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Abstract

Bridges are subjected to damage during their service life, severely
affecting their safety and functionality. Thus, monitoring bridge
structures for damage occurrence, location, and extent are essential.
When damage occurs in a structure, the consequence changes its modal
parameters, such as natural frequencies and mode shapes. This work
presents a damage detection approach based on finite element modeling
and machine learning techniques. Numerical modal analysis of concrete
steel composite girder bridge was performed using ANSYS workbench
software for healthy and damage scenarios. The required data for the
machine learning algorithms in the form of natural frequencies were
obtained from numerical modal analysis using ANSYS workbench
software. The feasibility of an artificial neural network (ANN) and
support vector regression (SVR) as powerful tools for damage severity
prediction in a concrete-steel composite girder bridge model is

evaluated.

This work also describes the deflection prediction of the beam using
ANN and SVR algorithms. The performance of an ANN and the SVR is
compared for deflection prediction, and the applicability of ANN and

SVR as powerful tools for predicting beam deflection is investigated.
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Chapter 1

Introduction

1.1 Overview

Railway and highway bridges are the essential components of
transportation infrastructure. Bridges are expected to have higher levels
of safety than other parts of the transportation system. Bridge failure
might damage the structures and cause the loss of lives. Changes in
loading conditions, environmental effects, and random actions can
cause damage to bridges, which are constructed to last a long time.
Deterioration in bridges may impact the operation, serviceability, and
safety. Therefore, it is essential to ensure that bridges are always safe
and efficient by monitoring their structural performance.

Introducing structural health monitoring techniques can save costs by
enhancing the understanding and performance of the bridge structures
and ensuring the safety and reliability of structures. Structural health
monitoring is essential to see whether damage occurs, where it occurs,

and how severe it is.

1.2 Structural health monitoring (SHM)

SHM is a valuable method for assuring the integrity and safety of
structures, identifying the progression of damage, and measuring
performance deterioration. Damage diagnosis in structural systems
begins with recognizing the damage and determining its location, type,
and severity. Primarily goal of structural health monitoring is to detect,
locate, and quantify structural deterioration through the collection of
dataon the bridge. The SHM system may assess the structure's

serviceability, reliability, and functionality.

SHM system is classified into four stages. The initial stage is damage
detection. The SHM system notifies of a detected failure at this stage
without specifying the failure's nature. The second stage consists of the

localization of the identified damage. The third stage is the damage
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quantification stage. The SHM system automatically performs a
diagnostic of the kind, extent, or severity of the damage in the third
stage. The fourth stage is a prognosis of the structure's remaining service
life[1]. Specific techniques are used for bridge SHM; they are as

follows:

1.2.1 Non-destructive testing (NDT)

NDT methods are a collection of techniques for evaluating the qualities
of a material or system without causing damage to it. This benefit is
valuable for reviewing in-service bridges since the bridges may stay
open to traffic during the assessment period, reducing the impact on the
traveling public. Acoustic emission-based monitoring and electro-
magnetic-based approaches are two of the most well-known NDT
techniques for damage detection. This technique can only be applied to
detect damage on a local and require access to specific structure

components, leading to a time and cost-consuming process.

1.2.2 Vibration-based damage detection technique

Vibration-based damage detection approaches can be employed for a
global assessment of the structure's health. It uses modal parameters to
identify damage to the structure. Natural frequencies are the most
crucial vibration parameter; therefore, this technique detects damage by
directly measuring changes in natural frequency. These approaches
involve monitoring and assessing the structure's dynamic behavior,
which is frequently compared to behavior simulated by numerical
models, such as finite element (FE) models.

1.2.3 Machine learning-based technique

Machine learning (ML) allows systems to learn and develop
independently without having to be explicitly programmed to do so. ML
is concerned with creating algorithms that can access data and utilize it
to learn independently, i.e., it makes a prediction using past data. It

utilizes data sets of feature signals acquired from a structure over time



and soft computing algorithms to warn about damage and its features for

damage detection in structures.

1.3 Significance and objectives of the study

The concerns regarding bridge structural maintenance and monitoring
have become a significant challenge for engineers and researchers. In
view of this, vibration-based monitoring and machine learning-based
approach is utilized in this work for the bridge structure's damage
detection and severity prediction. This work also focuses on deflection
prediction in the beam of structure using ML techniques like artificial
neural network (ANN) and support vector regression (SVR).

The following are the objectives of the present thesis work:

» To develop the finite element model of the girder bridge.

» To determine modal parameters of the bridge in damage and
undamaged scenarios for damage detection.

» To train and test machine learning algorithms using natural
frequencies to assess damage severity.

» To check the applicability of ML algorithms like ANN and SVR

for deflection prediction in the beam.

The present work aims to provide significant contributions to structural
health monitoring, damage identification, severity prediction, and

structural deflection prediction.

1.4 Thesis organization

The thesis comprises five chapters. Each of them is described briefly to
give a sound understanding about the contents covered in the thesis.
Chapter 1 introduces the structural health monitoring of bridges, the
stages involved in SHM, and different techniques used for SHM. The
significance and objectives of the work have been highlighted, along
with the organization of the thesis.



Chapter 2 reviews the literature and past work that has been done on

structural health monitoring bridges.

Chapter 3 explains vibration-based monitoring of concrete steel
composite girder bridge in detail. The FE model of the girder bridge was
created. The numerical modal analysis is performed on the bridge
structure to identify damage. The machine learning approach is utilized
for the damage severity prediction. The implementation and

performance of an ANN and SVR have been discussed.

Chapter 4 describes the deflection prediction of the beam using an
ANN and the SVR algorithms. It compares the effectiveness of an ANN
and the SVR for the beam deflection prediction. Three ANN and SVR
models have been created to predict inelastic midspan beam deflection

of an interior span, a left exterior span, and a right exterior span.

Chapter 5 concludes and summarizes the research work and presents
comprehensive discussions based on the results obtained. The scope of
future work is also mentioned in this chapter



Chapter 2

Literature review

2.1 Overview

SHM techniques, which utilize mathematical and statistical approaches
to identify and isolate damage, have become increasingly essential
technology. This chapter contains a survey of the literature in the fields
of SHM and damage detection methods. SHM methods are classified
into model-based methods for damage detection and non-model-based,
i.e., ML-based damage detection methods. The review focuses on a

summary of damage detection techniques.

2.2 Model-based techniques for damage detection

A model-based damage detection approach compares the characteristics
of a mathematical model describing the monitored bridge to assess the
bridge's health. Finite Element (FE) modeling techniques are commonly
used to develop mathematical models. The response obtained by sensors
on an actual structure is used to prepare the FE model. Due to its
computational and modeling capabilities, FE methods are used to
evaluate and predict bridge performance. Some work on the FE model

updating strategies have been reviewed.

[2] provided an approach for simultaneously estimating bridge stiffness
and mass characteristics. The difference between analytical and
measured displacements produced by non-destructive testing of bridge
structure in the laboratory was defined as an objective error function that
must be reduced. The updated FE model data and experimentally
measured data have a good agreement. As a result, the authors suggest
that if the measured data differ significantly from the predictions of the
FE model, a failure may have occurred, which indicates that, for the
damage detection process, the proposed updating technique can be
suitable.



He et al. [3] monitored the bridge using approximately 150 sensors, and
the FE model was created. A simple updating technique was presented
by minimizing an objective function based on the numerical and
measured natural frequencies difference. The collected data by the FE
model and the data acquired by the sensors were found to be in good
agreement. Hence presented approach can be used as a bridge health

monitoring.

An update technique was proposed by Feng et al. [4] for the railway
bridge FE model. The method was based on the difference between
analytical and measured bridge displacements. According to the study,
the actual bridge displacements and those estimated using the updated

FE model were nearly identical.

A FE updating technique presented by Xia et al. [5] is based on
optimizing an objective to minimize the differences in measured and
numerical modal properties of the bridge. According to the results, the
simulated and measured modal properties of the bridge are observed to

be in good agreement.

2.3 Machine learning-based techniques for damage

detection

Various fault detection techniques have been established in recent
decades to determine the existence of failure in a bridge by relying just
on bridge behavior analysis without constructing a structure model. ML
approaches can provide a quick analysis without any computational
work. Mehrjoo et al. [6] employed ANN to detect damage in truss joints
in bridge structures. For damage identification, mode shapes and natural
frequencies were employed as input features to the ANN. The ANN's
applicability and effectiveness in determining the location of joint
damage and the severity in truss bridges have been demonstrated. The
location and damage severity in truss bridge joints were determined with

high accuracy using the suggested method.



Park et al.[7] presented a sequential fault identification approach using
an acceleration-based ANN (ABNN) and a modal parameter-based
ANN (MBNN). The ABNN method uses acceleration as an input feature
to detect the damage in the beams. Then using mode shapes and modal
strain energies, an MBNN algorithm is developed to predict damage
severity and the location in the beam. It concluded that the damage's
location and severity are accurately detected using an ABNN and the
MBNN sequentially.

Two different ANN approaches were analyzed by Al Rahmani et al. [8]
to predict crack location and propagation in a simply supported beam in
a FE model. FEA software was used to create damage databases for
beams with various parameters. The results indicated that both ANNs
were found to be able to accurately predict the propagation of the cracks,

despite their differences in structure and input data.

Tan et al. [9] analyzed the approach for detecting damage in bridge
structure using vibration characteristics and ANN. The damage index,
based on modal strain energy, is used for locating and detecting the
damage in beams. The relative modal flexibility change was used to
detect and quantify bridge deck damage. The proposed method was
found to be capable of detecting damage in single and multiple damage

scenarios.

Lee et al. [10] proposed an ANN-based damage detection method using
the modal features. ANN with three different input types, i.e., mode
shapes, mode shape ratios before and after damage, and mode shape
differences between before and after damage, are studied. The suggested
method could detect the damages for all case studies using different
input parameters. Results showed that the suggested technique was
found to be capable of identifying damages in all case studies when

different input parameters were used.

Pendharkar et al. [11] created neural networks to predict inelastic
deflections for the composite beams. Results showed that the presented
ANN model could predict mid-span deflection of beam for different

7



spans. Chaudhary et al. [12] developed neural networks to predict
inelastic bending moments for composite beams. Results showed that
the presented ANN model could predict bending moment at the span

support

In the context of fault detection using Al techniques, most of the studies
mention the use of ANN. The use of the SVR algorithm for damage
detection has not been focused in the previous studies. In this thesis, the
study is focused on SVRs algorithms and ANN algorithms for the
damage detection and severity prediction of structure, and their

performance is compared.



Chapter 3

Vibration-based monitoring of concrete steel

composite girder bridge

3.1 Introduction

Structures are subjected to deterioration during their operational
lifespan, affecting the safety and functionality of structures. Thus,
structural health monitoring is essential to see whether damage occurs,
where it occurs, and how severe it is. Damage is defined as a degradation
in the structure's stiffness that negatively impacts the structure's
performance, which may cause unwanted vibrations to the structure. As
a result, damage identification is a significant requirement in evaluating
structural systems and maintaining their safe operation throughout their

service lifespan.

In the case of local damage, NDT techniques are used to monitor
structure performance. Acoustic emission-based monitoring, electro-
magnetic-based approaches, radiography-based, ultrasonic-based, and
eddy current-based monitoring are well-known NDT techniques for
damage detection[1]. For all these approaches, prior localization of the
damaged zones is required. Vibration-based methods, which provide a
global damage analysis, can overcome the limitations of local
methodologies. Vibration-based health monitoring relates two
attributes, i.e., structural and modal parameters. Mass, damping, and
stiffness are the structural parameters, and mode shape and natural

frequencies are the modal parameters.

Natural frequencies and mode shapes are dynamic features of a structure
that are functions of its mass stiffness. Changes in mode shape and
natural frequencies can be a good predictor of structural degradation.
Vibration-based damage detection methods assess the variations in
physical parameters that indicate structural deterioration by measuring

changes in dynamic characteristics. The fundamental concept is that
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modal characteristics such as mode shape and natural frequencies are
functions of the structure's stiffness. As a result, modal properties will
be affected by changes in physical properties. Any reduction in
structural stiffness may indicate structural damage. Modal analysis is a
useful method for identifying the modal parameters. Any damage to
structural elements causes stiffness reduction, resulting in a reduction of
natural frequency. This chapter uses natural frequencies as a damage
indicator in bridge structure.

3.2 Finite element model of composite girder bridge

The primary goal of this work was to identify damage in a concrete-steel
composite girder bridge. The finite element model for the concrete-steel
composite girder bridge is developed to perform numerical modal
analysis to evaluate the modal parameters of the bridge.

Table 3.1: Dimension of concrete-steel composite girder bridge [13].

Slab Beam
Length=3200mm Length=3200mm
Width=1200mm Flange Width=75mm

Thickness=100mm Section Depth =150mm

Thickness of Flange =7mm

Thickness of Web =5mm

The length of a concrete slab is 3200 mm, the width is 1200 mm, and
the thickness is 100 mm. The steel beams have a 75 mm flange width, a
150 mm section depth, 7 mm flange thickness, and 5 mm web thickness
[13]. A schematic view of the dimension of the concrete-steel composite
girder bridge is shown in Fig. 3.1. For the steel material, the Modulus of
elasticity is 210*10% MPa, the density is 7850 kg/m?, and the Poisson's

ratio is 0.3. For the concrete material, the Modulus of elasticity is 37.5

10



MPa, Poisson's ratio is 0.2, and the density is 2400 kg/m® was
considered.

1200mm

100mm

450mm ‘ 450mm 150mm

Fig. 3.1: Schematic view of the dimension of composite girder bridge

The FE model of the concrete-steel composite girder bridge is created
using ANSYS Workbench 2021 R1 [14]. Fig. 3.2 shows the concrete-
steel composite girder bridge geometry. The concrete material is
assigned to the slab part, and the steel material is assigned to the beam
part.

Geometry
02-05-2022 18:02

1,000 () ;(A ¥

Fig. 3.2: The composite girder bridge geometry

0.250 0730

The mesh configuration of the concrete-steel composite girder bridge is
shown in Fig. 3.3. The FE model consists of 224041 nodes and 109613
elements. Bonded contact is provided between the slab and the beam
surfaces.

11



1.000 rm) XIL‘ ¥

0.250 0.750

Fig. 3.3: Meshed model of the composite girder bridge

3.2.1 Numerical modal analysis of the composite girder bridge

model

Modal analysis determines the natural frequencies at which a structure
will resonate. It's one of the most useful techniques for determining
modal parameters. Natural frequencies are extremely important in a
variety of structural engineering. Modal analysis is a useful method for
identifying the modal parameters. Any damage to structural elements
causes stiffness reduction, resulting in a reduction of natural frequency.
As a consequence, damage detection may be done using natural

frequency measurements.

For numerical modal analysis, the support conditions on both sides are
considered fixed for the z direction, while x directions and y directions
are free. The boundary conditions provided to the FE model to evaluate
the natural frequencies of a model are shown in Fig. 3.4. Then the model
is post-processed, and the first four natural frequencies of flexural
modes are extracted using ANSYS Workbench 2021R1.

12



A: Modal
Modal
Frequency: Ni&
02-05-2022 22:25

[A] Boundry Condition1
Boundry Condition 2

1.000¢m)
1

0.250 0.750

Fig. 3.4: Boundary conditions for the model

Table 3.2 shows the natural frequencies first four bridge model, and their
respective mode shapes are illustrated in Fig. 3.5. A deflected shape
associated with a specific natural frequency is called a mode shape that
depicts the structure displacement for the particular modes. The natural
frequencies obtained by numerical modal analysis are compared with
the experimentally obtained natural frequencies by [13] to validate the

numerical model.

Table 3.2: Numerically obtained the first four natural frequencies of

the concrete-steel composite girder bridge

Mode Natural Frequency
(Hz)
1 37.793
2 265.34
3 400.27
4 533.76

13
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Fig. 3.5: Mode shapes frequencies of the composite girder bridge
obtained using FEM



Table 3.3 compares the numerically obtained natural frequencies with
the experimentally obtained natural frequencies. The results showed a
good agreement between numerically obtained natural frequencies and
the experimentally obtained natural frequencies. The proposed damage

detection approach was demonstrated using this validated FE model.

Table 3.3: Numerically obtained the first four natural frequencies of

the composite girder bridge

Mode Numerical Natural Experimental
Frequency (Hz) Natural
Frequency (Hz)
1 37.793 33.01
2 265.34 256.32
3 400.27 391.29
4 533.76 554.69

3.2.2 Numerical modal analysis of the damaged bridge structure

Numerical modal analysis of damaged bride structure is performed to
detect the damage in the structure. Four damage scenarios were given to
the beam of structure, and the severity of damage was defined. Fig.3.6
shows the locations of four damage scenarios with a damage depth of
75mm. Fig. 3.6 illustrates the damage scenarios D1, D2, D3, and D4,
where the damage is located at L/2, 3L/4, and L/4 of the length of the
beam. For damage D1, a 5 mm wide cut slot and 3 mm depth increments
up to 75 mm (Fig. 3.7), i.e., 25 levels of cut slots located at L/2 and L/4

of beam, were considered in the beam to investigate the damage severity.
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b > L

(a) Damage Scenario D1 (b) Damage Scenario D2

(c) Damage Scenario D3 (d) Damage Scenario D4

Fig. 3.6: Different damage scenarios applied to the structural model

Fig. 3.7: Damage scenario with 5 mm width with 75 mm depth

The numerical modal analysis was performed on 100 damage scenarios
with different damage severity. The damaged models are given the same
boundary conditions as the undamaged model, and the first four natural
frequencies of flexural modes are extracted using ANSYS Workbench
2021R1. The damage depth and the beam height ratio is defined as the
damage severity index (d/h). Fig. 3.8 depicts the variation in natural
frequencies with respect to different damage severities for different

damage scenarios for different modes.
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From Fig. 3.8, it is observed that with an increase in the damage severity
index, natural frequencies of structure decrease. In all damage scenarios,
the existence of damage in beams causes a reduction in natural
frequencies, which shows that the reduction in natural frequencies is a

good indicator of damage and strongly influences the damage.

3.3 Damage severity prediction of structure using machine

learning algorithms

Machine learning algorithms begin with preparing suitable and accurate
data sets that can be used to train a network to recognize patterns in the
data set. Data obtained from the numerical modal analysis is used to
train and test the machine learning algorithm. 101 different data sets
from the healthy and damaged bridge model were collected for damage
severity prediction from the numerical modal analysis. The first four
natural frequencies and the damage severity index were collected for the
structure's damage severity prediction. Two different machine learning
techniques, i.e., ANN and SVR, had been employed for damage severity

prediction in structure.
3.3.1 Artificial neural network (ANN)

An ANN is a computing method based on the biological neural network
structure. It has been used in a variety of modeling, pattern recognition,
and system control [15]. Artificial neural networks could learn and
generalize from examples and expertise to provide meaningful solutions
for problems even when the input data has errors. As a result, ANNSs can
be used to solve some complex engineering challenges. Herein ANN is

employed to predict damage severity in structure.
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Hidden Layer

Fig. 3.9: Artificial neural network

There are three layers in an ANN input, hidden, and output layer (Fig.
3.9). The input layer neurons represent the independent variable values.
The hidden layer neurons are used for computational purposes, and the
one dependent variable is computed by each of the output neurons.
Signals are passed from the input layer, then transit through the hidden
layer, and arrive in the output layer. All the neurons are connected to the

neurons in the subsequent layer through the weights and bias.

Inputs —

Summation Activation
— % Function

Weights

Fig. 3.10: Schematic of neural network architecture

Every input node has a weight attached that may have either a positive
or a negative value. Fig. 3.10 shows a network structure with input
(%1, x5, ... x,) being connected to neurons with weights (wq, w5, ... wy,)

on each connection [16]. The neuron adds up all of the signals it
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receives, multiplying each signal by the connection's associated weights
to produce an activation signal z (eq. 3.1). With the addition of a bias, b
is then transit to an activation function to give the final output y (eq.
3.2). The most commonly used function is the sigmoid activation, which

is convenient when the backpropagation algorithm is applied.
z = X1 WiX; (3.1)

y=f(b+2z) (3.2)

Target

Neural Network
including
—— connections(weights Compare
Input & bias) between Output
neurons

Adjust weights\

Fig. 3.11: Process of back-propagation

The backpropagation algorithm can learn the complex nonlinear
interactions. Therefore, the backpropagation algorithm in multilayer
feedforward networks is the most appropriate approach.
Backpropagation is a procedure in which the weights are modified until
good predictions are obtained (Fig. 3.11). The fundamental premise of
the backpropagation algorithm is errors are sent backward, and the data
is transferred forward [17]. The backpropagation algorithm's
performance measure is the mean square error (MSE). The difference
between the target and predicted output determines the MSE. This
approach minimizes MSE by employing a gradient descent method that
decreases the gradient error curve throughout all input patterns. The

equation of MSE is mentioned in eq. 3.3.

MSE = =3, (t - 0) (3.3)

20



Where n is the number of the training samples, t is the target output,
and o is the predicted output. The ability of an ANN to correctly predict
the value is a significant advantage. Even when the network is trained
with incorrect data, it can continue to learn and enhance its performance

when additional training features are provided.

A multilayered feedforward neural network was employed, with all
layers interconnected in a feedforward way. Several other algorithms
and activation functions can be usedto train the network, but the
sigmoid activation function is utilized, and the backpropagation
algorithm is considered to develop the network. The backpropagation
tool of Levenberg-Marquardt is used to learn the connections between

the input and output variables.
3.3.2 Performance of an ANN model

An ANN model consists of four input parameters, i.e., four natural
frequencies, and one output parameter, the damage severity index. The
neural network toolbox in the MATLAB R2021b is used to train and
validate the network. Numerous trials are performed with various
numbers of hidden layer neurons to train and test the network. The
number of datasets considered is 101. Out of this, 70% of the data is
utilized to train the model, 15% for validation, and 15% to test the
model. The architecture of the ANN is shown in Fig. 3.12. The input
layer consists of 4 neurons, i.e., 4 input features, the hidden layer

comprises 10 neurons, and the output layer consists of 1 neuron, i.e., 1

output feature.
Hidden Output
Input Output
. W W ] s
DEr @0
4 B B 1
10 1

Fig. 3.12: Architecture of an ANN model
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The performance plot of the trained ANN model is shown in Fig. 3.13.
The performance plot of a trained model shows how the mean squared
error (MSE) changes for different iterations. After 16 iterations, the
model was trained, and after that, it stopped because validation errors
started increasing from that point. The best Validation Performance is
0.000199 at epoch 16.

Mean Squared Error (mse)

22 Epochs

Fig. 3.13: Performance plot of an ANN model

The regression plot, the mean squared error, and R? value (Coefficient
of determination) are used to assess an ANN model's performance. In
Fig. 3.14, performance is shown for each training, validation, and test
data set. A regression plot is a visual representation of how well a neural
network fits the data. MATLAB R2021b is used to plot the regression
across all data. The network outputs are shown against the associated
target values in the regression plot. A good model has small errors,
which means the predictions are scattered near the regression line. In
Fig. 3.14, all the points lie on a regression line, which means the model

has trained accurately.

R? value (Coefficient of determination) is another measure of how well
the neural network fits the data. The R? value indicates how closely
regression predictions match real data points. The regression predictions
perfectly fit the data when the R? value is 1. When R? values are outside
the range of 0 to 1, it means the model does not fit the data and the worst

possible least-squares predictor. Table 3.4 shows the training results of
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an ANN model. It is noted that the R? value for the training dataset is
0.9983 and for validation and testing is 0.9935 and 0.9706, respectively,

which states the model has trained accurately and will successfully

predict the deflection of the beam when new samples are taken as an

input with higher accuracy.
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Fig. 3.14: Regression plots of an ANN model

Table 3.4: Training results of an ANN model

Observations MSE R? Value
Training 71 1.6436e-4 0.9983
Validation 30 7.1168e-4 0.9935
Testing 30 4.0342¢-4 0.9706




The trained and tested ANN model gives a close to one R? value, and a
very low mean square error. The close to one R? value and low MSE
value showed that a predicted output is near to the actual output,
indicating that the neural network model is accurately trained and will

successfully predict the output when a new sample is taken as an input.
3.3.3 Support vector regression (SVR)

A support vector machine (SVM) is a ML technique utilized to
recognize patterns in large data sets. SVM is one of the supervised ML
processes used efficiently for classification as well as regression
problems [18]. SVM is classified into support vector classification
(SVC) and support vector regression (SVR). In the supervised machine
learning process, the data are always labeled, i.e., the training data are
categorized in advance. SVM uses the high complexity data
transformation to create the best hyperplane between the different
categories of outputs with the help of various kernels. The marginal
distance between two different categories is maximized, resulting in the

error being least [19].

3.3.3.1 Hyperparameters of the Support Vector Machine
Algorithm:

Hyperplane: In SVM, a hyperplane is essentially a dividing line
between two data classes. This is the line that will be used to predict the

continuous output in Support Vector Regression.

Support Vectors: The data points closest to the hyperplane are called
support vectors. They influence the hyperplane's position and
orientation. We must choose a hyperplane with the most significant

margin.

Marginal Planes: Marginal planes or decision boundary is the parallel
plane that is created through support vectors on both sides

Kernel: To perform regression at a higher level, SVM uses the functions

that map data points from lower dimensions to higher dimensions. These
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functions are termed a kernel. Various types of kernel functions are used
in SVM. Polynomial, linear, and radial basis functions or Gaussian
kernel are among the examples. Table 3.5 shows the kernel type and its

equation.

Table 3.5: Kernel type and its equation

Kernel Type Equation
Linear kernel K(x,y)=x.y
Polynomial kernel K(x,y)=(x.y + 1)®
Radial basis function (Gaussian) kernel K(xy) = e—pzc;%qz

y=w.x+b R

Fig. 3.15: Support vector machine representation

However, the major goal of SVR is to reduce error by customizing the
hyperplane to optimize the margin while keeping in view that some error
is tolerable[20]. To fit the model, the SVR method approximates the best

values with a given margin called . SVR determines how much error is
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tolerable in the model and uses a hyperplane to fit the data [21]. The

equation of hyperplane is mentioned in eq. 3.4.
y=w.x+b (3.4)

The hyperplane is defined using mentioned constraints in eq. 3.5 and eq.
3.6

Minimize: |lwl|* + C S, +7) (3.5)
Constraints: y; —wx; —b<e+ ¢ )
wx;+b—y; <e+ — (3.6)
=0 _

3.3.4 Performance of the SVR model

The regression learner app in the MATLAB R2021b is used to train and
test the model. Holdout validation is chosen to train the model 30% of
the data to use as a validation set. The number of datasets considered is
101. Out of this, 70% of the data is utilized to train the model and 30%
to test the model. The model is trained with different kernel functions,
and the quadratic function gives the best performance.

The regression plot, the mean squared error, and R? value (Coefficient
of determination) are used to assess the SVR model's performance. Fig.
3.16 and Fig. 3.17 show each training and testing data set performance.
A regression plot is a visual representation of how well a model fits the
data. MATLAB R2021b is used to plot the regression across all data. A
good model has small errors, which means the predictions are scattered
near the regression line. From Fig. 3.16 and Fig. 3.17, it is shown that
all the points lie on a regression line which means the model has trained

accurately.

R? value (Coefficient of determination) is another measure of how well

the regression model fits the data. Table 3.6 shows the training results
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of an SVR model, which shows that the R? value for the training and
testing dataset is 0.98 each. This means the model has trained accurately
and will successfully predict the damage severity when new samples are
taken as an input with higher accuracy.
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Fig. 3.16: Regression plot of the SVR model (Training dataset)
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Fig. 3.17: Regression plot of the SVR model (Testing dataset)
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Table 3.6: Training results of the SVR model

Observations MSE R? Value
Training 71 3.357e-4 0.98
Testing 30 7.5752e-4 0.98

The trained and tested SVR model gives a high R? value and very low
mean square error. The close to one R?value and low MSE value showed
that the predicted value is near to the actual value, indicating that the
SVR model is accurately trained and will successfully predict the output

when a new sample is taken as an input.
3.4 Results and discussion

This work describes a study on damage severity prediction in the
concrete-steel composite girder bridge model using ANN and SVR
algorithms. A FE model of the concrete-steel composite girder bridge
was created and validated by using the comparison of the experimental
results. The numerical modal analysis is performed on the healthy and
damaged structure showed that increasing damage depth in structure
leads to a decrease in natural frequencies. It shows that a decrease in
natural frequencies is the best indicator of damage.

ANN and SVR models were applied successfully using the numerically
obtained natural frequencies of the healthy and damaged bridge models.
The feasibility of ANN and SVR as powerful tools for damage severity
prediction in a structure is evaluated. According to the results, ANN has
a prediction accuracy of 99.83%, 99.35, and 97.06% for training, testing,
and validation, respectively, for damage severity. SVR has a prediction
accuracy of 98% for both training and testing for damage severity. Also,
the results show a highly acceptable coefficient of determination

between the predicted and actual data and imply that the presented ANN
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and SVR model can be applied as a perfect approach for identifying

damage severity in the bridge structure.

Therefore, it is concluded that the severity of damage to the bridge
structure could be assessed using an ANN and SVR model trained with

natural frequencies extracted from numerical modal analysis as inputs.
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Chapter 4

Deflection prediction in beam using machine

learning techniques

4.1 Introduction

Bridges are frequently built using composite steel-concrete structures.
The concrete-steel composite beam shown in Fig. 4.1 is a vital part of a
bridge structure. Shear connections connect the steel beam and concrete
slab. Because shear connectors are flexible, a slip between the steel
beam and concrete slab could occur, causing a deflection structure. The
deflection governs the design of conventional bridges made of high
strength materials. The maximum deflection of a beam is a design
criterion that occurs at or close to the middle of the span [22]. The

cracking in concrete causes the elastic deflection change in the beam.

Reinforcement

Concrete slab

Steel Beam

Fig. 4.1: Concrete-steel composite beam cross-section

Machine learning techniques have been widely used to predict
the parameter without any computational efforts and experimental
analysis. In this chapter, two different machine learning techniques, i.e.,
ANN and SVR, have been employed for deflection prediction in the

beam.
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4.2 Structural parameters

The elastic mid-span deflection, D® changes due to cracking at the
instantaneous stage and changes again due to creeping effect and
shrinkage, resulting in inelastic mid-span deflection D'. The change in
mid-span deflection, i.e., elastic midspan deflection to inelastic midspan
deflection of a span j of a beam, is stated in terms of an inelastic
deflection ratio, which is defined as, &; = {(Df — Df)/D{"}, where
D% = (M1} /32ET) is the deflection at the middle of span j of a beam
having both ends assumed fixed and a uniformly cracking load, w*" is
subjected, where w*” is the minimum load at which the beam cracks and

M*" is the cracking moment at the fixed [23]. An inelastic deflection

ratio is used as an output feature for ANN and SVR models.

Input features to train ANN and SVR for span with end joints j and
j + 1, are taken as[23]:

1. R_;(M",/M") is the cracking moment on the right side of
jointj —1,

2. R}(Mf'l/MC’") is the ratio of cracking moment on the left side of
joint j,

3. R](M;"/ MT) is the ratio of cracking moment on the right side
of joint j ,

4. Rf,(M[,/M°T) is the ratio of cracking moment on the left side
of jointj+ 1,

5. R (Mj,/MT) is the ratio of cracking moment on the right
side of jointj + 1,

6. R}+2(1\/Isz/M”) is the ratio of cracking moment on the left side
of jointj + 2,

7. S;j_41/S; is the adjacent spans stiffness ratio at joint j , where,
S; = EI"*"/l;,

8. S;/S;4+1 is the adjacent spans stiffness ratio at joint j + 1,

9. wj_q /wj is the adjacent spans load ratio of at joint j,
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10. w;/wj 4, is the adjacent spans load ratio of at joint j + 1,
11. The composite inertia ratio is I¢" /"™ |
12. t, is loading age,

13. Gr is concrete grade,
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Fig. 4.2: Input and output parameters representation
4.3 Machine learning approach for deflection prediction
4.3.1 Artificial neural network (ANN)
The details of an ANN are described in chapter 3(3.3.1).

A multilayered feedforward neural network was employed, with all
layers interconnected in a feedforward way. Several other algorithms
and activation functions can be usedto train the network, but the
sigmoid activation function is utilized, and the backpropagation
algorithm is considered to develop the network. The backpropagation
tool of Levenberg-Marquardt is used to learn the connections between
the input and output variables. The fundamental premise of the
backpropagation algorithm is that error is sent back, and data is
transferred forward. The neural network toolbox in MATLAB R2021b
has been used to train, validate, and test the ANN model. The number
of hidden neurons is selected by trial and error. Three ANN models, one

for an interior span of the beam, one for a left exterior span of the beam,
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and one for a right exterior span of the beam, were trained and tested. A
hybrid analytical-numerical analysis procedure was used to create
datasets required to develop ANN and SVR models [23].

4.3.1.1 ANN model for an interior span of the beam

The deflections change in the adjacent spans is affected by cracking at a
joint. As a result, the structural parameters that impact the deflection
change of a span j are those parameters that affect the cracking at the
joints j and j + 1. The cracking at joint j is influenced by several
parameters. Those parameters are: R/_,, R}, R}, R}, 1, Sj—1/S;, wj—1 /Wj,
[T /1", t, and Gr, and parameters that affect cracking at joint j + 1
are: Rf, R}H, Rf+1, R}+2, S;i/Sj+1, Wj/Wji, 17 /I*", ty and Gr. Five
parameters are common in these parameters, and those parameters are,

R/, R}H, 17 /1", ty and Gr. Therefore, an ANN model for an interior
span j, consists of thirteen input parameters, R7_;, R}, R} ,R},1, R,
R}+2, Sj—l/Sj! Sj/Sj+1! Wj_1 /W], Wj/Wj+1, ICT/Iun, to and Gr and one

output parameter, &; [23]

The neural network toolbox in the MATLAB R2021b is used to train
and validate the network. Numerous trials are performed with various
numbers of hidden layer neurons to train the network. The number of
datasets considered for the interior span is 14104. Out of this, 70% of
the data is utilized to train the model, 15% for validation, and 15% to
test the model. The architecture of an ANN model for an interior span is
shown in Fig. 4.3, which consists of 13 neurons in the input layer, i.e.,
13 input features. In the hidden layer, there are 17 neurons, and in the

output layer, there is 1 neuron, i.e., 1 output feature.

Hidden Output
Input Output

13 h/G_)‘f; h@‘/; }OT
17 1

Fig. 4.3: Architecture of an ANN (Interior span)
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The performance plot of a trained model is shown in Fig. 4.4, which
shows how the mean squared error (MSE) changes for different
iterations. After 116 iterations model was trained, and after that, it
stopped because validation error started increasing from that point. The
best Validation Performance is 0.00028513 at epoch 116.

e

Valdation

Test
Best

Mean Squared Error (mse)

p 20 P, 60 80 100 120
122 Epochs

Fig. 4.4: Performance plot of an ANN model (Interior span)
4.3.1.2 Performance of an ANN model for an interior span of a beam

The regression plot, the mean squared error, and R? value (Coefficient
of determination) are used to assess an ANN model's performance. In
Fig. 4.5, performance is shown for each training, validation, and test data
set. A regression plot is a visual representation of how well a neural
network fits the data. MATLAB R2021b is used to plot the regression
across all data. The network outputs are shown against the associated
target values in the regression plot. A good model has small errors,
which means the predictions are scattered near the regression line. In
Fig. 4.5, all the points lie on a regression line, which means the model

has trained accurately.

R? value (Coefficient of determination) is another measure of how well
the neural network fits the data. The R? value indicates how closely
regression predictions match real data points. The regression predictions

perfectly fit the data when the R? value is 1. When R? values are outside
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the range of 0 to 1, it means the model does not fit the data and the worst
possible least-squares predictor. Table 4.1 shows the training results of
a neural network model, which shows that the R? value for the training,
validation and testing is 0.9619, 0.9627, and 0.9664, respectively. It
implies that the model has trained accurately and will successfully
predict the deflection of the beam when new samples are taken as an

input with higher accuracy.
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Fig. 4.5: Regression plots of an ANN model (Interior span)
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Table 4.1: Training results of an ANN model (Interior span)

Observations MSE R?Value
Training 9872 2.8530e-4 0.9619
Validation 2116 2.8513e-4 0.9627
Testing 2116 2.5029%e-4 0.9664

The trained and tested ANN model for an interior span of the beam gives
a close to one R? value, and a very low mean square error. The close to
one R%value and low MSE value showed that a predicted output is near
to the actual output, indicating that the neural network model is
accurately trained and will successfully predict the output when a new

sample is taken as an input
4.3.1.3 ANN model for a left exterior span of the beam

In the case of the left exterior span of the beam, the input parameters,
RI_1, R}, S;_1/S;, wj_1 /w; are nonexistent. Therefore input parameters
for an ANN model for a left exterior span consist of nine parameters, R}
JRiy1 Rly1. Rhay Si/Sjea, Wi/Wjeq, 17 /I"™, t and Gr and one output
parameter, §;[23]. The neural network toolbox in the MATLAB
R2021b is used to train and validate the network. Numerous trials are
performed with various numbers of hidden layer neurons to train and
test the network. The number of datasets considered for the left exterior
span is 4197. Out of this, 70% of data is utilized to train the model, 15%
for validation, and 15% to test the model. The architecture of an ANN
model is shown in Fig. 4.6, which has 9 neurons in the input layer, i.e.,
9 input features. In the hidden layer, there are 10 neurons, and in the

output layer, there is 1 neuron, i.e., 1 output feature.
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Fig. 4.6: Architecture of an ANN model (Left exterior span)

1w

= \/alidation

—Test

- Best

<

a)

red Error (ms

Squat

73 Epochs

Fig. 4.7: Performance plot of an ANN model (Left exterior span)

The performance plot of a trained ANN model is shown in Fig. 4.7,
which shows how the mean squared error (MSE) changes for different
iterations. After 67 iterations model was trained, and after that, it
stopped because validation error started increasing from that point. The
best Validation Performance is 0.00024277 at epoch 67.

4.3.1.4 Performance of an ANN model for a left exterior of a beam

The network's performance is assessed using the mean squared error,
regression plot, and R? value (Coefficient of determination). In Fig. 4.8,
performance is shown for each training, validation, and test data set. A
regression plot is a visual representation of how well a neural network
fits the data. MATLAB R2021b is used to plot the regression across all
data. The network outputs are shown against the associated target values
in the regression plot. A good model has small errors, which means the

predictions are scattered near the regression line. In Fig. 4.8, all the
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points lie on a regression line, which means the model has trained

accurately.

Table 4.2 shows the training results of a neural network model, which
shows that the R? value for the training, validation, and the testing
dataset is 0.9837, 0.9793, and 0.9842, respectively. It implies that the
model has trained accurately and will successfully predict the deflection

of the beam when new samples are taken as an input with higher

accuracy.
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Fig. 4.8: Regression plots of ANN (Left exterior span)
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Table 4.2: Training results of an ANN model (Left exterior span)

Observations MSE R? Value
Training 2937 2.8530e-4 0.9837
Validation 630 2.8513e-4 0.9793
Testing 630 2.5029¢-4 0.9842

The trained and tested ANN model for a left exterior span of the beam
gives a close to one R? value, and a very low mean square error. The
close to one R?value and low MSE value showed that a predicted output
is near to the actual output, indicating that the neural network model is
accurately trained and will successfully predict the output when a new

sample is taken as an input
4.3.1.5 ANN model for a right exterior span of the beam

In the case of the right exterior span of the beam, the input parameters,
Rjrﬂ, R}+2, Si/Sj+1, Wj/wj41 are nonexistent. Rjr_l, R}, Rjr 'R;+1 ,
Si—1/Sj, wj_1 /wj, I"/I*", t; and Gr and one output parameter,
8;[23]. The neural network toolbox in the MATLAB R2021b is used to
train and validate the network. Numerous trials are performed with
various numbers of hidden layer neurons to train and test the network.
The number of datasets considered for a right span is 4201. Out of this,
70% of data is utilized to train the model, 15% for validation, and 15%
to test the model. The architecture of an ANN model is shown in Fig.
4.9, which has 9 neurons in the input layer, i.e., 9 input features. In the
hidden layer, there are 15 neurons, and in the output layer, there is 1

neuron, i.e., 1 output feature.

The performance plot of a trained model is shown in Fig. 4.10. The
performance plot of a trained model which shows how the mean squared
error (MSE) changes for different iterations. After the 304 iterations

model was trained, it stopped because validation errors started
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increasing from that point. The best Validation Performance is
0.0001074 at epoch 304.
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Fig. 4.9: Architecture of an ANN model (Right exterior span)
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Fig. 4.10: Performance plot of an ANN model (Right exterior span)

4.3.1.6 Performance of an ANN model for a right exterior of a beam

The regression plot, the mean squared error, and R? value (Coefficient
of determination) are used to assess an ANN model's performance. In
Fig. 4.10, performance is shown for each training, validation, and test
data set. A regression plot is a visual representation of how well a neural
network fits the data. MATLAB R2021b is used to plot the regression
across all data. The network outputs are shown against the associated
target values in the regression plot. In Fig. 4.11, all the points lie on a
regression line, which means the model has trained accurately. Table 4.3
shows the training results of a neural network model. It is observed that

the R?value for the training, validation, and the testing dataset is 0.9942,
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0.9962, and 0.9912, respectively. It implies that the model has trained
accurately and will successfully predict the deflection of the beam when

new samples are taken as an input with higher accuracy.

Table 4.3: Training results of an ANN model (Right exterior span)

Observations MSE R?Value
Training 2941 6.9181e-5 0.9942
Validation 630 1.0746e-4 0.9926
Testing 630 1.0621e-4 0.9912
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Fig. 4.11: Regression plots of an ANN model (Right exterior span)

The trained and tested ANN model for a right exterior span of the beam

gives a close to one R?value and a very low mean square error. The close

to one R? value and low MSE value showed that a predicted output is



near to the actual output, indicating that the neural network model is
accurately trained and will successfully predict the output when a new

sample is taken as an input
4.3.2 Support vector regression

The details of the SVR are described in chapter 3(3.3.3). Three support
vector regression models, one for an interior span of beam, one for a left
exterior span of the beam, and one for a right exterior span of the beam,

are trained and tested, and performance is measured.
4.3.2.1 The SVR model for an interior span of the beam

The SVR model for an interior span j, of a beam consists of thirteen
input parameters, Ry, RL R ,Rhq, Rty Riyar Si-1/S, Si/Si+a
Wi_1 /W), Wj/Wjyq, 17/, t, and Gr and one output parameter,
8;[23]. The training of the model is carried out using the regression
learner app in the MATLAB R2021b. Holdout validation is chosen to
train the model 30% of the data to use as a validation set. The number
of datasets for the interior span is 14104. Out of 14104 datasets, 9900
datasets are utilized for training, and 4204 datasets are utilized to test
the model. The model is trained with different kernel functions and the

Gaussian radial basis function gives the best performance.

4.3.2.2 Performance of the SVR model for an interior span of the
beam

The regression plot, the mean squared error, and R? value (Coefficient
of determination) is used to assess the SVR model's performance. Fig.
4.12 and Fig. 4.13 show performance for each training and testing data
set. A regression plot is a visual representation of how well a model fits
the data. MATLAB R2021b is used to plot the regression across all data.
A good model has small errors, which means the predictions are
scattered near the regression line. Fig. 4.12 and Fig. 4.13 show that all
the points lie on a regression line, which means the model has trained

accurately.
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R? value (Coefficient of determination) is another measure of how well

the neural network fits the data. Table 4.4 shows the training results of

an SVR model, which shows that the R? value for the training and testing
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dataset is 0.96 and 0.99, respectively. This means the model has trained
accurately and will successfully predict the deflection of the beam when

new samples are taken as an input with higher accuracy.

Table 4.4: Training results of a SVR model (Interior span)

Observations MSE R?Value
Training 9900 3.357e-4 0.96
Testing 4204 7.5752e-4 0.99

The trained and tested SVR model for an interior span of the beam gives
a close to one R?value, and a very low mean square error. The close to
one R?value and low MSE value showed that a predicted output is near

to the actual output, indicating that the SVR model is accurately trained
4.3.2.3 The SVR model for a left exterior span of the beam

In the case of the left exterior span, the input parameters, R}, R},
Si—1/Sj, wj_1 /w; are nonexistent. Therefore, input parameters for the
SVR model for a left exterior span of beam consist of nine parameters,
R Rty Rly1. Riyar Si/Sje1, wi/Wisa, I /1M, to and Gr and one
output parameter, §;[23]. The training of the model is carried out using
the regression learner app in the MATLAB R2021b. Holdout validation
is chosen to train the model 30% of the data to use as a validation set.
The number of datasets for the left exterior span is 4197. Out of 4197
datasets, 2838 datasets are utilized for training the model, and 1359
datasets are utilized to test the model. The model is trained with different
kernel functions and the cubic kernel function gives the best

performance.

45



4.3.2.4 Performance of the SVR model for a left exterior span of the

beam

The regression plot, the mean squared error, and R? value (Coefficient
of determination) is used to assess the SVR model's performance. Fig.
4.14 and Fig. 4.15 show performance for each training and testing data
set. A regression plot is a visual representation of how well a model fits
the data. MATLAB R2021b is used to plot the regression across all data.
A good model has small errors, which means the predictions are
scattered near the regression line. From Fig. 4.14 and Fig. 4.15, it is
shown that all the points lie on a regression line which means the model

has trained accurately.

Table 4.5 shows the training results of an SVR model for a left exterior
span of the beam, which shows that the R? value for the training and
testing dataset is 0.96 and 0.97, respectively. This means the model has
trained accurately and will successfully predict the deflection of the

beam when new samples are taken as an input with higher accuracy.

Table 4.5: Training results of a SVR model (Left exterior span)

Observations MSE R? Value
Training 2838 5.0745e-4 0.96
Testing 1359 2.9356e-4 0.97

The trained and tested SVR model for a left exterior span of the beam
gives a close to one R?value and a very low mean square error. The close
to one R? value and low MSE value showed that a predicted output is
near to the actual output, indicating that the SVR model is accurately
trained
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4.3.2.5 The SVR model for a right exterior span of the beam

In the case of the right exterior span, the input parameters, R/, R}+2,
S;/Sj+1, W;/Wjs, are nonexistent. Ry, Rf, R} ,Rj,y, Sji-1/S;,
wi_q /wj, 17 /I"", t, and Gr and one output parameter, §;[23].The
training is carried out using the regression learner app in the MATLAB
R2021b. Holdout validation is chosen to train the model 30% of the data
to use as a validation set. The number of datasets considered for the right
exterior span is 4201. Out of 4201 datasets, 2969 datasets are utilized
for training, and 1262 datasets are utilized to test the model. The model
is trained with different kernel functions and the cubic kernel function
gives the best performance.

4.3.2.6 Performance of the SVR model for a right exterior span of

the beam

The regression plot, the mean squared error, and R? value (Coefficient
of determination) is used to assess the SVR model's performance. Fig.
4.16 and Fig. 4.17 show each training and testing data set performance.
A regression plot is a visual representation of how well a model fits the
data. MATLAB R2021b is used to plot the regression across all data. A
good model has small errors, which means the predictions are scattered
near the regression line. From Fig. 4.16 and Fig. 4.17, it is shown that
all the points lie on a regression line which means the model has trained

accurately.

Table 4.6 shows the training results of an SVR model, which shows that
the R? value for the training and testing dataset is 0.98 each. This means
the model has trained accurately and will successfully predict the
deflection of the beam when new samples are taken as an input with

higher accuracy.
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Table 4.6: Training results of a SVR model (Right exterior span)

Observations MSE R? Value
Training 2939 2.1681e-4 0.98
Testing 1262 1.6628e-4 0.98

The trained and tested SVR model for a right exterior span of the beam
gives a close to one R? value, and a very low mean square error. The
close to one R?value and low MSE value showed that a predicted output
is near to the actual output, indicating that the SVR model is accurately

trained
4.4 Results and discussion

This work describes the deflection prediction of the beam using an ANN
and the SVM algorithms. It compares the performance of an ANN and
the SVR for deflection prediction. Three ANN and three SVR models
have been developed to predict inelastic midspan deflection of an

interior span, a left exterior span, and a right exterior span.

The feasibility of ANN and SVR as powerful tools for predicting beam
deflection is investigated. According to the results, ANN could predict
the deflection for an interior span, a left exterior span, and a right
exterior span with 96.36 %, 98.24 %, and 99.26% accuracy,
respectively. While SVR could predict the deflection for an interior
span, a left exterior span, and a right exterior span with 97.50 %, 96.50
%, and 98.00 % accuracy, respectively. Also, the results show a highly
acceptable coefficient of determination between the predicted and actual
data and imply that the developed ANN and SVR model can be applied

as a perfect tool for identifying deflection in the beam
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Chapter 5

Conclusion and future scope

5.1 Conclusion

This work aims to extract natural frequencies from a numerical modal
analysis of a girder bridge based on finite element simulation for damage
detection. The work also highlighted ML-based techniques like ANN
and SVM for damage severity prediction and deflection prediction. The

conclusions drawn from this study are listed below:

» Areduction in natural frequencies is a reliable sign of damage to
the structure.

» ANN had a 98.75 % accuracy rate in predicting the severity of
the damage, while SVR had a 98 % accuracy rate in predicting
the severity of the damage.

» ANN could predict the deflection for an interior span, a right
exterior span, and a left exterior span with the accuracy of 96.36
%, 99.26%, and 98.24 %, respectively. In contrast, SVR could
predict the deflection for an interior span, a right exterior span,
and a left exterior span with the accuracy of 97.50 %, 98.00%,
and 96.50 %, respectively.

5.2 Future scope

Although the suggested damage detection approach is effective, a few
concerns need to be addressed. Future research efforts might be focused

on the following areas:

» The work does not entirely address the prediction of damage
location and the remaining service life of the structure. To
provide relevant information for decision making, efforts might
be directed in the fields of fracture mechanics and fatigue life

analysis.
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» The present work does not address fault detection at the local
level. Efforts in the field of acoustic emission-based monitoring

to identify local level damage might be directed.
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