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Data Augmentation by Generating 3D

Adversarial Point Cloud

Abstract

The use of 3D data in many applications has gained traction in recent years due to
the availability of inexpensive 3D sensors such as Kinect and LIDAR. Object iden-
tification has gained popularity, and it is now done with 3D data to overcome the
challenges posed by position, expression, lighting fluctuations, and occlusions in 2D
data. Though 3D object recognition is more accurate, the availability of 3D data is
limited, causing overfitting in Deep Neural Networks and making processing more
difficult, requiring more space and time. To circumvent this issue, the variability of
3D data must be raised by using data augmentation to expand the quantity of avail-
able data. Adversarial examples are carefully constructed instances that drive Deep
Neural Network models to make incorrect predictions. In this report, we present
a way of doing data augmentation by creating 3D adversarial examples. We use
random and stratified techniques to generate augmented data for each 3D sample
of a subject. The augmented data is trained using PointNet augmented with the
siamese model, with the generated augmented data from a sample labeled as a single
class. We use the trained model to implement the Adversarial Point Perturbation
technique and generate the perturbed data. We then compare the Iterative Closest
Point Registration Error between a pair of perturbed samples belonging to the same
class and their respective parent augmented samples pair, and between a pair of per-
turbed samples belonging to different classes and their respective parent augmented
samples pair to ensure that the perturbed data created carries the same information
as the parent augmented data.

Keywords: Data Augmentation, Adversarial Point Clouds, PointNet,
Siamese Network, Adversarial Point Perturbation, ICP

1



Contents

1 Introduction 6

2 Literature Review 9

3 Methodology and Data generation 11

3.1 Prepossessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Feature extraction with PointNet . . . . . . . . . . . . . . . . 14

3.3.2 Training using the Siamese network . . . . . . . . . . . . . . . 16

3.3.3 Adversarial Point Perturbation . . . . . . . . . . . . . . . . . 17

3.3.4 Verification Using ICP . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Novelty in proposed technique . . . . . . . . . . . . . . . . . . . . . . 21

4 Results and Discussion 22

4.1 Database used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Augmentation of databases . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Experiment 2 - UND 3D face Dataset with PointNet . . . . . . . . . 25

4.5 Experiment 3 - ModelNet40 Dataset with PointNet . . . . . . . . . . 26

2



4.5.1 Varying Number of points chosen . . . . . . . . . . . . . . . . 27

4.5.2 Varying Both Learning Rate and Number of points chosen . . 27

4.5.3 Varying Number of classes . . . . . . . . . . . . . . . . . . . . 27

4.5.4 Varying Both Number of classes and Number of points chosen 28

4.6 Performance on UND 3D database . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 35

3



List of Figures

3.1 Preprocessing Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Data Augmentation Flow Chart . . . . . . . . . . . . . . . . . . . . . 13

3.3 PointNet Feature Extraction Flow Chart . . . . . . . . . . . . . . . . 15

3.4 Siamese Network Training Flow Chart . . . . . . . . . . . . . . . . . 17

3.5 Adversarial Point Perturbation Flow Chart . . . . . . . . . . . . . . . 20

4.1 A few sample subjects from UND database used in the experimental
evaluation of the proposed model . . . . . . . . . . . . . . . . . . . . 24

4.2 Confusion Matrix of Siamese Network for few subjects from UND
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 ROC curve of Siamese Network for few subjects from UND database 30

4.4 Training and Validation Accuracy versus epoch of Siamese Network
for few subjects from UND database . . . . . . . . . . . . . . . . . . 31

4.5 Training and Validation loss versus epoch of Siamese Network for few
subjects from UND database . . . . . . . . . . . . . . . . . . . . . . . 31

4



List of Tables

4.1 Details of 3D objects of UND database used in the experimental eval-
uation of the proposed model. . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Experiment 1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Training and Testing Accuracy values of Experiment 2 for few sub-
jects from UND 3D face Database . . . . . . . . . . . . . . . . . . . . 26

4.4 Training and Testing Accuracy values Obtained by Varying Number
of Points in Experiment 3 for few subjects from UND 3D face Database 27

4.5 Training and Testing Accuracy values Obtained by Varying Both
Learning Rate and Number of points chosen in Experiment 3 for
few subjects from UND 3D face Database . . . . . . . . . . . . . . . 28

4.6 Training and Testing Accuracy values Obtained by Number of Classes
in Experiment 3 for few subjects from UND 3D face Database . . . . 28

4.7 Training and Testing Accuracy values Obtained by Varying Both
Number of classes and Number of points chosen in Experiment 3
for few subjects from UND 3D face Database . . . . . . . . . . . . . . 29

4.8 Number of Perturbed samples generated for the number of samples
in Dataset for a subject . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 Intra-Class ICP value of each class for few subjects. NA in above
table means Not Applicable. . . . . . . . . . . . . . . . . . . . . . . . 33

4.10 Average Intra-Class ICP value and Average Inter-Class ICP value for
few subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5



Chapter 1

Introduction

Many object recognition systems now employ 3D data instead of 2D
data, and 3D object recognition systems are becoming increasingly
commonly used in areas such as biometrics. In the case of object
recognition, while the usage of 2D objects has delivered good results in
normal settings, pose, expression, lighting fluctuations, and occlusions
impede performance. Because 3D data can capture the object’s whole
geometric information, the limitations posed by 2D objects can be
solved. Similar 3D data applications can be found in a variety of
other domains, such as robotic sensing and manipulation.

Although 3D data outperforms 2D data in domains like object iden-
tification and biometrics, there are challenges with 3D data training.
Because obtaining 3D data from objects takes a long time, there is
very little data available for 3D objects. Due to the restricted avail-
ability of 3D data, the model learns the features as well as the noise
of these limited samples very effectively, resulting in overfitting. To
minimize overfitting, the variability of 3D data needs to be improved
by extending the size of available data through data augmentation.

Data augmentation is a technique for adding slightly changed copies
of current data or newly created synthetic data from current data to
expand the amount of data available. When training a machine learn-
ing model, it functions as a regularizer and helps reduce overfitting[1].

3D data can be represented in a variety of ways. 3D voxel, 3D
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mesh, and point cloud are all typical approaches to represent an ob-
ject in 3D. A 3D object is represented in 3D voxel representation by
discretizing its volume, with a voxel being the unit cubic volume. The
pixel, the smallest raster unit, is the 2D equivalent of a voxel. The
three-dimensional voxel representation is a highly regularised repre-
sentation. The bulky character of this representation, on the other
hand, renders it computationally and spatially costly. Furthermore,
when fine structures must be captured, a high voxel resolution is re-
quired, which consumes a lot of memory.A 3D object is represented
as a polygon mesh in 3D mesh representation, which is made up of a
collection of vertices and polygons that describe the geometry of an
object in 3D [2]. This form is also quite huge and demands a lot of
memory. Point clouds, on the other hand, are the unprocessed 3D
data from most 3D sensors, such as depth cameras and Lidars. The
envelope of an object is represented by a point cloud, which is an
unordered set of data points in a three-dimensional coordinate sys-
tem. Rather than being translated into normal 3D representations
like 3D voxels or 3D mesh, point clouds can be used directly as an in-
put to any deep neural network. Simple representation, small storage
requirements, and invariance to transformations like translation and
rotation are all advantages of point clouds.

The PointNet[3] is a deep learning CNN framework that directly
inputs point clouds. The PointNet architecture is special in that it can
preserve the rotational and translational invariant features of point
clouds. By comparing a test sample with a reference sample and
predicting whether they belong to the same or distinct subject classes,
the Siamese Network[4][5] generates a similarity score.

We directly consume point clouds as 3D object input representa-
tions, overcoming the limitations of 3D voxel and 3D mesh. PointNet
is chosen as the victim model in [6]. However, because PointNet is
ineffective at categorising substantially similar objects, we adopt the
victim model provided by [7], in which the PointNet architecture is
supplemented with the Siamese network.

[6] provides numerous innovative attack methods for two forms of
adversarial attacks on point clouds: adversarial point perturbation
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and adversarial point creation, both of which are unnoticed by humans
or concealed in the human psyche. For adversarial point perturbation,
the existing points are shifted negligibly and the perturbation vector
is optimized under the generally used Lp norm constraint. In order
to increase the amount of available samples, we apply the adversar-
ial point perturbation technique. We demonstrate that the samples
generated carry similar information to the original samples using the
Iterative Closest Point(ICP) [8][9] technique.

The rest of the report is organized as follows. Chapter 2 presents
Literature Review. Chapter 3 describes our proposed technique. In
Chapter 4, the results of the proposed technique’s various experiments
are reported. Finally, in the last Chapter, the report is concluded.
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Chapter 2

Literature Review

Multiple representations of 3D data lead to varied learning method-
ologies. Deep learning approaches on 3D data frequently employ volu-
metric CNNs. Voxelized forms [10][11][12] are one type of input to 3D
CNNs. Volumetric representation, on the other hand, is constrained
by its empty data spaces, resolution due to data sparsity, and 3D con-
volution computational complexity. A high level of voxel resolution is
required to record great facial shapes, which consumes a lot of mem-
ory. Multiview CNNs [11][13] attempted to transform 3D shapes into
2D images and then categorise them using 2D convolution nets. With
well-engineered image CNNs, this line of approaches has reached over-
whelming performance on shape classification and retrieval tasks [14].
However, extending them to additional 3D tasks like point categoriza-
tion and shape completion is not straightforward.

The majority of the current features in point clouds are handmade
for specific tasks. Certain statistical properties of points are often en-
coded in Point features. Point features are designed to be invariant
to certain transformations, which are typically classified as intrinsic
[15][16][17] or extrinsic [18][19] . Point features are also classified as
local and global. Finding the best feature combination for a certain
task is not simple.Point clouds consist of unordered points with vary-
ing cardinality. This makes it difficult for neural networks to consume
Point Clouds. Qi et al. [3] proposed a novel network called PointNet,
which is commonly used for deep point cloud processing, to address the
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problem of point clouds. PointNet and its derivatives [20][21] simplify
learning by reducing the unordered and variable cardinality input to a
fixed-length global feature vector using a symmetric function termed
max pooling.

Face recognition has also been done with Deep Siamese Neural Net-
works [5]. Hayale et al.[4] present an analogous technique with a su-
pervised loss function that favours inter-class variations while limiting
intra-class variations by increasing the distance between the features
for distinct classes. Joshi et al. [22] employed the Siamese Network to
compare scanned facial photos to digital images.

Szegedy et al. [23] were the first to bring out that neural networks
and other machine learning models were sensitive to skillfully crafted
adversarial perturbation. An adversarial example that appears to be
identical to the original data can easily trick neural networks. Several
works have been proposed to increase adversarial attack performance
[24][25] and search for suitable adversarial attack defences [26][27].
The state-of-the-art attack algorithm, optimization based attack [28],
employs optimization to discover a near-optimal adversarial solution
for 2D data by defining an objective loss function that quantifies both
attack effectiveness and perturbation magnitude.

Image transformation methods such as translation, rotation, scal-
ing, and mirroring are commonly utilised in data augmentation strate-
gies to tackle the problem of a shortage of large datasets [29][30][31].
Training pictures for color-based algorithms have been augmented by
a process of modifying the hue-channel for coloured data in [30]. Ge
et al. [32] presented a 3D transformation for data augmentation in
depth-based approaches. To synthesise the 3D data, the transfor-
mation requires randomly rotating and stretching the 3D point cloud.
Hinterstoisser et al. [33] used training samples produced from 3D mod-
els to generate enhanced data. Because the synthetic data does not
have a distribution similar to that of real data, the method is limited
by over-fitting and so requires a well constructed training process.
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Chapter 3

Methodology and Data generation

The proposed approach uses a general solution for creating 3D ob-
ject augmented data. As an input, the approach leverages the point
cloud representation of 3D objects. Each 3D object’s point cloud
contains a large number of points. We employ numerous subsets of
each point cloud to feed into the model in order to make it time and
space-efficient. This expands the capacity of our database, which was
previously restricted to only one sample per class, preventing overfit-
ting.

The technique initially employs two networks: the PointNet archi-
tecture for feature extraction and the Siamese Network for training.
We extract features from the second-last dense layer of the architec-
ture after the PointNet model has been trained on a subject’s training
samples. The Siamese network is then trained using the extracted
features. After the training is completed, we use the trained models
in the adversarial point perturbation step. In Adversarial Point Per-
turbation, we shift existing points of a sample negligibly and create a
new sample.

3.1 Prepossessing

3D noise can have an impact on the object classification model’s per-
formance. To reduce variations in poses and 3D noise, 3D images must
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be preprocessed. To do this, frontalization and denoising techniques
are widely utilised. In addition, the 3D objects are frequently aligned
to a base reference image to ensure that the database is consistent
with some ground truth. In contrast, the PointNet design is invari-
ant to geometric transformations such as rotation and translation[3],
eliminating the need to frontalize the objects.

The point clouds of 3D objects may become contaminated with
spikes as a result of sensor noise, affecting the feature extraction pro-
cess. As a result, before employing object 3D data for feature ex-
traction, this must be addressed. We use a standard spike removal
technique with a moving averaging filter to denoise the images. This
method involves moving a sliding window across the object and deter-
mining the offset along the Z-coordinates. The centre of the window
is additionally translated to the mean offset if the resulting value is
higher than a threshold. The 3D scan of the UND dataset is denoised
with this approach, which limits the spikes to the chosen threshold.
The Preprocessing Step is depicted in Figure 3.1.

Figure 3.1: Preprocessing Step

3.2 Data Augmentation

Because obtaining 3D data from objects takes time, there is fre-
quently only a limited amount of data available for 3D objects. There
are very few examples per subject in the University of Notre Dame
(UND) database that we used to train our model. The number of
samples per subject varies between 2 to 9. During the training phase,
each sample is given a unique label. As a result, we will only have one
sample per class for both training and testing. With such a minimal
amount of data per class, the model will not be successfully trained or
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extract features. When only a few samples are provided, the chosen
model learns the noise of these few samples so well that it hinders the
model’s assessment of new data. To minimize overfitting, we employ
data augmentation to increase the variability of the 3D data. As a re-
sult, augmentation is required to provide enough examples to train the
model. The augmented database is created using the Random Point
Cloud Augmentation (Type II) technique [7], and the subsamples are
generated using both Random and Stratified Sampling techniques [34].

SampleN

Sample1

SampleiSubject j

Random Sampling
Augmentation

Tcehnique

Stratified Sampling
Augmentation

Tcehnique

For each
sample i,

Subsamplei_r 
(ssi_r points)

Subsamplei_1 
(ssi_1 points)

Subsamplei_(r+s)
(ssi_(r+s) points)

Subsamplei_(r+1)
(ssi_(r+1) points)

Subsamplei_(r+s)
(ssi_(r+s) points)

Subsamplei_1 
(ssi_1 points)

Subsamplei_(r+1)
(ssi_(r+1) points)

Subsamplei_r 
(ssi_r points)

Randomly choose
min number of points
from all Subsamples

min

SubsampleN_(r+s)
(min points)

Subsample1_1 
(min points)

SubsampleN_1 
(min points)

Subsample1_(r+s)
(min points)Augmented

Data
Evaluate minimum

value of the number
of points from all the

Subsamples

Figure 3.2: Data Augmentation Flow Chart

We produce a certain number of subsamples for each sample using
random sampling and stratified sampling techniques, with each sub-
sample having a varied number of points. We make all the subsamples
generated from a single sample have the same number of points by first
evaluating the value of the minimum number of points among the sub-
samples and then selecting the evaluated number of points at random
from each of the subsamples. For the following phase of the procedure,
we’ll use these subsamples in place of the original sample. The Data
Augmentation Flow Chart is shown in Figure 3.2.
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3.3 Proposed Model

We begin by dividing the complete data into train and test sets. We
also make the labels for the train and test sets. We train PointNet
with the train set, and train labels and weights are saved in a file.
By passing train and test sets as input, the Trained PointNet model
extracts train features and test features from the intermediate layer.
Then, using train labels, genuine and imposter pairs are produced
from the train features. The generated pairs are then used for Siamese
network training and the weights are saved in a file.

We initially restore the trained PointNet model and Siamese net-
work from their respective weight files in the perturbation step. In
predicting the label of the input, the restored PointNet model and
Siamese network are useful. The method starts by determining how
much perturbation is needed to minimize the optimization equation.
To create the new perturbed sample, the amount of perturbation is
simply added to the initial sample.

3.3.1 Feature extraction with PointNet

Point clouds have an unordered representation, unlike 2D pixel ar-
rays in images or 3D voxel arrays in 3D objects. Many researchers
convert a point cloud to various forms by taking multi-view projec-
tions onto 2D space or quantizing it to 3D voxels in order to exploit
current approaches based around (2D and 3D) convolutions. Multi-
view projections, on the other hand, generate massive volumes of data,
and quantizing the 3D structure can introduce variance due to natural
artifacts.

Raw point cloud data is fed into PointNet. The input points are first
transformed using the input transform, and then each of the n input
points is mapped from 3 dimensions to 64 dimensions using a shared
multi-layer perceptron. The 64-dimensional data is then transformed
using a feature transform. Each of the n points is mapped from 64
to 1024 dimensions in the next layer. We now use max-pooling to
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generate a global feature vector in R1024. Finally, the global feature
vector is mapped to k output classification scores using a three-layer
fully connected network.
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0 70%
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Train Features

Test Features

Save Weights

Figure 3.3: PointNet Feature Extraction Flow Chart

In our technique, we begin by creating labels for the data received
during the data augmentation step. The same label is applied to all
subsamples created from a single sample. If a subject has N samples,
for example, we will have N different classes during the training phase,
namely 0, 1, 2, ..., (N − 1) and all subsamples created from a sample i
are given the label (i − 1). The data was then divided into two sets:
the train set and the test set. The PointNet model is trained using
subsamples from the train set and their appropriate labels from train
labels. The trained model’s weights are preserved and used to restore
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the model in the perturbation step.

In general, PointNet outputs the input sample’s class as the last
layer’s output. According to [7], a shortcoming of the PointNet archi-
tecture is the poor categorization of samples belonging to the same
object class, such as faces. Rather than solving a 1:n classification
problem for objects in the same class, we use the PointNet architec-
ture to create feature vectors for the input point clouds. The feature
vectors for the input data are output by the architecture’s second-last
dense layer, which has 256 neurons. The feature vectors for the train
and test sets are extracted and named train set features and test set
features, respectively. The PointNet Feature Extraction Flow Chart
is shown in Figure 3.3. The Siamese network is then trained using the
train set features and train labels. Finally, we use the test set to put
our trained Siamese network to the test and generate a classification
report.

3.3.2 Training using the Siamese network

A neural network, in traditional terms, collects data and learns to
predict several classes. Deep neural networks require a large quantity
of data to train. Siamese networks, on the other hand, use a sim-
ilarity score to decide whether the reference and test inputs belong
to the same or different classes based on a threshold value. It uses
the similarity score to train itself. The similarity score ranges from
0 and 1, with 0 indicating no similarity and 1 indicating total simi-
larity. The following are the key benefits of Siamese network: more
resistant to the problem of class imbalance - With One-shot learning,
a few samples per class are enough for Siamese networks to recognize
those samples. Learning from Semantic Similarity - Siamese focuses
on learning embeddings (features) that group together similar classes.

The Siamese network determines the relationship between the pairs
of features using four functions: absolute difference, addition, square
of the absolute difference, and multiplication between the pair of fea-
tures. These four operations’ outputs are combined and transmitted
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to the convolutional layers to be trained. We require two sets of pairs
from the features acquired from PointNet to train the Siamese net-
work: impostor pairs that contain features from subsamples from a
different class and genuine pairs that contain features from subsam-
ples from the same class. These feature pairs are used to train the
network to determine if they are genuine or impostor pairs. To make
the training more robust, we build all feasible genuine and imposter
pairs by combining all features within a class for all classes and com-
binations of features in each class with every other class. A similarity
score or probability is the output of the Siamese network. We employ
a scoring threshold to determine whether the pair is genuine or not.

Train Features

Train Labels

Form Genuine and
Imposter Pairs Siamese

Training Trained
Siamese

Test Features

Test Labels

Form Genuine and
Imposter Pairs

Trained
Siamese

Testing Evaluate
Metrics

Save Weights

Similarity
Score

Evaluated
Metrics like

Testing
Accuracy,

Classification
Report

Figure 3.4: Siamese Network Training Flow Chart

In our technique, Initially, train features are utilised to train the
Siamese Network by using train labels to build Genuine and Imposter
pairs. The trained model’s weights are preserved and used to restore
the model in the perturbation step. Then, using test labels, we put
our model to the test by creating Imposter and Genuine pairs of test
features. The Siamese Network Training Flow Chart is depicted in
Figure 3.4.

3.3.3 Adversarial Point Perturbation

For creating perturbed data, we leverage targeted attacks on 3D
point cloud classification algorithms in our method. Targeted attacks
attempt to deceive a 3D deep model into classifying an adversarial
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example as a specific target class. As mentioned in [6], Formally, for a
classification model G : A → B, which maps an input a ∈ A ⊂ Rn×3

to its respective class label b ∈ B ⊂ Z (i.e., G(a) = b ), t ∈ B is a t
is a fraudulent target class used by an adversary. The purpose of the
attack is to discover a legitimate input a′ ∈ Rn′×3 using a perturbation
metric D : Rn×3 × Rn′×3 → R which:

minimize D(a, a′), such that G(a′) = t

This problem can be solved by expressing it as an appropriate opti-
mization instance that can be solved using known optimization meth-
ods. Formulating the optimization instance as an objective function
is one such method. However, The objective function formulation is
difficult to solve because G(a′) = t is highly non-linear (the classi-
fication model is not a straightforward linear function). So directly
solving this problem is difficult. According to [28], we can express the
constraint in a different form, as an objective function ‘f ’ such that
when G(a′) = t is satisfied f(a′) ≤ 0 is also satisfied. Conceptually,
the objective function f tells us, how close we are getting to being
classified as t. In [28], the Authors evaluated 7 different objective
functions (all of them are loss functions) ’f ’ and selects the best one
among them that is given by:

f(a′) = (max
i̸=t

(Z(a′)i)− (Z(a′)t))
+ (3.1)

Where the adversarial loss function, f(a′), assesses the likelihood of
a successful attack, where Z(a) = z is the output of all layers except
the softmax (Input to softmax layer, so z are the logits), and G is a full
neural network including the softmax function, G(a) = softmax(Z(a))
= b and (r)+ represents max(r, 0) Therefore, the problem is refor-
mulated as a gradient-based optimization technique:

minimize f(x′) + λ ∗D(a, a′)

where the adversarial loss function, f(a′), assesses the likelihood of
a successful attack and taken from equation 3.1. By optimizing over
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this new formulation, we aim to search for adversarial examples with
the least 3D perturbation.

We change existing points by moving their XYZ positions with ad-
versarial jitters in adversarial point perturbation [6], such that a point
ai ∈ R3 in the point cloud a becomes a

′

i = ai+δi , for i = 1, ..., n where
δi ∈ R3 is the perturbation to the ith point. We optimize the perturba-
tion vector or amount of adversarial jitter under the commonly used
Lp norm constraint.

The Adversarial Point Perturbation technique is used in this work
for each subject by setting the target class as one of the classes within
the same subject. As a result, the targeted adversarial attack aims to
change a subsample so that it is classified as the target class within
the same subject by the model. To get the value of λ, we use a binary
search method. We perform specific operations in order for numerous
iterations for each step of binary search. The operations are:

1. By optimising the objective function, modify the value of the
perturbation vector or the amount of adversarial jitters.

2. The perturbed point cloud is created by adding the updated per-
turbation vector to the input point cloud.

3. The saved weights are used to reconstruct the PointNet model.
One randomly picked point cloud from the train set for each class,
as well as the perturbed point cloud, are provided as input to the
restored PointNet model.

4. The Siamese network is restored using the weights saved. The
perturbed point cloud features are paired with the features from
each class’s point cloud and supplied into the restored Siamese
network. The pair with the highest similarity score belongs to the
same class, i.e. the perturbed point cloud belongs to the same
class as the point cloud with the highest similarity score.

5. The predicted class value is used for step 1 execution.

Despite the fact that the points in the subsample are being updated,
the created subsample after modification serves as a fresh subsample
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of the same subject because the target class is one of the classes within
the same subject. Figure 3.5 depicts the Adversarial Point Perturba-
tion Flow Chart.
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Figure 3.5: Adversarial Point Perturbation Flow Chart

3.3.4 Verification Using ICP

The algorithm iterative closest point (ICP) [8][9] is used to reduce the
difference between two point clouds. In the Iterative Closest Point
algorithm, one point cloud, the reference, is kept unchanged while the
other, the source, is altered to best match the reference. The Iterative
Closest Point algorithm iteratively revises the transformation, which is
a combination of rotation and translation operations required to min-
imise an error metric, such as the sum of squared differences between
the matched pairs’ coordinates.

1. Intra-Class
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To begin, Choose two subsamples from perturbed data and evalu-
ate the ICP registration between these two perturbed subsamples
for each class of data obtained by perturbation. Similarly, evalu-
ate the ICP registration error between the two parent augmented
subsamples from which the two perturbed subsamples are cre-
ated. The ICP registration error values of the parent augmented
and perturbed subsamples are then compared.

2. Inter-Class

To begin, select one subsample per class from the perturbed data
to create a set of subsamples. Then, for all possible permutations
of pairs in the set, evaluate the ICP registration error values.
Simultaneously, evaluate the ICP registration error values of the
corresponding parent augmented subsample pairs for each feasible
permutation of pairs from the set. Compare the ICP registration
error values from the perturbed and parent augmented data pairs.

3.4 Novelty in proposed technique

Because obtaining 3D data from objects takes a long time, there is
very little data available for 3D objects. Due to the limited availabil-
ity of 3D data, the model effectively learns the Features as well as the
noise of these few samples, resulting in overfitting. Data augmenta-
tion is the only known solution to the problem of overfitting caused
by small sample sizes per person. We have suggested a novel Data
Augmentation technique based on Adversarial Point Perturbation.
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Chapter 4

Results and Discussion

We now use UND 3D face data to demonstrate the effectiveness of
the proposed approach. We use data augmentation to improve fea-
ture extraction and avoid overfitting in the UND 3D face database.
The larger database after data augmentation is split into two sets at
random: 70% for training and 30% for testing. The model for the
training phase was first chosen as PointNet. However, following a
series of experiments, it was observed that when the input samples
are very similar, the PointNet model classification accuracy is quite
low. Then we use the PointNet model augmented with the Siamese
network as the model to classify highly similar objects. We perform
the PointNet training using the training data and the weights of the
trained model are saved, and the training data and testing data are
supplied as inputs to the trained model to extract the features. The
Siamese network is then trained using the extracted features, and the
weights of the trained model are saved. We assess classification per-
formance using the Receiver Operating Characteristics (ROC) curve
and verification accuracy. The perturbed data is then generated by
performing adversarial point perturbation on the database. Iterative
Closest Point Registration Error is used to assess the quality of the
perturbed data.

22



4.1 Database used

We use 3D face data from the University of Notre Dame (UND)
database to evaluate our model. It should be noted that the 3D face
recognition challenge was handled solely using the database’s spatial
coordinate information. The UND database contains 277 subjects
with 953 aligned 3D facial images (ND-collection D). A Minolta Vivid
900 3D range scanner was used to take these photos. These facial
scans have a lot of noise in the form of spikes. As a result, we’re
denoising the 3D scans with spike removal. Before being used in the
experiment, the 3D face scans are pre-processed as described in Section
3.1. Figure 4.1 shows a few example scans from the UND database
after prepocessing. The summary of UND 3D database is provided in
Table 4.1.

Dataset # of # of 3D
Subjects object samples

University of Notre Dame 277 953

Table 4.1: Details of 3D objects of UND database used in the experimental evalua-
tion of the proposed model.

4.2 Augmentation of databases

We augment the databases to enhance the sample size because the
number of samples per subject is rather low in the available dataset.
We use the Random point cloud augmentation (Type II) technique to
create the augmented database, and both Random and Stratified Sam-
pling approaches to generate the subsamples, as explained in Section
3.2. We create 30 subsamples from each sample using Random Sam-
pling and 30 subsamples from Stratified Sampling approaches. The
number of points in each of the 60 subsamples is different. By first
assessing the value of the minimum number of points among the sub-
samples and then randomly selecting the evaluated minimum number
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(a) (b)

Figure 4.1: A few sample subjects from UND database used in the experimental
evaluation of the proposed model

of points from each of the subsamples, we make the number of points
the same in all the 60 Subsamples generated from a single sample.

4.3 Experiment 1

To verify the promised outcomes in [3], an initial experiment was
conducted on the ModelNet40 dataset. Table 4.2 displays the acquired
results.

Mean Training Loss Training Accuracy Testing Accuracy

0.1818662 93.59356% 86.7289%

Table 4.2: Experiment 1 Results
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4.4 Experiment 2 - UND 3D face Dataset with

PointNet

This Experiment is performed on UND 3D face Dataset. The train-
ing, testing happens individually for each subject in the UND 3D face
dataset. For each subject, we generate augmented data as mentioned
in 4.2. All the generated 60 Augmented samples from a single sam-
ple are given same label during the Process. The Number of labels
during the process(in a single subject) is the number of samples avail-
able for the respective subject in UND dataset. For a subject with
N samples, during the process, value of the number of Classes is N
and the number of Augmented samples available per Class are 60.
The Number of points chosen is the minimum number of points avail-
able in all the Augmented Samples of a particular Subject. We split
the data(after data augmentation) 70 : 30 ratio to create train and
test sets i.e, Among the 60 Augmented Samples available per class,
42 Augmented Samples are part of Training data and 18 Augmented
Samples are part of Testing data. The Batch size is chosen as the
Greatest common divisor of the Number of training, testing samples
So that no samples are leftover during training and testing.

The UND 3D face Dataset is used in this experiment. Each subject
in the UND 3D face dataset is separately trained and tested. We gen-
erate augmented data for each participant as described in 4.2. During
the Process, all 60 Augmented samples generated from a single sam-
ple are given the same label. The number of labels used during the
process (in a single subject) is equal to the number of samples in the
UND dataset for that subject. For a subject with N samples, during
the process, value of the number of Classes is N and the number of
Augmented samples available per Class are 60. The chosen number
of points is the smallest number of points accessible across all Aug-
mented Samples for a given Subject. We divided the data (after data
augmentation) into train and test sets in a 70 : 30 ratio, i.e., 42 Aug-
mented Samples are part of Training data and 18 Augmented Samples
are part of Testing data, out of 60 Augmented Samples available per
class. So that no samples are left over during training and testing,
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the Batch size is determined as the greatest common divisor of the
number of training and testing samples.

Subject # of Training # of Testing # of Points Batch Learning Training Testing
samples samples Chosen Size Rate Accuracy Accuracy

1 210 90 18500 30 0.01 37.1429% 20%

2 126 54 32601 18
0.01 38.0952% 55.56%
0.001 66.67% 53.7037%

3 168 72 17104 24
0.01 33.9286% 25%
0.001 72.0238% 25%

Table 4.3: Training and Testing Accuracy values of Experiment 2 for few subjects
from UND 3D face Database

We can deduce from table 4.3 that, while the Training and Test-
ing Accuracy values are both quite low, changing the learning rate
from 0.01 to 0.001 greatly increased the Training Accuracy. The num-
ber of training and testing samples has decreased as the number of
points chosen has increased, while the value of training accuracy has
increased (Increasing points has increased the number of points avail-
able for training).

4.5 Experiment 3 - ModelNet40 Dataset with Point-

Net

This experiment is performed on ModelNet40 Dataset under similar
conditions as Experiment 2. Each object in the ModelNet40 dataset
is trained and tested individually. The number of points chosen and
the number of classes are both variables that we may control. The
number of samples is determined by the number of points picked. We
choose samples with more points than the number of points chosen
from all the samples available for the specific object based on the
value of Number of points chosen.
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4.5.1 Varying Number of points chosen

The number of classes and the learning rate have been set to 4 and
0.01, respectively. We may deduce from table 4.4 that, despite the
low Training and Testing Accuracy values, increasing the Number of
Points chosen reduced the number of Training and Testing Samples
while increasing the Training Accuracy Value (Increasing points has
increased the number of points available for training).

Subject # of Points # of Training # of Testing Training Testing
Chosen samples samples Accuracy Accuracy

Car
1024 196 96 32.7778% 25%
2048 192 96 32.8125% 25%

Vase
1024 364 72 30.2198% 34.72%
2048 260 52 32.7778% 25%

Guitar
1024 148 92 35.4167% 26.0870%
2048 144 84 35.8108% 25%

Table 4.4: Training and Testing Accuracy values Obtained by Varying Number of
Points in Experiment 3 for few subjects from UND 3D face Database

4.5.2 Varying Both Learning Rate and Number of points
chosen

The number of classes is fixed to four. Although the Training and
Testing Accuracy values are relatively low, we may conclude from table
4.5 that changing the learning rate from 0.01 to 0.001 while fixing the
Number of Points chosen has increased the value of Training Accuracy.

4.5.3 Varying Number of classes

The number of points chosen has been set to 1024. We may deduce
from table 4.6 that, despite the fact that the Training and Testing
Accuracy values are both quite low, increasing the number of classes
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Subject # of Points # of Training # of Testing Learning Training Testing
Chosen samples samples Rate Accuracy Accuracy

Cup
1024 40 12

0.01 40% 25%
0.001 45% 25%

2048 28 8
0.01 42.8571% 25%
0.001 42.8571% 25%

Table 4.5: Training and Testing Accuracy values Obtained by Varying Both Learning
Rate and Number of points chosen in Experiment 3 for few subjects from UND 3D
face Database

while keeping the number of points fixed has drastically reduced the
Training Accuracy value. Because the number of classes increased, the
amount of data available for training and testing each class decreased
dramatically.

Subject # of # of Training # of Testing Training Testing
Classes samples samples Accuracy Accuracy

Guitar
3 150 93 43.2432% 34.7826%
4 148 92 35.8108% 26.087%
8 144 88 22.2222% 18.18%

Table 4.6: Training and Testing Accuracy values Obtained by Number of Classes in
Experiment 3 for few subjects from UND 3D face Database

4.5.4 Varying Both Number of classes and Number of points
chosen

The Batch Size has been set at 5. We may deduce from table 4.7
that, despite the fact that the Training and Testing Accuracy values
are both quite low, increasing the number of classes while keeping the
number of points fixed has drastically reduced the Training Accuracy
value. Because the number of classes increased, the amount of data
available for training and testing each class decreased dramatically.
Increasing the value of the Number of Points chosen has also increased
the Training Accuracy for a fixed number of classes.
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Subject # of # of Points # of Training # of Testing Training Testing
Classes Chosen samples samples Accuracy Accuracy

Tv Stand
3

1024 138 42 42.9630% 45%
2048 93 30 50% 40%

6
1024 138 42 25.1852% 25%
2048 90 30 33.33% 23.33%

Table 4.7: Training and Testing Accuracy values Obtained by Varying Both Number
of classes and Number of points chosen in Experiment 3 for few subjects from UND
3D face Database

4.6 Performance on UND 3D database

we create the labels corresponding to the data obtained from the
data augmentation step by assigning the same label for the 60 sub-
samples created from the same sample and different labels for the sub-
samples created from different samples. We split the extended data
(after data augmentation) and labels into a 70 : 30 ratio for all the
samples of a subject to create train, test sets, and train, test labels,
i.e., for each sample, the 60 Subsamples generated from the data aug-
mentation step are split into a 70 : 30 ratio, i.e., the samples from 1
to 42 will be part of the train set, and the samples from 43 to 60 will
be part of test set. Similarly, we split the labels into train and test
labels in a 70 : 30 ratio.

Train set and train labels are used to train the PointNet model.
The trained PointNet model’s weights are saved in order to restore the
model in subsequent steps. To test the model, the test set is fed as
input into PointNet. Features are extracted from the trained PointNet
model by passing the train set and test set as input. With the use of
train labels, the extracted features from the train set are utilised to
train the Siamese network by establishing genuine and imposter pairs
among train features. The weights of the trained Siamese network
are preserved in case the model needs to be restored in the future.
With the use of test labels, the features retrieved from the test set
are utilised to evaluate the Siamese network by constructing genuine
and imposter pairs among test features. To test the model’s capacity
to distinguish genuine and impostor pairs from an unknown collection
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of samples, the pairs are built from the test set’s features (test-test
pairs).

(a) (b) (c)

Figure 4.2: Confusion Matrix of Siamese Network for few subjects from UND
database

(a) (b)

Figure 4.3: ROC curve of Siamese Network for few subjects from UND database

The Confusion matrix, Classification Report, and Receiver Oper-
ating Characteristics (ROC) curve are used to assess the Siamese net-
work. For a few subjects, the confusion matrix, Receiver Operating
Characteristics (ROC) curve, training, validation accuracy vs epoch,
and training, validation loss vs epoch are presented in Figures 4.2, 4.3,
4.4, 4.5 respectively.

The database is then subjected to Adversarial Point Perturbation.
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(a) (b)

Figure 4.4: Training and Validation Accuracy versus epoch of Siamese Network for
few subjects from UND database

(a) (b)

Figure 4.5: Training and Validation loss versus epoch of Siamese Network for few
subjects from UND database
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We use the saved weights to restore the trained PointNet and Siamese
models. The label of an input sample is required during the Adver-
sarial Point Perturbation. For each class, we randomly select one
sample from the train set to evaluate the label. To obtain features,
the randomly picked samples and the input sample are fed into a re-
stored PointNet. Each of the features obtained from chosen samples
is paired with the input sample features. Features of chosen samples
are already seen by the Siamese model during training. As a result,
we’re creating pairs with one unknown data (Input sample features)
and one known data (chosen sample features) to feed into the restored
Siamese model. The input sample’s label is determined by the pair
with the highest similarity score. To generate the perturbed data, we
use the procedure described in section 3.3.3.

For a subject with N samples, we generate 60×N Augmented sub-
samples using Random and Stratified Augmentation techniques. The
60 × N Augmented subsamples become the input subsamples (origi-
nal / parent subsamples) for the proposed model. After applying the
adversarial point perturbation, perturbed data is generated only for
60 × (N − 1) original samples i.e, for all the original subsamples not
belonging to the target class, and no perturbed subsamples are gener-
ated for the original subsamples belonging to target class. Table 4.8
shows the number of Perturbed subsamples generated for the number
of Augmented subsamples.

# of samples in # of Augmented # of perturbed
Dataset for a subject subsamples subsamples generated

3 180 120
4 240 180
5 300 240
6 360 300
7 420 360
8 480 420
9 540 480

Table 4.8: Number of Perturbed samples generated for the number of samples in
Dataset for a subject
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The perturbed data is evaluated with both inter-class ICP reg-
istration error and intra-class ICP registration error as mentioned in
section 3.3.4.

# of
Average ICP of

Samples Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

8 0.1604164 0.1876751 0.1568064 0.1928608 0.348255 0.045206 0.4275612
3 0.07482 0.0740165 NA NA NA NA NA
4 0.1645941 0.2171263 0.1126933 NA NA NA NA

Table 4.9: Intra-Class ICP value of each class for few subjects. NA in above table
means Not Applicable.

In Intra Class ICP registration error, under each class, for each
perturbed sample i, we randomly choose one perturbed sample among
i + 1, i + 2, ..., 60 and form the pair to evaluate the ICP registration
error. The respective parent subsample pair of the perturbed subsam-
ple pair is chosen to evaluate the ICP registration error. Then we
compare the corresponding ICP registration error values of perturbed
subsample pair and original subsample pair. So, for each class, we
have 59 ICP registration error values since last subsample cant form
a pair. Figure 4.9 depicts the Intra-Class ICP value of each class for
few subjects.

Subject # of Average of Average of
Samples Intra-Class ICP value Inter-Class ICP value

1 8 0.3583523286 0.7524851
2 9 0.2381803875 0.3986797
3 4 0.2154470333 0.9308781
4 5 0.101544 0.8268065
5 6 0.1640386352 0.7432993

Table 4.10: Average Intra-Class ICP value and Average Inter-Class ICP value for
few subjects

In Inter Class ICP registration error, for each class, we randomly
choose one perturbed sample. Among the randomly chosen perturbed
samples from all classes, we form all possible combinations of pairs and
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evaluate the ICP registration error. The respective parent sample pair
of the perturbed sample pair is chosen to evaluate the ICP registration
error. Then we compare the corresponding ICP registration error
values of perturbed sample pair and original sample pair. We repeat
this process multiple times. In experiments, For anN class Subject, we
form a total of 60×(N−1) pairs. Table 4.10 depicts the Average Intra-
Class ICP value and Average Inter-Class ICP value for few subjects
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Chapter 5

Conclusion

When only a few examples of 3D objects are provided, the model
learns the features as well as the noise of these few samples very ef-
fectively, resulting in overfitting. Data augmentation, or enhancing
the variety of available samples, can help to minimise overfitting. We
employed Adversarial Point Perturbation as a data augmentation tech-
nique. The Victim Model was initially chosen as PointNet. However,
Experiments 4.2 and 4.3 indicated that PointNet fails to categorise
data that is highly similar. As a result, we employed PointNet with
Siamese as the Victim Model. We were able to generate massive vol-
umes of data. After utilising ICP to test the technique, it is clear that
the perturbed data is highly comparable to their parent’ data and may
be employed in a variety of applications where 3D data is scarce.

In the future, this perturbation technique will need to be evaluated
with partial 3D data to see if the perturbation technique can be im-
plemented. Due to time constraints, the technique must be evaluated
on different data sets to ensure its viability.
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