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Chapter 1 

Introduction 

1.1 Overview 

Railway and highway bridges are the essential components of 

transportation infrastructure. Bridges are expected to have higher levels 

of safety than other parts of the transportation system. Bridge failure 

might damage the structures and cause the loss of lives. Changes in 

loading conditions, environmental effects, and random actions can 

cause damage to bridges, which are constructed to last a long time. 

Deterioration in bridges may impact the operation,  serviceability, and 

safety. Therefore, it is essential to ensure that bridges are always safe 

and efficient by monitoring their structural performance. 

Introducing structural health monitoring techniques can save costs by 

enhancing the understanding and performance of the bridge structures 

and ensuring the safety and reliability of structures. Structural health 

monitoring is essential to see whether damage occurs, where it occurs, 

and how severe it is. 

1.2 Structural health monitoring (SHM) 

SHM is a valuable method for assuring the integrity and safety of 

structures, identifying the progression of damage, and measuring 

performance deterioration. Damage diagnosis in structural systems 

begins with recognizing the damage and determining its location, type, 

and severity. Primarily goal of structural health monitoring is to detect, 

locate, and quantify structural deterioration through the collection of 

data on the bridge. The SHM system may assess the structure's 

serviceability, reliability, and functionality. 

SHM system is classified into four stages. The initial stage is damage 

detection. The SHM system notifies of a detected failure at this stage 

without specifying the failure's nature. The second stage consists of the 

localization of the identified damage. The third stage is the damage 
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quantification stage. The SHM system automatically performs a 

diagnostic of the kind, extent, or severity of the damage in the third 

stage. The fourth stage is a prognosis of the structure's remaining service 

life[1]. Specific techniques are used for bridge SHM; they are as 

follows: 

1.2.1 Non-destructive testing (NDT) 

NDT methods are a collection of techniques for evaluating the qualities 

of a material or system without causing damage to it. This benefit is 

valuable for reviewing in-service bridges since the bridges may stay 

open to traffic during the assessment period, reducing the impact on the 

traveling public. Acoustic emission-based monitoring and electro-

magnetic-based approaches are two of the most well-known NDT 

techniques for damage detection. This technique can only be applied to 

detect damage on a local and require access to specific structure 

components, leading to a time and cost-consuming process.  

1.2.2 Vibration-based damage detection technique 

Vibration-based damage detection approaches can be employed for a 

global assessment of the structure's health. It uses modal parameters to 

identify damage to the structure. Natural frequencies are the most 

crucial vibration parameter; therefore, this technique detects damage by 

directly measuring changes in natural frequency. These approaches 

involve monitoring and assessing the structure's dynamic behavior, 

which is frequently compared to behavior simulated by numerical 

models, such as finite element (FE) models. 

1.2.3 Machine learning-based technique 

Machine learning (ML) allows systems to learn and develop 

independently without having to be explicitly programmed to do so. ML 

is concerned with creating algorithms that can access data and utilize it 

to learn independently, i.e., it makes a prediction using past data. It 

utilizes data sets of feature signals acquired from a structure over time 
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and soft computing algorithms to warn about damage and its features for 

damage detection in structures. 

1.3 Significance and objectives of the study 

The concerns regarding bridge structural maintenance and monitoring 

have become a significant challenge for engineers and researchers. In 

view of this, vibration-based monitoring and machine learning-based 

approach is utilized in this work for the bridge structure's damage 

detection and severity prediction. This work also focuses on deflection 

prediction in the beam of structure using ML techniques like artificial 

neural network (ANN) and support vector regression (SVR).  

The following are the objectives of the present thesis work: 

 

➢ To develop the finite element model of the girder bridge. 

➢ To determine modal parameters of the bridge in damage and 

undamaged scenarios for damage detection. 

➢ To train and test machine learning algorithms using natural 

frequencies to assess damage severity. 

➢ To check the applicability of ML algorithms like ANN and SVR  

for deflection prediction in the beam. 

The present work aims to provide significant contributions to structural 

health monitoring, damage identification, severity prediction, and 

structural deflection prediction. 

1.4 Thesis organization 

The thesis comprises five chapters. Each of them is described briefly to 

give a sound understanding about the contents covered in the thesis. 

Chapter 1 introduces the structural health monitoring of bridges, the 

stages involved in SHM, and different techniques used for SHM. The 

significance and objectives of the work have been highlighted, along 

with the organization of the thesis. 
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Chapter 2 reviews the literature and past work that has been done on 

structural health monitoring bridges. 

Chapter 3 explains vibration-based monitoring of concrete steel 

composite girder bridge in detail. The FE model of the girder bridge was 

created. The numerical modal analysis is performed on the bridge 

structure to identify damage. The machine learning approach is utilized 

for the damage severity prediction. The implementation and 

performance of an ANN and SVR have been discussed. 

Chapter 4 describes the deflection prediction of the beam using an 

ANN and the SVR algorithms. It compares the effectiveness of an ANN 

and the SVR for the beam deflection prediction. Three ANN and SVR 

models have been created to predict inelastic midspan beam deflection 

of an interior span, a left exterior span, and a right exterior span. 

Chapter 5 concludes and summarizes the research work and presents 

comprehensive discussions based on the results obtained. The scope of 

future work is also mentioned in this chapter 
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Chapter 2 

Literature review 

2.1  Overview 

SHM techniques, which utilize mathematical and statistical approaches 

to identify and isolate damage, have become increasingly essential 

technology. This chapter contains a survey of the literature in the fields 

of SHM and damage detection methods. SHM methods are classified 

into model-based methods for damage detection and non-model-based, 

i.e., ML-based damage detection methods. The review focuses on a 

summary of damage detection techniques. 

2.2  Model-based techniques for damage detection 

A model-based damage detection approach compares the characteristics 

of a mathematical model describing the monitored bridge to assess the 

bridge's health. Finite Element (FE) modeling techniques are commonly 

used to develop mathematical models. The response obtained by sensors 

on an actual structure is used to prepare the FE model. Due to its 

computational and modeling capabilities, FE methods are used to 

evaluate and predict bridge performance. Some work on the FE model 

updating strategies have been reviewed. 

[2] provided an approach for simultaneously estimating bridge stiffness 

and mass characteristics. The difference between analytical and 

measured displacements produced by non-destructive testing of bridge 

structure in the laboratory was defined as an objective error function that 

must be reduced. The updated FE model data and experimentally 

measured data have a good agreement. As a result, the authors suggest 

that if the measured data differ significantly from the predictions of the 

FE model, a failure may have occurred, which indicates that, for the 

damage detection process, the proposed updating technique can be 

suitable. 
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He et al. [3] monitored the bridge using approximately 150 sensors, and 

the FE model was created. A simple updating technique was presented 

by minimizing an objective function based on the numerical and 

measured natural frequencies difference. The collected data by the FE 

model and the data acquired by the sensors were found to be in good 

agreement. Hence presented approach can be used as a bridge health 

monitoring. 

An update technique was proposed by Feng et al. [4] for the railway 

bridge FE model. The method was based on the difference between 

analytical and measured bridge displacements. According to the study, 

the actual bridge displacements and those estimated using the updated 

FE model were nearly identical.  

A FE updating technique presented by Xia et al. [5] is based on 

optimizing an objective to minimize the differences in measured and 

numerical modal properties of the bridge. According to the results, the 

simulated and measured modal properties of the bridge are observed to 

be in good agreement. 

2.3  Machine learning-based techniques for damage  

detection 

Various fault detection techniques have been established in recent 

decades to determine the existence of failure in a bridge by relying just 

on bridge behavior analysis without constructing a structure model. ML 

approaches can provide a quick analysis without any computational 

work. Mehrjoo et al. [6] employed ANN to detect damage in truss joints 

in bridge structures. For damage identification, mode shapes and natural 

frequencies were employed as input features to the ANN. The ANN's 

applicability and effectiveness in determining the location of joint 

damage and the severity in truss bridges have been demonstrated. The 

location and damage severity in truss bridge joints were determined with 

high accuracy using the suggested method. 
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Park et al.[7] presented a sequential fault identification approach using 

an acceleration-based ANN (ABNN) and a modal parameter-based 

ANN (MBNN). The ABNN method uses acceleration as an input feature 

to detect the damage in the beams. Then using mode shapes and modal 

strain energies, an MBNN algorithm is developed to predict damage 

severity and the location in the beam. It concluded that the damage's 

location and severity are accurately detected using an ABNN and the 

MBNN sequentially.  

Two different ANN approaches were analyzed by Al Rahmani et al. [8] 

to predict crack location and propagation in a simply supported beam in 

a FE model. FEA software was used to create damage databases for 

beams with various parameters. The results indicated that both ANNs 

were found to be able to accurately predict the propagation of the cracks, 

despite their differences in structure and input data. 

Tan et al. [9] analyzed the approach for detecting damage in bridge 

structure using vibration characteristics and ANN. The damage index, 

based on modal strain energy, is used for locating and detecting the 

damage in beams. The relative modal flexibility change was used to 

detect and quantify bridge deck damage. The proposed method was 

found to be capable of detecting damage in single and multiple damage 

scenarios. 

Lee et al. [10] proposed an ANN-based damage detection method using 

the modal features. ANN with three different input types, i.e., mode 

shapes, mode shape ratios before and after damage, and mode shape 

differences between before and after damage, are studied. The suggested 

method could detect the damages for all case studies using different 

input parameters. Results showed that the suggested technique was 

found to be capable of identifying damages in all case studies when 

different input parameters were used. 

Pendharkar et al. [11] created neural networks to predict inelastic 

deflections for the composite beams. Results showed that the presented 

ANN model could predict mid-span deflection of beam for different 
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spans. Chaudhary et al. [12] developed neural networks to predict 

inelastic bending moments for composite beams. Results showed that 

the presented ANN model could predict bending moment at the span 

support  

In the context of fault detection using AI techniques, most of the studies 

mention the use of ANN. The use of the SVR algorithm for damage 

detection has not been focused in the previous studies. In this thesis, the 

study is focused on SVRs algorithms and ANN algorithms for the 

damage detection and severity prediction of structure, and their 

performance is compared. 
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Chapter 3 

Vibration-based monitoring of concrete steel 

composite girder bridge 

3.1 Introduction 

Structures are subjected to deterioration during their operational 

lifespan, affecting the safety and functionality of structures. Thus, 

structural health monitoring is essential to see whether damage occurs, 

where it occurs, and how severe it is. Damage is defined as a degradation 

in the structure's stiffness that negatively impacts the structure's 

performance, which may cause unwanted vibrations to the structure. As 

a result, damage identification is a significant requirement in evaluating 

structural systems and maintaining their safe operation throughout their 

service lifespan. 

In the case of local damage, NDT techniques are used to monitor 

structure performance. Acoustic emission-based monitoring, electro-

magnetic-based approaches, radiography-based, ultrasonic-based, and 

eddy current-based monitoring are well-known NDT techniques for 

damage detection[1]. For all these approaches, prior localization of the 

damaged zones is required. Vibration-based methods, which provide a 

global damage analysis, can overcome the limitations of local 

methodologies. Vibration-based health monitoring relates two 

attributes, i.e., structural and modal parameters. Mass, damping, and 

stiffness are the structural parameters, and mode shape and natural 

frequencies are the modal parameters. 

Natural frequencies and mode shapes are dynamic features of a structure 

that are functions of its mass stiffness. Changes in mode shape and 

natural frequencies can be a good predictor of structural degradation. 

Vibration-based damage detection methods assess the variations in 

physical parameters that indicate structural deterioration by measuring 

changes in dynamic characteristics. The fundamental concept is that 
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modal characteristics such as mode shape and natural frequencies are 

functions of the structure's stiffness. As a result, modal properties will 

be affected by changes in physical properties. Any reduction in 

structural stiffness may indicate structural damage. Modal analysis is a 

useful method for identifying the modal parameters. Any damage to 

structural elements causes stiffness reduction, resulting in a reduction of 

natural frequency. This chapter uses natural frequencies as a damage 

indicator in bridge structure. 

3.2 Finite element model of composite girder bridge 

The primary goal of this work was to identify damage in a concrete-steel 

composite girder bridge. The finite element model for the concrete-steel 

composite girder bridge is developed to perform numerical modal 

analysis to evaluate the modal parameters of the bridge.  

Table 3.1: Dimension of concrete-steel composite girder bridge [13]. 

Slab Beam 

Length=3200mm Length=3200mm 

Width=1200mm Flange Width=75mm 

Thickness=100mm Section Depth =150mm 

Thickness of Flange =7mm 

Thickness of Web =5mm 

 

The length of a concrete slab is 3200 mm, the width is 1200 mm, and 

the thickness is 100 mm. The steel beams have a 75 mm flange width, a 

150 mm section depth, 7 mm flange thickness, and 5 mm web thickness 

[13]. A schematic view of the dimension of the concrete-steel composite 

girder bridge is shown in Fig. 3.1. For the steel material, the Modulus of 

elasticity is 210*103 MPa, the density is 7850 kg/m3, and the Poisson's 

ratio is 0.3. For the concrete material, the Modulus of elasticity is 37.5 
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MPa, Poisson's ratio is 0.2, and the density is 2400 kg/m3 was 

considered. 

 

Fig. 3.1: Schematic view of the dimension of composite girder bridge 

The FE model of the concrete-steel composite girder bridge is created 

using ANSYS Workbench 2021 R1 [14]. Fig. 3.2 shows the concrete-

steel composite girder bridge geometry. The concrete material is 

assigned to the slab part, and the steel material is assigned to the beam 

part.  

Fig. 3.2: The composite girder bridge geometry 

The mesh configuration of the concrete-steel composite girder bridge is 

shown in Fig. 3.3. The FE model consists of 224041 nodes and 109613 

elements. Bonded contact is provided between the slab and the beam 

surfaces. 
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Fig. 3.3: Meshed model of the composite girder bridge 

3.2.1 Numerical modal analysis of the composite girder bridge 

model 

Modal analysis determines the natural frequencies at which a structure 

will resonate. It's one of the most useful techniques for determining 

modal parameters. Natural frequencies are extremely important in a 

variety of structural engineering. Modal analysis is a useful method for 

identifying the modal parameters. Any damage to structural elements 

causes stiffness reduction, resulting in a reduction of natural frequency. 

As a consequence, damage detection may be done using natural 

frequency measurements. 

For numerical modal analysis, the support conditions on both sides are 

considered fixed for the z direction, while x directions and y directions 

are free. The boundary conditions provided to the FE model to evaluate 

the natural frequencies of a model are shown in Fig. 3.4. Then the model 

is post-processed, and the first four natural frequencies of flexural 

modes are extracted using ANSYS Workbench 2021R1. 
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Fig. 3.4: Boundary conditions for the model  

Table 3.2 shows the natural frequencies first four bridge model, and their 

respective mode shapes are illustrated in Fig. 3.5. A deflected shape 

associated with a specific natural frequency is called a mode shape that 

depicts the structure displacement for the particular modes. The natural 

frequencies obtained by numerical modal analysis are compared with 

the experimentally obtained natural frequencies by [13] to validate the 

numerical model.  

Table 3.2: Numerically obtained the first four natural frequencies of 

the concrete-steel composite girder bridge  

Mode Natural Frequency 

(Hz) 

1 37.793 

2 265.34 

3 400.27 

4 533.76 
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Fig. 3.5: Mode shapes frequencies of the composite girder bridge 

obtained using FEM  

 

(a)Mode1  

 

(b)Mode 2 

 

(c)Mode 3 

(d)Mode 4 
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Table 3.3 compares the numerically obtained natural frequencies with 

the experimentally obtained natural frequencies. The results showed a 

good agreement between numerically obtained natural frequencies and 

the experimentally obtained natural frequencies. The proposed damage 

detection approach was demonstrated using this validated FE model. 

Table 3.3: Numerically obtained the first four natural frequencies of 

the composite girder bridge  

Mode Numerical Natural 

Frequency (Hz) 

Experimental 

Natural 

Frequency (Hz) 

1 37.793 33.01 

2 265.34 256.32 

3 400.27 391.29 

4 533.76 554.69 

 

3.2.2 Numerical modal analysis of the damaged bridge structure 

Numerical modal analysis of damaged bride structure is performed to 

detect the damage in the structure. Four damage scenarios were given to 

the beam of structure, and the severity of damage was defined. Fig.3.6 

shows the locations of four damage scenarios with a damage depth of 

75mm. Fig. 3.6 illustrates the damage scenarios D1, D2, D3, and D4, 

where the damage is located at L/2, 3L/4, and L/4 of the length of the 

beam. For damage D1, a 5 mm wide cut slot and 3 mm depth increments 

up to 75 mm (Fig. 3.7), i.e., 25 levels of cut slots located at L/2 and L/4 

of beam, were considered in the beam to investigate the damage severity.  
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Fig. 3.6: Different damage scenarios applied to the structural model 

 

Fig. 3.7: Damage scenario with 5 mm width with 75 mm depth 

The numerical modal analysis was performed on 100 damage scenarios 

with different damage severity. The damaged models are given the same 

boundary conditions as the undamaged model, and the first four natural 

frequencies of flexural modes are extracted using ANSYS Workbench 

2021R1. The damage depth and the beam height ratio is defined as the 

damage severity index (d/h). Fig. 3.8 depicts the variation in natural 

frequencies with respect to different damage severities for different 

damage scenarios for different modes. 

 

5 

m

m 

(a) Damage Scenario D1 

 

 

(b) Damage Scenario D2 

 

 

(c) Damage Scenario D3 

 

 

(d) Damage Scenario D4 
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Fig. 3.8: Variation of natural frequencies w.r.t damage severity index 

for D1, D2, D3 and D4 in (a) Mode 1, (b) Mode 2, (c) Mode 3, and (d) 

Mode 4 

(a) 

 

(b) 

 

(d) 

 

(c) 
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From Fig. 3.8, it is observed that with an increase in the damage severity 

index, natural frequencies of structure decrease. In all damage scenarios, 

the existence of damage in beams causes a reduction in natural 

frequencies, which shows that the reduction in natural frequencies is a 

good indicator of damage and strongly influences the damage. 

3.3 Damage severity prediction of structure using machine 

learning algorithms 

Machine learning algorithms begin with preparing suitable and accurate 

data sets that can be used to train a network to recognize patterns in the 

data set. Data obtained from the numerical modal analysis is used to 

train and test the machine learning algorithm. 101 different data sets 

from the healthy and damaged bridge model were collected for damage 

severity prediction from the numerical modal analysis. The first four 

natural frequencies and the damage severity index were collected for the 

structure's damage severity prediction. Two different machine learning 

techniques, i.e., ANN and SVR, had been employed for damage severity 

prediction in structure. 

3.3.1 Artificial neural network (ANN) 

An ANN is a computing method based on the biological neural network 

structure. It has been used in a variety of modeling, pattern recognition, 

and system control [15]. Artificial neural networks could learn and 

generalize from examples and expertise to provide meaningful solutions 

for problems even when the input data has errors. As a result, ANNs can 

be used to solve some complex engineering challenges. Herein ANN is 

employed to predict damage severity in structure. 
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Fig. 3.9: Artificial neural network  

There are three layers in an ANN input, hidden, and output layer (Fig. 

3.9). The input layer neurons represent the independent variable values. 

The hidden layer neurons are used for computational purposes, and the 

one dependent variable is computed by each of the output neurons. 

Signals are passed from the input layer, then transit through the hidden 

layer, and arrive in the output layer. All the neurons are connected to the 

neurons in the subsequent layer through the weights and bias. 

 

Fig. 3.10: Schematic of neural network architecture 

Every input node has a weight attached that may have either a positive 

or a negative value. Fig. 3.10 shows a network structure with input 

(𝑥1, 𝑥2, … 𝑥𝑛) being connected to neurons with weights (𝜔1, 𝜔2, … 𝜔𝑛) 

on each connection [16]. The neuron adds up all of the signals it 
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receives, multiplying each signal by the connection's associated weights 

to produce an activation signal 𝑧 (eq. 3.1). With the addition of a bias, 𝑏 

is then transit to an activation function to give the final output 𝑦 (eq. 

3.2). The most commonly used function is the sigmoid activation, which 

is convenient when the backpropagation algorithm is applied. 

𝑧 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1                                                                                         (3.1) 

𝑦 = 𝑓(𝑏 + 𝑧)                                                                                      (3.2) 

Fig. 3.11: Process of back-propagation 

The backpropagation algorithm can learn the complex nonlinear 

interactions. Therefore, the backpropagation algorithm in multilayer 

feedforward networks is the most appropriate approach. 

Backpropagation is a procedure in which the weights are modified until 

good predictions are obtained (Fig. 3.11). The fundamental premise of 

the backpropagation algorithm is errors are sent backward, and the data 

is transferred forward [17]. The backpropagation algorithm's 

performance measure is the mean square error (MSE). The difference 

between the target and predicted output determines the MSE. This 

approach minimizes MSE by employing a gradient descent method that 

decreases the gradient error curve throughout all input patterns. The 

equation of MSE is mentioned in eq. 3.3. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑡 − 𝑜)𝑛

𝑖=1                                                                                      (3.3) 
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Where n is the number of the training samples,  𝑡 is the target output, 

and 𝑜 is the predicted output. The ability of an ANN to correctly predict 

the value is a significant advantage. Even when the network is trained 

with incorrect data, it can continue to learn and enhance its performance 

when additional training features are provided.  

A multilayered feedforward neural network was employed, with all 

layers interconnected in a feedforward way. Several other algorithms 

and activation functions can be used to train the network, but the 

sigmoid activation function is utilized, and the backpropagation 

algorithm is considered to develop the network. The backpropagation 

tool of Levenberg-Marquardt is used to learn the connections between 

the input and output variables.  

3.3.2 Performance of an ANN model 

An ANN model consists of four input parameters, i.e., four natural 

frequencies, and one output parameter, the damage severity index. The 

neural network toolbox in the MATLAB R2021b is used to train and 

validate the network. Numerous trials are performed with various 

numbers of hidden layer neurons to train and test the network. The 

number of datasets considered is 101. Out of this, 70% of the data is 

utilized to train the model, 15% for validation, and 15% to test the 

model. The architecture of the ANN is shown in Fig. 3.12. The input 

layer consists of 4 neurons, i.e., 4 input features, the hidden layer 

comprises 10 neurons, and the output layer consists of 1 neuron, i.e., 1 

output feature. 

Fig. 3.12: Architecture of an ANN model 
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The performance plot of the trained ANN model is shown in Fig. 3.13. 

The performance plot of a trained model shows how the mean squared 

error (MSE) changes for different iterations. After 16 iterations, the 

model was trained, and after that, it stopped because validation errors 

started increasing from that point. The best Validation Performance is 

0.000199 at epoch 16. 

Fig. 3.13: Performance plot of an ANN model 

The regression plot, the mean squared error, and R2 value (Coefficient 

of determination) are used to assess an ANN model's performance. In 

Fig. 3.14, performance is shown for each training, validation, and test 

data set. A regression plot is a visual representation of how well a neural 

network fits the data. MATLAB R2021b is used to plot the regression 

across all data. The network outputs are shown against the associated 

target values in the regression plot. A good model has small errors, 

which means the predictions are scattered near the regression line. In 

Fig. 3.14, all the points lie on a regression line, which means the model 

has trained accurately. 

R2  value (Coefficient of determination) is another measure of how well 

the neural network fits the data. The R2 value indicates how closely 

regression predictions match real data points. The regression predictions 

perfectly fit the data when the R2 value is 1. When R2 values are outside 

the range of 0 to 1, it means the model does not fit the data and the worst 

possible least-squares predictor. Table 3.4 shows the training results of 
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an ANN model. It is noted that the R2 value for the training dataset is 

0.9983 and for validation and testing is 0.9935 and 0.9706, respectively, 

which states the model has trained accurately and will successfully 

predict the deflection of the beam when new samples are taken as an 

input with higher accuracy. 

 

Fig. 3.14: Regression plots of an ANN model 

Table 3.4: Training results of an ANN model  

 Observations MSE R2 Value 

Training 71  1.6436e-4  0.9983 

Validation 30  7.1168e-4 0.9935 

Testing 30 4.0342e-4 0.9706 
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The trained and tested ANN model gives a close to one R2 value, and a 

very low mean square error. The close to one R2 value and low MSE 

value showed that a predicted output is near to the actual output, 

indicating that the neural network model is accurately trained and will 

successfully predict the output when a new sample is taken as an input. 

3.3.3 Support vector regression (SVR) 

A support vector machine (SVM) is a ML technique utilized to 

recognize patterns in large data sets. SVM is one of the supervised ML 

processes used efficiently for classification as well as regression 

problems [18]. SVM is classified into support vector classification 

(SVC) and support vector regression (SVR). In the supervised machine 

learning process, the data are always labeled, i.e., the training data are 

categorized in advance. SVM uses the high complexity data 

transformation to create the best hyperplane between the different 

categories of outputs with the help of various kernels. The marginal 

distance between two different categories is maximized, resulting in the 

error being least [19]. 

3.3.3.1 Hyperparameters of the Support Vector Machine 

Algorithm: 

Hyperplane: In SVM, a hyperplane is essentially a dividing line 

between two data classes. This is the line that will be used to predict the 

continuous output in Support Vector Regression. 

Support Vectors: The data points closest to the hyperplane are called 

support vectors. They influence the hyperplane's position and 

orientation. We must choose a hyperplane with the most significant 

margin. 

Marginal Planes: Marginal planes or decision boundary is the parallel 

plane that is created through support vectors on both sides 

Kernel: To perform regression at a higher level, SVM uses the functions 

that map data points from lower dimensions to higher dimensions. These 
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functions are termed a kernel. Various types of kernel functions are used 

in SVM. Polynomial, linear, and radial basis functions or Gaussian 

kernel are among the examples. Table 3.5 shows the kernel type and its 

equation. 

Table 3.5: Kernel type and its equation 

Kernel Type Equation 

Linear kernel 𝐾(𝑥, 𝑦) = 𝑥 . 𝑦 

Polynomial kernel 𝐾(𝑥, 𝑦) = (𝑥 . 𝑦 + 1)𝑑 

Radial basis function (Gaussian) kernel 
𝐾(𝑥, 𝑦) = 𝑒

−|𝑥−𝑦|2

2𝜎2  

 

 

Fig. 3.15: Support vector machine representation 

However, the major goal of SVR is to reduce error by customizing the 

hyperplane to optimize the margin while keeping in view that some error 

is tolerable[20]. To fit the model, the SVR method approximates the best 

values with a given margin called ε. SVR determines how much error is 
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tolerable in the model and uses a hyperplane to fit the data [21]. The 

equation of hyperplane is mentioned in eq. 3.4. 

𝑦 = 𝑤. 𝑥 + 𝑏                                                                                                  (3.4) 

The hyperplane is defined using mentioned constraints in eq. 3.5 and eq. 

3.6 

Minimize:  
1

2
||𝑤||

2
+ 𝐶 ∑ (ζ + ζ∗)𝑁

𝑖=1                                                (3.5)                                          

Constraints: 𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ 𝜀 +  ζ 

                         𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖  ≤ 𝜀 + ζ∗                                                     (3.6)               

                         ζ, ζ∗ ≥ 0                

 

3.3.4 Performance of the SVR model  

The regression learner app in the MATLAB R2021b is used to train and 

test the model. Holdout validation is chosen to train the model 30% of 

the data to use as a validation set. The number of datasets considered is 

101. Out of this, 70% of the data is utilized to train the model and 30% 

to test the model. The model is trained with different kernel functions, 

and the quadratic function gives the best performance. 

The regression plot, the mean squared error, and R2 value (Coefficient 

of determination) are used to assess the SVR model's performance. Fig. 

3.16 and Fig. 3.17 show each training and testing data set performance. 

A regression plot is a visual representation of how well a model fits the 

data. MATLAB R2021b is used to plot the regression across all data. A 

good model has small errors, which means the predictions are scattered 

near the regression line. From Fig. 3.16 and Fig. 3.17, it is shown that 

all the points lie on a regression line which means the model has trained 

accurately. 

R2  value (Coefficient of determination) is another measure of how well 

the regression model fits the data. Table 3.6 shows the training results 
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of an SVR model, which shows that the R2  value for the training and 

testing dataset is 0.98 each. This means the model has trained accurately 

and will successfully predict the damage severity when new samples are 

taken as an input with higher accuracy.  

 

Fig. 3.16: Regression plot of the SVR model (Training dataset) 

 

Fig. 3.17: Regression plot of the SVR model (Testing dataset) 
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Table 3.6: Training results of the SVR model  

 Observations MSE R2 Value 

Training 71 3.357e-4 0.98 

Testing 30 7.5752e-4 0.98 

 

The trained and tested SVR model gives a high R2 value and very low 

mean square error. The close to one R2 value and low MSE value showed 

that the predicted value is near to the actual value, indicating that the 

SVR model is accurately trained and will successfully predict the output 

when a new sample is taken as an input. 

3.4 Results and discussion 

This work describes a study on damage severity prediction in the 

concrete-steel composite girder bridge model using ANN and SVR 

algorithms. A FE model of the concrete-steel composite girder bridge 

was created and validated by using the comparison of the experimental 

results. The numerical modal analysis is performed on the healthy and 

damaged structure showed that increasing damage depth in structure 

leads to a decrease in natural frequencies. It shows that a decrease in 

natural frequencies is the best indicator of damage. 

ANN and SVR models were applied successfully using the numerically 

obtained natural frequencies of the healthy and damaged bridge models. 

The feasibility of ANN and SVR as powerful tools for damage severity 

prediction in a structure is evaluated. According to the results, ANN has 

a prediction accuracy of 99.83%, 99.35, and 97.06% for training, testing, 

and validation, respectively, for damage severity. SVR has a prediction 

accuracy of 98% for both training and testing for damage severity. Also, 

the results show a highly acceptable coefficient of determination 

between the predicted and actual data and imply that the presented ANN 
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and SVR model can be applied as a perfect approach for identifying 

damage severity in the bridge structure. 

Therefore, it is concluded that the severity of damage to the bridge 

structure could be assessed using an ANN and SVR model trained with 

natural frequencies extracted from numerical modal analysis as inputs. 
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Chapter 4 

Deflection prediction in beam using machine 

learning techniques 

4.1 Introduction 

Bridges are frequently built using composite steel-concrete structures. 

The concrete-steel composite beam shown in Fig. 4.1 is a vital part of a 

bridge structure. Shear connections connect the steel beam and concrete 

slab. Because shear connectors are flexible, a slip between the steel 

beam and concrete slab could occur, causing a deflection structure. The 

deflection governs the design of conventional bridges made of high 

strength materials. The maximum deflection of a beam is a design 

criterion that occurs at or close to the middle of the span [22]. The 

cracking in concrete causes the elastic deflection change in the beam. 

 

Fig. 4.1: Concrete-steel composite beam cross-section 

Machine learning techniques have been widely used to predict 

the parameter without any computational efforts and experimental 

analysis. In this chapter, two different machine learning techniques, i.e., 

ANN and SVR, have been employed for deflection prediction in the 

beam. 
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4.2 Structural parameters  

The elastic mid-span deflection, De changes due to cracking at the 

instantaneous stage and changes again due to creeping effect and 

shrinkage, resulting in inelastic mid-span deflection Di. The change in 

mid-span deflection, i.e., elastic midspan deflection to inelastic midspan 

deflection of a span 𝑗 of a beam, is stated in terms of an inelastic 

deflection ratio, which is defined as, 𝛿𝑗 = {(𝐷𝑗
𝑖 − 𝐷𝑗

𝑒)/𝐷𝑗
𝑒𝑞}, where 

𝐷𝑗
𝑒𝑞 = (𝑀𝑐𝑟𝑙𝑗

2/32𝐸𝐼) is the deflection at the middle of span 𝑗 of a beam 

having both ends assumed fixed and a uniformly cracking load, 𝑤𝑐𝑟 is 

subjected, where 𝑤𝑐𝑟 is the minimum load at which the beam cracks and 

𝑀𝑐𝑟 is the cracking moment at the fixed [23]. An inelastic deflection 

ratio is used as an output feature for ANN and SVR models. 

Input features to train ANN and SVR for span with end joints 𝑗 and     

 𝑗 + 1, are taken as[23]: 

1. 𝑅𝑗−1
𝑟 (𝑀𝑗−1

𝑒,𝑟 /𝑀𝑐𝑟) is the cracking moment on the right side of 

joint 𝑗 − 1, 

2. 𝑅𝑗
𝑙(𝑀𝑗

𝑒,𝑙/𝑀𝑐𝑟) is the ratio of cracking moment on the left side of 

joint 𝑗 ,   

3. 𝑅𝑗
𝑟(𝑀𝑗

𝑒,𝑟/ 𝑀𝑐𝑟) is the ratio of cracking moment on the right side 

of joint 𝑗 ,  

4. 𝑅𝑗+1
𝑙 (𝑀𝑗+1

𝑒,𝑙 /𝑀𝑐𝑟) is the ratio of cracking moment on the left side 

of joint 𝑗 + 1 ,  

5. 𝑅𝑗+1
𝑟 (𝑀𝑗+1

𝑒,𝑟 /𝑀𝑐𝑟) is the ratio of cracking moment on the right 

side of joint 𝑗 + 1 ,   

6. 𝑅𝑗+2
𝑙 (𝑀𝑗+2

𝑒,𝑙 /𝑀𝑐𝑟) is the ratio of cracking moment on the left side 

of joint 𝑗 + 2 , 

7. 𝑆𝑗−1/𝑆𝑗 is the adjacent spans stiffness ratio at joint 𝑗  , where, 

𝑆𝑗 = 𝐸𝐼𝑢𝑛/𝑙𝑗 , 

8. 𝑆𝑗/𝑆𝑗+1 is the adjacent spans stiffness ratio at joint 𝑗 + 1,  

9. 𝑤𝑗−1 /𝑤𝑗 is the adjacent spans load ratio of at joint 𝑗, 
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10. 𝑤𝑗/𝑤𝑗+1, is the adjacent spans load ratio of at joint 𝑗 + 1,   

11. The composite inertia ratio is 𝐼𝑐𝑟/𝐼𝑢𝑛 ,  

12. 𝑡0 is loading age,  

13. 𝐺𝑟 is concrete grade,  

 

Fig. 4.2: Input and output parameters representation 

4.3 Machine learning approach for deflection prediction 

4.3.1 Artificial neural network (ANN) 

The details of an ANN are described in chapter 3(3.3.1).  

A multilayered feedforward neural network was employed, with all 

layers interconnected in a feedforward way. Several other algorithms 

and activation functions can be used to train the network, but the 

sigmoid activation function is utilized, and the backpropagation 

algorithm is considered to develop the network. The backpropagation 

tool of Levenberg-Marquardt is used to learn the connections between 

the input and output variables. The fundamental premise of the 

backpropagation algorithm is that error is sent back, and data is 

transferred forward. The neural network toolbox in MATLAB R2021b 

has been used to train, validate, and test the ANN model. The number 

of hidden neurons is selected by trial and error. Three ANN models, one 

for an interior span of the beam, one for a left exterior span of the beam, 
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and one for a right exterior span of the beam, were trained and tested. A 

hybrid analytical-numerical analysis procedure was used to create 

datasets required to develop ANN and SVR models [23]. 

4.3.1.1 ANN model for an interior span of the beam 

The deflections change in the adjacent spans is affected by cracking at a 

joint. As a result, the structural parameters that impact the deflection 

change of a span 𝑗 are those parameters that affect the cracking at the 

joints 𝑗 and 𝑗 + 1. The cracking at joint 𝑗 is influenced by several 

parameters. Those parameters are: 𝑅𝑗−1
𝑟 , 𝑅𝑗

𝑙, 𝑅𝑗
𝑟  , 𝑅𝑗+1

𝑙 , 𝑆𝑗−1/𝑆𝑗, 𝑤𝑗−1 /𝑤𝑗, 

𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟, and parameters that affect cracking at joint 𝑗 + 1 

are: 𝑅𝑗
𝑟 , 𝑅𝑗+1

𝑙 , 𝑅𝑗+1
𝑟 , 𝑅𝑗+2

𝑙 , 𝑆𝑗/𝑆𝑗+1, 𝑤𝑗/𝑤𝑗+1, 𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟. Five 

parameters are common in these parameters, and those parameters are, 

𝑅𝑗
𝑟, 𝑅𝑗+1

𝑙 , 𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟. Therefore, an ANN model for an interior 

span 𝑗, consists of thirteen input parameters, 𝑅𝑗−1
𝑟 , 𝑅𝑗

𝑙, 𝑅𝑗
𝑟 , 𝑅𝑗+1

𝑙 , 𝑅𝑗+1
𝑟 , 

𝑅𝑗+2
𝑙 , 𝑆𝑗−1/𝑆𝑗 ,  𝑆𝑗/𝑆𝑗+1, 𝑤𝑗−1 /𝑤𝑗, 𝑤𝑗/𝑤𝑗+1, 𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟 and one 

output parameter, 𝛿𝑗 [23] 

The neural network toolbox in the MATLAB R2021b is used to train 

and validate the network. Numerous trials are performed with various 

numbers of hidden layer neurons to train the network. The number of 

datasets considered for the interior span is 14104. Out of this, 70% of 

the data is utilized to train the model, 15% for validation, and 15% to 

test the model. The architecture of an ANN model for an interior span is 

shown in Fig. 4.3, which consists of 13 neurons in the input layer, i.e., 

13 input features. In the hidden layer, there are 17 neurons, and in the 

output layer, there is 1 neuron, i.e., 1 output feature. 

Fig. 4.3: Architecture of an ANN (Interior span)  



35 
 

The performance plot of a trained model is shown in Fig. 4.4, which 

shows how the mean squared error (MSE) changes for different 

iterations. After 116 iterations model was trained, and after that, it 

stopped because validation error started increasing from that point. The 

best Validation Performance is 0.00028513 at epoch 116. 

     

Fig. 4.4: Performance plot of an ANN model (Interior span) 

4.3.1.2 Performance of an ANN model for an interior span of a beam 

The regression plot, the mean squared error, and R2 value (Coefficient 

of determination) are used to assess an ANN model's performance. In 

Fig. 4.5, performance is shown for each training, validation, and test data 

set. A regression plot is a visual representation of how well a neural 

network fits the data. MATLAB R2021b is used to plot the regression 

across all data. The network outputs are shown against the associated 

target values in the regression plot. A good model has small errors, 

which means the predictions are scattered near the regression line. In 

Fig. 4.5, all the points lie on a regression line, which means the model 

has trained accurately. 

R2  value (Coefficient of determination) is another measure of how well 

the neural network fits the data. The R2 value indicates how closely 

regression predictions match real data points. The regression predictions 

perfectly fit the data when the R2 value is 1. When R2 values are outside 
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the range of 0 to 1, it means the model does not fit the data and the worst 

possible least-squares predictor. Table 4.1 shows the training results of 

a neural network model, which shows that the R2 value for the training, 

validation and testing is 0.9619, 0.9627, and 0.9664, respectively. It 

implies that the model has trained accurately and will successfully 

predict the deflection of the beam when new samples are taken as an 

input with higher accuracy. 

Fig. 4.5: Regression plots of an ANN model (Interior span) 
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Table 4.1: Training results of an ANN model (Interior span) 

 Observations MSE R2 Value 

Training 9872 2.8530e-4 0.9619 

Validation 2116 2.8513e-4 0.9627 

Testing 2116 2.5029e-4 0.9664 

 

The trained and tested ANN model for an interior span of the beam gives 

a close to one R2 value, and a very low mean square error. The close to 

one R2 value and low MSE value showed that a predicted output is near 

to the actual output, indicating that the neural network model is 

accurately trained and will successfully predict the output when a new 

sample is taken as an input 

4.3.1.3 ANN model for a left exterior span of the beam 

In the case of the left exterior span of the beam, the input parameters, 

𝑅𝑗−1
𝑟 , 𝑅𝑗

𝑙,  𝑆𝑗−1/𝑆𝑗, 𝑤𝑗−1 /𝑤𝑗  are nonexistent. Therefore input parameters 

for an ANN model for a left exterior span consist of nine parameters, 𝑅𝑗
𝑟 

, 𝑅𝑗+1
𝑙 , 𝑅𝑗+1

𝑟 , 𝑅𝑗+2
𝑙 ,  𝑆𝑗/𝑆𝑗+1, 𝑤𝑗/𝑤𝑗+1, 𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟 and one output 

parameter, 𝛿𝑗[23]. The neural network toolbox in the MATLAB 

R2021b is used to train and validate the network. Numerous trials are 

performed with various numbers of hidden layer neurons to train and 

test the network. The number of datasets considered for the left exterior 

span is 4197. Out of this, 70% of data is utilized to train the model, 15% 

for validation, and 15% to test the model. The architecture of an ANN 

model is shown in Fig. 4.6, which has 9 neurons in the input layer, i.e., 

9 input features. In the hidden layer, there are 10 neurons, and in the 

output layer, there is 1 neuron, i.e., 1 output feature. 
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Fig. 4.6: Architecture of an ANN model (Left exterior span) 

     

Fig. 4.7: Performance plot of an ANN model (Left exterior span) 

The performance plot of a trained ANN model is shown in Fig. 4.7, 

which shows how the mean squared error (MSE) changes for different 

iterations. After 67 iterations model was trained, and after that, it 

stopped because validation error started increasing from that point. The 

best Validation Performance is 0.00024277 at epoch 67. 

4.3.1.4 Performance of an ANN model for a left exterior of a beam 

The network's performance is assessed using the mean squared error, 

regression plot, and R2 value (Coefficient of determination). In Fig. 4.8, 

performance is shown for each training, validation, and test data set. A 

regression plot is a visual representation of how well a neural network 

fits the data. MATLAB R2021b is used to plot the regression across all 

data. The network outputs are shown against the associated target values 

in the regression plot. A good model has small errors, which means the 

predictions are scattered near the regression line. In Fig. 4.8, all the 
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points lie on a regression line, which means the model has trained 

accurately. 

Table 4.2 shows the training results of a neural network model, which 

shows that the R2 value for the training, validation, and the testing 

dataset is 0.9837, 0.9793, and 0.9842, respectively. It implies that the 

model has trained accurately and will successfully predict the deflection 

of the beam when new samples are taken as an input with higher 

accuracy. 

 

 

Fig. 4.8: Regression plots of ANN (Left exterior span) 
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Table 4.2: Training results of an ANN model (Left exterior span) 

 Observations MSE R2 Value 

Training 2937 2.8530e-4 0.9837 

Validation 630 2.8513e-4 0.9793 

Testing 630 2.5029e-4 0.9842 

 

The trained and tested ANN model for a left exterior span of the beam 

gives a close to one R2  value, and a very low mean square error. The 

close to one R2 value and low MSE value showed that a predicted output 

is near to the actual output, indicating that the neural network model is 

accurately trained and will successfully predict the output when a new 

sample is taken as an input 

4.3.1.5 ANN model for a right exterior span of the beam 

In the case of the right exterior span of the beam, the input parameters, 

𝑅𝑗+1
𝑟 , 𝑅𝑗+2

𝑙 ,  𝑆𝑗/𝑆𝑗+1, 𝑤𝑗/𝑤𝑗+1 are nonexistent. 𝑅𝑗−1
𝑟 , 𝑅𝑗

𝑙 ,  𝑅𝑗
𝑟 , 𝑅𝑗+1

𝑙  , 

𝑆𝑗−1/𝑆𝑗 , 𝑤𝑗−1 /𝑤𝑗, 𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟 and one output parameter, 

𝛿𝑗[23]. The neural network toolbox in the MATLAB R2021b is used to 

train and validate the network. Numerous trials are performed with 

various numbers of hidden layer neurons to train and test the network. 

The number of datasets considered for a right span is 4201. Out of this, 

70% of data is utilized to train the model, 15% for validation, and 15% 

to test the model. The architecture of an ANN model is shown in Fig. 

4.9, which has 9 neurons in the input layer, i.e., 9 input features. In the 

hidden layer, there are 15 neurons, and in the output layer, there is 1 

neuron, i.e., 1 output feature. 

The performance plot of a trained model is shown in Fig. 4.10. The 

performance plot of a trained model which shows how the mean squared 

error (MSE) changes for different iterations. After the 304 iterations 

model was trained, it stopped because validation errors started 
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increasing from that point. The best Validation Performance is 

0.0001074 at epoch 304. 

Fig. 4.9: Architecture of an ANN model (Right exterior span) 

 

Fig. 4.10: Performance plot of an ANN model (Right exterior span) 

 

4.3.1.6 Performance of an ANN model  for a right exterior of a beam 

The regression plot, the mean squared error, and R2 value (Coefficient 

of determination) are used to assess an ANN model's performance. In 

Fig. 4.10, performance is shown for each training, validation, and test 

data set. A regression plot is a visual representation of how well a neural 

network fits the data. MATLAB R2021b is used to plot the regression 

across all data. The network outputs are shown against the associated 

target values in the regression plot. In Fig. 4.11, all the points lie on a 

regression line, which means the model has trained accurately. Table 4.3 

shows the training results of a neural network model. It is observed that 

the R2 value for the training,  validation, and the testing dataset is 0.9942, 
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0.9962, and 0.9912, respectively. It implies that the model has trained 

accurately and will successfully predict the deflection of the beam when 

new samples are taken as an input with higher accuracy.  

Table 4.3: Training results of an ANN model (Right exterior span) 

 Observations MSE R2 Value 

Training 2941 6.9181e-5 0.9942 

Validation 630 1.0746e-4 0.9926 

Testing 630 1.0621e-4 0.9912 

 

Fig. 4.11: Regression plots of an ANN model (Right exterior span) 

The trained and tested ANN model for a right exterior span of the beam 

gives a close to one R2 value and a very low mean square error. The close 

to one R2 value and low MSE value showed that a predicted output is 
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near to the actual output, indicating that the neural network model is 

accurately trained and will successfully predict the output when a new 

sample is taken as an input 

4.3.2 Support vector regression 

The details of the SVR are described in chapter 3(3.3.3). Three support 

vector regression models, one for an interior span of beam, one for a left 

exterior span of the beam, and one for a right exterior span of the beam, 

are trained and tested, and performance is measured.                                                            

4.3.2.1 The SVR model for an interior span of the beam 

The SVR model for an interior span 𝑗, of a beam consists of thirteen 

input parameters, 𝑅𝑗−1
𝑟 , 𝑅𝑗

𝑙, 𝑅𝑗
𝑟 , 𝑅𝑗+1

𝑙 , 𝑅𝑗+1
𝑟 , 𝑅𝑗+2

𝑙 , 𝑆𝑗−1/𝑆𝑗,  𝑆𝑗/𝑆𝑗+1, 

𝑤𝑗−1 /𝑤𝑗, 𝑤𝑗/𝑤𝑗+1, 𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟 and one output parameter, 

𝛿𝑗[23]. The training of the model is carried out using the regression 

learner app in the MATLAB R2021b. Holdout validation is chosen to 

train the model 30% of the data to use as a validation set. The number 

of datasets for the interior span is 14104. Out of 14104 datasets, 9900 

datasets are utilized for training, and 4204 datasets are utilized to test 

the model. The model is trained with different kernel functions and the 

Gaussian radial basis function gives the best performance. 

4.3.2.2 Performance of the SVR model for an interior span of the 

beam 

The regression plot, the mean squared error, and R2 value (Coefficient 

of determination) is used to assess the SVR model's performance. Fig. 

4.12 and Fig. 4.13 show performance for each training and testing data 

set. A regression plot is a visual representation of how well a model fits 

the data. MATLAB R2021b is used to plot the regression across all data. 

A good model has small errors, which means the predictions are 

scattered near the regression line. Fig. 4.12 and Fig. 4.13 show that all 

the points lie on a regression line, which means the model has trained 

accurately. 
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Fig. 4.12: Regression plot of the SVR model for the training dataset 

(Interior span) 

 

Fig. 4.13: Regression plot of the SVR model for the testing dataset 

(Interior span) 

R2  value (Coefficient of determination) is another measure of how well 

the neural network fits the data. Table 4.4 shows the training results of 

an SVR model, which shows that the R2 value for the training and testing 
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dataset is 0.96 and 0.99, respectively. This means the model has trained 

accurately and will successfully predict the deflection of the beam when 

new samples are taken as an input with higher accuracy. 

Table 4.4: Training results of a SVR model (Interior span) 

 Observations MSE R2 Value 

Training 9900 3.357e-4 0.96 

Testing 4204 7.5752e-4 0.99 

 

The trained and tested SVR model for an interior span of the beam gives 

a close to one R2 value, and a very low mean square error. The close to 

one R2 value and low MSE value showed that a predicted output is near 

to the actual output, indicating that the SVR model is accurately trained  

4.3.2.3 The SVR model for a left exterior span of the beam 

In the case of the left exterior span, the input parameters, 𝑅𝑗−1
𝑟 , 𝑅𝑗

𝑙,  

𝑆𝑗−1/𝑆𝑗, 𝑤𝑗−1 /𝑤𝑗  are nonexistent. Therefore, input parameters for the 

SVR model for a left exterior span of beam consist of nine parameters, 

𝑅𝑗
𝑟 , 𝑅𝑗+1

𝑙 , 𝑅𝑗+1
𝑟 , 𝑅𝑗+2

𝑙 ,  𝑆𝑗/𝑆𝑗+1, 𝑤𝑗/𝑤𝑗+1, 𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟 and one 

output parameter, 𝛿𝑗[23]. The training of the model is carried out using 

the regression learner app in the MATLAB R2021b. Holdout validation 

is chosen to train the model 30% of the data to use as a validation set. 

The number of datasets for the left exterior span is 4197. Out of 4197 

datasets, 2838 datasets are utilized for training the model, and 1359 

datasets are utilized to test the model. The model is trained with different 

kernel functions and the cubic kernel function gives the best 

performance. 

 

 



46 
 

4.3.2.4 Performance of the SVR model for a left exterior span of the 

beam 

The regression plot, the mean squared error, and R2 value (Coefficient 

of determination) is used to assess the SVR model's performance. Fig. 

4.14 and Fig. 4.15 show performance for each training and testing data 

set. A regression plot is a visual representation of how well a model fits 

the data. MATLAB R2021b is used to plot the regression across all data. 

A good model has small errors, which means the predictions are 

scattered near the regression line. From Fig. 4.14 and Fig. 4.15, it is 

shown that all the points lie on a regression line which means the model 

has trained accurately. 

Table 4.5 shows the training results of an SVR model for a left exterior 

span of the beam, which shows that the R2 value for the training and 

testing dataset is 0.96 and 0.97, respectively. This means the model has 

trained accurately and will successfully predict the deflection of the 

beam when new samples are taken as an input with higher accuracy. 

Table 4.5: Training results of a SVR model (Left exterior span) 

 Observations MSE R2 Value 

Training 2838 5.0745e-4 0.96 

Testing 1359 2.9356e-4 0.97 

 

The trained and tested SVR model for a left exterior span of the beam 

gives a close to one R2 value and a very low mean square error. The close 

to one R2 value and low MSE value showed that a predicted output is 

near to the actual output, indicating that the SVR model is accurately 

trained  
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 Fig. 4.14: Regression plot of the SVR model for the training dataset 

(Left exterior span) 

 

Fig. 4.15: Regression plot of the SVR model for the testing dataset 

(Left exterior span) 
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4.3.2.5 The SVR model for a right exterior span of the beam 

In the case of the right exterior span, the input parameters, 𝑅𝑗+1
𝑟 , 𝑅𝑗+2

𝑙 ,  

𝑆𝑗/𝑆𝑗+1, 𝑤𝑗/𝑤𝑗+1 are nonexistent. 𝑅𝑗−1
𝑟 , 𝑅𝑗

𝑙 ,  𝑅𝑗
𝑟 , 𝑅𝑗+1

𝑙  , 𝑆𝑗−1/𝑆𝑗 , 

𝑤𝑗−1 /𝑤𝑗, 𝐼𝑐𝑟/𝐼𝑢𝑛, 𝑡0 and 𝐺𝑟 and one output parameter, 𝛿𝑗[23].The 

training is carried out using the regression learner app in the MATLAB 

R2021b. Holdout validation is chosen to train the model 30% of the data 

to use as a validation set. The number of datasets considered for the right 

exterior span is 4201. Out of 4201 datasets, 2969 datasets are utilized 

for training, and 1262 datasets are utilized to test the model. The model 

is trained with different kernel functions and the cubic kernel function 

gives the best performance. 

4.3.2.6 Performance of the SVR model for a right exterior span of 

the beam 

The regression plot, the mean squared error, and R2 value (Coefficient 

of determination) is used to assess the SVR model's performance. Fig. 

4.16 and Fig. 4.17 show each training and testing data set performance. 

A regression plot is a visual representation of how well a model fits the 

data. MATLAB R2021b is used to plot the regression across all data. A 

good model has small errors, which means the predictions are scattered 

near the regression line. From  Fig. 4.16 and Fig. 4.17, it is shown that 

all the points lie on a regression line which means the model has trained 

accurately. 

Table 4.6 shows the training results of an SVR model, which shows that 

the R2  value for the training and testing dataset is 0.98 each. This means 

the model has trained accurately and will successfully predict the 

deflection of the beam when new samples are taken as an input with 

higher accuracy. 
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Fig. 4.16: Regression plot of the SVR model for the training dataset 

(Right exterior span) 

 

Fig. 4.17: Regression plot of the SVR model for the testing dataset 

(Right exterior span) 
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Table 4.6: Training results of a SVR model (Right exterior span) 

 Observations MSE R2 Value 

Training 2939 2.1681e-4 0.98 

Testing 1262 1.6628e-4 0.98 

 

The trained and tested SVR model for a right exterior span of the beam 

gives a close to one R2 value, and a very low mean square error. The 

close to one R2 value and low MSE value showed that a predicted output 

is near to the actual output, indicating that the SVR model is accurately 

trained  

4.4 Results and discussion 

This work describes the deflection prediction of the beam using an ANN 

and the SVM algorithms. It compares the performance of an ANN and 

the SVR for deflection prediction. Three ANN and three SVR models 

have been developed to predict inelastic midspan deflection of an 

interior span, a left exterior span, and a right exterior span. 

The feasibility of ANN and SVR as powerful tools for predicting beam 

deflection is investigated. According to the results, ANN could predict 

the deflection for an interior span, a left exterior span, and a right 

exterior span with 96.36 %, 98.24 %, and 99.26% accuracy, 

respectively. While SVR could predict the deflection for an interior 

span, a left exterior span, and a right exterior span with 97.50 %, 96.50 

%, and 98.00 % accuracy, respectively. Also, the results show a highly 

acceptable coefficient of determination between the predicted and actual 

data and imply that the developed ANN and SVR model can be applied 

as a perfect tool for identifying deflection in the beam 
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Chapter 5 

Conclusion and future scope 

5.1 Conclusion 

This work aims to extract natural frequencies from a numerical modal 

analysis of a girder bridge based on finite element simulation for damage 

detection. The work also highlighted ML-based techniques like ANN 

and SVM for damage severity prediction and deflection prediction. The 

conclusions drawn from this study are listed below: 

➢ A reduction in natural frequencies is a reliable sign of damage to 

the structure. 

➢ ANN had a 98.75 % accuracy rate in predicting the severity of 

the damage, while SVR had a 98 % accuracy rate in predicting 

the severity of the damage. 

➢ ANN could predict the deflection for an interior span, a right 

exterior span, and a left exterior span with the accuracy of 96.36 

%, 99.26%, and 98.24 %, respectively. In contrast, SVR could 

predict the deflection for an interior span, a right exterior span, 

and a left exterior span with the accuracy of 97.50 %, 98.00%, 

and 96.50 %, respectively.  

5.2 Future scope 

Although the suggested damage detection approach is effective, a few 

concerns need to be addressed. Future research efforts might be focused 

on the following areas: 

➢ The work does not entirely address the prediction of damage 

location and the remaining service life of the structure. To 

provide relevant information for decision making, efforts might 

be directed in the fields of fracture mechanics and fatigue life 

analysis. 
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➢ The present work does not address fault detection at the local 

level. Efforts in the field of acoustic emission-based monitoring 

to identify local level damage might be directed. 
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