2O3 SL, (c) resistive switching 

response of the fabricated memristive crossbar array fitted with the analytical model. 

 

Experimental Figure 2.13 describes the detailed fabrication process to 

realize the Y2O3-based memristive crossbar array using the DIBS system 

[7, 8]. During the fabrication process, metal shadow masks are used to 

pattern the bottom electrode (BE), switching layer (SL) and top electrode 

(TE) of the crossbar array. For the (4 × 4) crossbar array fabrication, a 3-

inch cleaned Si (100) substrate is utilized, as shown in Figure 2.13 (a) 

Further, an Ar+ plasma etching process is performed for 15 min by the 

secondary ion assist source in the DIBS system to remove the native 

ultrathin SiO2 layer on top of Si [7]. After the removal of native oxide, 150 

nm thick polycrystalline Y2O3 is grown over the Si substrate as an 

insulating layer [8], as shown in Figure 2.13(b) at 100 ƕC in a pure Ar (5 

sccm) environment in the assist ion source of the DIBS system. The 

deposited insulating layer has a remarkable surface morphology and 

smoothness due to the similar lattice constants of Si (2aSi = 10.86 Å) and 

Y2O3 (a Y2O3 = 10.60 Å), as reported elsewhere [20, 21]. Furthermore, a 

low resistive (5.3 × 10-4 ȍāFP��>13] Ga doped ZnO (GZO) with 100 nm 

thickness is grown over the insulating Y2O3 layer at 100 ƕC in a pure Ar (5 

sccm) environment in the assist ion source. The deposited GZO acts as the 

%(�DQG�LV�SDWWHUQHG�YLD�D�VKDGRZ�PDVN�ZLWK�D�ZLGWK�RI�����ȝP��DV�VKRZQ�

in Figure 2.13 (c). Subsequently, a 50 nm amorphous Y2O3 layer is 
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deposited as a resistive SL, as shown in Figure 2.13 (d). The SL is deposited 

DW�����ƕ&�DW�D�IL[HG�UDWLR�RI�$U�WR�22 gas flow of 2:3 in the assist ion source 

of the DIBS system [25]. At the end, a 70 nm Al TE is deposited via a 

direct-current (DC) magnetron sputtering system, as presented in Figure 

2.13(e���7KH�OLQH�ZLGWK�RI�WKH�7(�VKDGRZ�PDVN�LV�����ȝP��)LJXUHV���I��DQG�

(g) show a schematic and digital camera photograph of the finally 

fabricated 4 × 4 crossbar memristive array. To investigate the resistive 

switching performance of the fabricated crossbar array architecture, a 

semiconductor parameter analyzer (SCS-4200A) system is utilized. 

Further, optical microscopy is performed to visualize the realistic view of 

the fabricated crossbar array, and field emission scanning electron 

microscopy (FESEM, Carl Zeiss) is used to assist in the surface 

morphological analysis. Subsequent to the fabrication and performance 

measurement of the memristive device, it is essential to analyze the 

performance to understand the underlying physics, and analytical modeling 

is essential. Previously, several analytical [15, 23±25] and circuit models 

[4] have been reported; however, none of the reported models have been 

validated with respect to the memristive crossbar array response. Some of 

the earlier reported models [15, 24, 25] have not been validated with the 

experimental results. Here, a memristive crossbar analytical model with 

experimental validation has been formulated to emulate the various 

memristive device properties. 

 

Figure 2.14 (a) shows optical microscopy image of the developed 

memristive crossbar array, which clearly shows that the deposited layers 

are perfectly aligned to form a cross point structure in the array. Figure 2.14 

(b) exhibits a continuous Y2O3 SL layer with compact grains, which is also 

described in our earlier report [7]. To analyze the resistive switching 

response of the fabricated crossbar array, the TE is connected to the 

positive/negative voltage terminal of the SCS-4200A while the BE is fixed 

to the ground. To examine the switching response, a triangular voltage 

waveform is applied to the device with an amplitude of ±3 V and a pulse 

width of 100 ms, and captures the resistive switching performance of the 

device as shown in Figure 2.14 (c). Further, when a positive voltage (0 to 
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+3 V) is imposed on the TE, the device switches from a high resistance 

state (HRS) to a low resistance state (LRS) and this process is termed the 

µ6(7¶� SURFHVV�� DV� VKRZQ� LQ� Figure 2.14 (c). The detailed switching 

mechanism of the Y2O3-based memristor is described in our previous report 

[27]. For a negative voltage bias (from 0 to í3 V) applied on TE, the device 

switches from LRS to HRS [27], and this process is known as the RESET 

process, as depicted in Figure 2.14(c). Figure 2.14 (c) also reveals that the 

developed crossbar array shows a consistent resistive switching response 

in multiple switching cycles, and toggles between HRS and LRS and back 

without any noticeable change in the SET and RESET voltages. The 

negligible variation in the SET and RESET voltages signifies that the DIBS 

system is extremely promising to develop a reliable and stable memristive 

crossbar array. The analytical model, as discussed above, also captures the 

resistive switching behavior with an R2-fitting accuracy of 99.2% with 

corresponding experimentally obtained data of the fabricated crossbar 

array. The accuracy of the model is comparatively higher than that observed 

in our previous reports [9, 14], in which [9] 98%׽ and [14] 96%׽ accuracy 

levels were reported. Besides that, the presented model has also shown 

better accuracy as compared to previously reported models [6, 26, 15] in 

terms of the stable switching response, with a better hysteresis loop area in 

multiple cycles. The presence of a pinched hysteresis loop in the resistive 

switching characteristics of the device is a footprint of the memristive 

system [28], and the pinched hysteresis loop can be collapsed into a single-

valued function as described by Chua [29]. 
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Chapter 3 

Results and Discussion 
In this chapter, Firstly, we have discussed results of proposed time 

derivative of the internal state variable (w(t)) and two important parameters, 

namely viz the forgetting rate (Ĳ� and retention (tr) to emulate the retention 

and forgetting behavior of the memristive crossbar array. Synaptic behavior 

of memristive device on the application of consecutive positive and 

negative pulses with different amplitude and duration. Lastly, we discussed 

the simulated results exhibit a stable pinched hysteresis loop in the resistive 

switching (RS) responses in symmetric and asymmetric electrodes 

combinations with an efficient ON/OFF current ratio. Moreover, the 

simulated devices show the synaptic plasticity functionalities in terms of 

potentiation and depression processes with almost ideal linearity factor for 

both electrode combinations. 

 

3.1 Analytical Modelling 
 

 
Figure 3.1: The plasticity of memristive crossbar using (a) pulses with different amplitude 

and duration, (b) pulses with different interval with constant amplitude. Here, the format 

of the labels, i.e., 4 V/50 ms/50 ms, shows the pulse amplitude, pulse width and interval 

between two consecutive pulses, respectively. 

 

It is known that the conductance of memristive systems is dependent on 

various parameters, such as the input pulse amplitude, pulse time duration 

and time interval between two consecutive pulses. Here, Figure 3.1 (a) 

analytically shows the variation in the memristive device conductance with 
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respect to the number of pulses, in which ten consecutive voltage pulses 

with different amplitude and time duration are imposed on the memristive 

crossbar. It is observed that the pulses with larger voltage amplitude and 

longer time duration trigger a larger change in the device conductance, 

while on the other hand, the pulses with smaller amplitude and shorter time 

duration result in a negligible or no change in the device conductance, 

which is associated with the device activation state.  

 
 

Figure 3.2: (a) Ion diffusion and (b) ion migration at the memristive device interface. 

 

However, the relentless competition between ion diffusion and ion 

migration, as shown in Figure 3, at the device interface decides the net 

conductance of the memristive device. The ion diffusion decreases the 

device conductance while ion migration increases the device conductance 

[3, 8, 9]. Figure 3.2 (a) shows the ion diffusion process under the 

application of negative applied voltage at the TE, in which the net 

concentration of oxygen ions is less at the interface, which affects the 

interface conduction and further leads to a decrement in the device 

conductance [10±14]. On the other hand, under the application of applied 

positive voltage at the TE, the oxygen ion migration process takes place at 

the interface and the concentration of oxygen ions is higher at the device 

interface, which leads to an increment in device conductance at the 

interface [10±14], as shown in Figure 3.2 (b). Further, the time duration and 

interval have a significant impact on the device conductance [15, 16]. For 

this analysis, ten consecutive voltage pulses with the same amplitude and 
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different time duration and interval are applied on the memristive crossbar, 

and it is observed that the pulses with shorter intervals induce a larger 

change in the device conductance as compared to pulses with longer time 

intervals. This is because, in general, the longer time interval leads to ion 

diffusion, which substantially reduces the device conductance [3]. Similar 

memory plasticity is experimentally demonstrated by Das et al [4] in a 

DIBS-grown Y2O3-based single memristive device. In that work, the 

memristive device conductance is varied with the number of input pulses, 

and the impact of the conductance is investigated by the variation of pulse 

amplitude and duration. The experimental results reported by Das et al [4] 

are analytically verified by Kumar et al [5]. 

 

 
 

Figure 3.3: I±V curves of memristive systems under consecutive (a) positive voltage pulses 

RI����9�DQG��E��QHJDWLYH�YROWDJH�SXOVHV�RI�í��9��7KH�FKDQJH�LQ�GHYLFH�FXUUHQW�FRQGXFWDQFH�

is the basis of synaptic plasticity in memristive systems. 

 

Further, the proposed model also captures the change in device current 

under the application of successive voltage sweeps, as shown in Figure 3.3. 

Figure 3.3 (a) represents a continuous enhancement of the device current 

(or conductance) under the application of successive positive voltage 

sweeps, and this phenomenon is analogous to the potentiation mechanism 

of memristive systems [1, 2]. On the other hand, for successive negative 

voltage sweeps, the device current (or conductance) continuously declines, 

as presented in Figure 3.3 (b), which is analogous to the depression 

mechanism of memristive systems [1, 2].  
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Figure �����D��DQG��E��Ĳ�±t and tr±t curves. 

 

Figure 3.4 shows the retention and forgetting rate in the improved diffusion 

term and it is varied along with the time for which the electric field is 

applied. The direction of the ion diffusion is determined by the comparative 

result of the conductance and the retention. When w > tr, the positive 

electrical field is overlapped, while an overlapping negative electric field is 

observed when w < tr. In other cases, the ion diffusion mechanism promotes 

the increment or decrement in the device conductance, i.e., the ion diffusion 

process has the same direction as the ion migration [3]. Moreover, the 

asymmetric variation in the positive and negative HOHFWULF� ILHOG�� Ĳ�DQG� Wr, 

vary more rapidly under a positive electric field as compared to the case for 

a negative electric field, as shown in Figure 3.4 (a). From Figure 3.4 (b), it 

is clear that the forgetting rate and the retention are improved significantly 

under the application of repeated electrical stimulation. The forgetting rate 

increases from 0.15 to 0.26 s along with the increasing input stimuli 

number. At the same time, as shown in Figure 3.4 (b), the retention also 

increases from 10% to 20.1%, which is comparatively better than the 

previously reported data [3], 6 and the increment in forgetting rate and 

retention indicate a clear transition from STM to LTM [3]. Another 

important behavior of a memristive system is the transition from STM to 

LTM, which is captured by the proposed analytical model. 
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Figure 3.5: (a) Transition from STM to LTM in which conductance varies along with 

stimulation pulses, (b) potentiation and depression processes along with restimulation 

process. 

 

As shown in Figure 3.5 (a), 20 consecutive input pulses of +4 V amplitude 

and 40% duty cycle are imposed on the memristive device. Under the 

application of each electrical stimulation, the device conductivity is first 

increased, followed by a decay due to spontaneous diffusion, as mentioned 

earlier. However, when the time interval between the successive 

stimulation is relatively short, in the range of 5±30 ms, an overall increment 

in the conductance is observed despite the spontaneous decay, as shown in 

Figure 3.5 (a). This phenomenon is caused by the competing process 

between diffusion and ion migration [3, 8, 9, 15]. Moreover, the 

stabilization in the switching process and persistence of LTM are evidence 

of the growth of new synaptic connections and a change in the shape and 

size of the pulse, adding more pathways for synaptic transmission. LTM 

fades with time, showing that the synaptic connections revoke with time, 

but at a much slower speed compared to the decay in STM [15]. 

 

Figure 3.5 (b) shows the synaptic plasticity behavior in terms of the 

potentiation and depression processes of the memristive device [1, 2, 4]. 

During a positive electrical stimulus, the synaptic weight or the normalized 

conductance of the memristive device is continuously strengthened, while 

under a negative electrical stimulus, the synaptic weight is gradually 

debilitated. Figure 3.5 (b) further displays the re-stimulation process 

followed by the first stage of the potentiation and depression processes, in 
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which a comparatively smaller number of electrical input stimuli are 

required to achieve the same stage of memory learning process. This 

phenomenon is similar to the learning behavior of biological systems, 

which allows relearning of the elapsed information to be at a much faster 

rate [4, 15]. 

 

The extensive benefits of the discussed analytical model are that it is able 

to emulate the forgetting and retention behavior and STM-to-LTM 

transition precisely, which was not captured by earlier reported models [5, 

6, 7]. Further, the proposed model also has the ability to capture the realistic 

behavior of biological systems, which helps engineers and researchers to 

analyze the various functionalities of biological systems. Moreover, the 

developed analytical memristive model is also able to compute the diverse 

real-time neuromorphic characteristics. 

 

3.2 Physical Modelling 

 

 
Figure 3.6: Resistive switching response of symmetric electrodes-based memristor 

structure: (a) Al/Y2O3/Al (VSET: +0.5788 V and VRESET: -0.5654 V), (b) Au/Y2O3/Au (VSET: 

+0.5684 V and VRESET: -0.5641 V), (c) Mo/Y2O3/Mo (VSET: +0.7002 V and VRESET: -0.6907 

V), (d) Pd/Y2O3/Pd (VSET: +0.7123 V and VRESET: -0.6957 V), (e) Ta/Y2O3/Ta (VSET: 

+0.5554 V and VRESET: -0.5428 V), (f) TiN/Y2O3/TiN (VSET: +0.6988 V and VRESET: -0.6494 

V), (g) Ag/Y2O3/Ag (VSET: +0.5844 V and VRESET: -0.5709 V), and (h) combined switching 

response of (a-g). 

 

Figure 3.6: shows the simulated RS response of the various symmetric 

electrodes-based Y2O3 memristive devices. To evaluate the switching 
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response, the amplitude of an input voltage is ±1.5 V with a pulse width of 

~10 ms has been imposed on the top electrode via a load resistance. As seen 

from Figure 3.6 (a), the RS response can be categorized into four parts 

namely as: (1) positive forming voltage (+VF), (2) positive SET voltage 

(VSET), (3) negative rupture voltage (-VR), and (4) negative RESET voltage 

(VRESET). During the positive voltage supply, all the CFs are formed inside 

the resistive switching medium of Y2O3 layer and memristive device is 

switched into the SET position from the forming position (VF) and the 

SURFHVV� LV� WHUPHG� DV� ³6(7� SURFHVV´�� 7KH� DPSOLWXGH� RI� VSET is �VF, as 

depicted in Figure 3.7 Also, it is observed that the hysteresis loop area in 

the resistive switching behaviors is dependent on the used metal 

combinations. On the other hand, when negative polarity voltage is applied 

on the top electrode all the formed CFs are ruptured and the memristive 

GHYLFH�LV�VZLWFKHG�LQWR�5(6(7�SRVLWLRQ�DQG�SURFHVV�LV�WHUPHG�DV�³5(6(7�

SURFHVV´�ZKHUH�YROWDJH�DPSOLWXGH���-VR, as shown in Figure 3.7 The values 

of VSET and VRESET for all the symmetric device structures in which these 

are varied from one metal combination to the other. Figure 3.7 shows the 

RS response of the various asymmetric electrode-based Y2O3 memristive 

devices. 

 

 

Figure 3.7: Resistive switching response of asymmetric electrode-based memristor 

structure: (a) Ag/Y2O3/Al (VSET: +0.6537 V and VRESET: -0.6399 V), (b) Ag/Y2O3/Au (VSET: 

+0.5819 V and VRESET: -0.5711 V), (c) Ag/Y2O3/Mo (VSET: +0.5687 V and VRESET: -0.5632 

V), (d) Ag/Y2O3/Pd (VSET: +0.6049 V and VRESET: -0.5966 V), (e) Ag/Y2O3/Ta (VSET: 

+0.6537 V and VRESET: -0.6399 V), (f) Ag/Y2O3/TiN (VSET: +0.5359 V and VRESET: -0.5187 

V), and (g) combined switching response of (a-f). 
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Figure 3.8: Operating voltages (VSET and VRESET) and operating voltage ratio (= 

VSET/|VRESET|) of Y2O3-based memristor with (a) symmetric electrodes, and (b) asymmetric 

electrodes. 

Figure 3.8 shows the different operating voltages such as SET voltage 

(VSET) and RESET voltage (VRESET). Figure 3.8 (a) depicts the VSET and 

VRESET for the symmetric electrode-based Y2O3 memristor device while 

Figure 3.8 (b) shows the VSET and VRESET for the asymmetric electrode-

based Y2O3 memristor device. Here, it is noticed that the operating voltages 

for each device structure combination are identical and had slight variations 

from one device structure to another. Further, to compare the differences 

between VSET and VRESET for all the simulated structures, we defined 

operating voltage ratio (= VSET/VRESET). As seen from Figure 3.8 (a), in the 

case of symmetric electrode-based memristor device, when the device 

electrode combination shift from Au/Au to Ta/Ta to TiN/TiN, the operating 

voltage ratio is increased. While on the other hand, in case of an asymmetric 

electrode-based memristor device, when device electrode combination 

shifts from Ag/Mo to Ag/Ta to Ag/TiN, the operating voltage ratio is also 

increased, as shown in Figure 3.8 (b). That means the optimized bias 

condition is necessary for each device structure to obtain the proper change 

in the device conductance. 
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Figure 3.9: ON/OFF ratio of (a) symmetric electrodes, and (b) asymmetric electrodes-

based Y2O3 memristor. 

 

Figure 3.9 shows the ON/OFF ratio of current for both symmetric and 

asymmetric electrodes-based Y2O3 memristor devices. The simulated 

results show that when Ag, Au, and Al are considered as top and bottom 

electrode in Y2O3 memristor device, the ON/OFF ratio of current is highest, 

as compared to the other symmetric electrode combinations. On the other 

hand, the ON/OFF ratio is highest when Mo is considered as a bottom 

electrode in case of the asymmetric electrode where Ag acts as a top 

electrode. The ON/OFF ratio of the memristor device is associated with the 

memory window of the device and higher values of the ON/OFF ratio lead 

to the better stability in the switching response along with cyclic operations 

and time scale which is further useful in digital and logic applications.  

 

 
Figure 3.10: Potentiation and depression processes of symmetric electrodes-based Y2O3 

memristor: (a) Al/Y2O3/Al, (b) Au/Y2O3/Au, (c) Mo/Y2O3/Mo, (d) Pd/Y2O3/Pd, (e) 

Ta/Y2O3/Ta, (f) TiN/Y2O3/TiN, and (g) Ag/Y2O3/Ag. 
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Figure 3.11: Potentiation and depression processes of asymmetric electrodes-based Y2O3 

memristor: (a) Ag/Y2O3/Al, (b) Ag/Y2O3/Au, (c) Ag/Y2O3/Mo, (d) Ag/Y2O3/Pd, (e) 

Ag/Y2O3/Ta, and (f) Ag/Y2O3/TiN. 

Further, to evaluate the synaptic plasticity behavior of the memristive 

device in terms of potentiation and depression, a train of 50 positive and 50 

negative triangular voltage pulses with amplitude of +1.5 and -1.5 V, 

respectively, with voltage ramp rate (VRR) of 100 V/s are imposed on the 

memristive device. Figure 3.11 shows the synaptic plasticity characteristics 

for symmetric electrode-based while Figure 3.11shows the asymmetric 

electrode-based Y2O3 memristor device. As seen from Figure 3.10 and 

3.11, under the application of positive voltage pulses, the synaptic weight 

or the normalized device conductance of the memristive device is 

continuously strengthened. The continued strengthening in the synaptic 

ZHLJKW� LV� DQDORJRXV� WR� WKH� µOHDUQLQJ� EHKDYLRU¶� RI� WKH� KXPDQ� EUDLQ�

functionality DQG�WKLV�SURFHVV�LV�WHUPHG�DV�µSRWHQWLDWLRQ¶���:KLOH��LQ�WKH�FDVH�

of negative electrical pulses, the synaptic weight is gradually weakened, as 

shown in Figure 3.10 and 3.11. The continuous weakening in the synaptic 

ZHLJKW� LV� IDPLOLDU� ZLWK� WKH� µIRUJHWWLQJ� EHKDYLRU¶� RI� WKH� KXPDQ� EUDLQ�

functionality DQG� WKLV� SURFHVV� LV� WHUPHG� DV� µGHSUHVVLRQ¶�� $OVR�� WKH�

continuous strengthening and weakening of the synaptic weight are 

analogous to the synaptic plasticity functionality of the human brain [17-

18, 21-25]. Here, a chain of consecutive 100 (50 positive and 50 negative) 

identical pulses with an amplitude of ±1.5 V and pulse width of 15 ms are 

imposed on the device to compute the synaptic characteristics. As seen 

from Figure 3.10 and 3.11, under the identical pulses, the metal/insulator 
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interfaces are observed to exhibit gradual potentiation and abrupt 

depression process [26-29]. The abrupt change in the depression process is 

associated with the difference in metal-oxide free energy [30]. Moreover, 

considering the metal-oxide free energy, induced oxide layer and non-

identical spikes pulses which have different pulse amplitude or duration can 

be an efficient solution to overcome the high asymmetry ratio [18] in 

potentiation and depression processes. However, the non-identical spike 

may enhance the complexity of the peripheral circuits and the neuro-

inspired computing system [18]. 

 
 

Figure 3.12: Evaluation of asymmetric ratio in potentiation (0 to 50 pulses) and 

depression (50 to 0 pulses) processes of symmetric electrodes-based Y2O3 memristor: (a) 

Al/Y2O3/Al, (b) Au/Y2O3/Au, (c) Mo/Y2O3/Mo, (d) Pd/Y2O3/Pd, (e) Ta/Y2O3/Ta, (f) 

TiN/Y2O3/TiN, and (g) Ag/Y2O3/Ag. 

 

 

Figure 3.13: Evaluation of asymmetric ratio in potentiation (0 to 50 pulses) and 

depression (50 to 0 pulses) processes of asymmetric electrodes-based Y2O3 memristor: (a) 

Ag/Y2O3/Al, (b) Ag/Y2O3/Au, (c) Ag/Y2O3/Mo, (d) Ag/Y2O3/Pd, (e) Ag/Y2O3/Ta, and (f) 

Ag/Y2O3/TiN. 
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Here, in Figure 3.12 and 3.13, the potentiation and depression processes are 

plotted for symmetric electrodes and asymmetric electrodes-based 

memristor with the same number of applied pulses. For the potentiation, 

the number of pulses is expressed from 0 to 50, while in case of the 

depression, the number of pulses is from 50 to 0. Hence, based on this 

bilateral symmetric superposition, the absolute conductance difference 

between the potentiation and depression can be calculated and defined as 

an asymmetry ratio (RA). To compare the values of conductance (G) among 

these samples, normalized values of device conductance are considered. In 

case of the neuro-inspired computing system, it is required to be updated 

the synaptic weights and conductance of the synaptic device need to be 

changed with the same incremental value at any conductance value. In other 

words, at any certain conductance value, the potentiation and depression 

can be executed randomly [19, 20]. Thus, the increment in the conductance 

change (ǻ*) needs to be the same during the potentiation and depression 

processes. For example, if the potentiation is processed for ten times at a 

certain conductance value, and sequentially the depression process is 

processed for ten times, then the final conductance value needs to be similar 

to the initial conductance value. However, sometimes, the final and initial 

conductance values are not similar and, in this case, a more complicated 

circuits and processes are required to make a target conductance of the 

synaptic device. The unreliable change in the device conductance (ǻ*) can 

degrade the learning accuracy in the computation of neuro-inspired 

computing systems [19, 20]. Therefore, the similar change in the 

potentiation and depression is one of the important factors for designing 

and developing the synaptic device. Here, to compare all simulated device 

structures, asymmetry ratio has been utilized which can show the linearity 

in weight, indirectly. Based on the maximum and minimum G values (Gmax 

and Gmin), it is assumed that G is varied from Gmin to Gmax during the 

potentiation and from Gmax to Gmin during the depression. Thus, at a certain 

pulse number (Nx), the RA can be defined as:  

�ሺܴ୅ሻ݋݅ݐܽݎ�ܿ݅ݎݐ݁݉݉ݕݏܣ ൌ � ீౌ౥౪�௔௧�ே౮
ீీ౛౦�௔௧�ሺேౣ౗౮ିே౮ሻ

                                    (1) 
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where, Gpot is G value during the potentiation, Gdep is G value during the 

depression, and Nmax is total pulse number between Gmin and Gmax. 

However, this RA cannot be a direct indicator for the linearity in weight, it 

can show a difference of G between the potentiation and depression after a 

certain number of pulses.  

 

 
 
Figure 3.14: Evaluation of Non-Linearity in potentiation (0 to 50 pulses) and depression 

(50 to 0 pulses) processes of symmetric electrodes-based Y2O3 memristor: (a) Al/Y2O3/Al, 

(b) Au/Y2O3/Au, (c) Mo/Y2O3/Mo, (d) Pd/Y2O3/Pd, (e) Ta/Y2O3/Ta, (f) TiN/Y2O3/TiN, 

and (g) Ag/Y2O3/Ag. 

 
 
Figure 3.15: Evaluation of asymmetric ratio in potentiation (0 to 50 pulses) and 

depression (50 to 0 pulses) processes of asymmetric electrodes-based Y2O3 memristor: (a) 

Ag/Y2O3/Al, (b) Ag/Y2O3/Au, (c) Ag/Y2O3/Mo, (d) Ag/Y2O3/Pd, (e) Ag/Y2O3/Ta, and (f) 

Ag/Y2O3/TiN. 

Here, in Figure 13 and 10, the NL i.e., non-Linearity curves are plotted for 

symmetric electrodes and asymmetric electrodes-based memristor with the 
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same number of applied pulses. Here, to compare the ideal learning 

behavior of all simulated device structures over the excitation, Ideality 

factor has been utilized which can show the behavior of ideality in weight 

with the applied pulses while potentiation and depression respectively. 

Based on the absolute difference of the conductance values IF i.e., ideality 

factor can be calculated. Thus, at a certain pulse number (Nx), the IF can be 

defined as:  

ሻ	��ሺݎ݋ݐܿܽܨ�ݕݐ݈݅ܽ݁݀ܫ ൌ ȁݔܲܩ െ  ȁ                                    (2)ݔܦܩ

where, GPx and GDx are G value during the potentiation and depression at 

certain pulse number. However, this IF cannot be a direct indicator for the 

Ideality in synaptic weight updation while learning process. The value of 

IF for the ideal learning process must be zero, but as we can see in the 

reported IF values are nearly close to the zero and zero at the transition of 

P and D, where potentiation ends and depression begins. Number of 

maxima and minima can be observed in the in plots in which global maxima 

and global minima represents the maximum and minimum deviation from 

the ideal behavior, respectively. In the major number of plots global 

maxima occurs near the 50th pulse which means deviation is maximum 

almost at the end of process. The deviation in device conductance (|ǻ*|) 

can degrade the learning accuracy in the computation of neuro-inspired 

computing systems. Therefore, change in the GP and GD is one of the 

reliable factors for designing and developing the ideal synaptic device. 

 

 
Figure 3.16: Asymmetric ratio of Y2O3-based memristor with (a) symmetric electrodes, 

and (b) asymmetric electrodes. Here, in both the cases, the asymmetric ratio is 

comparatively higher at the lower potentiation pulse as compared to higher potentiation 

pulse. 
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Figure 3.16: shows the values of RA for symmetric electrodes-based (see 

Figure 3.11(a)) and asymmetric electrode-based (see Figure 3.11(b)) Y2O3 

memristor. As seen from Figure 3.11, the values of RA DUH�QHDUO\�µ�¶�DW�WKH�

higher potentiation pulse for both symmetric and asymmetric electrodes-

based memristors which is the ideal case in synaptic characteristics. While 

for the lower potentiation pulse, the values of RA are comparatively higher 

in comparison to the ideal value for both symmetric and asymmetric 

electrodes-based memristor. In case of lower potentiation pulse, the higher 

values of RA can be associated with the initially generated perturbations 

inside the memristive device. 
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Chapter 4 

Conclusions and Future Work 

4.1 Conclusions 

We have reported the detailed fabrication process for an Y2O3-based 

memristive crossbar array architecture with its highly stable resistive 

switching response. Further, a nonlinear analytical model is also proposed, 

which is capable of simulating the resistive switching response of the 

fabricated crossbar array. Moreover, the developed analytical model shows 

various characteristics such as synaptic plasticity with learning behavior, 

the potentiation and depression processes, and the re-stimulation 

mechanism. These are essential properties for neuromorphic computation 

application. The developed analytical model also captures the new 

forgetting and retention functionality, including the memory transition 

between STM and LTM. Therefore, the described model can be further 

used in the design and modeling of memristive systems for in-memory 

computation, neuromorphic computation and artificial neural network 

applications.  

 

Further, we have reported the resistive switching performance of the Y2O3-

based memristor device with symmetric and asymmetric electrode 

combinations via COMSOL. The simulated results show the stable RS 

behavior in the pinched hysteresis resistive switching response with an 

efficient ON/OFF current ratio. The simulated outcomes suggest that, in the 

case of symmetric electrodes, Au/Au configuration shows a minimum 

operating voltage ratio while in the case of asymmetric electrodes, Ag/Mo 

configuration shows the minimum operating voltage ratio. Moreover, the 

highest ON/OFF current ratio is shown by Al/Al (Au/Au and Ag/Ag also 

shown the similar values in ON/OFF current ratio) electrodes configuration 

which is in case of symmetric while Ag/Mo in case of asymmetric 

electrodes configuration. The simulated memristor devices with symmetric 

and asymmetric electrodes configurations have also effectively established 
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the synaptic plasticity functionality with the almost ideal linearity factor 

which is analogous to the functionality of human brain. Therefore, the 

extensive benefit of the presented work is to be beneficial for the 

researchers to select the appropriate metal electrodes to develop Y2O3-

based memristor devices which able to capture the realistic behavior of the 

biological synapse. 

 

4.2 Future Work 

x To explore the physical modelling of the memristive device with 

the stacked layer of MoS2 and emulate the various Synaptic 

Properties like short term memory (STM), long term memory 

(LTM). 

x To analysis the switching response of the Stacked-Layer MoS2-

based memristive device at nanoseconds or picosecond pulse width. 

x To study the DAC behaviour of MoS2-based memristive device. 

x To explore and study the effect of perturbation at both interfaces 

(i.e., Top and bottom). 

 

 

Figure 4.1: 2D structure of Stacked-Layer MoS2 memristive device. 




