
B.Tech Project Report

on

Design and Analysis of GAN Architecture for

Anomaly Detection

By

Aditi, 180001002

Jay Bangar, 180001022

Yanamadala Aravind, 180001063

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2022

Design and Analysis of GAN Architecture for
Anomaly Detection

A Project Report

Submitted in partial fulfilment of
the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Aditi, 180001002
Jay Bangar, 180001022

Yanamadala Aravind, 180001063

Guided by:

Dr. Aruna Tiwari
Professor

Computer Science and Engineering
IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2022

II

CANDIDATE’S DECLARATION

�We hereby declare that the project entitled “Design and Analysis of
GAN Architecture for Anomaly Detection” submitted in partial
fulfillment for the award of the degree of Bachelor of Technology in
‘Computer Science and Engineering’ completed under the supervision
of Dr. Aruna Tiwari, Professor, Computer Science and
Engineering, IIT Indore is an authentic work.

Further, we declare that we have not submitted this work for the
award of any other degree elsewhere.

Aditi
Jay Bangar

Yanamadala Aravind

CERTIFICATE BY BTP GUIDE

It is certified that the above statement made by the students is correct
to the best of my knowledge.

Dr. Aruna Tiwari
Professor

Computer Science and Engineering
Indian Institute of Technology Indore

III

Aruna Tiwari
26/5/2022

Stamp

Stamp

PREFACE

This report on “Design and Analysis of GAN Architecture
for Anomaly Detection” is prepared under the supervision of Dr.
Aruna Tiwari, Professor, Computer Science and Engineering,
Indian Institute of Technology, Indore.

Through this report, we have tried to provide a detailed description
of our approach, design, and implementation of the method to address
the problem of Anomaly Detection. We have tried to implement a
vanilla GAN as well as a Wasserstein GAN to train our model and
detect abnormal events.

Aditi
Jay Bangar
Yanamadala Aravind
B.Tech. IV Year
Computer Science and Engineering
IIT Indore

IV

ACKNOWLEDGEMENTS

We wish to thank Dr. Aruna Tiwari for her kind support and
valuable guidance throughout the duration of the project, giving us
an opportunity to work at our own pace along our own lines, while
providing us with very useful directions whenever necessary. We would
also like to thank all the faculty members of the Discipline of Computer
Science and Engineering for their invaluable support and constructive
feedback during the presentations. We wish to express our sincere
gratitude to Mr. Rituraj for his guidance throughout the project and
for helping us at every stage.

Finally, we o↵er our sincere thanks to everyone else who knowingly
or unknowingly helped us complete this project.

Aditi
Jay Bangar
Yanamadala Aravind
B.Tech. IV Year
Computer Science and Engineering
IIT Indore

V

ABSTRACT

In order to maintain public safety, surveillance cameras are

progressively being utilized in public spaces like roadways, crossroads,

banks, etc. Video footage from these cameras helps avoid criminal or

unwanted activities. A large number of people have been employed to

monitor the surveillance system in which unexpected events occur once

in a while. It also needs manual operations to assess the tape for any

unlikely event. This thesis work is meant to provide the initial solution

for this use case using machine learning techniques to avoid using

human resources in monitoring any anomalous activities in surveillance

system recordings.

We use video frames from the past and present to identify

anomalous activity and predict unprecedented future events. We model

a reconstruction-based, One-Class Classifier(OCC) using the Generative

Adversarial Network(GAN) architecture to classify a given dynamic

image frame as anomalous or normal. The prediction model, with one

generator and two discriminators, is trained with only normal samples

and the abnormal or anomalous samples are considered outliers. Thus

when the model receives an abnormal sample(outlier), it is expected

that the reconstructed result would be poor, helping us in detecting the

abnormal frame.

VI

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 3

2 Literature Review 4

2.1 One Class Classification (OCC) . 4

2.2 Generative Adversarial Networks . 7

2.2.1 Preliminary Concepts . 7

2.2.2 Conditional GANs (CGANs) . 10

2.2.3 Wasserstein GANs (WGANs) . 10

3 Design Of GAN Architecture 13

3.1 Generator Architectures . 14

3.1.1 Constrained CNN Encoder-Decoder Generator 15

3.1.2 CNN Encoder-Decoder Generator 17

3.1.3 Constrained CNN Encoder-Decoder Generator with di↵erent
kernel size and latent space . 18

3.2 Discriminator Architectures . 19

3.2.1 Discriminator for the constrained Encoder-Decoder Generator . . 20

3.2.2 Discriminator for the CNN Encoder-Decoder Generator 21

3.2.3 Discriminator for Constrained CNN Encoder-Decoder Generator
with di↵erent kernel size and latent space 21

3.3 Proposed Adversarial Training for the GAN 22

4 Experimentation Details 27

4.1 System Specifications . 27

4.2 Dataset Description . 27

4.2.1 UCSD Peds Dataset . 28

4.2.2 CUHK Avenue Dataset . 29

VII

4.2.3 Data Pre-Processing . 30

4.3 Training of proposed GAN based OCC 31

4.4 Testing of proposed GAN based OCC 32

5 Results and Discussion 36

5.1 Results . 36

5.1.1 Results with constrained encoder-decoder Generator and the
corresponding Discriminator . 36

5.1.2 Results with CNN Encoder-Decoder Generator and the
corresponding Discriminator . 37

5.1.3 Results with constrained encoder-decoder Generator from section
3.1.3 and the corresponding Discriminator 37

5.2 Discussion . 38

6 Conclusion and Future Work 39

Bibliography 41

VIII

Chapter 1

Introduction

Video surveillance is one of the key areas that people have begun to
use for security and monitoring purposes all around the world. Keeping
a watch on unusual or anomalous activities is a vital responsibility in
video monitoring. Since abnormal events are infrequent compared to
normal events, a machine learning-based solution to detect them can
save a lot of time and manpower. As a result, we propose a Generative
Adversarial Network-based One-Class Classifier for anomaly detection
in surveillance footage. We further discuss the motivation for the work
in the subsequent section followed by the objectives of the work.

1.1 Motivation

Surveillance cameras are becoming more common in public settings
such as roadways, junctions, banks, retail malls, private residences,
etc. They help in monitoring the activities of both the commercial and
residential places so that we shall avoid criminal or unwanted activities.
However, law enforcement agencies’ monitoring capabilities have not
kept up. The number of security cameras compared to humans watching
them is quite large, resulting in a significant underutilization of video
footage from surveillance cameras and an impractical camera-to-human
monitor ratio.

Also, anomalous events occur less frequently as compared to normal
ones. As a result, developing sophisticated computer vision algorithms
for automatic anomaly identification will save time and money. The
term “abnormal” literally means “di↵ering from the norm,” notably in
a way that is unwanted or unfavorable and goes against the established

1

rule. Early detection of such events and activities can be extremely
beneficial in life-threatening situations. Tra�c accidents, crimes, and
peculiar actions such as obscuring the cameras are examples of unusual
happenings in video surveillance.

There has been a lot of progress in the field of Abnormal Event
Detection (AED) based on deep learning techniques, which have a lot
of feature extraction capability due to the cascaded and weighted kernel
structures of neural networks. These approaches are typically based
on autoencoder-inspired reconstruction methods that force the training
step to minimize reconstruction errors. These approaches assume that
abnormal events are more error-prone than normal events. However,
as the well-generalized model can reasonably provide fewer errors than
anticipated for anomalous event samples, lowering the reconstruction
error can be seen as a disadvantage in detecting an anomaly of events.
To address this problem, several studies have begun to use adversarial
learning, which involves model training utilizing classification.

In this report, we propose an AED method based on Generative
Adversarial Network (GAN) where we construct a One-Class
Classifier(OCC) based on reconstruction to classify a dynamic image
as abnormal or normal. The suggested method employs adversarial
training for past and future events to predict future dynamic images
using the present dynamic images. This also improves the robustness of
the AED’s predictive model without additional information. Using the
One-Class-Classifier principle, we train our model using only, normal
samples, and as a result, the output will be less accurate when the
model is given an anomalous sample as input. We apply this concept to
create an anomaly score for a dynamic image and then classify it using
that score. The UCSD-Peds dataset and the CUHK Avenue dataset
are used to train and evaluate our model.

In this section, we looked at the inspiration and the proposed
method for the project, the next section will focus on the aim of the
project and how we plan to achieve it.

2

1.2 Objective

The objective of our B.Tech. project is to build a One-Class
Classifier that uses a Generative Adversarial Network (GAN) to
classify a dynamic image frame as normal or abnormal. The di↵erent
sub-objectives to achieve the objective are described below:

a) Preprocessing videos from dataset to be used as an input for
designed models : This involves generating frames from all the
videos of the considered dataset.

b) Generate Dynamic Images of the extracted frames : Dynamic
images are a summarization of consecutive video frames. To reduce
the training over unnecessary frames we pre-process the original
video frames and generate a dynamic for an image cube of eight
consecutive frames.

c) Develop an Architecture for the Generator : We first model an
Encoder-Decoder architecture which we use as Generator for our
GAN model. The generator takes an image(with noise added) of
(160,160,3), encodes it to a latent space, and then decodes it, giving
an image of the same size as the input.

d) Include discriminator(s) to build the GAN Model : A GAN model
has two submodels, Generator and Discriminator. After finalizing
the Generator Architecture, discriminator(s) are added to complete
our GAN model.

e) Tune model hyper-parameters : We change parameters like the
number of epochs, learning rate, and batch size to get the best
possible results.

f) Demonstrate the e�ciency of our model on di↵erent Datasets :
Once the training is done, the model is tested on the UCSD-Peds
dataset and CUHK Avenue dataset.

In this chapter, we discussed how deep learning based machine
learning models can be useful for anomaly detection in video surveillance
and what we aim to accomplish as part of our project. In the next
chapter, we will review multiple studies done in the field of anomaly
detection as well as the fundamentals of One-Class Classification and
Generative Adversarial Networks.

3

Chapter 2

Literature Review

In this chapter, we discuss some of the other works done in the
field of Anomaly Detection. We go through One-Class Classification
and discuss its significance. After this, we will understand the basics of
Generative Adversarial Networks and its extensions. In the following
section, we are going to look at One-Class Classification and some of
the related works.

2.1 One Class Classification (OCC)

In computer vision, there are many problems such as outlier
detection, and anomaly detection consisting of imbalanced datasets.
Generally, the anomalous samples are very infrequent as compared
to normal ones. Hence, binary classification is not the best fit for
such problems as both classes don’t have equal representation. These
challenges fall under the umbrella of One-Class Classification in which
the goal is to train the model in absence of negative samples.

One of the notable methods for One-Class Classification is the
Social Force Model(SVM) proposed by Mehran et al. [1] which
uses interaction force between moving objects for the detection and
localization of abnormal events in videos. This approach focuses
on anomaly detection in crowded videos. To further optimize this
approach, they used PSO (Particle Swarm Optimization). One
drawback of this approach is that the performance is highly dependent
on the hyperparameter setting and it is practically impossible to find
optimal parameters that can cover all the real-world variations.

4

Deep Learning algorithms are also used in several AED(Anomaly
Event Detection) methodologies. These approaches exploit the feature
extraction capacity with the cascaded and weighted kernel structures of
neural networks. Feng et al. [2] have presented one such deep learning
based approach for AED. It proposes an unsupervised feature extraction
method based using a deep representation-based algorithm. Wo et
al. [3] have developed one class neural network DeepOC for anomaly
detection. This model simultaneously learns a one-class classifier and
compact features using CNN. They have evaluated this model on various
datasets like the UCSD dataset, Avenue dataset, etc. The common
thing in these deep learning based models is that the target is to
minimize the reconstruction error in the training step. They also
assumed that abnormal events will produce larger errors than normal
events. The results obtained by these approaches have been better than
many conventional ones. But still, it is really di�cult to construct a
generalized model that takes in all the normal scenarios and is strictly
discriminative for abnormal events.

To address the above issue, several studies started applying
the adversarial learning approaches. Kin et al. [4] proposed
AEP(Adversarial Event Prediction) in which abnormal events are
detected based on event prediction. They have not used any extra data
such as optical flux. It initially derives an event prediction model for the
normal events. During testing, it compares the predicted samples with
the test samples. As the model has only been trained on normal events,
the prediction results will be inaccurate for abnormal events. Having
discussed di↵erent works on One-Class Classification, let us focus on
some of the details of One-Class Classification.

In the Deep End-to-End One-Class Classifier by Sabokrou et al. [5],
the model tries to learn the boundary of two classes by learning the
representation of only one. The goal is to determine whether the query
object belongs to the class on which the model has been trained. Any
sample other than the normal is considered an outlier and is expected to
be outside of the decision boundary estimated by the model. E�cient
data representation is extremely essential for the success of a One-Class
Classifier. Statistical modeling and self-representation learning are the
two most common approaches for solving OCC problems. In statistical
modeling, samples of the target class are mapped to feature space

5

Figure 2.1: One Class Classification

with decreased dimensionality and a maximum likelihood probability
distribution is fitted on such represented samples. Samples that do
not fit this distribution are defined as outliers. In self-representation
learning, the samples are reconstructed on the model trained on only
the target class, and based on the error, the sample is labeled as normal
or anomalous.

OCC consists of two components: R(Refiner) and D(Detector).
The purpose of R is to reconstruct the input samples and to ensure
that generated samples and real samples are indistinguishable. On the
contrary, the purpose of D is to discriminate between real samples and
generated samples. These two neural networks compete with each other,
hence increasing the e�ciency of each other. As the model is being
trained only on samples of one class, therefore, when an outlier sample
is given to model the reconstructed image by R will not be as accurate
as a normal sample, thus producing a larger reconstruction error(LR)
where

LR = ||X �X
0||2 (2.1)

where X is the real input and X
0 is the reconstructed input.

Let X be a test sample given to the model. Then, for a certain

6

predefined threshold t, if D(X) > t, then X is classified as anomaly
sample else otherwise.

OCC has been found to have numerous advantages in many Deep
Learning and Computer Vision problems without which these problems
would have been really di�cult to solve. In the next section, we will
discuss di↵erent GANs and their advantages and di�culties faced in
them.

2.2 Generative Adversarial Networks

In this section, we will discuss the fundamentals of Generative
Adversarial Networks and the problems faced by traditional GANs. We
also look at some of the modifications in these GANs which help us
in overcoming problems faced in traditional GANs. In the following
sub-section, we are going to look at some of the fundamentals of
traditional GANs.

2.2.1 Preliminary Concepts

Generative adversarial networks are a type of generative modeling
that employs deep learning methods and, generative modeling is an
unsupervised learning job, that finds and learns patterns in the input
data samples so that the model might be used to generate new samples
that appear to be drawn from the original dataset. According to
Goodfellow et al. [6], GANs can be used to estimate generative models
through an adversarial process in which two models are trained at the
same time: a generative model G which captures the data distribution,
and a discriminative model D which approximates the likelihood that
a sample came from the training data instead of the generative model
G. The purpose of G’s training is to make D more likely to make a
mistake. This is equivalent to a two-player min-max game.

For learning the generator’s distribution pg over data distribution x,
we here define an input noise variable as pz(z), then represent a mapping
to data space as G(z; ✓g), where G is a function that is di↵erentiable and
represented by a multi-layer perceptron network with parameters ✓g. A
second multi-layer perceptron D(x; ✓d) is also defined that outputs a
single scalar. D(x) estimates the probability that x came from data
distribution rather than pg. D is trained in such a way that it should

7

optimize the likelihood of correctly labeling both training and generated
samples from G and simultaneously G is trained to minimize the value
of log(1�D(G(z))). Here we can say that in a way, D and G are playing
the below two-player minimax game with a value function represented
by V (G,D) :

min
G

max
D

V (G,D) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z))]

(2.2)

Below is the algorithm for the learning of generator G and
discriminator D:

The creators of LAPGAN(Denton et al.) [7] were motivated
to build an alternative way to iteratively upgrade low-resolution
produced pictures that can be modeled more consistently after several
failed attempts to scale up GANs using CNNs to model images.
Attempting to scale GANs using CNN architectures typically employed
in the supervised literature also proved challenging. Modifying the
below-suggested changes mentioned in the paper by Radford et al. [8]
in CNN architectures allowed to obtain stable training and higher
resolution for deeper generative models:

1. The All convolutional net (Springenberg et al.) [9] uses strided
convolutions to replace spatial pooling layers.

2. To eliminate FCNN layers on top of convolutional features and
build a middle ground of directly linking the highest convolutional
features to the generator and discriminator’s input and output,
respectively.

8

3. To use batch normalization (Io↵e et al.) [10] which stabilizes the
process of learning. This helps the networks to converge faster and
helps in gradient flow.

4. The generator uses Rectified Linear Unit (Nair et al.) [11] activation
except at the output layer, where Tanh activation is employed. This
restricted activation aids the model’s learning speed.

5. For all the layers in the discriminator Leaky ReLU is used to work
e↵ectively, particularly for higher resolution modeling.

The model for DCGAN utilized in the LSUN study is shown below,
which takes a 100x1 noise vector, indicated by Z, and translates it into
the G(Z) output, which is 64x64x3.

Figure 2.2: Generator using DCGAN architecture employed in LSUN paper [8].

Even though GANs have been applied successfully in many domains
and tasks, working with them in practice is challenging because of their
unstable optimization procedure, the potential for mode collapse, and
di�culty in evaluation. To address these challenges there has been a
significant amount of work put into developing new architectures and
regularization schemes, one of them is Conditional GANs which will be
discussed in the next sub-section.

9

2.2.2 Conditional GANs (CGANs)

One of the most common problems encountered in the traditional
GANs is that the model takes a long time to converge and in many
cases, keeps oscillating and never converges. Furthermore, there is no
control over the kind of data generated. Since 2014, there have been
several modifications to the GAN architecture. One such improvement
is CGANs. Conditional GANs are an extension of normal GANs and
help us in addressing the above-mentioned problems.

Introduced in 2014 by Mirza et al. [12], they are generative
adversarial networks whose Generator and Discriminator are trained by
using some additional information. This could be the class of the current
image or set of specific characteristics we expect from the output.
Adding the information about properties controls the output and directs
the Generator to produce the expected output. In Conditional GAN,
the job of the discriminator is not only to di↵erentiate between real
data and predicted data but also to check if predicted data matches the
information provided. The advantage of using Conditional GAN is that
convergence will be faster and the output generated will be relevant to
the information provided rather than being completely random, Also,
the discriminator will be able to distinguish real and generated data
better.

Both regular GAN and CGAN have identical loss functions. The
min-max loss function can cause the GAN to get stuck in the early
stages of GAN training when the discriminator’s job is very easy. Also,
the issue of vanishing gradients is prominent, where the discriminator is
perfect thus making the loss to be zero which results in no gradient to
update the weights during the learning of the model. Another downside
of CGAN is that they are not completely unsupervised and require
labels to function. In the next sub-section, we discuss another improved
version of GAN- Wasserstein GAN.

2.2.3 Wasserstein GANs (WGANs)

Problem of Mode Collapse: Ideally, a well-trained generator
can generate a wide variety of outputs. Mode Collapse refers to the
situation in which regardless of input, the Generator can only produce
single output or a small selection of outputs. This could happen due to

10

various training issues such as the generator discovering the data that is
able to fool the discriminator and thus, continue generating that data.

Problem of Vanishing Gradient: Vanishing gradient refers to
the situation in which a deep multi-layer feed-forward network is not
able to propagate useful gradient information from the output end back
to the input end of the model. As a result, the model may not be trained
properly and get converged early to a poor solution. The reason for
this problem is that as the gradient flows backward, it keeps on getting
smaller and smaller. Sometimes, it gets so small that initial layers (near
the input end) learn very slowly or may not learn at all. Therefore,
weights will not be updated and hence overall training of the model
will be stopped.

Both normal GAN and CGAN exhibit the above-mentioned
problems. To overcome these issues, Wasserstein GANs were introduced
in 2017 in [13]. WGAN provides better stability while training the
model. It also provides a better approximation of the distribution of
data observed in a given training dataset. Unlike the normal GAN
in which we use a discriminator to predict the images as real or
fake, WGAN uses the critic that measures the realness or fakeness
of the image. The idea behind this change is that the purpose of
training the generator should be to minimize the di↵erence between
data distributions of training data and generated data.

In Wasserstein GAN, we use Wasserstein loss which is based on
Earth-Mover’s distance instead of using Binary Cross-Entropy(BCE)
loss. The Earth-Mover’s distance is a measure of distance between two
probability distributions over some region D. The EM(Earth-Mover’s)
distance is continuous and di↵erentiable which means that the critic can
be trained to optimality. If the discriminator does not get stuck on local
minima, then it will reject the output that the generator stabilizes upon
and hence generator would have to try something new. Therefore, the
problem of mode collapse is solved using Wasserstein GAN. As the EM
distance is di↵erentiable, therefore the problem of vanishing gradients
is also solved. As the critic should satisfy the 1-Lipschitz constraint,
we have used weight clipping. The algorithm of WGAN is mentioned
below:

11

Although, it has been observed that training is slower in WGAN
as compared to normal GAN but still the former is preferred due to its
numerous advantages like improved stability, getting rid of problems like
mode collapse, and vanishing gradient. In our project, we have made
use of both DCGAN and Wasserstein GAN as mentioned in further
chapters.

In this chapter, we discussed various concepts like One-Class
Classification, GAN, Conditional GAN, Wasserstein GAN, etc. We
also reviewed multiple studies done in the field of anomaly detection.
In the next chapter, we are going to discuss the design of our proposed
GAN-based OCC models. We discuss the architecture of our models in
detail and also the theoretical basis of the adversarial training of these
models.

12

Chapter 3

Design Of GAN Architecture

In this chapter, firstly we will discuss di↵erent architectures
of two sub-models of GAN, the generator and its corresponding
discriminator(s). Following that, we will look at how both of the
sub-models are trained adversarially as well as how we build a
GAN-based OCC to detect anomalous dynamic image frames.

Figure 3.1: Working of GAN

Figure 3.1 shows the basic concept behind the working of GAN,
the purpose of the Generator is to generate plausible real samples
from a random latent space vector while the discriminator’s role is
to di↵erentiate between real and generated samples. In the next
section, we will discuss constrained as well as unconstrained Generator
architecture with varied kernel sizes.

13

3.1 Generator Architectures

A generator typically takes a normal random vector as an input
and outputs a sample in the real domain, but since we are working on
OCC based on reconstruction, the input to our Generator is a normal
dynamic image and its output is also an image of the same size. Before
we begin discussing the Generator architecture, let’s take a brief look
at CNN.

Convolutional Neural Net or CNN is a class of deep feed-forward
artificial neural networks mostly used for the analysis of visual imagery.
CNN provides an e�cient dense network to detect distinct features
from images all by itself, without any human intervention. CNN
uses convolution operations with di↵erent kernel sizes and the number
of filters on images to reduce in a form that is easier to process.
There are multiple layers like Convolutional Layer, Pooling Layer, Fully
Connected Layer, etc. in a CNN model, each used for a di↵erent
purpose.

The Generator described by Yu et al. [4] is built with 3-Dimensional
CNN and a fully connected Neural Network. The 3D CNNs are used
to collect both the spatial and temporal representations of the event
samples concurrently. The input to that generator is n consecutive
video frames. The Generator is made up of an encoder, followed by a
decoder, following the idea of an autoencoder where the first Encoder
half, reduces the dimensionalities of an input frame to constrained
latent space, and the next Decoder half takes this latent space as input
and performs the decoding process (using deConvolution Layers) and
restores the old dimensions of the frames.

As we want to process a single dynamic image instead of multiple
consecutive frames, we make use of a 2D CNN architecture for our
generator. We have worked upon three Generator architectures, each
di↵erent from the others. In the following subsection, we consider
an autoencoder-based generator architecture with a constrained latent
space.

14

3.1.1 Constrained CNN Encoder-Decoder Generator

The architecture for our first generator comes from the paradigm
of Auto-Encoders(AEs). In any auto-encoder, the encoder part
approximates the input to a latent space Z, and the decoder models
the output from this latent space. But in traditional AEs there is
no restriction on the manifold Z. Variational Auto-Encoder(VAE)
[14] constrains the latent space Z by requiring AE’s encoder and
decoder to parameterize an approximation to posterior distribution
q(z) ⇠ N (zµ, z�) in the latent space. A VAE tries to map q(z) to
a prior distribution p(z) (usually a normal distribution) by minimizing
the Kullback-Leibler(KL) divergence [15] between the two distributions.
Thus along with the reconstruction error, we also add this regularisation
term to our generator’s loss function.

Baur et al. [16] have also used the GAN with VAE to overcome the
instability of GAN training and enable faster feed-forward inference,
which they successfully exploited for anomaly detection in brain MRI.
Sabokrou et al. [5] also use the KL divergence metric to restrict the
latent space from the encoder in the generator to a normal distribution
to create a deep end-to-end OCC to detect anomalies.

Figure 3.2: Architecture details of constrained Generator R.The kernel dimensions of each
layer are shown in the figures above and below the boxes while each layer’s input or output
is represented by the figures inside each box.

The proposed generator in Figure 3.2 includes multiple
convolutional layers as the Encoder, in Purple, followed by a fully
connected latent space layer, in Green, and then Deconvolutional layers
for the Decoder, in Yellow.

15

In the first three layers of the encoder of the Generator, the number
of filters increases while the input image’s width and height reduce
by half at each layer, and in the last layer of the encoder, the filters
are decreased reducing the number of variables. The output is then
flattened and sent as input to the fully connected layer.

The output vector, of size 6400, from the fully connected layer,
is reshaped to (20,20,3). After reshaping, in the first layer of the
decoder, the number of filters is increased (in response to the decrease
of filters in the last layer of the layer). Following that there are three
deconvolutional layers where the number of filters decreases to three in
the output layer while the image dimensions double at each layer giving
the final output from the generator to be the same as that of the input
image.

The kernel size and strides at each layer, apart from the last layer
of the encoder and decoder, are (5,5) and (2,2) respectively. In the last
layers of the encoder and decoder, only the number of filters is changed
so the kernel size and strides are set to (1,1). For improving the stability
of the network similar to [8], we do not use any pooling layers in this
network. After every convolutional and deconvolutional layer, a batch
normalization layer is added to regularize the output from the previous
layer and minimize the inter-dependency between the layers. After each
batch normalization layer, a LeakyReLU activation (with ↵ = 0.2) layer
is added.

While the LeakyReLU (y = max(↵x, x)) activation in the last
layer gives the output intensities of images in the complete real
line, we wanted to experiment with constrained output spaces for
the reconstructed image, thus the generator was also modeled with
two di↵erent activation functions in the last layer of the decoder,
namely “Sigmoid Activation” and “Tanh Activation”, which confined
the individual pixel intensities of the output image to [0,1] and [-1,1]
respectively. Thus we get three submodels of the Generator each with
di↵erent activation functions in the last layer.

The above mentioned are the architectural details for the restricted
encoder-decoder Generator based on CNN. An image with added
Gaussian noise is fed to the generator as input. The noise is
added so that our model becomes robust toward unwanted noise and

16

corruption. In the following subsection, we discuss an unconstrained
encoder-decoder based generator with kernel dimensions di↵erent from
the generator described above.

3.1.2 CNN Encoder-Decoder Generator

As shown in figure 3.3, the Generator comprises of encoder and
decoder. The CNN layers visible in purple makes up the encoder
whereas the yellow ones are the decoder layers. The input to the
Generator is the image with added Gaussian noise. In the encoder,
the number of filters increases with layers, and the size of the input
image keeps on reducing by half. In the decoder, the reverse happens.
The number of filters keeps decreasing and the size of the input image
increases as we progress through various deconvolutional layers. The
final output image produced by the generator is of the same dimensions
as the input image.

Figure 3.3: Architectural details of the unconstrained encoder-decoder Generator R. The
kernel dimensions of each layer are shown in the figures above and below the boxes while
each layer’s input or output is represented by the figures inside each box.

The kernel size at each layer of the Generator except the last
layer is (6,6). We tried a di↵erent kernel size like (5,5) in the previous
Generator mentioned in 3.1.1. Generally, increasing the kernel size
increases the number of parameters which helps the model address
more complex problems. However, when we increase the kernel size,
it leads to the loss of smaller details or features. Therefore, the idea

17

behind trying di↵erent kernel sizes is to find the optimum value.

After each layer, a batch normalization layer is added to stabilize
the learning process. Each batch normalization layer is followed by
the LeakyReLU activation layer. The last layer of the decoder has
experimented with three di↵erent activation functions - “LeakyReLU”,
“Sigmoid” and “Tanh”.

The above details are for the CNN Encoder-Decoder Generator.
The major di↵erence between this Generator and the one mentioned
in section 3.1.1 is the absence of a dense layer between Encoder and
Decoder and the change in kernel size. In the following subsection, we
discuss a constrained generator with kernel dimensions di↵erent from
the generator described above and an additional latent space layer.

3.1.3 Constrained CNN Encoder-Decoder Generator with
di↵erent kernel size and latent space

The architecture of the Generator R, shown in figure 3.4, is
modeled with 2D CNNs which inspired by architecture mentioned in
Yu et al. [4], that includes computationally expensive 3D-CNNs that
are divided into two halves encoder and decoder. The layers of CNNs
in blue makes the encoder that captures the spatial information and
the layer in green represents a Fully Connected Neural Network(FCNN)
which is used for abstracting the learned representation by CNNs in the
encoder. The layers in yellow represent the De-convolutional (DeCNN)
layers that make up the decoder. The input image to generator G is
added with Gaussian Noise to increase the robustness of the generator.
The output of the encoder is fed into latent space (FCNN), which after
abstracting the representation is passed to the decoder. As the filters
in the encoder increase, the size of the image reduces with each layer
whereas the filters in the decoder reduce and the size of the image
increases with each layer generating the final output image with the
same dimensions as the input image.

This architecture has a kernel size of (4,4) at each layer in the
encoder and decoder whereas the previous subsections 3.1.1 and 3.1.2
have a kernel size of (5,5) and (6,6) respectively. Pooling layers are
avoided to increase the stability of the network and a normalization
layer is used to regularize the output from the previous layer. We also

18

Figure 3.4: Architectural details of restricted CNN Encoder-Decoder Architecture used as
Generator R. The kernel dimensions of each layer are shown in the figures above and below
the boxes while each layer’s input or output is represented by the figures inside each box.

experimented with di↵erent activation functions in the final layer of the
decoder namely LeakyReLU, Tanh, and Sigmoid.

Until now we have examined three models for the generator of our
GAN now, in the next section, we will discuss the second and final
component of a GAN, the discriminator. In the following section, we
will explore three architectures for the discriminator, one for each of the
three generators described in section 3.1.

3.2 Discriminator Architectures

The discriminator in a Deep Convolutional GAN model is a
simple classifier that determines whether a given input image is
real or generated from the Generator. In our model, we have two
discriminators. Past discriminator DP and Future discriminator DF

distinguish whether the dynamic image frame from the generator is
the future or past dynamic image frame. The discriminators generate
binary values that indicate whether an input frame is future or past
and fake or not. For each generator architecture mentioned in Section
3.1, we have a di↵erent discriminator architecture. DF and DP for any
single generator are exactly the same in terms of the model architecture,
the only di↵erence is their loss function during the training phase.

The architectural details of each of the three discriminators for
the corresponding generators are described in the following subsections,
first, we look at the discriminator for the constrained generator
described in section 3.1.1.

19

3.2.1 Discriminator for the constrained Encoder-Decoder
Generator

First three layers in the discriminator are the same as the initial
three layers from the restricted generator in section 3.1.1. Following
that, we have one additional convolutional layer succeeded by a fully
connected output layer to predict the likelihood in the range [0,1], of
the image being real or fake. Figure 3.5 shows the architectural details
of both the discriminators.

Figure 3.5: Structural details of discriminators DF and DP for the constrained Generator
described in section 3.1.1

The kernel size and strides at each layer, are (5,5) and (2,2)
respectively. After every convolutional layer, a batch normalization
layer is added to regularize the output from the previous layer and it
is followed by a LeakyReLU activation (with alpha = 0.2) layer. In
the final output layer, Sigmoid activation is used to give the target
likelihood of the image. Having discussed the discriminator(s) for the
constrained generator from section 3.1.1, in the next subsection we will
look into the discriminator architecture for the unconstrained generator
from section 3.1.2

20

3.2.2 Discriminator for the CNN Encoder-Decoder
Generator

As shown in figure 3.6, the first three layers of Discriminator are
the same as the first three layers of the encoder section 3.1.2. There
is one extra convolutional layer present followed by a fully connected
dense layer to predict the likelihood of the image being real or fake.

Figure 3.6: Structural details of discriminators DF and DP for the CNN Generator described
in section 3.1.2

The kernel size is the same as CNN Encoder-Decoder Generator i.e.
(6,6). A batch normalization layer followed by a LeakyReLU activation
layer is present after every convolutional layer. In the dense layer,
Sigmoid activation provides the likelihood of the input image being
fake or real. Now in the next subsection, we look at discriminator
architecture corresponding to the constrained generator from 3.1.3

3.2.3 Discriminator for Constrained CNN Encoder-Decoder
Generator with di↵erent kernel size and latent space

As shown in the figure 3.7, the first four layers in the discriminator
are the same as that of the initial four layers in the encoder of
the constrained Generator with di↵erent kernel size and latent space
mentioned in section 3.1.3 and a fully-connected layer with Sigmoid
activation is added at the end to estimate the likelihood of the image
being real or fake.

21

Figure 3.7: Structural details of discriminators DF and DP for the constrained Generator
described in section 3.1.3

The kernel size and strides at each layer are (4,4) and (2,2)
respectively. Batch normalization is used after each layer followed by a
LeakyReLU activation layer. With this discriminator architecture, two
discriminators one for past events (DP) and the other for future events
(DF) are modeled.

We’ll see how the aforementioned generators and discriminator(s)
combine to form our proposed GAN in the next section. We will also
discuss the loss functions for each of the three models, R, DF and DP ,
and how they are trained adversarially.

3.3 Proposed Adversarial Training for the GAN

In this section we describe how the above-mentioned Generator and
Discriminator architectures constitute the overall GAN architecture.
The proposed GAN architecture, as mentioned earlier, is inspired by
the 3D architecture by Yu et al. [4] consisting of one Generator R and
two Discriminators, Past Discriminator DF and Future Discriminator
DP .

Figure 3.8 shows how the 2D generators, from section 3.1 and
discriminator, from section 3.2 interact with each other in an adversarial
manner to form our end-to-end one-class classifier based on GAN.

22

Figure 3.8: Structural details of the OCC based on GAN

The encoder in Generator R, maps the input dynamic image frame
XC to a latent space and then the decoder generates the prediction
image X̄ using those latent features. To improve the robustness of the
model Gaussian noise ⌘ is added to XC. Thus R is represented by

R(XC + ⌘) = X̄ (3.1)

Where ⌘ is sampled from N (0, �2
I). For the rest of the report, we

will use N� to denote the noise model. The predicted sample X̄ is given
to the two discriminators, DF and DP which produce scalar values on
the Euclidean space representing the input sample’s likelihood for past
or future and real or fake.

The future discriminator DF is defined as:

DF(X (⇤)F) = v
DF

, v
DF

✏ R1 (3.2)

23

where v
DF

is the output of DF and X (⇤)F represents the input to DF ,
it can be the real future dynamic image frame XF or the predicted
future image frame X̄ . By evaluating the confidence value for identifying
whether a given frame is the ground truth, vD

F
determines whether a

particular sample is the predicted outcome or the ground truth.

DP is defined as follows:

DP(X (⇤)P) = v
DP

, v
DP

✏ R1 (3.3)

where v
DP

is the output of DP and X (⇤)P can be as XP , the real past
dynamic image frame or X̄ . The structure of DP is the same as that of
DF .

The suggested adversarial learning is based on metric learning,
in which it is usual to employ both positive and negative samples
when building a model to increase the discriminative nature of learned
features. In our model, the future frame XF act as the positive
sample, and the past event frame XP act as the negative sample. By
confining the representation learning for previous events and applying
the intended adversarial learning for past and future events, the model
can produce a more discriminative representation for anticipating the
event’s future.

The loss function for DF for the proposed adversarial learning is
defined by:

LDF = EX C⇠pXC+N�
[DF(R(XC))]� EXF⇠pXF [D

F(XF)] (3.4)

where XC is the current dynamic image frame with Gaussian noise for
which we want to predict the future, XF denotes the target future
dynamic image frame corresponding to XC.

The loss function for the past discriminator with past dynamic
image frame as XP is defined as follows:

LDP = EX C⇠pXC+N�
[1�DP(R(XC))]� EXP⇠pXP [1�DP(XP)] (3.5)

The prediction results X̄ are generated by the generator R, and the
discriminators check them for legitimacy. DF determines whether each

24

sample it examines pertains to the real future or the generated results,
and DP determines if each sample it examines belongs to the predicted
results or the real past.

The objective of their loss functions appears to be the
distinguishing factor between LDF and LDP . The purpose of LDF

is to maximise D(XF). The goal of LDP , on the other hand, is to
minimize D(XP), which is the inverse of LDF .

The loss function for adversarial learning of R is defined as

LR = EX C⇠pXC+N�
[DF(R(XC))] + EX C⇠pXC+N�

[1�DP(R(XC)] (3.6)

To optimize R, we integrate the reconstruction error in addition to
adversarial learning of future and past frames. The minimizing of the
reconstruction error based on the pixel-wise mean square error(MSE)
is an e�cient way of ensuring that the generator’s expected output is
close to the target. MSE is calculated as:

Lre = EX C ,XF ||XF �R(XC)||22 (3.7)

In addition, to force the output Z(from the encoder) to follow from
Gaussian distribution, the KL Divergence termKL(z||N (µ1, �1)) is also
added to the loss function of the generator.

As a result, when optimizing the generator R, the loss function is
defined by

LR⇤ = LR + Lre +KL(z||N (µ1, �1)) (3.8)

Each discriminator and the generator, are trained by maximizing
or minimizing the loss function that corresponds to them. The weight
update rule for each of them is defined as:

✓DF = ✓DF + ↵
dLDF

d✓DF
, ✓DP = ✓DP + ↵

dLDP

d✓DP

✓R = ✓R + ↵
dLR

d✓R

25

where ✓
⇤ represents the parameters corresponding to the generator R

and the discriminators DF , and DP and ↵ denotes a learning rate in
updating each parameter using the gradient of the three-loss functions.

After looking at several generators and their correpsonding
discriminator architectures, we address the theoretical basis of
adversarial training of these models in this chapter. Now, in the
following chapter, we’ll look at development environment settings,
datasets used for training and testing the model, and additional training
details.

26

Chapter 4

Experimentation Details

In this chapter, we look at the two datasets we have worked upon,
namely, UCSD Peds and CUHK Avenue in depth. Following that, we
will discuss the training and testing of our proposed model with both
DCGAN and WGAN and with di↵erent loss functions. But before
that, we will discuss the environmental setup for implementation of the
proposed GAN based One-Class Classifier in the next section.

4.1 System Specifications

The Google Colaboratory is used as the platform to perform
experiments evaluation. To reduce the training time we have used the
google colaboratory’s default “NVIDIA Tesla K80” GPU with 12 GB
of RAM. The algorithms were implemented in Python version 3.7. We
also make use of python exclusive libraries and packages like Tensorflow
version 2.8, and Keras version 2.8 to develop the deep learning model.
In the next section, we will take a look at the two datasets which we
have worked upon for training and testing our model.

4.2 Dataset Description

A key step in developing a good machine learning model for a problem
is selecting a good dataset to train and test the model. As we are
developing an OCC model, the training videos in each dataset contain
only normal events while the testing videos contain both normal and
abnormal events which help us to evaluate our model for accuracy.
Due to limitations in the system configuration and lack of time for
development, we have worked on just two anomaly detection datasets,

27

UCSD Peds [17] and CUHK Avenue Dataset [18]. The datasets are
further described in further subsections.

4.2.1 UCSD Peds Dataset

The UCSD(University of California San Diego) anomaly detection
dataset was obtained by mounting a stationary camera at an elevation,
looking over the pedestrian walkways. The density of pedestrians varies
from very crowded to sparse. The normal events in the videos are when
only pedestrians are in the frame while the abnormality in the videos
comes from, non-pedestrian entities in the videos and anomalous motion
patterns from the pedestrians.

(a) Peds1 - Normal Frame (b) Peds1 - Abnormal Frame(Cyclist)

(c) Peds2 - Normal Frame (d) Peds2 - Abnormal Frame(Cart)

Figure 4.1: UCSD Peds Dataset: Example dynamic image frames

Bikers, skaters, small carts, and people walking on a walkway or in
the grass that surrounds it are all common abnormalities. There were
also a few cases of people in wheelchairs. The recorded video footage

28

from each scene was clipped into di↵erent clips of nearly 200 frames
each. The dataset was divided into two parts, Peds1 and Peds2. The
Peds1 dataset contains 34 training videos (6800 frames in total) and 36
testing videos (7200 frames in total) while the Peds2 contains 16 training
videos (2550 frames in total) and 12 testing videos (2010 frames in total)
samples. For each frame, we have a binary flag ground truth annotation
telling us if a particular frame is normal or anomalous. Figure 4.1 shows
two example frames from UCSD Peds1 (a) a normal frame which does
not contain any anomalous event (b) an abnormal frame in which a
cyclist riding on the pedestrian walkway which is an anomalous event,
and two example frames from UCSD Peds2 (c) a normal frame which
do not have any anomalous event (d) an abnormal frame in which a cart
coming on the pedestrian walkway is considered an anomalous event.
In the following subsection, we will look into another standard anomaly
detection dataset, the Avenue Dataset.

4.2.2 CUHK Avenue Dataset

The Avenue Dataset is from The Chinese University of Hong
Kong(CUHK). The videos for this dataset are recorded in CUHK
campus avenue. The dataset contains 16 training videos(15328 frames in
total) and 21 testing video clips(15324 frames in total). The resolution
of each video is 360 ⇥ 640. The dataset features a number of di�cult
challenges, including camera shake, outliers in training films, and the
lack of motion in training videos.

(a) Normal Frame (b) Abnormal Frame(Throwing)

Figure 4.2: Avenue Dataset: Example dynamic image frames

29

Figure 4.2 shows two example frames from the CUHK Avenue
dataset (a)a normal frame which does not contain any anomalous even
and (b) an abnormal frame in which a person performing strange action
throwing which is considered an anomalous event. Here also we make
use of frame-level annotations, a binary flag depicting if a certain frame
is anomalous or not. Now as the extracted frames from both these
datasets are large in number and the frames from the Avenue dataset
di↵er in size from the UCSD Peds, thus we perform pre-processing
over the datasets, which will be discussed in further detail in the next
subsection.

4.2.3 Data Pre-Processing

A video is a stack of still images and many of these still images
are very close to each other especially when they are consecutive
frames. Thus we can say our model trains on redundant frames. To
mitigate the use of unnecessary frames we pre-process the frames from
the above-mentioned datasets we make use of dynamic images [19].
Dynamic images are a summarization of eight consecutive video frames.
These consecutive frames are ranked using some ranking mechanism
such as rank-SVM and then passed through convolutional layers and
fully connected layers to get a single dynamic image of the 8 frame
cube.

So we obtain the dynamic frames for all of our datasets. After
dynamic imaging, the size of the Peds1 dataset was reduced to 850
training frames and 900 testing frames while the size of Peds2 reduces
to 310 training frames and 245 testing frames and for the Avenue
dataset, we get 1906 dynamic image frames for both the testing and
training dataset. Once the dynamic images are obtained, they are
resized and normalized to 160 ⇥ 160 and [0,1] respectively to maintain
the consistency of our model throughout di↵erent datasets. After
pre-processing of the datasets is completed, we look at the training
details of the GAN based OCC in the next section.

30

4.3 Training of proposed GAN based OCC

This section contains the details of the training of our models based
on architectures mentioned in Section 3.1 and section 3.2.

We started by implementing normal DCGAN which comprises
a Generator and Discriminator(s). We experimented with di↵erent
models by making variations in Generator and Discriminator (For
example - changing the kernel size, removing the dense layer between
encoder and decoder, altering the activation function in the last layer
of decoder, etc.).

For the loss functions of Generator and Discriminator, we made
use of the Binary Cross-Entropy (BCE) loss function. BCE is the
most common loss function for Binary Classification. It compares
the predicted probabilities to the actual label and then penalizes the
probabilities. The penalty is directly proportional to the di↵erence
between the actual label and predicted probabilities. Mathematically, it
can be defined as the negative average of the log of corrected predicted
probabilities. We use Mean Squared Error (MSE) loss to calculate
reconstruction loss.

The optimization algorithm used is the Adam optimizer. It is the
optimization algorithm that is an improvement of normal stochastic
gradient descent. The major application of this algorithm is in solving
problems involving large data or a lot of parameters. We used the
in-built function available in Python for Adam Optimizer for the
learning rate of 0.00015.

After this, we tried a di↵erent loss function called Squared Hinge
loss function. It is di↵erent from Binary Cross-Entropy (BCE) as along
with wrongly classified labels, it also penalizes the correct labels within
a defined margin from the decision boundary. With this loss function,
we used the same optimizer (Adam Optimizer) keeping the parameters
set the same. Note that both the loss functions (BCE and Squared
Hinge) have been used on normal DCGAN implementation.

Moving forward, we experimented with WGAN due to certain
advantages it has over DCGAN. WGAN solves the problems like
vanishing gradient and mode collapse which are generally faced in
normal GAN. Further details about this have been already mentioned

31

in the second chapter. In Wasserstein GAN, for discriminator loss
functions we have used reduce mean loss function. For the generator,
the loss function is BCE (Binary Cross Entropy). The optimizer used for
WGAN implementation is RMSProp(Root Mean Squared Propagation)
with a learning rate of 0.00005 for the Generator and Adam for the
discriminator. RMSProp helps in faster convergence and accelerates
the optimization process.

Having discussed the training details, in the next section we will
see the testing procedure of our GAN-based OCC, how an appropriate
threshold value is estimated to mark a frame as normal or abnormal,
and how we proceed to calculate the classification accuracy.

4.4 Testing of proposed GAN based OCC

The trained generator R predicts the future frame for the current
input frame from the testing dataset which contains both normal and
abnormal frames. As the model has only been trained on normal
event samples, if the input frame is anomalous, the predicted frame
is reconstructed with either a lower likelihood or a higher error.

For the input frame, XC the generator R predicts the future frame
X̄, and abnormal events can be detected by comparing the predicted
output X̄ with their respective target frames XT in the test step. Now
the absolute di↵erence between predicted future frame X̄ and target
frame X

T is obtained and convolution is performed on the di↵erence
matrix (d) to mark anomalous pixels with the help of neighboring pixels.
So having each anomalous pixel marked as shown in figure 5.1, the
anomalous pixel percentage in the predicted frame X̄ is calculated and
used to estimate the appropriate threshold ⌧ .

As the model is only optimized for normal event frames, there would
be a significant di↵erence in anomaly percentages for an abnormal event
frame when compared with a normal event frame. With the help of this
larger error, a threshold ⌧ is estimated as below

OCC(x) =

(
Normal event if Fxn(x)  ⌧

Abnormal event otherwise

⌧ represents the threshold, x represents the samples of input, and Fxn

32

is the model trained only on normal events.

(a) Plot of Accuracy Vs Threshold on UCSD Peds2 dataset with WGAN implementation

(b) Plot of Accuracy Vs Threshold on UCSD Peds2 dataset with DCGAN implementation

Figure 4.3: Accuracy Vs Threshold Percentage plots

For estimating the best threshold ⌧ , accuracy is calculated for
various thresholds with small increments and plotted for all the model
architectures and two of them can be seen in figure 4.3(a) shows the plot

33

of accuracy in percentage vs threshold with WGAN implementation
and Tanh activation used in the final layer of decoder and figure 4.3(b)
shows the plot of accuracy in percentage vs threshold with DCGAN
implementation and Sigmoid activation used in the final decoder layer.

Figure 4.4: UCSD Peds1: Future frame prediction and anomaly detection(truck in the
pedestrian walkway) is marked in red-colored pixels

Figure 4.5: UCSD Peds2: Future frame prediction and anomaly detection(cart in the
pedestrian walkway) is marked in red-colored pixels

Figure 4.6: CUHK Avenue: Future frame prediction and anomaly detection(strange action
by a person) is marked in red-colored pixels

34

The input image in figure 4.4 is from testing data of the UCSD
Peds1 dataset, and we can see a truck coming into the pedestrian
walkway, which is an anomalous event and is marked in red pixels by
our model. For the input image from testing data of the UCSD Peds2
dataset in figure 4.5 observe that a cart coming into the pedestrian
walkway is an anomalous event and our model marks it with red-colored
pixels. Similarly for an input image from the CUHK Avenue dataset
shown in figure 4.6 a person throwing papers which is a strange action
is identified by our model and marked in red-colored pixels.

Having discussed about the training and testing details, in the next
chapter, now we will discuss the observed accuracy results on the two
datasets and following that we will also take a look at some challenges
faced while developing our model and how we overcame them.

35

Chapter 5

Results and Discussion

We use classification accuracy as an evaluation metric to test
our model e�ciency. As mentioned in section 4.4, we determine an
appropriate threshold percentage, based on the number of anomalous
pixels in the frame, to classify any frame as normal or abnormal. As we
already have the ground truth labels of each frame, we cross-verify with
the predicted label and calculate the accuracy of the model. Following
the results, we also discuss some obstacles while developing the models
and how we tried to tackle those.

5.1 Results

We state results in the same order as we mentioned the generator
architectures in section 3.1, also with each generator we experiment
with three di↵erent activation functions in the last layer, so we provide
the accuracy measures for each of them in a tabular form in the
following sections. Before working on the WGAN algorithm, we begin
our experiment on the Peds2 dataset with the DCGAN algorithm, the
corresponding results are also mentioned in the following subsections.

5.1.1 Results with constrained encoder-decoder Generator
and the corresponding Discriminator

The following results for the generator from section 3.1.1 and
its corresponding discriminator show that in LeakyReLU activation
gives better accuracy in comparison with Sigmoid and Tanh activation
functions for DCGAN on the UCSD Peds2 dataset. For the WGAN,
LeakyReLU performs better on UCSD Peds, while with the Avenue
dataset, both Sigmoid and Tanh activation functions give similar results

36

better than the LeakyReLU activation function.

Activation Function DCGAN WGAN
UCSD Peds2 UCSD Peds1 UCSD Peds2 CUHK Avenue

Sigmoid 79.59% 63.0% 80.0% 72.66%
LeakyReLU 80.8% 64.11% 80.4% 72.61%

Tanh 79.59% 62.77% 79.59% 72.66%

Table 5.1: Performance of our OCC model with Generator from section 3.1.1 and
Discriminator from section 3.2.1 over di↵erent datasets

5.1.2 Results with CNN Encoder-Decoder Generator and the
corresponding Discriminator

The following results for the generator from section 3.1.2 and its
corresponding discriminator show that LeakyReLU and Tanh activation
functions give better accuracy in comparison with Sigmoid activation,
for DCGAN on the UCSD Peds2 dataset. For the WGAN, Sigmoid
performs better on UCSD Peds1 while Tanh gives superior results with
Peds2 and for the Avenue dataset, LeakyReLU gives the best results.

Activation Function DCGAN WGAN
UCSD Peds2 UCSD Peds1 UCSD Peds2 CUHK Avenue

Sigmoid 79% 62.22% 79.18% 72.51%
LeakyReLU 79.18% 61.78% 79.18% 72.77%

Tanh 79.18% 58.89% 84.89% 72.46%

Table 5.2: Performance of our OCC model with Generator from section 3.1.2 and
Discriminator from section 3.2.2 over di↵erent datasets

5.1.3 Results with constrained encoder-decoder Generator
from section 3.1.3 and the corresponding Discriminator

The following results for the generator from section 3.1.3 show
that LeakyReLU and Tanh activation perform similar and better in
comparison with Sigmoid activation function for DCGAN. For the
WGAN, LeakyReLU performs better on the UCSD Peds, while with the
Avenue dataset, Tanh gives the best results. In the following section, we
discuss the problems faced during the development of the OCC model
and how we overcame them.

37

Activation Function DCGAN WGAN
UCSD Peds2 UCSD Peds1 UCSD Peds2 CUHK Avenue

Sigmoid 77.5 % 63.88% 79.59% 72.45%
LeakyReLU 80.4% 64.66% 80.4% 72.44%

Tanh 80.4% 62.66% 79.59% 72.50%

Table 5.3: Performance of our OCC model with Generator from section 3.1.3 and
Discriminator from section 3.2.3 over di↵erent datasets

5.2 Discussion

The obtained results demonstrate the capability of our model to
detect anomalies in dynamic images. During the duration of this
project, we came across various challenges. In the beginning, we were
training our models on Google colaboratory CPU but the training time
of our models was very high. In order to reduce the overall training time,
we decided to switch to Google colab GPU which significantly improved
our training duration. Another problem we faced was in the choice of
loss functions for our models. There were many options like Binary
Cross-Entropy(BCE), Squared Hinge, etc. We implemented both and
decided to continue with BCE as it was giving us better results in
comparison to Squared Hinge. To overcome the problems of Vanishing
Gradient and Mode Collapse, we implemented WGAN.

We train our model in an adversarial manner in which Generator
and Discriminator compete with each other and keep on getting better
and better during the training phase. One important factor in our
training was to determine the stopping criterion i.e. to decide when
to stop the training of our model. To handle it, we saved the most
valuable parameters for both Generator and Discriminator and tried to
reach convergence by the hit and trial method. Between Generator and
discriminator, we kept the model which is giving lower loss constant,
and train the other model to reach minimum loss.

When we pass any abnormal image through our model, the anomaly
in the image is highlighted in red pixels as shown with examples in the
section 4.4 which helps in better detection of the anomalies. In the
next chapter, we will conclude the work we have done in this project
and discuss the possible future work.

38

Chapter 6

Conclusion and Future Work

This work has helped us to understand the process required to

build a machine learning model, starting from the analysis phase,

understanding the need from the real-world use cases, the in-depth

technical knowledge required to develop the machine learning model,

preparing the dataset for training the model, understanding and

identifying the features that are required for training the model,

choosing the right algorithm for preparing the model, and evaluating

the machine learning model to analyze its performance and accuracy.

We design and experiment with di↵erent GAN architectures to

model an OCC based on reconstruction for anomaly detection. We

start by modeling an encoder-decoder-based Generator architecture and

based on that we model our discriminator(s). After that, we combine

the two architectures and make the proposed GAN-based OCC. After

detecting the problem of vanishing gradient during training the model

via the Goodfellow GAN algorithm(DCGAN) we change our approach

and make use of the WGAN. Using di↵erent activation functions at

the end of Generator also helped us to expand our analysis of the

generated dynamic frames. These models have been tested on UCSD

Peds and CUHK Avenue datasets and our observations show that the

OCC based on the constrained generator from section 3.1.1 and the

corresponding discriminator performs better, with an average accuracy

of 75.72%, in comparison with the GAN models from the other two

generators. Also, in regards to activation function at the last layer of

39

the decoder, LeakyReLU gives better results as compared to Sigmoid

and Tanh activation.

We have worked with 2-Dimensional architecture for our

GAN-based OCC model so far, the next step could be to adapt it to

3D GAN architecture. Also, moving to the next phase, another feature

can be added to the model where we classify the anomalies into specific

classes, after detecting them.

40

Bibliography

[1] R. Mehran, A. Oyama, and M. Shah, “Abnormal crowd behavior
detection using social force model,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 935–942, IEEE, 2009.

[2] Y. Feng, Y. Yuan, and X. Lu, “Deep representation for abnormal
event detection in crowded scenes,” in Proceedings of the 24th ACM
international conference on Multimedia, pp. 591–595, 2016.

[3] P. Wu, J. Liu, and F. Shen, “A deep one-class neural network for
anomalous event detection in complex scenes,” IEEE transactions
on neural networks and learning systems, vol. 31, no. 7,
pp. 2609–2622, 2019.

[4] J. Yu, Y. Lee, K. C. Yow, M. Jeon, and W. Pedrycz, “Abnormal
event detection and localization via adversarial event prediction,”
IEEE Transactions on Neural Networks and Learning Systems,
2021.

[5] M. Sabokrou, M. Fathy, G. Zhao, and E. Adeli, “Deep end-to-end
one-class classifier,” IEEE transactions on neural networks and
learning systems, vol. 32, no. 1, pp. 675–684, 2020.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” Advances in neural information
processing systems, vol. 27, 2014.

[7] E. L. Denton, S. Chintala, R. Fergus, et al., “Deep generative
image models using a laplacian pyramid of adversarial networks,”
Advances in neural information processing systems, vol. 28, 2015.

[8] A. Radford, L. Metz, and S. Chintala, “Unsupervised
representation learning with deep convolutional generative
adversarial networks,” 2016.

41

[9] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[10] S. Io↵e and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
International conference on machine learning, pp. 448–456, PMLR,
2015.

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

[12] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” arXiv preprint arXiv:1411.1784, 2014.

[13] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in International conference on machine
learning, pp. 214–223, PMLR, 2017.

[14] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[15] J. M. Joyce, “Kullback-leibler divergence.,” International
encyclopedia of statistical science, vol. 720, p. 722, 2011.

[16] C. Baur, B. Wiestler, S. Albarqouni, and N. Navab, “Deep
autoencoding models for unsupervised anomaly segmentation in
brain mr images,” in International MICCAI brainlesion workshop,
pp. 161–169, Springer, 2018.

[17] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos,
“Anomaly detection in crowded scenes,” in 2010 IEEE computer
society conference on computer vision and pattern recognition,
pp. 1975–1981, IEEE, 2010.

[18] C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 fps in
matlab,” in Proceedings of the IEEE international conference on
computer vision, pp. 2720–2727, 2013.

[19] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi, “Action
recognition with dynamic image networks,” IEEE transactions
on pattern analysis and machine intelligence, vol. 40, no. 12,
pp. 2799–2813, 2017.

42

