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Abstract 

BS selection plays an important role in establishing communication links in 

the mm-Wave-based communication systems. For selecting the best BS, 

each BS performs a handshake with the UE. This selection is further 

challenging due to the increased communication overhead imposed by the 

handshake between multiple BSs and UEs. In this research, we investigate 

BS selection for AVs using DL. Due to the rigid foundation of signal 

processing algorithms in statistics and information theory, they do not 

account for non-linearities and imperfections in the system, which can be 

mitigated by DL-based communication systems. Further, FL is applied 

where BS broadcasts its position to all nodes to reduce communication 

overhead. The dataset generation is described using the RT technique and 

LiDAR sensor. Finally, the simulation results verify that the proposed 

algorithm performs considerably better, with an accuracy of 1.7 times better 

than GPS-based selection and a reduction of 96.38% in overall data size 

using FL-based selection, thereby reducing communication overhead 

significantly. The generality of the proposed model has been further tested 

by using techniques like TL for variation in the number of samples for 

training, the city used for simulation, and the number of BSs. Furthermore, 

hyperparameter tuning is performed using PSO on CNN utilizing LiDAR 

data. 
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CHAPTER 1 

Introduction 

 

There is rapid development in the sector of AVs and their 

communication, popularly known as V2I communication (Litman, 

2017). There is a prediction that AVs can reduce the number of 

accidents significantly. Attentive and economically driven AVs can also 

reduce fuel consumption, thus helping in minimizing the transportation 

cost. It helps in the conservation of other parts of the vehicle, and it 

reduces travel time with efficient parking and affordable taxis (Litman, 

2017). AVs are equipped with multiple sensors and devices for ensuring 

safety. These sensors and devices collect large quantities of data while 

interacting with the environment for monitoring the movement of AV 

and ensuring safety.  

 

Inspired by the wide-ranging application of ML, which includes image 

processing, finance, economics, and so on, it is projected as one of the 

most powerful technology in 5G and beyond the network. ML is one of 

the most promising technologies that has been proven conducive to 

solving numerous problems of telecommunications, like physical layer 

optimizations, network management, and conceives to support smart. 

 

A novel real-time method for selecting the best BS (top 1 accuracy) 

from a number of BSs that are within 100 meters range from the AV 

while keeping track of traffic. We propose a DNN architecture along 

with the corresponding data preprocessing (LiDAR and GPS) technique 

for data-driven mm-Wave beam selection. The proposed model is 

trained to leverage LiDAR and positional data for best beam selection. 

For realistic calculation of communication parameters, simulation is 

performed using ray tracing, LiDAR, and GPS. Further, we also 
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proposed a model that works on the FL technique with the same dataset 

for predicting the best base station. With the rise of interest in preserving 

the privacy of data (Anonymous, 2013), the emerging technique FL 

helps in fortifying user privacy and takes advantage of user 

participation, also known as collaborative learning, where the training 

takes place across multiple decentralized edge devices (vehicles). They 

learn a shared model while preserving the training data simultaneously. 

Thus in this way, the data is kept private, and the communication 

overhead is reduced (Nguyen et al., 2019). With recent improvements 

in edge computing, FL may now be easily deployed in real-time, 

allowing for unprecedented large-scale flexible data collection and 

model training. The suggested model's universality was further tested 

by applying approaches such as TL for modification in the number of 

samples for training from 12000 to 24000 and 36000, the city used for 

simulation was chicago, and the number of BSs are increased from 3 to 

5. Furthermore, PSO on CNN is used to tune hyperparameters using 

LiDAR data. 

1.1 Thesis Outline 

This chapter has given a basic introduction to the need for AV, 

development in the sector of V2I, and the objective of the work in brief. 

The remaining contents are organized as follows:  

• Chapter 2: This chapter contains a review of past work done in the 

domain of AV using LiDAR data, and RT and it widely describes 

the problem statement. 

• Chapter 3: This chapter provides detail about the fundamentals 

used further in the thesis. Section 3.1 discuss the system model 

used and Section 3.2 covers all the fundamentals of DL 

• Chapter 4: This chapter covers a description of the generation of 

the environment and the generation of the dataset where RT and 

LiDAR dataset generation is explained in detail. 
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• Chapter 5: This chapter provides details about the different 

proposed approaches. 

• Chapter 6: This chapter covers experimental results and 

discussions the proposed results. 

• Chapter 7: In this chapter, conclusions are made, and a discussion 

on the possibility of future work is presented.  
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CHAPTER 2 

Review of Past Work and Problem 

Formulation 

 

2.1 Literature Survey 

To assess the overall dynamic environment of the AV, various studies 

have been proposed in the literature. Many researchers worked on 

different beam selection strategies for the AV. Also generating datasets 

that are spatial consistent and are time-evolving is important to assess 

the ML techniques. To complement the CNN, FL is further used in beam 

selection to reduce the complexity of the system. 

 

Klautau et al. (2018) present a method for generating channel data in 5G 

mm-Wave scenarios. The goal is to make it easier to investigate ML-

based challenges related to the physical layer of 5G MIMO. By 

concurrently engaging a traffic simulator and a ray-tracing simulator, 

the suggested technique facilitates the creation of data in complicated 

mobility scenarios. In the current situation, creating propagation data is 

a realistic solution to reduce data shortage while reaping the benefits of 

RT precision. For example, RT can handle 5G needs like spatial 

consistency, which classical stochastic modeling has struggled with. 

Simulated datasets actually complement data from measurements, 

which can be used to validate and develop statistical channel models 

and simulated data when new information becomes available. The 

purpose is to show how the data generating process may be flexible. 

This technology may be used to challenges other than V2I, like 

clustering, classification, etc., as well as to produce datasets for ML 

challenges. 
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Furthermore, (Klautau et al., 2019) proposed LiDAR-based beam 

selection in mm-Wave communication systems. Sensor data can be used 

to reduce the overhead of link configuration in mm-Wave 

communication systems. LiDAR is a high-resolution mapping and 

positioning sensor widely utilized in autonomous driving. To decrease 

the cost of the mm-Wave beam selection process, they built a distributed 

architecture. It assumes that the BS broadcasts its location over a low-

frequency control channel and that the connected vehicle handles all 

processing. The vehicle estimates a set of beam pairings using includes 

LiDAR information, its coordinates, and the BS location of the 

transmissions, which are communicated to the BS via the control 

channel. The BS then trains the recommended beam pairs, and the best 

beam is selected for data transmission.  

 

As suggested by (Mashhadi et al., 2021), FL can reduce the complexity. 

The transmission of LIDAR measurements from connected vehicles to 

the BS to assemble a centralized dataset for offline training would incur 

a significant communication overhead. Federated training helps in 

minimizing communication overhead. 

 

The sensor data collected from AV can be shared using mm-Wave 

communication in 5G (Gonzalez-Prelcic et al., 2017). The BS selection 

is done for the AV's journey through the city. Multihop cellular network 

is conventionally used as the strategy for BS selection (Marathe et al., 

2008). Leveraging the side information like GPS coordinates, LiDAR 

data can reduce the communication overhead (Tran et al., 2019). LiDAR 

is a sensor mounted on the AVs used for obstacle detection and better 

beam selection in V2I communications for the LoS and NLoS 

transmissions (Klautau et al., 2019), (Hua et al., 2019). 

B. Mishra et al., 2020, suggest that CNN can tune its hyperparameters 

using PSO for getting the optimal performance in terms of accuracy by 
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changing a set of parameters. Recent research suggests that PSO can be 

used to select hyperparameters in CNN (Lorenzo et al., 2017). It helps 

to reach the optimal accuracy for suggested CNN architecture. The 

existing work holds a selection of the best beam pair and beamforming 

for single BS. The originality of this study is that it builds on previous 

work by selecting the best BS for AV from a pool of many options. 

2.2 Problem formulation 

AVs can reduce fatal accidents significantly by up to 90% by 

eliminating the driver error with the reduction in travel time as traffic 

congestion decreases and lane capacity increases (Litman, 2017). The 

sensor data collected from AV can be shared using mm-Wave 

communications which are considered a pre-eminent technology in 5G. 

Inspired by the wide-ranging application of ML, which includes image 

processing, finance, economics, and so on, it is projected as one of the 

most powerful technology in 5G and beyond networks (Jiang et al., 

2017), (Klaine et al., 2017). The problem statement revolves around 

intelligently selecting the best BS for AVs using sensor data in the urban 

area. Using communication information can be complex, time-

consuming, and costly. Hence, leveraging the side information like GPS 

coordinates, and LiDAR data can reduce the communication overhead 

(Tran et al., 2019).  

 

The ML-based communication systems have the potential to improve 

communication algorithms in terms of reliability, generality, latency, 

and energy efficiency. Modern ML techniques have recently achieved 

breakthroughs in many different domains along with communication 

systems (Yangli-ao Geng et al., 2019).  

Inadequate system models: The fundamentals of signal analysis in 

communication systems are based on statistics and information theory. 

These algorithms are optimized for mathematically convenient models 
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such as linear, stationary, and gaussian statistics, but not for real systems 

with many imperfections and non-linearities. ML-based 

communications system does not require a rigidly defined model for 

representation and transformation of information and can be easily 

optimized in an end-to-end manner for a real system with harsh realistic 

effects. 

 

Parallelization gains of NNs: NNs are universal function approximators 

(Hornik et al., 1989). Data may be used to highly parallelize the 

execution of NNs., there is some hope that “learned” algorithms can be 

executed significantly faster and at a lower energy cost than manually 

“programmed” counterparts. Specialized hardware for ML applications. 

ML-based communication systems optimize end-to-end system 

performance. 

 

Limiting functional block structure: Conventionally communications 

systems are represented through a chain of multiple independent 

processing blocks; each executing a well-defined and isolated function 

(e.g., coding, modulation, channel estimation, equalization). However, 

it is ambiguous that individually optimized learning blocks deliver the 

best possible results. In fact, we are introducing artificial barriers and 

constraints to efficiency. For example, we do not necessarily care how 

well we can estimate the channel with a given scheme, or how well 

anyone’s independent function works, rather we seek to optimize end-

to-end system metrics jointly with overall components. A learned end-

to-end communications system will likely not possess such a well-

defined block structure as it is trained to achieve only the best end-to-

end performance. 

The mm-Wave communication is the modern efficient tool for 

leveraging the sensor data to reduce the communication link 

configuration overhead. The intricacy and poor results obtained in beam 
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selection using communication motivate us to use DL. The data set 

generation using ray-tracing techniques and a LiDAR sensor is 

described. Applied FL where the BS broadcasts its position to all nodes 

and uses LiDAR data as a dataset to predict the best station using DL 

technique. 
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CHAPTER 3 

Background 

 

3.1 System model 

For 5G mm-Wave MIMO channels, RT is a promising simulation 

approach. The number of reflections and diffractions in RT accounts for 

the computational cost. Also, for good Ray tracing accuracy, the 

scenario should have detailed specifications (geometry, material, and 

size) of buildings, and vehicles which makes it a site-specific simulation 

(Klautau et al., 2018). We consider a simple yet effective and scalable 

system model for simulating real-time traffic and analyzing the 

communication system. An open-source robotics simulator, webots, and 

SUMO is used as the traffic simulator, coupled with Matlab to assess 

communication characteristics using accurate ray tracing. As shown in 

Fig 1, the system model consists of one vehicle and three BSs, which 

are within 100 meters range of the target vehicle in a downtown model 

of Rossyln, Virginia as it is heavily urbanized. Friis equation is used to 

find the ideal power received (𝑃rx) in dB at an antenna from basic 

information about the transmission and is given as 

𝑃rx = 𝑃tx + 𝐺tx + 𝐿t (1) 

where Gtx and Grx are transmitted antenna gain and receive antenna gain 

respectively in dB. Ptx is the power gain of the transmitting antenna in 

dB. 𝐿t is the total power loss in dB. 
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Figure 1: System model 

Propagation model: The propagation factors such as reflection, 

scattering, diffraction, refraction, absorption, and atmospheric particles 

affect the transmitted signals in wireless communication. The 

propagation model facilitates the prediction of propagation loss and 

attenuation occurring in the signal traveling through the environment. 

The path loss includes free-space losses and reflection losses (2). The 

ray tracing model used in this simulation computes multiple propagation 

paths (Schaubach et al., n.d.), (Yun & Iskander, 2015). The model learns 

the LoS path by launching rays from transmitter to receiver. If the ray 

does not interact with any surface before reaching the receiver, then it 

is a LoS transmission. The SBR method is used for NLoS transmission 

because the computational cost of the SBR method rises linearly with 

the increasing number of reflections, whereas the computational cost of 

the image method for NLoS increases exponentially with the number of 

reflections, making the SBR method efficient than the image method 

(Schaubach et al., n.d.). The model calculates losses using a fresnel 

equation for each reflection. In the SBR method, many rays are launched 

from the geodesic sphere as they are uniformly separated, centered at 

Tx. The method traces all the Tx rays. The implementation used here 

considers only reflections. When the ray hits a flat surface, the ray 
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reflects according to the law of reflection. When the ray hits the edge of 

a surface, the ray produces diffracting rays based on the law of 

diffraction. For every launched ray, the Rx is surrounded by a sphere, 

called a reception sphere, whose radius is proportional to the angular 

separation of the launched rays and the distance the ray travels. If the 

ray intersects the sphere, then the model considers the ray a valid path 

from Tx to Rx. The reflection losses are calculated using the horizontal 

and vertical polarizations of signals through the propagation path.  

𝐿t = 𝐿fs + 𝐿r (2) 

Reflection Loss (𝐿r): As the ray interacts with the surface at some angle, 

and 𝐿r is calculated using Fresnel’s equation. The RT model computes 

𝐿r  by using the reflection matrix computations. For the current 

simulation, the materials are considered perfect reflectors; hence 

reflection loss is equal to zero.  

Free-space path loss (𝐿fs): The 𝐿fs in the far-field of the Tx in dB is given 

as follows: 

𝐿fs = 20 log ((4𝜋𝑟
𝜆⁄ )) 

(3) 

where R is the distance between Tx and Rx antenna, and  is the 

wavelength. Although the mm-Wave signals experience higher 

attenuation in 𝐿fs and shadowing (Lili Wei et al., 2014), 5G networks 

use highly directional phased antenna arrays and beamforming 

technology to achieve sufficiently high antenna gains. 

 

3.2 Deep Learning 

DL is a subset of ML that is essentially a three-or more-layered neural 

network. DL seeks to emulate the human brain, while it falls far short 

of its capabilities, allowing systems to cluster data and generate 
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extremely accurate predictions through a combination of data inputs, 

weights, and biases. These components collaborate to effectively 

recognize, classify, and characterize objects in data. Because of its 

ability to handle massive volumes of data, DL has proven to be a very 

useful technology. While a single-layer neural network can still produce 

approximate predictions, additional hidden layers can assist optimize 

and tuning for accuracy. DNNs are comprised of multiple layers of 

interconnected nodes, with each layer improving and optimizing the 

prediction or categorization. Forward propagation refers to the 

progression of calculations via the network. The visible layers of a DNN 

are the input and output layers. The DL model ingests data for 

processing in the input layer, and the final prediction or classification is 

performed in the output layer. Backpropagation is a method of training 

a model that uses methods such as gradient descent to calculate 

prediction errors and then modifies the weights and biases of the 

function by moving backward through the layers. Forward propagation 

and backpropagation work together to allow a neural network to make 

predictions and fix any faults. The train-valid-test split of the dataset is 

a method for assessing the performance of the DL model. The training 

dataset is a collection of data that is utilized by the DL model to learn 

and fit the parameters. Validation dataset is a set of data that is used to 

give an unbiased evaluation of a model that has been fitted to the 

training dataset while optimizing the model hyperparameters. A test 

dataset is a collection of data that is used to offer an unbiased evaluation 

of a final model that has been fitted to the training dataset. 

3.2.1 Convolutional Neural Network 

Around the 1980s, CNNs were developed and used for the first time. A 

CNN is a form of neural network that is designed to approximate human 

vision. A CNN falls under the category of DNN used to evaluate visual 

imagery in deep learning. It employs a technique known as convolution, 
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which is a mathematical operation on two functions that yields a third 

function that expresses how the shape of one is influenced by the shape 

of the other. Multiple layers of artificial neurons make up CNNs. 

Artificial neurons are mathematical functions that calculate the 

weighted sum of various inputs and produce an activation value as a 

result. The basic structure of CNN is shown in Fig 2. When data is fed 

into a CNN, each layer generates a number of activation functions, 

which are then passed on to the next layer. Typically, the first layer 

extracts basic features. This information is passed on to the next layer, 

which is responsible for detecting more complicated features. It can 

detect even more complicated traits as we proceed further into the 

network. Feature extraction is the primary function of a convolutional 

layer. The output of the convolutional layer is then fed to the DNN for 

training. The classification layer generates a set of confidence scores 

(numbers between 0 and 1) based on the activation map of the final 

convolution layer, which indicates how likely the input is to belong to a 

class. The pooling layer is responsible for shrinking the convolved 

feature's spatial size. By lowering the size, the computational power 

required to process the data is reduced. Average pooling and max 

pooling are the two types of pooling. 

 
 

Figure 2: General CNN architecture 

 

3.2.2 Inception Model 
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The Inception V3 is a DL model for image classification that uses CNN, 

it was developed by a team at Google. When multiple deep layers of 

convolutions were used in a model it resulted in the overfitting of the 

data. To avoid this from happening the inception model uses the idea of 

using multiple filters of different sizes on the same level. Thus, instead 

of having deep layers in the inception models, we have parallel layers, 

making the model wider rather than deeper. The Inception model is 

made up of multiple Inception modules. Convolutions of various sizes 

are used to capture various sizes of information in the input. Inception 

has a lower computational cost than VGGNet or its higher-performing 

successors. This has allowed Inception networks to be used in big-data 

scenarios, where large amounts of data must be processed at a low cost 

or where memory or processing power is fundamentally constrained, 

such as in mobile vision situations. In comparison to prior models and 

contemporaries, the inception V3 model has an extraordinarily low error 

rate (Szegedy et al., 2016a). 

3.2.3 Transfer Learning 

The technique of taking a pre-trained neural network and adapting it to 

a new dataset by transferring or repurposing the learned features is 

known as transfer learning. A model trained on a specific architecture is 

considered, and the learned weight from that model is used to initiate 

the training and classification of a completely new dataset. With a 

restricted computational resource, transfer learning is especially 

beneficial. Even when trained on extremely powerful GPU processors, 

many state-of-the-art models require many days or weeks to train. As a 

result, transfer learning allows us to use pre-trained weights as a starting 

point to avoid repeating the same process over and over again. Transfer 

learning frequently entails taking the pre-trained weights in the first 

layers, which are generally common to multiple datasets, and randomly 

initializing and training the remaining layers for classification purposes. 
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Learning or backpropagation happens only at the last layers in the 

transfer learning approach, which are initialized with random weights. 

Meanwhile, there are numerous techniques to transfer learning, and 

which one we apply is determined by the nature of the new dataset we 

wish to classify in relation to the pre-trained models' dataset. 

The various CNN architectures analyzed over LiDAR data using TL are 

GoogLeNet and ResNet. GoogLeNet is a 22-layer (27 layers including 

pooling layers) CNN developed by Google researchers as a variation of 

the Inception Network. The GoogLeNet achieves efficiency by reducing 

the input while maintaining critical spatial information. ResNet, 

an architecture presented by Microsoft Research in 2015, established a 

new architecture called Residual Network. The ResNet is made up of 

numerous different types of residual blocks. However, depending on the 

architecture of residual networks, the operations in the residual block 

can vary. 

 

3.3 Particle Swarm Optimization 

Eberhart and Kennedy proposed PSO in 1995 as a population-based 

stochastic optimization approach for simulating the swarm behaviour of 

school of fish and flock of birds when hunting. Each group member (i.e., 

the particle) modifies its search mode by learning from all the 

candidate’s experiences. PSO is a heuristic search strategy that attempts 

to mimic the movements of a flock of birds looking for food. It is built 

on a population of particles travelling in search space with a particular 

velocity and position for each particle (Mishra & Sengupta, 2014). 

The PSO technique starts with a collection of particles that are 

uniformly distributed across the search space. The locations of particles 

calculate the fitness function at each step of the iterations. If the current 

result outperforms previous results, the particle with the best result is 

noted, and the other particles should keep track of their own personal 
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best results. The calculation of updated velocity, 𝑣𝑖𝑑
𝑡 , consists of three 

elements: inertia, local search, and global search. Then, using the 

position updating process given by (4) and (5), all of the particles are 

displaced according to their previous positions. 

𝑣𝑖𝑑
𝑡 = 𝑚 ∗ 𝑣𝑖𝑑

𝑡−1 + 𝑐1𝑟1 ∗ (𝑝𝐵𝑒𝑠𝑡𝑖𝑑 − 𝑝𝑖𝑑
𝑡−1) +  𝑐2𝑟2

∗ (𝑔𝐵𝑒𝑠𝑡𝑑 − 𝑝𝑖𝑑
𝑡−1) 

(4) 

𝑝𝑖𝑑
𝑡 =  𝑝𝑖𝑑

𝑡−1 + 𝑣𝑖𝑑
𝑡  

(5) 

In (4), 𝑚  denotes non-negative inertia weight, 𝑐1  and 𝑐2  are the 

acceleration, 𝑖 represents the index of the particle and 𝑡 is the iteration 

counter,  𝑔𝐵𝑒𝑠𝑡𝑑 denotes the fitness of the global optimum particle in 

the 𝑑𝑡ℎ dimension, and 𝑝𝐵𝑒𝑠𝑡𝑑 denotes the fitness of the local optimum 

particle in the 𝑑𝑡ℎ dimension. Constants 𝑐2,𝑟2 and 𝑚,𝑐1,𝑟1, are factors 

regulating the impact of three elements on the result, which means that 

three values of current speed are modifiable in different applications. 

There are two common termination conditions for the algorithm: a 

maximum number of iterations and a sufficiently good fitness value. 
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CHAPTER 4 

Data Generation 

 

4.1 Generating the required environment 

As an example implementation, we consider the downtown of Rossyln, 

Virginia, for generating the dataset and pre-processing methodology as 

shown in Fig. 3 (Klautau et al., 2018). The city-wide map has been 

imported from OpenStreetMaps (Index Of /, n.d.) in the form of OSM 

files, and the 3D world is constructed using Webots internal importer 

(Webots: Robot Simulator, n.d.). After creating the 3D map, the traffic 

is generated using SUMO (Krajzewicz, 2010). The distribution of 

surrounding vehicles follows Gaussian distribution over the whole 

dataset (training, validation, and testing) as shown in Fig. 4 (Abuelenin 

& Abul-Magd, 2014).  

 

Figure 3: Data generation process 
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Figure 4: Distribution of surrounding vehicles over the collected data 

4.2 Generating dataset using Ray Tracing and LiDAR 

sensor 

We consider 60 vehicles in the 3D model, with each vehicle consisting 

of a LiDAR sensor - Velodyne 64E and three GPS sensors (Qin et al., 

2021). The Velodyne HDL 64E is a 64-layer LiDAR with a range of up 

to 120 meters and a field of view of 360 degrees which returns 4500 

points per layer per scan. The model of the Velodyne HDL 64E contains 

a gaussian noise with a standard deviation of 0.02 meters and a rotating 

head (Webots: Robot Simulator, n.d.). We also consider that GPS is 

mounted on the vehicle and is devoid of any noise or errors (Webots: 

Robot Simulator, n.d.). The LiDAR sensor is mounted on the vehicle’s 

roof. The GPS is mounted at the front, center, and rear to efficiently 

retrieve the vehicle’s position and orientation with vehicle bounding 

objects taken as rectangles. 

 



21 
 

4.2.1 Ray Tracing 

RT is used to gauge the propagation path and the losses accurately. The 

transmitter taken is a 4 × 4 uniform rectangular array (URA) with 

element spacing of 0.1 meters in both X and Y directions. As shown in 

Fig. 5, the antenna is located at an altitude of 5m surface of the building 

or terrain with a transmitted frequency of 60GHz at 1W (Klautau et al., 

2018). RT with the SBR method is used as the propagation model. In 

medium angular separation, rays have an angular separation in the range 

[0.4956, 0.5923] measured in degrees so that the model launches 

163,842 rays. The maximum number of reflections considered is 2, with 

both building material (buildings and vehicles) and terrain material as a 

perfect reflector. The same can be generalized to different cities. 

 

Figure 5: RT in MATLAB 

4.2.2 LIDAR data 

The LiDAR dataset is quantized following the parameter described in 

(Klautau et al., 2018) with quantization steps of 1.0 in the x-plane, 0.5 

in the y-plane, and 1.0 in the z-plane. Resultant input shape of [10, 240, 

240] according to [y, x, z] with the x and z restricted by scanning range 

of Velodyne 64E LiDAR sensor, i.e., 120m and y range is taken to be 

5m.  
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CHAPTER 5 

Proposed Approach 

 

5.1 Deep learning model using LiDAR sensor data 

A CNN is trained from scratch, this is used as baseline model to 

compare with other proposed models. The model uses 3 convolutional 

layers followed with a FC network. A simple architecture is used to 

compare and verify the trade-off between model complexity and 

performance. The architecture comprises of convolution blocks, 

consisting of convolution operation followed by ReLU as activation 

function and finally max pooling operation as shown in Fig. 6. After 

feature extraction, the feature maps are fed to the 3 layer FC network 

having 128, 64, 3 nodes respectively. Finally the softmax classifier is 

used to determine the likelihood of the input belonging to a class.  

 

Figure 6: Baseline CNN model 
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The proposed inception-based CNN architecture is given in Fig. 7. The 

initial convolution layers feature a high kernel (two (13, 13) and two (7, 

7)) sizes to reduce sparsity in the LiDAR data while also reducing the 

vector size at the same time. Later, Google’s Inception-inspired model 

architecture is used to not only expand the network in depth but also in 

width (Szegedy et al., 2016). It provides a novel architecture to reduce 

the computational cost while keeping the accuracy intact. The model 

contains two inception blocks whose output is passed to the filter 

concatenation layer, which concatenates all the output in the filter 

dimension. This renders the output channel four times that of the 

convolution output channel. Finally, there are other convolution layers 

(two (7, 7) and two (3, 3) kernels) to reduce again the dimension of the 

model followed by a linear layer to convert the vector to the required 

dimensions. Finally, the output of the linear layer is passed through a 

softmax layer to compute the given probabilities. The output vector is 

of dimension (1, 3), denoting the probability of selection of a BS. In 

order to efficiently train the model, the cross-entropy loss has been used 

coupled with adam optimizer tuned with weight decay of 1 × 10−4 and 

learning rate of 3.63 × 10−4. The proposed model achieved state-of-the-

art accuracy of 60.55% with 20 epochs and automatic mixed-precision 

set to 16 floating bits. 
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Figure 2: The proposed LiDAR inception-based CNN model  

5.2 Deep Learning model using LiDAR and GPS data 

The proposed CNN architecture is given in Fig. 8. The processing 

pipeline of LiDAR data is kept the same as discussed in section 5.1. The 

output size of LiDAR processing pipeline is 128. The GPS data is 

parallelly passed through an encoder-decoder neural network model. 

The output size of the GPS processing pipeline is 3. The proposed 

architecture is made up of a LiDAR processing pipeline and a GPS 

processing pipeline that have been concatenated. After concatenation, 

the output size of 131 is fed to FC layers. Finally, the output of the linear 

layer is passed through a softmax layer to compute the given 

probabilities. The output vector is of dimension (1, 3), denoting the 

probability of selection of a BS. 



26 
 

 

Figure 3: LiDAR and GPS CNN model 
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5.3 Hyperparameter tuning using particle swarm 

optimization on the deep learning model 

PSO-based hyper-parameter tuning for getting the best value of multiple 

parameters used for training the model. Hybridization of parameter 

tuning with PSO helps for the convergence of parameter values of the 

proposed CNN model, and the proposed BS classification model is 

applied to the dataset. However, employing the backpropagation 

algorithm alone has a number of drawbacks. The backpropagation 

approach, for example, deterministically happens in local optima, 

making it difficult to obtain global optima, especially when a wide 

search space is required for the optimal solution.  Also, working with 

the LiDAR 3D point cloud and CNN models for feature selection and 

classification, the number of parameters in the network is comparatively 

high and requires an automatic technique for the optimization of hyper-

parameters. The swarm size is taken 100 particles. For the internals of 

PSO, we adopted a uniform parametrization throughout the experiment, 

where 𝜔 =  𝜙𝑝 = 𝜙𝑔 = 0.5 are the search parameters. The termination 

criteria are defined as 𝐺𝑚𝑎𝑥 = 100  is the maximum number of 

generations, 𝛿 =  10−4  is the minimum change of the best particle 

position, 𝜀 = 10−4  and is minimum fitness improvement. The CNN 

training also includes an early termination condition, which ensures that 

if the accuracy does not improve after 5 training epochs, the training 

will be stopped. The objective function is to increase the accuracy on 

different set of hyperparameters such as convolutional no. of filters (n), 

convolutional filter size (sf), max pooling filter size (sp), max pooling 

layers stride (l). For [n, sf, sp, l], the obtained lower limit and upper limit 

of generation are shown table I. 
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Parameters Lower limit Upper limit 

convolutional no. of filters (n) 
1 6 

convolutional filter size (sf) 
2 6 

max pooling filter size (sp) 
2 6 

max pooling layer stride (l) 
2 6 

 

Table I: PSO-controlled inception parameters 

5.4 Federated learning on the deep learning model 

FL aims to predict a realistic model which accounts for the local data 

without sharing it with the server. FL helps the CNN model gain 

experience from a vast range of data located at different sites. The 

vehicles use federated averaging (FedAvg), where a global model is sent 

to the vehicles from the BS for each round, and the vehicles perform 

batch gradient descent updates based on their local datasets. A specific 

vehicle's trajectory, speed, and other features are unique to it; its local 

dataset will not capture all of the scenarios in the coverage region, and 

a NN trained on a local dataset will be erroneous and biased. Let 𝜽 be 

the weights of the model used in training and 𝑽 be the overall vehicles 

present. Therefore, 𝜽𝑣
𝑖  represents weights of model allocated to vehicle 

𝑣 at 𝑖  communication round, where each communication round 

represents an aggregation of weights of different vehicles using mean at 

BSs and synchronizing them. Algorithm 1 represents the training loop 

for FL for N communication rounds between the BS and vehicles. 
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Figure 4: Process of FL 

The local updates of the trained model of each device are sent to the 

global server, where it is aggregated with other device updates to 

improve the global model, as shown in Fig. 9. The updated global model 

is then used to train the local devices for the next round. The results are 

computed using the mean aggregation method for aggregating the 
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updates (Mashhadi et al., 2021). To train the CNN classifier, the cross-

entropy loss (7) is calculated with an adam optimizer with an initial 

learning rate of 103 and a batch size of 64. The models are trained for 

two epochs per data set, with overall communication rounds being 10. 
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CHAPTER 6 

Results and Discussions 

 

For benchmarking the dataset, the BS is selected based on the shortest 

distance of the vehicle from all possible BSs in the 100m range using 

coordinates of BS and vehicle. The overall accuracy of 27.35% for BS 

selection is achieved. The predictability of best BS decreases for NLoS 

channels compared to LoS channels. This low accuracy using the 

shortest distance motivates us to apply DL on the selection of BS as the 

environment is complex. 

 

Further, a compact DNN model with overall 339 parameters and three 

hidden layers of sizes 8, 16, and 8 is considered. The activation function 

used here is the parametric rectified linear unit with a negative slope set 

to 0.25, as given below in (6): 

𝑓(𝑦𝑖) = 𝑦𝑖, 𝑖𝑓 𝑦𝑖 ≥ 0 

𝑓(𝑦i) =  𝑎i𝑦i, if 𝑦i ≤ 0 

 

(6) 

For efficient training of the model, the cross-entropy loss has been used, 

shown in (7), coupled with adam optimizer. As the system model 

considers both LoS and NLoS channels, the model’s accuracy depends 

on the blockage probability, which is heavily influenced by traffic 

statistics, large vehicles, and antenna height. 

𝐿ce =  − ∑ 𝑡i log(𝑝i)

𝑛

𝑖=1

 (7) 

where 𝑛 is the overall classes, here 3 or 5; 𝑡𝑖 is the truth label and 𝑝𝑖 is 

the softmax probability for the 𝑖𝑡ℎ  class. An accuracy of 35.54% is 



32 
 

achieved for selecting the best BS from multiple BSs in 100m range 

using GPS data in DNN model. 

 

The realistic dataset is simulated using RT and LiDAR sensor data to 

suggest the best BS by using CNN. The dataset contains 20,000 samples 

that are separated into train test validation in an 8:1:1 ratio. The 3 layer 

CNN gave an accuracy of 61.95% for BS selection with 2.1M 

parameters. For such huge parameters, memory and computation power 

required is enormous. Furthermore, GoogLeNet, ResNet, Inception 

architectures using TF were analyzed for reduction in parameters. The 

accuracy achieved for BS selection and their trainable parameters are 

shown in Table II. It can be concluded from the obtained parameters 

that inception-based CNN architecture was having minimum number of 

trainable parameters. The trainable parameters in a GoogLeNet-based 

CNN architecture are 132k, but the trainable parameters in an inception-

based CNN architecture are 28k, which is approximately 25% of the 

GoogLeNet-based CNN architecture's trainable parameters with almost 

same accuracy. The proposed inception-based CNN model achieved an 

accuracy of 60.55% using LiDAR data for BS selection. 
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Architecture 
Accuracy 

(%) 

Trainable  

Parameters 

Non-

trainable 

parameters 

Total 

parameters 

3 layer CNN 
61.95 2.1 M 0 2.1 M 

ResNet (TF) 
55.625 66 k 11.2 M 11.3 M 

GoogleNet (TF) 
58.125 132 k 5.6 M 5.7 M 

Inception 
60.55 28 k 0 28 k 

PSO-Inception 
63.48 18.8 k 0 18.8k 

Table II: Different CNN architectures 

To further improve, hyperparameter tuning is performed using PSO in 

the proposed inception-based CNN model. Hyperparameter tuning with 

PSO helps for the convergence of parameter values of the proposed 

CNN model, and the proposed BS classification model is applied to the 

dataset. While hyperparameter optimization, the best pair of 

hyperparameters is obtained as [1, 2, 6, 4] with the accuracy of 63.48% 

on the inception model using LiDAR data for BS selection. It further 

reduces the number of parameters from 28k to 18k as shown in Table 

II. 

 

Further, we have utilized FL to increase user privacy while reducing the 

communication overhead between users and BS. In the absence of FL, 

raw LiDAR data was sent to the BS for pre-processing, having 4.3958 

MB in size. While using FL, only model weights are transferred to the 

vehicles, which are 0.1591 MB in size, resulting in a 96.38% reduction 

in overall data size. This increases the efficiency of the overall system 

model and reduces the communication overhead, keeping the accuracy 
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almost intact, i.e., 58.51% compared to 60.55% of centralized 

architecture as shown in Table III. 

 

Model used Accuracy (%) 

Shortest distance 
27.35 

GPS 
35.54 

LiDAR 
60.55 

LiDAR-GPS 
63.47 

LiDAR-FL 
58.51 

Table III: Different approaches with performance 

Relationship between the number of samples and accuracy: The number 

of samples for training increases from 12,000 to 24,000 and 36,000, 

respectively. Table IV highlights the accuracy achieved on each dataset 

for the same epochs. The accuracy increases by increasing the number 

of training samples.  

Samples Accuracy (%) 

12k 
60.55 

24k 
64.45 

36k 
66.25 

Table IV: Variation of accuracy with change in number of samples 

Furthermore, to analyze and test the robustness of the model, the 

following experiments have been conducted. We analyze the model for 

5 BSs using TL, where the number of BSs is increased from 3 to 5 and 

simulated around 2000 samples in which 1000 samples are used for 
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training, and the remaining 1000 samples are used for testing. The 

output of the linear layer is changed from a vector size of 3 to 5 in the 

basic model. The main focus of the experiment is geared towards the 

use of TL to train the pre-trained model with 3 BSs to adapt to an 

increase in the number of BSs to 5. Various methodologies were used 

for TL, like fine-tuning the entire model or freezing the initial 

convolution layers and then fine-tuning the later dense layer. Table V 

summarizes all the different approaches and their respective accuracies. 

Training methodology Accuracy (%) 

Freezing convolution layers and 

fine-tuning 

47.6 

Fine-tuning the entire model 
46.77 

Table V: Comparison between different approaches for increase in 

BSs from 3 to 5 

Since the model is sensitive to the location, to test the robustness of the 

model, an experiment is performed in which the location is changed 

from Rossyln, Virginia, to downtown Chicago city. Around 2000 

samples are simulated in which 1000 samples are used for training, and 

another 1000 samples are used for testing, same as in the previous 

experiment. Table VI reports the accuracy achieved by using both 

transfer learning on a pre-trained model and training from scratch using 

the existing model. 

 

 

 

 

 

Training methodology Accuracy (%) 
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Freezing convolution layers and fine-

tuning 

48.33 

Training from scratch 
46.67 

Fine-tuning the entire model 
45.94 

Testing with pretrained weights 
37.92 

 

Table VI: Comparison between different approaches for change in 

location to downtown Chicago 
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Chapter 7 

Conclusion and Future work 

A methodology is proposed to realistically and accurately simulate the 

data for BS selection. A scheme for BS selection is proposed that 

leverages LiDAR data in inception-based CNN to reduce the BS search 

overhead and achieve greater accuracy. Further, hyperparameter tuning 

using PSO, a meta-heuristic technique is performed which further 

improves the accuracy of the model as the parameters are being 

optimized. Introducing FL to the CNN model further reduces the 

communication overhead as the data transferred to the BS is reduced 

significantly with a slight loss of accuracy. Furthermore, the given 

model has been tested in multiple scenarios with variations in 

parameters like the number of BSs, change in location, and the training 

data size.  

 

 

The existing model will be strengthened by increasing the complexity 

of the communication environment and introducing techniques such as 

beam selection and beam forming as part of future work. Also, the 

system will be updated to handle the handover of the vehicle signal from 

one BS to another BS. The data preprocessing could be improved such 

that it can handle the sparse data generated from the LiDAR point cloud. 
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