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Abstract 

The agricultural sector is the backbone of the country's economy. 

There are a variety of factors that affect crop production, with 

seed-borne diseases being one of the most important. Seeds and 

grains are the agricultural sector's backbone, making them critical 

assets to manage and preserve both pre- and post-harvest. There 

are different optical techniques for the analysis and processing of 

diseased seed samples employing various image acquisitions such 

as laser biospeckle, infrared imaging, and so on, as shown in the 

literature research. However, traditional image processing 

systems have some processing and experimentation limitations. 

As a result, a deep learning-based optical technique processing 

pipeline for detecting and identifying diseased and healthy seed 

samples using laser speckle patterns in this study.  

Transfer learning and ensemble learning-based algorithms and 

models are used in the proposed study. AlexNet, VGG16, 

ResNet18, GoogleNet, and MobileNetV2 are the best five state-

of-the-art transfer learning-based CNN models, with ResNet18 

having the greatest accuracy of 95.33%. Along with TL models, 

a CNN model with an accuracy of 95.5 % was trained on the 

target dataset as a baseline model for comparing it to other 

models. Finally, the (re-)trained models are used in an ensemble 

learning-based strategy. The algorithms Majority Vote and Early 

Fusion are used. The accuracy of the Majority Vote model, which 

included all five (re-)trained models, was calculated to be 96.1 %. 

The accuracy was calculated as 98.1% for the early fusion model, 

which incorporated the top three models with the best individual 

test accuracies. The results demonstrate the use of ensemble 

learning models exceeds the performance of individual state-of-

the-art models for the targeted dataset and desired task.   
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Chapter 1 

 

Introduction 

 

According a recent survey, India’s economy major depends on 

agricultural sector which contributes 20.19% of GDP’s share (Ministry 

of Statistics and Programme Implementation, 2021). There are multiple 

factors that have impact on crop production out of which seed-borne 

diseases is an important factor. The seeds and grains are the backbone 

of agricultural sector, making them the essential assets to maintain and 

preserve pre-and post-harvest. According to the study (Rajput et al., 

2020), a few contagious diseased seeds can ruin the entire harvest or the 

stored batch. This motivates us to explore and understand the challenges 

faced by the agricultural sector and make an attempt to resolve the issue.  

It is crucial and necessary to identify the diseased seed before storing 

and shipment process of the harvest. Various factors can be responsible 

for seed-borne diseases, such as pathogen attack, inhabitable moisture 

levels, unusual weather conditions, and many others. However, 

traditional physical techniques exist, which include chemical and 

physical techniques to analyze seeds under observation. But this 

approach has several drawbacks, such as the involvement of chemical 

processes, the need for seed to be at a specific germination stage, the 

need for highly skilled manpower and most important these techniques 

can be invasive or destructive in nature. 

But in the past several successful techniques which are non-invasive in 

nature such as Infrared imaging (Liu et al., 2019), X-ray imaging (Sood 

et al., 2016), laser biospeckle imaging (Cardoso et al., 2011), and others. 

These strategies have been demonstrated to be reliable in a variety of 

sectors, including seed quality detection. However, these techniques 

have their own drawbacks and with respect to hardware setup 
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complexity, equipment mobility, required for a controlled environment 

for imaging, need for high complexity analytical techniques.  

Laser biospeckle imaging (Zdunek et al., 2014) has improved over the 

past few decades with the involvement of complex optical processing 

techniques and technological advancements in image acquisition 

hardware setup. However, the techniques proposed in the literature 

possess several experimental- and processing-related drawbacks which 

provides manual visual features for processing. In principle, these 

techniques-controlled input with specific image quality parameters such 

as frame size, number of frames, image resolution, etc. This encourages 

us to explore the application and deployment of DL-based methods for 

the analysis and processing of seed samples for seed health inspection. 

Hence, to overcome the drawbacks od discussed, in this thesis we 

propose a DL-based optical technique for early detection and 

classification for seed-borne disease. seeds.  

Organization of thesis 

This chapter provides a brief overview of the difficulties faced in the 

agricultural sector and how they are addressed, laying the groundwork 

for our desire to use laser backscattering imaging to detect healthy and 

disease seeds. The thesis' remaining contents are arranged as follows: 

• Chapter 2: This chapter includes the basic theory required to 

understand laser backscattering patterns and the hardware setup 

required for laser backscattering image acquisition.  

• Chapter 3: This chapter includes a brief literature review of the 

prosed techniques proposed and used in the past for processing 

and analysis of laser backscattering images.  

• Chapter 4: In this chapter, a summarised theory about deep 

learning and related topics will help in understanding the further 

section. 

• Chapter 5: The suggested DL-based processing and analysis 

framework will be discussed in this chapter. This chapter will 

include transfer learning models and an ensemble model, as well 
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as an ensemble learning-based model that is offered as a better 

alternative to the traditional DL method. 

• Chapter 6: A summary of the target dataset, as well as a brief 

overview of the work's findings, are included in this chapter. 

After evaluating numerous models, the best design is suggested 

based on accuracy and other criteria. 

• Chapter 7: The proposed work's conclusion, as well as possible 

future scope for expanding this work to additional applications 

and domains. 

  



4 
 

  



5 
 

Chapter 2 

Laser Backscattering Technique  

This chapter includes the basic theory required to understand laser 

backscattering patterns and the hardware setup required for laser 

backscattering image acquisition.  

2.1 Speckle Pattern Imaging  

 Speckle images (Zdunek et al., 2014) are generated due to biological 

material being illuminated with coherent light or laser light. This 

phenomenon results from laser backscattering which gives rise to a static 

interference pattern (Ibrahim, 2016).  When the light illuminates the 

biological surface, the laser penetrates a few mm into the surface and is 

reflected back. Inside the biological object, the light undergoes 

absorption and scattering, causing a speckle pattern to appear on the 

detecting plane. This speckle can further be used to analyse multiple 

physiological and biological factors. The bright and dark pixelated 

regions, as shown in Fig. 1, result from mutual self-interference between 

backscattering light having the same frequency but different phases. As 

biospeckle is a non-destructive method of extracting biological activity 

information, and due to penetration phenomenon has proven more 

informative than simple RGB imaging (Kumari & Nirala, 2019). 

Moreover, this technique possesses a considerable number of 

advantages, such as robustness to vibration and external noise a more 

straightforward process for acquiring images, and a basic processing 

pipeline that takes lesser memory requirements and is compatible with 

various image processing and processing algorithms. When a single 

speckle is captured, the pattern is static in nature. When the object under 

study is inanimate, the speckle pattern is temporally static. First, light 

enters the tissue and can be backscattered from either the surface or the 

internal inhomogeneity beneath the tissue in the case of living 

organisms. Secondly, if the object is living, neither the chemical nor the 

physical processes are stalled in the sample. This leads to speckle 
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patterns having time-varying properties. This is generally referred to as 

a dynamic speckle pattern. In (Draijer et al., 2008), the author suggests 

that this dynamic behaviour can be due to the motion of the particle 

inside the sample and doppler shift. 

 

 
 

Figure 1 Laser backscattering pattern of a diseased soybean seed 

 Depending on the light scattering in the material under 

examination, the intensity shift in the speckle pattern is very 

unpredictable. As a result, the speckle pattern collected has a biological 

signature of the phenomena occurring within the sample. The sum of 

numerous components with a phase shift of Φn and an amplitude of ak 

dispersed from diverse places on the recorded field is the result of light 

intensity caught at an arbitrary point F(x,y). The speckle frame created 

by the surface element j at position F may be mathematically represented 

as (Kalyzhner et al., 2019): 

𝑰𝒋(𝑭) = ∑ 𝒂𝒌ⅇ(ⅈ𝜹𝝓𝒏)

𝑵

𝒏=𝟏

 
(1) 

 

 where, (iota), 𝑖 =  √(−1)  and N is the total number of 

secondary wave pattern created. These recorded fluctuations in 

intensity, as well as a variety of other speckle characteristics (such as 

speckle grain size, spatial and temporal fluctuation of pixels, contrast, 

roughness, and so on.), are exceedingly difficult to anticipate using 

traditional statistics based on image processing techniques. 

 Due to its non-invasive and non-contact property, this imaging 

techniques finds its application in many fields of medical, agriculture, 



7 
 

spoof detection and many more. Some of its major and well know 

applications are; plant disease detection (Dhanotia et al., 2017), static 

scatterer concentration assessment in phantom bodily fluids (Jayanthy 

et al., 2011), fruit bruise assessment (Pajuelo et al., 2003), biometric 

identification spoof detection (Chatterjee et al., 2017, 2018, 2019), 

priming analysis (Singh et al., 2020), imaging of the parathyroid and 

cancer cells (Braga et al., 2012)and many more. 

2.2 Experimental Hardware Setup 

 The above technique is used for data acquisition of dataset 

images. This requires a specific hardware setup comprising of He-Ne 

laser, spatial filter, magnifier, CCD Camera, and a vibration isolation 

tabletop with sample space. Figure 2 depicts the hardware stack. A 

variable attenuator is then used to regulate the laser's intensity. The laser 

beam is expanded using a spatial configuration consisting of a 

microscopic object (MO) with a total magnification of 10 m and an 

aperture of 10 m. This filtering approach also reduces the non-

uniformity in the laser profile produced by noise, resulting in an evenly 

lighted laser-illuminated zone. The sample under investigation is 

illuminated with a He-Ne diode laser ( λ= 632.8 nm, 15 mW). The seed 

is then placed on the vibration isolation table in the region illuminated 

by the laser. A charged-coupled device camera (Basler Corp., resolution 

1024 x 967, frame rate: 32 fps) records the speckle patterns that 

correspond to each seed sample. Later this captured data is processed, 

and the dataset is obtained with desired quality parameters like 

saturation, contrast, homogeneity, and others in MATLAB.  
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Figure 2 Experimental hardware setup for recording speckle images 

.  
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Chapter 3 

 Literature survey 

This chapter includes a brief literature review of the prosed techniques 

proposed and used in past for processing and analysis of laser 

backscattering images.  

 

For the assessment and analysis of the laser backscattering data, various 

image processing techniques have been proposed in the literature. The 

strategies rely heavily on mathematical modeling of the processing 

pipeline for assessing biological activity and have demonstrated a 

variety of ways, each with its own set of advantages and disadvantages. 

At the current age, very few of these conventional approaches 

comprising significant use of manual image processing algorithms have 

held up to the needs of the modern age’s real-time, low latency, low 

computational processing needs. 

Furthermore, these strategies may be classified into numerical and visual 

categories. The numerical techniques (Oulamara et al., 1989) comprise 

a framework with a numerical value or an index as an output. This index 

is used as a measurement to identify the sample’s biological activity on 

the scale provided by the respective numerical technique. On the other 

hand, the visual techniques (Fujii et al., 1985) have a feature map 

indicating the sample's portion having the highest or most recent 

biological activity. These techniques are used to identify the region of 

the sample having disease or abnormalities (Jayanthy et al., 2011). 

3.1 Numerical Techniques 

The Temporal History of Speckle Pattern or Random THSP, together 

with Inertia Moment and Co-Occurrence Matrix, is a regularly used 

numerical indexing approach strategy (Alves et al., 2013; Dhanotia et 

al., 2017; Pajuelo et al., 2003; Zdunek et al., 2014). The THSP (Zdunek 

et al., 2014) is generated by extracting a single from every speckle frame 
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from the same row or column position and placing it side by side. 

Whereas, in RTHSP. A random row or column is taken from each frame 

instead of from the same position from all frames. The width can vary 

up to the number of available speckle frames. 

The sample functions as the range of non-zero values other than the 

primary diagonal values, and the COM is derived using the THSP 

matrix. The sample is likely to be less active if the values in COM are 

concentrated towards the primary diagonal, whereas a sample with a 

wide range of values in COM's diagonal is expected to be more active. 

To quantify the activities from COM, IM is defined as the sum of the 

matrix values times the squared distance from the principal diagonal. 

Higher activity equates to a higher IM value, while lower activity 

corresponds to a lower IM value. 

However, according to (Arizaga et al., 1999; Braga et al., 2012), it has 

been seen that IM shows higher sensitivity for higher activity or 

variations and performs poorly for medium and low activity. Therefore 

(Braga et al., 2011), AVD was proposed instead of IM by taking first-

order difference to increase the robustness of the numerical value.  

3.2 Visual Techniques 

The visual techniques are considered full-field techniques (Briers, 

1996), i.e., it utilizes every pixel of each speckle frame for generating a 

feature map containing information about the region with the highest 

activity or with the most recent activity in the sample under study. Being 

full-field techniques, some of the visual techniques have proven to have 

higher accuracy, zero standard deviation, capability to process both 

homogeneous and heterogeneous biospeckle patterns.  

The first visual technique proposed was Fujji’s Method (Fujii et al., 

1985, 1987) for blood flow observation using dynamic speckle patterns. 

The method uses a weighted sum of the differences between two 

successive components of each pixel's temporal sequence of intensities. 

The following equation can be used to calculate the index. 
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𝑃(𝑥, 𝑦) = ∑
|𝐾𝑛(𝑥1𝑦) − 𝐾𝑛+1(𝑥, 𝑦)|

|𝐾𝑛(𝑥1𝑦) + 𝐾𝑛+1(𝑥, 𝑦)|

𝑁

𝑛=1

 (2) 

where n is the image index ranging from n = 1 to N and Kn is the nth 

frame in sequence having (x,y) as pixel coordinates. The image 

composed of the integrated P(x,y) values having biological activity 

(high and low). The main disadvantage of Fujji's methods is that they 

produce a nonlinear response that emphasises both high and low value 

ranges from the dynamic ranges' boundaries. This sometimes results in 

addition of noise in the resulting feature map.  

 The GD (Arizaga, 2002) technique includes the differences 

between non-consecutive frames as shown in Eqn. 3. This method was 

proposed as an easier and simpler alternative to Fujji’s method to reduce 

the weighting process. 

𝐺𝐷(𝑥, 𝑦) =  ∑ ∑ |𝐼𝑘(𝑥, 𝑦) − 𝐼𝑙(𝑥, 𝑦)|

𝑁

𝑙=𝑘+1

𝑁−1

𝑘=1

 (3) 

Because the sequence of appearance is ignored, this method results in a 

loss of temporal information regarding pixel intensity activity. 

Furthermore, it merely displays the range of values rather than the 

frequency of transitions. To overcome this drawback and to reduce the 

computational time, the absolute operation was replaced by squaring 

operation as shown in Eqn. 4. 

𝐺𝐷 ∗ (𝑥, 𝑦) =  ∑ ∑ (𝐼𝑘(𝑥, 𝑦) −  𝐼𝑙(𝑥, 𝑦))2

𝑁

𝑙=𝑘+1

𝑁−1

𝑘=1

 (4) 

Another technique is to use a motion history image. This is a method of 

real-time imaging that generates a movement map based on the sample's 

recent activity. This approach was presented as a replacement for online 

biospeckle analysis methods (Godinho et al., 2012). First in, first out 

pipeline design is used to process the images in the buffer. Following 

the thresholding of the contour, the difference between the two photos 

was determined. The weighting of the threshold pictures generated in 

relation to each image's "lifetime" is used to construct the final MHI 
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image. MHI also outperforms offline approaches like Fujji's and GD, 

according to the study. 

3.3 Spatio-Temporal Techniques 

 Most of the techniques mentioned earlier are considered to be 

spatial techniques. Spatio-temporal analysis of dynamic speckle patterns 

using singular value decomposition (Kulkarni et al., 2021) and 

biospeckle indexing technique employing morphological and 

geostatistical descriptors are two further ways (Amit Chatterjee et al., 

2020). As described by the author, each pattern in the temporal sequence 

is reduced to a representation using column vectors, which is then 

aggregated to create a matrix encoded with localized Spatio-temporal 

speckle intensity data (Kulkarni et al., 2021). The singular values of this 

matrix are used to establish a correlation metric, which is then used to 

interpolate the correlation computed at each patch to generate a 

correlation map. According to (Amit Chatterjee et al., 2020), the N 

number of the image sequence is captured over some time. Foreground 

and background separation is done using the following procedures, i.e., 

lowpass filtering, background texture removal, Otsu’s threshold, and 

binarization. From Otsu's thresholder image, a bounding box defines the 

intended active section and creates a binary image or mask (for noise 

reduction of the activity map). With alpha-variogram-based visual 

analysis, the absolute difference, Eqn. 5, between consecutive images 

from the image sequence, is calculated to extract temporal variation 

between consecutive frames. The 'visual variogram estimate' (VVE), 

𝛾𝑣(𝑥, 𝑦) , the function provides a 2D activity map with better 

performance and a relatively fast operating speed. The mask is 

multiplied with all the frames one at a time and background noise is 

suppressed. The output, F(x,y), obtained is used to calculate Numerical 

indexing using Ensemble averaged dynamicity metric’ (EADM), Eqn. 

6, where M is the total number of object pixels. 

𝛾(𝑥) =  
1

2(𝑁 − 𝑛)
∑ |𝐼𝑘+𝑛(𝑥) −  𝐼𝑘(𝑥)|𝛼

𝑁−𝑛

𝑘=1

 (5) 
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𝑎̂𝐸𝐴𝐷𝑀 =
1

𝑀
∑ ∑ 𝐹(𝑥, 𝑦)

𝑁𝑦

𝑦=1

𝑁𝑥

𝑥=1

 (6) 

 However, these above-mentioned techniques used to process 

biospeckle images have several drawbacks and are dependent on the 

various experiment- and processing-related factors such as sampling 

frequency, number frame acquired, illumination condition, region of 

interest selection, varying background, size of the speckle frames, 

external noise, and others (Zdunek et al., 2014). Also, these methods 

consist of manual operations, either the filter a static in nature or require 

a human to manuals such as labeling region of interest or foreground-

background separation, background noise suppression, etc. To eliminate 

manual operations and human interaction, deep learning can be used to 

achieve the desired goal in a more optimal way. 
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Chapter 4 

 Fundamentals 

In this chapter, a summarised theory about deep learning and related 

topics will help in understanding the further section.   

4.1 Deep Learning 

In recent years, machine learning has opened new avenues in various 

fields (Alom et al., 2019). This aids in improving the performance and 

automizing the workflow requiring minimum human and manual 

operations. Manual feature extraction based on visual parameters 

including contrast, mean intensity, weighted difference, correlation 

index, and others is used in traditional ways for processing speckle 

pattern frames. Many of the traditional and manual approaches given for 

the examination and detection of diseased and healthy seeds have been 

superseded by deep learning algorithms in recent years. (Xuan et al., 

2018; Chen et al., 2020; Yao et al., 2021; Yang et al., 2021; Turkoglu et 

al., 2021). Also, as mentioned in Ch. 3. the proposed techniques in the 

literature survey have several drawbacks and are dependent on 

experimental- and processing-related factors such as sampling 

frequency, number frame acquired, illumination condition, region of 

interest selection, varying background, size of the speckle frames, 

external noise and perturbations, and others. Therefore, to overcome 

these drawbacks, a optical technique based on deep learning algorithms 

that outperform manual and traditional methods for identifying healthy 

and diseased seeds. 

 

4.2 Convolutional Neural Network  

CNNs (Lecun et al., 2015) are a type of deep learning model that is used 

for image recognition and classification. The models are trained on 

specific targeted datasets, for a particular task. The parameters are 

initialized to random weights when training a CNN from scratch. Fig. 3. 
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depicts the general architecture of CNN. The convolutional layer is 

accountable for feature extraction. During the training and validation 

phases, these characteristics are automatically optimized as the number 

of epochs rises. The kernel size varies depending on the learner's and 

task's needs. Convolution operation provides images with edge 

detection, image blurring, etc. mathematically the feature map can be 

expressed as (Lecun et al., 2015); 

𝑥𝑗
𝑙 = 𝑔( ∑ 𝑥𝑖

𝑙−1 ∗  𝑘𝑖𝑗
𝑙 +  𝑏𝑗

𝑙

 

𝑖∈𝑁𝑗

) 
(7) 

where   𝑥𝑗
𝑙 is the output of current layer, xil-1 is output of previous layer, 

𝑘𝑖𝑗
𝑙  are the kernel weight of the current layer and 𝑏𝑗

𝑙 are the link biases 

of the present layer. Nj is the representation of the input feature map. A 

pooling process is usually performed after a convolution operation. This 

technique is used to reduce the dimension of the data by down sampling 

the feature maps. The main concept of the pooling operation is based on 

the data's local correlation property. Standard pooling is divided into two 

types that are widely used: maximum pooling and average pooling. 

Because of its reduced computing complexity, max pooling is more 

often executed than average pooling, as seen in the following equation. 

𝐹𝑖
𝑗

=  max𝑖∈𝑔𝑖
(𝐹𝑖

𝑗−1
) (8) 

where max(.) is the argument max function and gj is the feature map.  

 

After the extraction of the feature, the maps are then fed to a classifier. 

A classier can be either a DNN or a SVM, any classifier that can handle 

the data points. A fully connected network is one of the most suitable 

and widely used classifiers. The target labels are fed to the fully 

connected layer for loss calculation and back-propagation for training 

all the layers of the CNN. Finally, a classification operation such as 

softmax is used to perform class weight normalization and prediction. 
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Figure 3 General Architecture of Convolutional Neural Network 

4.3 Transfer Learning 

Moreover, in the past few years, the pre-trained models have been highly 

used. The major benefits of TL are fewer data points for retraining the 

model for the desired objective and improved accuracy. The retraining 

of the model, training the classifier according to the extracted features, 

takes much fewer sample data points and less training time (Chen et al., 

2020).  The application of TL-based algorithms is used in various fields 

(Zhuang et al., 2019), such as collaborative recommendation (Pan, 

2016), activity recognition (Cook et al., 2013), visual categorization 

(Ling Shao et al., 2015), and others. Several learning strategies have 

been presented in various industrial applications, including domain 

adaptive learning (Liu et al., 2020), adversarial learning (Liu et al., 

2019), and ensemble deep kernel learning (Liu et al., 2018). 

 

A pre-trained CNN model has been trained on a broad class of datasets 

in the TL-based technique. The basic block of TL architectures includes 

an input layer, a convolutional layer followed by a classifier such as 

DNN, SVM, or a decision tree, as shown in Fig. 4. A CNN trained from 

scratch requires more computational time, computational power, and a 

larger dataset. However, in the TL-based approach, the model is a pre-

trained model trained on the ImageNet Dataset which has 1000 classes 

of generic images. By this the kernels are tuned to extract general 

features, later these are applied to the speckle pattern. ImageNet (n.d.) 

is a visual database arranged according to the WordNet hierarchy with 

hundreds of hundreds of pictures for each node. This image dataset is 
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open for all researchers and developers to use. For TL, the models used 

included; Alexnet (Krizhevsky, 2014), GoogleNet (Szegedy et al., 

2015), ResNet18 (He et al., 2016), VGG16 (Simonyan & Zisserman, 

2014), and MobileNetV2 (Sandler et al., 2018). Once a pre-trained 

model is acquired, the weights of the convolutional layers are frozen, i.e. 

they become non-trainable parameters. Furthermore, the classifier 

model of the pre-trained model is replaced with a fully connected 

network or any other classifier which has random weights and can be 

trained from scratch. The classifier is then trained on the features 

extracted from the laser backscattering pattern along with the labels 

provided. As the features extracted are generic in nature, the re-trained 

of the model takes lesser time and lesser dataset samples. By exploiting 

this fundamental concept of TL, the re-trained model is able to handle 

more generalization and to avoid overfitting even by using fewer dataset 

samples. 

 

 

Figure 4 General workflow of transfer learning model 

4.4 Ensemble Learning  

Most of the techniques, use a single approach, where the proposed 

processing workflow consists of a single thread. The major concern of 

such single-thread workflow is that they fail to cover all possible ground 
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and lack the ability to use multiple learners in the case of conventional 

DL techniques. Hence for many years, an ensemble of learners has 

gained wide popularity over a single learner. According to (Dietterich, 

1997), there is a major three reason for ensemble learning being superior 

to conventional single learning techniques; firstly, the training data set 

cannot provide sufficient and enough information for a single selective 

best learner. Secondly, the search process of selection of learner is 

arbitrary, an individual cannot be sure if a learner is perfect for a 

particular task and available dataset. Finally, the target function may not 

always be present in the hypothesis space being explored. Hence the 

ensemble-based learning approach is chosen for two major purposes, 

training the weak learner or feature in the ensemble and having a 

selection of a strong group of learners or features for better performance. 

There exist many ensemble strategies such as, averaging method, 

weighted averaging method, majority vote, winner takes all, early 

fusion, and many other. These techniques are chosen as per the task and 

nature of the dataset.  

In our case, we have chosen a majority vote and early fusion. 

4.4.1 Majority vote-based method  

 

In the method, each of the five TL models was trained on the same 

dataset. Each of the TL models had a DNN as its classifier. The deep 

features were extracted from each of the pre-trained models and these 

features were fed to respective classifiers. After acquiring the final 

prediction from all the models, the prediction with majority votes, i.e., 

the statistical model of the tensor containing all the predictions was 

chosen as the overall prediction of the majority vote-based method. The 

same is demonstrated in Fig. 5. The models used were Alexnet, 

GoogleNet, ResNet18, VGG16 and MobileNetV2. 
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Figure 5 Architecture Overview for majority vote ensemble learning 

 

 

4.4.2 Early Fusion-based method  

 

In this method, deep features are extracted from the pre-trained models 

and concatenated in a linear fashion. After concatenation, these deep 

features are fed to a classifier. A classifier can be either an SVM 

classifier or a DNN model. The general flow is shown in Fig.6.  As there 

is multiple deep feature feed to the classifier, these deep features cover 

more ground than individual learners would have covered. Hence the 

concatenated deep feature provides enough information. This results in 

increasing the accuracy of the ensemble model as compared to the single 

learner deep learning model. The criteria for the selection of TL models 

of early fusion are the individual model’s accuracy. Therefore, models 

having accuracy above 90% were selected in this case, which are, 

ResNet18, GoogleNet, and MobileNetV2. 
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Figure 6 Architecture Overview for early fusion ensemble learning 

4.5 Evaluation parameters 

 We also employed the confusion matrix (Rodriguez et al., 2010) 

to evaluate the model's performance by using typical assessment criteria 

such as classification precision, F-1 score, accuracy, specificity, and 

recall. True positive, true negative, false negative, and false-positive are 

all entries in a confusion matrix. The evaluation parameters are 

generated using these four values as shown in the following equations. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100 (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(%) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100 (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 × 100 (11) 

𝑅𝑒𝑐𝑎𝑙𝑙(%) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100 (12) 

𝐹 − 1 𝑠𝑐𝑜𝑟𝑒(%) =  
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (13) 
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Chapter 5 

 Proposed Deep Learning-based Processing 

Framework 

The suggested DL-based processing and analysis framework will be 

discussed in this chapter. This chapter will include transfer learning 

models and an ensemble model, as well as an ensemble learning-based 

model that is offered as a better alternative to the traditional DL method. 

 

As mentioned earlier, the proposed techniques in the literature survey 

possess some processing- and experimental-related drawbacks. This 

motivates us to use a DL-based approach. Moreover, in principle, the 

use of conventional DL algorithms in our case from scratch trained 

CNN, lacks the generic nature of the convolutional kernels and requires 

more time and dataset sample for the training of the model. Hence, the 

approach using transfer learning and ensemble learning concept using 

employed.   

5.1 Transfer learning models 

The models used in this case were obtained from torchvision’s package, 

including models as a sub package (Models and Pre-Trained Weights—

Torchvision Main Documentation, n.d.). This package contains several 

pre-trained models. The models have been trained on the ImageNet 

dataset for 1000 generic classes. The models, being open-source, are 

widely used by researchers and developers. The average accuracy of 

these models listed is 50–57% for 1000 class predictions. The 

convolutional layer’s kernel weights are frozen, and the pre-trained 

classifier is replaced with a DNN or SVM classifier, which will be 

trained from scratch on the dataset obtained to perform the desired task. 

Our speckle pattern dataset was used to train a three-layer DNN with 

[128, 8, 2] nodes, followed by a softmax classifier. The DNN classifier 

was trained for its respective model’s feature maps.  The deep CNN-

based models are: AlexNet, VGG16, ResNet18, GoogleNet and 
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MobileNetV2. The overall process workflow for the transfer learning 

and re-training model on the target dataset is shown in Figure 4.  Each 

of the transfer learning models deployed are briefly described in the 

subsection below.   

5.1.1 AlexNet 

The AlexNet Architecture is seen in Figure 7. AlexNet has one of the 

basic architectures among all the TL models. It includes an input layer 

followed by a 5-convolutional layer having   55 and 33 kernel size. The 

extracted features are then fed to a 2 layer fully connected with a softmax 

classifier at the end. The feature maps are normalized based on the 

nearest neighbourhood values. AlexNet benign is one of the first and 

simple CNN models to outperform LeNet (Lecun et al., 1998), which 

has been widely used since the 1990s. 

 

Figure 7 The architecture of AlexNet 

5.1.2 VGG16 

The Visual Geometry Group (VGG) was proposed in the same year 

along with AlexNet in 2014. The main feature of VGG was the use of a 

deep network of critical components to compete against the existing 

CNNs. The VGG convolutional block employs a convolution operation, 



25 
 

ReLU, and a max-pooling operation. The number of blocks utilized 

varied according to the computing complexity required. The number 

suffix at the end of the model’s name represents the number of 

convolutional blocks in the convolutional layer. The model employes 

contains 16 convolution blocks followed by a fully linked network. 

 

Figure 8 The architecture of VGG16 

5.1.3 GoogleNet 

GoogleNet was the best of the CNN at the time of proposal in 2014. The 

key feature of GoogleNet was the inclusion of an inception layer with 

varying filter sizes. A spare data feature map stack is created as a result 

of this. Furthermore, GoogleNet has a significantly lower number of 

parameters than AlexNet and VGG19. The initial concept of the 

Inception Layer is improvised and used GoogleNet The original 

Inception Layer idea was improved and was employed in GoogleNet for 

greater performance. The inclusion of an 1 × 1 convolution operation 

distinguishes the modified inception model from the naïve inception 

model. 

 

  

Figure 9 Modified Inception Block used in GoogleNet 

5.1.4 ResNet18 

ResNet is an abbreviation for Residual Network. ResNet solves the 

challenge of constructing ultra-deep networks suffering from vanishing 

gradients. ResNet comes in a variety of versions with 34, 50, 101, 152, 
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and even 1202 layers. Widely is widely utilized in ResNet 50 for higher 

computational complexity and ResNet 18 for reduced computational 

complexity with some trade-offs in model performance. Figure 10 

shows the basic block diagram. ResNet takes both raw and processed 

data from the previous layer and sends it on to the next. As a result, the 

design is referred to as Residual Network.  

 

Figure 10 Basic block of ResNet’s Residual Block 

5.1.5 MobileNetV2 

MobileNetV2 is an improved state-of-the-art mobile model that has 

been demonstrated to operate in many tests and benchmarks. 

MobielNetV2 was proposed for the purpose of object detection. The 

biggest disadvantage previously encountered was the non-linear filter, 

resulting in a lightweight depth wise convolution intermediate 

expansion layer. The decoupling of input-outputs technique was also 

utilized to reduce non-linearity in thin layers. This MobileNet model is 

also available in a variety of sizes and architects, with variable kernel 

sizes. Fig. 11. Demonstrates the MobileNet basic blocks, which 

comprise a convolution and ReLU block, depth wise lightweight layer 

convolution with ReLU, and a convolutional block. 
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Figure 11 The basic block of MobileNetV2 architecture 

Other models, such as InceptionV3, MNASnet, and others, were tested. 

However, the training accuracy did not increase as predicted due to the 

model's features and complexity. For ensemble learning, just the five 

models stated above are employed.  

5.2 Ensemble Model and Learning 

After the retrained of the model for the targeted dataset, these models 

are used in ensemble algorithms. Ensemble Model using Majority Vote 

and Ensemble Learning using early fusion algorithms were used.  

5.2.1 Ensemble Model Majority Vote 

 

This algorithm uses the simple concept of voting or polling. The 

prediction from all the classes is considered for the poll. The models 

used are completely (re-)trained models having frozen convolutional 

layer kernels. Finally, the class with the majority vote is considered as 

the overall prediction of the ensemble model. The architecture of the 

majority vote ensemble model is shown in Fig.  12. All of the five 

models, AlexNet, VGG16, ResNet18, GoogleNet and MobileNet are 

used. The main benefit of this approach is that the algorithm does not 

require any training. So, the only requirement for this model is to have 

a trained model for the target dataset and apply the mode function on the 

prediction output array.  
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Figure 12 Architecture for Majority Vote Ensemble Model 

5.2.2 Ensemble Learning Early Fusion 

 

The majority vote algorithm uses fully (re-)trained models, on the other 

hand, in the early fusion ensemble learning algorithm only the pre-

trained convolution layers are used from different transfer learning 

models. Among the five transfer learning models, the top three models 

having the highest accuracy are used; ResNet18, GoogleNet, and 

MobileNet having testing accuracy of 95.33, 94.67, and 93.67 

respectively. The feature extracted from these models is concatenated 

and forwarded to a fully connected network. A feature is used to train 

this FC network with targeted labels. The architecture used for ensemble 

learning is shown in Fig.  13. The key feature of this algorithm is that it 

provides sufficient data to the fully connected network for training 

proper and enough data  

 

Figure 13 Architecture for Early Fusion Ensemble Learning 
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5.3 CNN trained from scratch 

 A CNN model is trained from scratch to be used as the baseline 

for comparison between different TL-based models, ensemble model, 

and ensemble learning-based early fusion model. As this model is 

trained for a specific task, i.e., classification of healthy and diseased 

seeds using speckle images, the kernels in the convolutional layer are 

tuned to this specific task only. Kernels in TL-based models, on the other 

hand, are trained on the ImageNet dataset, which includes 1000 classes, 

and so are generic in nature. The architecture used for CNN is shown in 

Fig.  13. The architecture is kept as straightforward as possible due to 

the simple nature of the dataset. The convolutional layer includes 2 

convolutional blocks which include a convolution operation followed by 

the ReLU activation function and finally max-pool operation. [2,1,3,3] 

is the kernel size of 1st convolutional layer and [4,1,3,3] is the kernel 

size for 2nd convolutional layer. For max pooling, 22 kernel size is used. 

After vector flattening, the data is fed to a fully connected network. The 

network comprises of 3 layers having [120, 60, 2] nodes respectively. 

Finally, the softmax function is used to determine the likelihood of the 

input sample belonging to the target class using the output link weights. 
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Figure 14 Architecture for CNN trained from scratch 
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Chapter 6  

Results and Discussions 

A summary of the target dataset, as well as a brief overview of the work's 

findings, are included in this chapter. After evaluating numerous 

models, the best design is suggested based on accuracy and other 

criteria. 

6.1 Speckle Pattern Dataset 

The speckle images obtained from the hardware setup in Fig.  2 are 

divided into two groups: healthy seed samples and damaged seed 

samples. These speckle patterns are captured are 32fps for 1080 1920 

pixels size. After the acquisition of the speckle patterns, the images are 

cropped to match the size of the seed sample, i.e., 300 300 pixels. After 

capturing all of the images, labels for the various seed samples are 

established, such as class: 0 for diseased seeds and class: 1 for healthy 

samples. Then the images are normalized to a 0 - 255 intensity range for 

244 × 244 pixel size. A total of 1700 images were taken, which were 

divided into three groups in the ratio of 70:20:10 training, validation, 

and testing. In the training group, there are 1200 photos with 600 speckle 

samples for each class, while the validation and testing groups have 300 

and 200 images, respectively.  

The models used are fine-tuned using the above-mentioned dataset as 

the target dataset. The models were (re-)trained for 100 epochs using the 

following parameters, Adam-optimiser, 0.001 as the learning rate, and 

binary-cross-entropy function for calculation of loss function. Further 

parameters related to the model are shown in Table 1.  
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Table 1 Hyper parameter details for all the models 
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6.2 Model Performance Comparison  

All models are (re-)trained on the same targeted dataset. Various types 

of TL-based models, ensemble model-based majority vote, ensemble 

learning-based early fusion model, and lastly, a CNN trained from 

scratch is used to compare the performance of all the models. Among all 

the models and algorithms, the ensemble learning-based early fusion 

model has the highest test accuracy of 98.08%, and VGG16 has the 

lowest test accuracy of 84.33%.  This is presumed to be because the 

models used for early fusion have the highest individual test accuracy 

among the five TL-based models. Furthermore, the accuracies of the 

remaining models are shown in Table 2. 

 

 

Table 2 Evaluation parameters of all models 

Individual model performance is measured by training and validation 

accuracy, as well as a loss graph. Training and validation accuracies are 

projected to grow steadily as the number of epochs increases, while 

training and validation loss is expected to decrease and approach zero. 

However, as irregularities emerge during model training, there are 

occasional oscillations in accuracy and loss curves. This might be the 

result of a divergence from the ideal spot. It is also projected to converge 

after a few epochs and stay stable as the number of epochs grows.  

The evaluation parameters and model performance curves for TL-based 

are shown in Table 2 and Fig. 15. Table 2 contains brief results of all the 

TL-based model evaluation parameters. These parameters provide an 

insight into the confusion matrix of the model. Among all the model's 

total parameters as shown in Table 1, VGG16 has the highest number of 

total parameters accounting for 13,85,88,122 but provides the least 

Accuracy Precesion Specificity Recall F-1 Score

CNN 95.5 97.48 96.44 98.61 98.05

ResNet18 95.33 96.85 95.77 96.4 96.63

VGG16 84.33 88.45 84.2 94.87 91.55

MobileNetV2 93.67 94.6 93.1 92.78 93.69

GoogleNet 94.67 94.7 92.7 98 96.33

AlexNet 88.9 92.91 92 95.1 94

Ensemble MV 94 92.28 95.2 94.9 93.58

EnSemble EF 98.08 98.98 99 97.17 98.07
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accuracy 84.33% among all the models. On the other hand, the model 

with the highest accuracy, 95.33% has 1,12,43,226 only. But for a model 

with the least number of total parameters, GoogleNet, has the second-

highest accuracy of 94.67. Hence it can be seen that models with a high 

number of total parameters provide less accuracy. Moreover, the CNN 

trained from scratch has an accuracy of 95.5 which is more than all of 

the TL-based models with total parameters of 4,05,038 which accounts 

for only 3% of the total number of parameters used in ResNet18. The 

performance plots for CNN trained from scratch can be seen in Fig. 16.  

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 15 Model Performance curve for (a) ResNet18, (b) MobileNet, 

(c) GoogleNet, (d) VGG16 and (e) AlexNet18 

 

After achieving the accuracy for TL-based models and CNN model, the 

Ensemble model, and Ensemble learning approach was implemented. 

The ensemble model uses a majority vote algorithm. This algorithm uses 

all of the five models' predictions and the class majority votes will 

declare the final prediction class. ResNet18, GoogleNet, MobileNetV2, 

AlexNet, and VGG16 are used which gives an accuracy of 96.1% which 

is more than all the individual models. Above all, because retrained 

models are employed, no training is necessary. Hence the trainable 

parameter in this algorithm is zero. The downside of this algorithm is 

the requirement of being completely trained on the targeted dataset of a 

similar dataset (Turkoglu et 
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al.,2021). 

 

Figure 16 Model Performance curve for CNN 

 

 

Figure 17 Model Performance curve for EF-based model 

 

Finally, there is the ensemble learning-based approach, which requires 

training. The models’ only convolutional layer is taken and the features 



38 
 

given by each of the layers are concatenated. Because only 

convolutional layers with frozen weights are employed, the number of 

non-trainable parameters is increased. Convolutional layers from 

ResNet18, GoogleNet, and MobileNetV2 models are utilized because 

they have the best accuracy in individual model training. Fig. 16 shows 

the model's performance curve for the early fusion-based model. With a 

score of 98.08, this model's accuracy is the greatest of all the proposed 

models and algorithms in this study. Although this technique has a large 

number of parameters, the total number of trainable parameters is just 

45,89,746. 
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Chapter 7  

Conclusion and Future Work  

The proposed work's conclusion, as well as possible future scope for 

expanding this work to additional applications and domains. 

 

 In this thesis, a deep learning-based optical techniques analytical 

pipeline using speckle patterns to analyze and identify diseased and 

healthy seed samples is presented. The use of deep learning-based 

techniques has proven to be more advantageous than traditional 

techniques, which rely on manual operations such as ROI marking, 

feature extraction such as edges or visual descriptors, and statistically 

calculated values that are dependent on several image quality factors 

such as contrast, roughness, or image background activity, among 

others. Furthermore, the usage of TL improves the necessity for a 

smaller dataset for model (re-)training. Furthermore, the kernel of the 

convolutional layers of TL models has a general character that yields 

superior features in theory. When compared to a CNN trained from 

scratch for a specific task, the CNN surpasses the TL-models by 1-2% 

accuracy. Also, the use of ensemble-based models uses the advantage of 

both DNN and TL. The key feature of ensemble learning algorithms is 

that the strong learner overcomes the drawback of the weak learner. 

Therefore, as proven by the acquired results, both the ensemble-based 

models have higher test accuracy than the CNN and TL-based models. 

As for highlights of this work, it can be said that the process requires a 

lesser dataset, no maul operations, lesser image quality correction, and 

high accuracy in the detection of diseased and healthy seed samples due 

to the use of state-of-the-art techniques. 

 

Future Work  

 The method proposed is based on TL and ensemble learning, and 

it employs five models and two algorithms with the use of spatial 
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speckle patterns. The future work, may include further exploitation and 

exploration of the acquired dataset or acquisition of more speckle image 

of different biologically active objects to extend the application to 

include other seeds and crops, as well as different diseases Furthermore, 

other DL-based models may be researched with regard to the intended 

goal, such as RNN, and alternative approaches, such as unsupervised 

learning, can be explored. Also, to reduce the execution time so that the 

method can be deployed online in the industry.  
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