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Preface

This report on “Estimation of speaker characteristics from speech signal” is prepared

under the guidance of Dr. Ranveer Singh and Dr. Chng Eng Siong.

Through this thesis, I have attempted to provide a description of our approach

and methodology to create a deep learning based model for estimation of speaker

characteristics, such as age, height and gender from speech signal. This report aims

to explain the model architecture, data augmentation and optimization techniques

used for the said problem.

The code of the project has been open sourced for public usage and easy repro-

ducibility of our results.
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Abstract

Estimating speaker attributes like age and height is a difficult task with sev-

eral applications in speech forensic analysis and potential applications in speaker

verification and speaker adaptation techniques. We present a bi-encoder (Mixture

of Experts (MoE) inspired) transformer mixture model for estimating speaker age

and height in this project. For the extraction of specific male and female voice

characteristic features, we suggest the use of two different transformer encoders,

while making use of wav2vec 2.0 as a common feature extraction method. The bi-

encoder architecture is chosen due to the significant variances in male and female

voice characteristics. This architecture increases the model’s generalizability by re-

ducing interference effects during the model training. We conduct our tests using

the TIMIT corpus and find that our results on age estimation surpass the present

state-of-the-art. For male and female age estimation, we obtain 5.54 years and 6.49

years as root mean squared error (RMSE), respectively. Further research into the

relative impact of various phonetic sound kinds for speaker profiling reveals that

vowel phonemes are the most distinctive for age estimate.

Keywords: speaker characteristic estimation, age estimation, height

estimation, wav2vec 2.0, self-supervised representation learning,

mixture of experts.
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Chapter 1

Introduction

1.1 Speaker profiling

Speech is an audio output generated by the exact coordination of many human

body components. As a result, it has been speculated that acoustic aspects of

speech might communicate knowledge about the speaker’s physical attributes. Sci-

entific research has looked at the relationship between voice qualities and a speaker’s

physical attributes such as age and height, among other physical parameters. The

sub-glottal resonance frequencies, length of the vocal tract and formant frequencies

are all connected to an individual’s height [6, 36]. Speech rate, sound pressure level,

fundamental frequency, and other voice characteristics change depending on the

speaker’s age [36, 32]. The speaker’s age-related glottis degeneration affects speech

features such as jitter, shimmer [25], and speech harmonics [21].

1.2 Applications of speaker profiling

Systems for automatically profiling speakers might be used in a range of sectors. For

example, in a criminal investigation, audio recordings might be used to prove a fake

bomb threat or a ransom demand over the phone [35, 33]. Estimating the speaker

characteristics such height, physical size, age etc. of speakers in audio evidence
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might save time for investigative agencies by reducing the number of suspected

persons. Further, estimating a speaker’s age and gender using voice data might help

marketing efforts target the appropriate gender/age client groups [33]. Furthermore,

the speaker profile system might be useful in other speech disciplines such as speaker

diarization and speech-based verification.

1.3 Contributions

We study how self-supervised based speech representation, especially wav2vec 2.0 [7],

may be used to estimate speaker characteristics, viz. height and age. We perform a

comparative analysis of wav2vec 2.0 with other feature representations: filter banks,

MFCC and X-vectors [38]. To the best of our knowledge, this is the first study to

show that wav2vec 2.0 can be used to estimate speaker age and height. We introduce

a novel bi-encoder (Mixture of Experts (MoE) inspired) transformer model for the

downstream architecture, which uses wav2vec 2.0 as the common feature extraction

method followed by a bi-encoder architecture. Bi-encoder design choice was inspired

by the disparities between different gender vocal qualities, such as fundamental

and formant frequencies [42, 23]. We employ task-dependent uncertainty [17] to

formalise our multi-task loss function. To avoid overfitting, we utilise mixup [45]

as a regularisation approach. The suggested technique delivers beats previously

obtained results on age estimate results on the TIMIT corpus.
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Chapter 2

Literature Review

2.1 Traditional approaches

Feature extraction techniques for automated age and height estimation are widely

accessible in the literature. However, most earlier research relied on traditional

methods for extracting characteristics from raw voice data. For height and age es-

timates, authors of [24, 9] previously utilised the Open-Smile toolbox to translate

short-term spectral information into other statistics such as percentiles, median,

mean and so on. The i-vector [30, 44] was used to turn an inconstant-length ut-

terance into a predetermined length embedding vector in a comparable statistical

strategy for age and height prediction. Obtaining spectral characterizations of the

speech signal is another embedding technique to speaker profiling. As an example,

a speaker’s resonance frequencies originating from sub-glottal regions are utilised to

estimate height [5]. To capture short-term cepstral properties with varied temporal

resolutions, Singh et al. [36] used a bag of words representation. Mel Frequency

Cepstral Coefficients (MFCC) [28, 13], cepstral and pitch characteristics [25, 16],

and other short-term features are also frequently used as speech feature extraction

techniques.

Some of the conventional feature extraction techniques used for speaker profiling

have been described in the following subsections.
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Figure 2.1: Flow diagram illustrating MFCC calculation [2].

2.1.1 Mel-Frequency Cepstral Coefficients (MFCCs)

The Mel-Frequency Cepstral Coefficients (MFCC) feature representation method

entails applying pre-emphasis, frame blocking and windowing, applying the Discrete

Fourier Transform (DFT) spectrum, taking the log of the output magnitude thus

far, and then warping the frequencies using Mel-filter bank, and finally applying the

inverse Discrete Cosine Transform (DCT).

In various audio processing models, along with the cepstral coefficients, delta

(first order difference) and delta-delta (second order difference) features of MFCCs

are also considered as features. The rationale behind using delta and delta-delta

features is that it provides dynamics of the power spectrum, that is, the dynamic

properties of MFCC over time, which can provide additional information for audio

processing tasks. MFCC calculation has been illustrated in Fig. 2.1.

2.1.2 Filter bank

In audio processing, filter bank refers to set of band-pass filters which separate

the audio signal into multiple components, with each component carrying a sin-
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Figure 2.2: Flow diagram illustrating filter bank calculation. A set of band-pass
filters with each filter centered at a different frequency separates the audio signal
into multiple components.

gle frequency sub-band of the original audio signal [1]. The process of filter bank

calculation has been illustrated in Fig. 2.2.

Just as in the case with MFCC, with filter bank as well, often delta and delta-

delta features are considered.

2.2 Deep learning based approaches

Deep neural networks (DNN) have demonstrated an exceptional capacity to discover

descriptive and unique representations from raw voice audio. As a result, DNN-

based speech representation learning has been used in recent research to enhance the

performance of the speaker profiling models. Abumallouh et al. [4] demonstrated a

speaker gender and age deep-learning based model that, thanks to an unsupervised

DNN bottleneck feature extractor, outperforms the original MFCCs feature set,

particularly for female speakers. The authors of [19, 20] achieved superior results

in age and height estimation in the TIMIT corpus by using DNN discriminative

embedding called X-vector [39]. Shangeth et al. [29] employed a semi-supervised
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learning paradigm to learn speaker features and produce the best age estimate results

on the TIMIT test corpus: 4.8 and 5.0 years as Mean Absolute Error (MAE) for male

and female speakers, respectively. A framework for self-supervised learning of speech

features and characteristics from raw audio data was recently introduced by Baevski

et al. [7]. In various speech domains, such as the realm of speaker recognition,

wav2vec 2.0 has significantly improved classification accuracy by capturing far more

phonetics information than its predecessor. As per our literature review of speaker

profiling research, no work has been done on the usage of wav2vec 2.0 for estimating

speaker age and height.

In the following subsections, we briefly describe some of the deep learning based

approaches.

2.2.1 X-vectors

X-vectors [38] are deep neural network based discriminative embeddings. The

speaker embedding from varied duration utterances is computed using a time-delay

neural network (TDNN).

The networks’ first five layers operate at the frame level, with a tiny temporal

context centered on the current frame t. The size of the final output layer is 512.

The statistics pooling layer calculates the mean and standard deviation of all T

frame-level outputs from layer frame 5. The statistics are 1500-dimensional vectors

that are calculated just once for each input segment. Prior to the non-linearity,

X-vectors are retrieved from layer segment 6. [38].

2.2.2 Self-supervised Learning

Self-supervised learning (SSL) is the process of autonomously building a loss from

an auxiliary task without the assistance of human annotated labels in order to learn

robust features or representations for images, audios and texts. Only the input data

is used to build the auxiliary tasks. By optimising the loss function specified by these
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auxiliary tasks, deep neural networks may learn resilient features or representations.

In the audio domain, auxiliary tasks include masking the speech input in input

or latent space and then solving a contrastive task that requires to contrast between

an audio sample from negatives. Examples of this approach include wav2vec [31],

wav2vec 2.0 [7] etc.

2.2.3 Self supervised audio representation

We employ self-supervised learning (SSL) based model, viz. wav2vec 2.0 [7], for

the speaker profiling tasks. wav2vec 2.0 has shown tremendous success in speech

recognition domain, and hence motivated by wav2vec 2.0’s success and wide appli-

cability, we study its application in speaker profiling as well. wav2vec 2.0 is able to

learn speech features and characteristics in latent space by constructing and solving

contrastive challenges. wav2vec 2.0 is made up of a 1D convolution features extrac-

tion module f : X → Z that takes raw audio input X and generates latent features

Z, as well as transformer encoders e : Z → C that offer context information. A

quantisation module quantizes the feature extractor outputs. Fig. 3.3 shows the

architecture of the wav2vec 2.0 model.

2.3 Differences in male and female audio

There are also variances between male and female voices, according to literature.

[42, 23] show that the average male fundamental and formant frequencies are lower as

compared to female gender voice. As a result, the gender of the speaker influences the

extraction of height and age information from speech signals [14]. [20, 29] Most prior

speaker profiling research treated gender categorization and height/age estimate as

a single challenge. [16, 15] is the only effort to use gender information and gain a

minor improvement in speaker profiling task. Nonetheless, these studies just entered

the gender value into their model as a binary value. We employ two experts, one for

each gender, to capture unique representations of each of the two genders present

13



Figure 2.3: Illustration of Mixture of Experts concept

in TIMIT corpus.

2.4 Mixture of Experts

An ensemble learning paradigm where various networks are built to handle different

subspaces of the data is known as a mixture of experts (MoE) [11]. The MoE

architecture has recently been investigated for a variety of speech tasks, including

multi-accent speech recognition [12], code-switching voice recognition [22], and so

on.

The divide-and-conquer approach underpins the Mixture of Experts (MoE) adap-

tive concept [11]. Separate experts of various subspaces can be developed if the

training corpus is known beforehand to be naturally partitioned into particular sub-

spaces. The weights to be allocated to each of the expert opinions are determined by

a gating network, and then the weighted aggregate of all expert views is calculated.

The MoE design reduces backpropagation interference, allowing for quicker training

and more generalizability. The MoE architecture is shown in Fig. 2.3.
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Chapter 3

Methodology

3.1 Model architecture

In Fig. 3.2, the model architecture is described. First, features are extracted from

the raw audio waveform using wav2vec 2.0. On top of the extracted features, a

bi-encoder transformer network is developed using the MoE approach. We consider

different experts, MaleExpert and FemaleExpert, for the two genders included in

the TIMIT corpus, female and male. These two experts’ architectures are similar, as

shown in Fig. 3.2, with six layers of self-attention based transformer encoders and

eight attention heads in each layer [40]. To acquire utterance level representations,

we perform statistical pooling of the transformer encoder output along the frame di-

mension. To complete the expert architecture, these utterance level representations

are supplied to completely connected layers. The two encoders, i.e., the two experts

may concentrate on audio characteristics specific to each gender that are relevant

for assessing age and height.

Considering the considerable diversity in auditory characteristics across genders,

distinct models for male and female have been created in earlier research [36, 15].

This, however, necessitates the training of two different models, which has the draw-

back of only using audio samples from one gender at a time. We employ bi-encoder

architecture to get the best of both worlds: we can use the entire dataset while still
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having distinct experts for male and female gender.

MaleExpert and FemaleExpert supply two expert perspectives, expert viewm

and expert viewf :

expert viewm = MaleExpert(x) (3.1)

expert viewf = FemaleExpert(x) (3.2)

expert viewm and expert viewf are concatenated and given to a completely con-

nected layer, which has a sigmoid activation function to output the gender prediction

g ∈ [0, 1], where x is the representation recovered from wav2vec 2.0. The male gen-

der is mapped to 0 and the female gender is mapped to 1. Prediction of gender

serves as a gating network, allowing the two expert’s output to be combined in the

following way:

expert view = (1 − g) × expert viewm + g × expert viewf (3.3)

To do height and age regression, expert view is supplied to completely connected

layers.

3.2 Loss function

Three losses are considered into the training process in our multi-task model: height,

age, and gender. Prior methods to developing a multi-task architecture for this

task used a naive approach of taking a weighted linear summation of these losses

[29, 15], with the loss weights fine-tuned manually. To avoid manual fine-tuning of

coefficient values of the individual loss functions, we utilise the uncertainty loss [17],

which combines several losses using homoscedastic uncertainty. Using this, our loss

function is formulated as follows.
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Figure 3.1: Illustration of mixup augmentation.

L =
Lheight

2σ2
height

+
Lage

2σ2
age

+
Lgender

2σ2
gender

+ log(σheightσageσgender) (3.4)

where σheight, σage and σgender are parameters to be learned. We perform the

substitutions sheight = log(σ2
height), sage = log(σ2

age) and sgender = log(σ2
gender), as

advised in their original work, in the above equation for numerical stability.

3.3 Mixup

We employ mixup as a regularisation strategy. Mixup has been previously been

used in various tasks in speech domain such as speaker verification [46].

The mixup augmented sample for two audio samples xi and xj, with their cor-

responding height values as hi, hj, age values ai, aj, and gender values gi, gj, is

formulated as follows.

xmixup = λxi + (1 − λ)xj (3.5)

hmixup = λhi + (1 − λ)hj (3.6)
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amixup = λai + (1 − λ)aj (3.7)

gmixup = λgi + (1 − λ)gj (3.8)

here λ ∼ U(0, 1). The shorter audio is repeated to match it’s length with the

longer audio to cope with audios of varying durations.

This mixup augmentation has been illustrated in Fig. 3.1. Suppose we have two

audio signals with target values x and y and suppose the mixing parameter λ is

chosen as 0.3. Then the first audio signal is multiplied by 0.3, and the second audio

signal is multiplied by 1 − 0.3 = 0.7 and added together to get mixup augmented

sample. The target value for this augmented sample is defined as 0.3 ∗ x + 0.7 ∗ y.

This augmented sample with its target value is then used during training of the

machine learning model.

3.4 Data augmentations

Data augmentations are a set of techniques to artificially increase the training set size

by generating new data samples from the existing data samples. Data augmentation

techniques are particularly helpful when the training set size is small, as is it is in

the case of TIMIT corpus [10], which we use for all our experiments in this project.

The different data augmentation techniques implemented in this project have

been described below:

3.4.1 Time stretch

This augmentation changes the speed or duration of an audio signal without affecting

its pitch. Time stretch is applied to an audio signal with 50% probability while

training, and the stretch range of the audio signal is randomly chosen between 0.8

and 1.25.
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3.4.2 Pitch shift

This augmentation raises or lowers the original pitch of the audio signal. Pitch shift

is applied to an audio signal with 50% probability while training, and the shift range

of the audio signal is randomly chosen between positive or negative 4 semitones.

3.4.3 Adding Gaussian noise

This augmentation adds Gaussian noise to audio signal with 50% probability while

training. The amplitude of the added noise is chosen randomly from the range 0.001

and 0.015.

3.4.4 Time masking

This augmentation makes a randomly chosen part of the audio silent. This augmen-

tation is applied with 50% probability to an audio signal, and the fraction of audio

signal to be masked is chosen randomly between 0.0 and 0.5.

3.4.5 Frequency masking

This augmentation masks some frequency bands on the spectrogram. It is applied

with 50% probability to an audio signal. This augmentation essentially applies a

band pass filter, with the fraction of bandwidth to be masked is chosen randomly

between 0.0 and 0.5.
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Figure 3.2: Model architecture for wav2vec 2.0 bi-encoder. Self-attention based transformer encoder [40] with 6 layers and 8 attention
heads is employed. Pooling here refers to the process of concatenating mean and standard deviation across frame dimensions to create
utterance level representation. A completely connected layer having L neurons is designated as ‘FC − L’. The concatenation operation
is denoted by ⊕. The age, height, and gender predictions are denoted by the letters a, h, and g.
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Figure 3.3: The wav2vec 2.0 architecture [7]. Here X represents raw audio waveform, Z represents latent speech representations, Q
represents quantised representations and C represents context representations.
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Chapter 4

Results and Discussion

4.1 Data corpus

For our investigations, we used the TIMIT dataset [10]. It includes audio clips from

630 people who speak eight distinct American English dialects. The age values vary

in from 21 to 76 years in train set, whereas the test set age range is 22 to 68 years.

The training set’s height range is 145 cm to 199 cm, while the test set’s height

range is 153 cm to 204 cm. The speech recordings in the collection have an average

duration of 2.5 seconds. The TIMIT corpus is pre-divided into evaluation and train

sets, making sure there’s no common speaker in train and test set.

4.2 Experiment design

Apart from wav2vec 2.0, other characteristics for comparison in the proposed bi-

encoder transformer model include filter bank, X-vectors and MFCC. We evaluate

80 mel bins for the filter bank, as well as delta (first order) and delta-delta (second

order) features. We use 16 cepstral coefficients, as well as first and second order delta

features, in MFCC. Further, Cepstral Mean and Variance Normalization (CMVN)

is employed for both the filter bank and the MFCC, with the length of the frame

being 25ms and shifting frame by a value of 10ms. We collect frame-level features
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for X-vectors before the pooling operation. This is given to the MoE inspired bi-

encoder architecture downstream. VoxCeleb1 [26] and VoxCeleb2 [8] training data

were used to pre-train the X-vectors.

Next, to demonstrate the effectiveness of MoE inspired bi-encoder architecture,

we perform a comparison between the bi-encoder architecture against the single-

encoder architecture, with wav2vec 2.0 as the common feature extractor. In wav2vec

2.0 single-encoder model has a single encoder for both male and female audio. The

single expert’s output is used for estimating speaker characteristics.

In the case of wav2vec 2.0, apart from the initial five convolutional layers of the

convolutional feature extraction module, we unfreeze the whole wav2vec 2.0 and

use Adam optimizer [18] with learning rate 10−6 for models using wav2vec 2.0. We

utilise Adam with a learning rate of 10−5 when employing MFCC, filter bank, and

X-vectors. Mixup technique is typically used for deep learning models and hence

should not be considered at the audio level for classic feature extraction techniques

such as filter bank and MFCC. Hence, we exclusively employ mixup with wav2vec

2.0 and X-vectors only and not with MFCC and filter bank.

4.3 Results

4.3.1 Comparison of the proposed model with previous works

The findings of the wav2vec 2.0 bi-encoder model are compared to prior efforts in

Table 4.1. We perform an extensive comparison of the proposed multi-task model

to all of them, whereas many earlier research created distinct models for height and

age, or different models for each gender, viz. female and male. Our findings are

presented as root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

The proposed model gains statistically significant improvement in the age estimate

job, as can be observed from Table 4.1. We attain RMSE errors of 5.54 and 6.49

years, respectively, corresponding to an 18.5 percent increase in male age estimate

and 8.6 percent improvement in female age estimation over the present state-of-the-
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art.

4.3.2 Efficacy of bi-encoder architecture design choice

We wish to illustrate the efficacy of the proposed bi-encoder architecture. To this

end, we show the comparison of wav2vec 2.0 (MoE inspired) bi-encoder versus

wav2vec 2.0 single encoder models in Table 4.2. In terms of RMSE error, the

bi-encoder model outperforms the single-encoder model by 7.0 percent for female

age estimation and 2.9 percent for male age estimation, proving our hypothesis of

employing distinct encoders for the two genders. However, a similar trend does not

appear in height estimate task findings, implying that the MoE inspired bi-encoder

design is not effective for height estimate task.

4.3.3 Efficacy of self-supervised representation for speaker

profiling

In order to show the wav2vec 2.0 (self-supervised speech representation frameworks)

for speaker profiling, we tabulate the findings of several feature extractors in Table

4.4: wav2vec 2.0, MFCC, filter bank, and X-vectors. We can notice that wav2vec

2.0 provides statistically significant improvements as compared to other feature ex-

traction approaches for speaker profiling, as can be shown.

4.3.4 Effect of different augmentation techniques

In Table 4.3, we tabulate the results of the proposed model using five different aug-

mentation techniques: time stretch, pitch shift, adding Gaussian noise, time mask-

ing, and frequency masking. The details of their implementation have been discussed

in section 3.4. From table 4.3, it can be observed that in all the cases, there’s either

no or minimal improvement. It can be concluded that the augmentation techniques

discussed in this project provide no statistically significant improvement.
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4.3.5 Wide band and narrow band comparison

Wide band refers to audio samples with a sampling rate of 16kHz and narrow band

refers to audio samples with a sampling rate of 8kHz. TIMIT dataset’s audio samples

are wide-band. However, most of the telephony audios are narrow-band. Hence, to

ascertain the performance of the model on telephony conversations, it’s important

to test the model on narrow band audios.

To test the model on narrow band audios, we simply down-sample the entire

TIMIT dataset to 8kHz and then perform the training and testing. The results are

tabulated in Table 4.5. It can be observed that down sampling the TIMIT-corpus

to narrow band range doesn’t affect the model performance significantly.

4.4 Analysis of phonological significance

To comprehend the significance of different phoneme categories in speaker profiling,

we study the performance of the proposed model after masking utterances of a

certain phoneme type in the test set of the TIMIT corpus. For each audio sample,

the TIMIT corpus provides frame-wise phonetic information. The different types

of phones found in the TIMIT corpus are tabulated in Table 4.6. In TIMIT’s test

corpus, we mask all phonemes in audio samples for each of these phoneme categories,

then calculate the age and height RMSE scores. Table 4.6 tabulates the impact of

phoneme masking by calculating percentage change that phoneme masking brings,

as compared to no masking in the TIMIT test corpus. Due to ’Vowel’ masking,

we see the highest rise in age RMSE value, indicating that vowel phonemes contain

the most knowledge important for age estimate. Perhaps surprisingly, there is no

discernible difference in height estimate results, suggesting that height estimate task

is independent of phoneme type.
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Table 4.1: Comparison of the proposed model with previous works.

Model Age RMSE Age MAE Height RMSE Height MAE
Male Female Male Female Male Female Male Female

Singh et al. [36] 7.8 8.9 5.5 6.5 6.7 6.1 5.0 5.0
Kalluri et al. [13] 7.60 8.63 - - 6.85 6.29 - -
Kwasny et al. [19] 7.24 8.12 5.12 5.29 - - - -
Williams et al. [41] - - - - - - 5.37 5.49
Mporas et al. [24] - - - - 6.8 6.3 5.3 5.1

Shangeth et al. (single-task model) [29] 6.96 7.6 4.8 5.1 8.1 6.0 5.9 4.9
Shangeth et al. (multi-task model) [29] 6.8 7.4 4.8 5.0 7.5 6.5 5.8 5.1
Manav et al. (single-task model) [15] 7.20 7.10 5.04 5.02 6.92 6.24 5.20 4.95
Manav et al. (multi-task model) [15] 7.81 8.60 5.50 5.89 6.95 6.44 5.26 5.15
wav2vec 2.0 bi-encoder (ours) 5.54 6.49 3.96 4.48 7.3 6.43 5.58 5.07

26



Table 4.2: Efficacy of bi-encoder architecture design choice.

Model Age RMSE Age MAE Height RMSE Height MAE
Male Female Male Female Male Female Male Female

wav2vec 2.0 single-encoder 5.71 6.98 4.05 4.90 7.17 6.39 5.35 5.08
wav2vec 2.0 bi-encoder 5.54 6.49 3.96 4.48 7.3 6.43 5.58 5.07

Table 4.3: Effect of different augmentation techniques on wav2vec 2.0 bi-encoder model.

Augmentation Height RMSE Height MAE Age RMSE Age MAE
Male Female Male Female Male Female Male Female

Time Stretch 7.41 6.28 5.69 5.01 5.56 6.49 3.99 4.54
Pitch Shift 7.43 6.49 5.76 5.11 5.66 6.53 4.07 4.87

Gaussian Noise 7.26 6.51 5.48 5.16 5.7 6.79 4.02 4.73
Time Mask 7.33 6.43 5.6 5.02 6 6.85 4.12 4.86

Frequency Mask 7.31 6.3 5.59 4.95 5.75 7.02 4.02 4.86
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Table 4.4: Efficacy of self-supervised representation for speaker profiling.

Model Age RMSE Age MAE Height RMSE Height MAE
Male Female Male Female Male Female Male Female

X-vectors bi-encoder 7.66 8.89 5.5 5.82 8.02 6.79 6.11 5.46
filter bank bi-encoder 8.51 8.42 6.19 5.86 7.86 6.68 6.13 5.36

MFCC bi-encoder 8.15 8.65 5.86 6.02 7.63 6.69 5.79 5.33
wav2vec 2.0 bi-encoder 5.54 6.49 3.96 4.48 7.3 6.43 5.58 5.07

Table 4.5: Wide band and narrow band results comparison.

Model Age RMSE Age MAE Height RMSE Height MAE
Male Female Male Female Male Female Male Female

wav2vec 2.0 bi-encoder wide band 5.58 6.7 4.03 4.66 7.23 6.34 5.55 5.01
wav2vec 2.0 bi-encoder narrow band 5.47 7.31 3.96 4.95 7.28 6.6 5.56 5.24
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Table 4.6: Significance of different phoneme types.

Phoneme type Age RMSE Height RMSE
Male Female Male Female

Semivowels 12.2% -0.68% 0.45% -0.32%
Stops 4.14% 3.05% 0.6% 2.9%

Fricatives 6.08% -2.41% 1.28% 2.87%
Affricates 0.0% 0.0% 0.0% 0.0%

Others 5.84% 12.17% 1.07% -2.9%
Nasals 2.51% -0.27% -0.52% 0.08%
Vowels 38.9% 20.46% 2.04% 0.07%
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Chapter 5

Implementation

In this section, the implementation of code for this project has been discussed.

5.1 Libraries

5.1.1 PyTorch

PyTorch is an open source library built on top of the Torch library [3]. PyTorch

provides an easy and intuitive interface to build deep learning models. PyTorch is

developed by Facebook’s AI Research lab (FAIR). PyTorch allows us to build deep

learning models with a tape-based automatic differentiation system [27].

5.1.2 PyTorch Lightning

PyTorch Lightning is an open-source library that is built on top of PyTorch. It

provides a high-level interface for PyTorch, allowing us to spend less time writing

boiler-plate code and focusing more of our time on research. It allows us to create

scalable deep learning models and run them easily on distributed hardware.

PyTorch in itself is highly flexible and provides an easy interface to build complex

30



deep learning models. But once the research gets complicated and we have to do

distributed optimization, multi-GPU training, etc., it is prone to introduce bugs in

the code. PyTorch Lightning solves this exact problem, allowing the user to focus

more on research and less on engineering aspects of optimization.

As a result of the above advantages, in this project, we use PyTorch Lightning

to implement our models.

5.1.3 S3PRL

S3PRL [43] stands for Self-Supervised Speech Pre-training and Representation Learn-

ing. It is an open source toolkit providing various methods for speech representation

learning and audio signal processing.

It provides a unified input-output interface for various speech pre-trained models.

That is, all the models take input in the same format and provide output in the

same format. All the preprocessing specific to a particular model is taken care of

by the library.

In this project, we use S3PRL to make use of self-supervised pre-trained models

such as wav2vec 2.0 for our model.

5.2 Training

In this section, we describe some of the training choices made in this project.

5.2.1 Multi-GPU training

PyTorch Lightning provides various methods for model training. In this project,

we make use of Distributed Data Parallel (DDP) method of multi-GPU training

to train our models. In DDP, each GPU initiates its own process, and each of

these processes gets access to only a particular subset of the dataset. Each of these
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processes initialize the model and perform forward and backward passes in parallel.

Then the gradient calculated across these nodes is averaged, which is then finally

used to update the optimizer state in each of these nodes.

5.2.2 Learning rate finder

For training deep neural networks, perhaps the most important hyper-parameter

that one needs to tune is the learning rate. In order to reduce the guess work in

choosing a good initial learning rate, a learning rate finder can be used. Smith [37]

described a method to estimate a good learning rate: a small run is done in which

the learning rate is increased after each batch, and the corresponding loss is logged.

From this, we plot the learning-rate vs loss plot, which can be used to get a good

initial learning rate. It’s recommended not to choose the learning rate which obtains

the lowest loss but instead to choose a learning rate somewhere in the middle of the

steepest downward slope.

5.3 Reproducing results

The code for this project has been open-sourced and is available at

github/tarun360/SpeakerProfiling . For reproducing the results, one can clone this

repository and follow the instructions below:

1. Use package manager pip to download the requirements using the following

command:

pip install -r requirements.txt

2. Download the TIMIT dataset

wget https://data.deepai.org/timit.zip

unzip timit.zip -d ’path to timit data folder’

32

https://github.com/tarun360/SpeakerProfiling
https://pip.pypa.io/en/stable/


Figure 5.1: A snapshot of the config.json file

3. Prepare TIMIT dataset (divide it into train, val, and test sets)

python TIMIT/prepare_timit_data.py --path=’path to timit data folder’

4. Update the config.json file to update the upstream model, batch size, GPUs,

learning rate, etc. and change the preferred logger in train.py files. A snapshot

of config.json file has been shown in Fig. 5.1.

5. To train your own model on TIMIT dataset for speaker profiling:

python train_timit.py --data_path=’path to final data folder’

--speaker_csv_path=’SpeakerProfiling/Dataset/data_info_height_age.csv’

6. To test the trained model:

python test_timit.py --data_path=’path to final data folder’

--model_checkpoint=’path to saved model checkpoint’

5.4 Pre-trained model weights

We have uploaded the weights of our pre-trained model on this Dropbox link .
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To use it, simply download it and run the test script with the model checkpoint

path pointing to the downloaded model weights.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

We described a bi-encoder transformer model based on a Mixture of Experts (MoE)

that employs self-supervised representation, viz. wav2vec 2.0, to perform speaker

profiling. The results show that having distinct experts for male and female voices

helps decrease interference throughout the training process and produce cutting-

edge age estimate results. To integrate numerous losses in our multi-task model, we

used the homoscedastic uncertainty principle. We intend to investigate alternative

feature extractors and self-supervised learning in the future to increase the accuracy

of age and height estimates.

6.2 Future work

One interesting direction to explore in the future is to identify applications of this

model in speaker adaptation techniques such as Vocal Tract Length Normalization

(VTLN). Such speaker adaptation techniques can be quite useful for various speech

tasks, such as automatic speech recognition. [34]

Another direction worth exploring is to try different audio feature representations
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such as Phone Posteriorgram (PPG) features etc.
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