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PREFACE

This report on "GPU-accelerated Scalable Feature Extraction Techniques with Scal-
able Kernelized Fuzzy Clustering Algorithms and its Application to Real-life Genomics
Data for Gene Identification." is prepared under the guidance of Prof. Aruna Tiwari,
Professor, Computer Science and Engineering, IIT Indore.

Through this report, we have tried to provide a detailed description of our approach,
design, and implementation of an innovative method to perform Analysis of Scalable
Kernelized fuzzy Clustering for Genome Data. We tried to analyze the datasets and per-
form testing through various measures and performing gene identification of real-life
genome data.
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ABSTRACT

Bioinformatics is the study of gaining knowledge from biological data. It encom-
passes data collection, storage, retrieval, manipulation, modelling, and prediction using
algorithms and software. When it comes to genomics, the role of technology is primar-
ily focused on the tremendous rise in genome sequencing, which is developing at a rate
that is faster than projected by Moore’s law. The size of the data set is increasing ex-
ponentially, necessitating the use of massive data processing technology. Clustering is
one of the most widely used data mining methods for bioinformatics genome data in-
vestigation. In genome data investigation, the surging volume of genome data has put
colossal weight on clustering algorithms to scale beyond a single machine due to both
space and time bottlenecks. To scale the clustering algorithms for huge genome data,
there is a requirement for Big Data handling systems. Recently, incalculable handling
frameworks have been designed precisely for the utilization of Big Data.

This thesis mainly investigates to design and develop the fuzzy based scalable ker-
nelized clustering algorithms and feature extraction techniques for handling huge soy-
bean RNA and SNP data using Apache Spark cluster on High Performance Supercom-
puting (HPC). To handle Big Data, we proposed an Apache Spark cluster-based Log
kernelized clustering algorithm named Kernelized Scalable Random Sampling with It-
erative Optimization Fuzzy c-Means (LKSRSIO-FCM). This is based on the Log Ker-
nelized Scalable Literal Fuzzy c-Means (LKSLFCM) clustering algorithm, in which log
kernel function is used. Additionally, we proposed an Apache Spark cluster-based
Cauchy kernelized clustering algorithm named Cauchy Kernelized Scalable Random
Sampling with Iterative Optimization Fuzzy c-Means (CKSRSIO-FCM). This is based
on the Cauchy Kernelized Scalable Literal Fuzzy c-Means (CKSLFCM) clustering al-
gorithm, in which cauchy kernel function is used.This proposed work is inspired by
a Kernelized Scalable Random Sampling with Iterative Optimization Fuzzy c-Means
(KSRSIO-FCM) algorithm. The kernel function is applied to achieve better mapping
for non-linearly separable datasets. The proposed algorithms remove the problem of
loading the entire data in memory all at once. This results in a significant reduction in
run-time. The effectiveness of the proposed scalable kernelized fuzzy clustering algo-
rithms are tested on large benchmark datasets.

To handle huge real-life soybean SNP sequences, we have proposed novel scalable
feature extraction techniques for preprocessing huge SNP/RNA data that extract fixed-
length numerical feature vectors. The extracted numerical feature vectors are then fed as
an input to the proposed scalable kernelized fuzzy clustering algorithms to cluster huge
real-life SNP datasets. The algorithms are intended for detecting disease by grouping
samples (individuals) with comparable gene expression patterns, as well as identifying
groupings of genes with similar profiles across samples. However, few practical re-
search have been undertaken to test the efficacy of suggested scalable kernelized fuzzy
clustering algorithms for issues aimed at identifying new illness utilising gene identifi-
cation. For the SoySNP50K iSelect BeadChip, we have created a new version of the SNP
dataset. The complete data set for 20,087 G. max and G. soja accessions genotyped with
42,509 SNPs is generated for Wm82.a3.
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Chapter 1

Introduction

1.1 Background
The size of everyday data sets is outpacing the capability of computational hardware
to analyze these datasets. The datasphere will rise by 175 zettabytes (ZB) by 2025, ac-
cording to a report released by IDC on the ever-expanding datasphere [1]. In the field of
bioinformatics, data is being generated at an alarming rate as well. Particle physics ex-
periments, search engine logs and indexes, and other big data sources are no longer the
exclusive sources of big data. Data volume is increasing everywhere, including in the
bioinformatics area, as a result of the digitization of all operations and the availability
of low-cost, high-throughput technologies. By 2030, nine out of every ten persons aged
six and above would be engaged in some form of digital activity [2]. In today’s world, a
limitless amount of advanced information is being obtained at a rising rate in a variety
of disciplines [3, 4, 5, 6]. Because of the increasing volume of Big Data from various
sources, there is a demand for authentic research that necessitates thorough examina-
tion in Big Data analytic in order to gain important insights from the rich information
included in Big Data. Data is created rapidly in bioinformatics as well. Not only are
search engine logs and indexes used as big data sources. Data volume is increasing due
to digitization of processes and low-cost high-throughput equipment, notably in bioin-
formatics. A human genome, for example, is around 200 terabytes in size. To find a
new disease bio-marker, biologists no longer rely on traditional laboratories, but on the
vast amounts of genomic data generated by numerous research organisations. Auto-
mated genome sequencers, clustering of genome sequencing, and other bioinformatics
technologies are enabling this new era of big data.

The genome datasets comprise of list of strings and strings contain characters. But,
the machine learning algorithms can process only numerals. So we have to convert
the dataset into series of numbers and extract meaningful information from this series
of numbers so that the resultant feature vector can be used in clustering. This process
of extracting features from the list of numbers is very tedious and significant step of
the entire pipeline. And selection of appropriate feature extraction method is a subjec-
tive issue and each kind of dataset may have to be dealt with differently. If inappro-
priate feature extraction method is used for extracting feature vectors from the given
crude dataset, then the whole process of soft clustering the dataset falls apart. Since
the size and complexity of dataset is highly unpredictable, we have to come up with
scalable algorithms to extract feature vectors, which can process data sets of huge size
with ease. Since the bioinformatics field of genomics entered into the clustering of the
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high-dimensional information, this raises the prerequisite of creating scalable cluster-
ing algorithms to handle the high dimensional genome data. To cluster genome data
using clustering algorithms, there is a need to develop feature extraction methods for
genome data to be applied to clustering algorithms. Earlier research works have used
various traditional methods for feature extraction of genome data, but the efficiency is
poor for massive data [7]. Many researchers used machine learning methods to extract
relevant information from various genome datasets [8, 9]. Researchers also addressed
this issue by developing scalable feature extraction methods for genome data [10, 11].
Due to the massive generation of genome data day by day, there is a need to innovate
advancements in the present method/technology to handle such exponentially grow-
ing data. Motivated by the success of Big Data frameworks, this thesis investigated
scalable feature extraction techniques for RNA/SNP data and clustering of huge RNA
data by proposing various scalable fuzzy clustering models. However, the proposed
scalable clustering models are general purpose which can be applied to any problem.
The dataset is getting bigger, requiring bigger data processing technology. So, to man-
age huge genomic datasets, improvements are required. A scalable fuzzy clustering
methodology for huge RNA/SNP sequences was investigated in this thesis.

Clustering is an unsupervised learning method which is widely considered a data
mining strategy to extract important insights from unlabeled data. It tries to transform
data into clusters such that the data patterns in a cluster share similarity, which leads to
finding out the patterns of the dataset. In fuzzy clustering, a data sample with differ-
ent membership levels can belong to different clusters. The FCM clustering algorithm
uses iterative optimization to minimize an objective function using a measure of feature
spatial similarity.

In most cases, FCM is suitable for grouping data with linear data distribution in
feature space. For real-world clustering tasks, the input data is typically not easily sep-
arable due to the highly complex data structure or when clusters vary in size, den-
sity and shape. Kernel functions must be continuous, symmetric, and most preferably
should have a positive (semi) definite Gram matrix. Kernels which are said to satisfy
Mercer’s theorem are positive semi-definite, meaning their kernel matrices have only
non-negative Eigenvalues. Choosing the most suitable kernel depends heavily on the
problem to be solved and tweaking its parameters can easily become a tedious task [12].

We make use of KSLFCM and KSRSIO-FCM [13] algorithms to propose Analysis
of big data by applying different kernel functions on Apache spark framework. We
have used three kernels to compare the results. These kernels are Cauchy Kernel, Log-
arithmic Kernel and Radial Basis Kernel. There exists lot of popular kernels like Fisher
Kernel, Graph Kernel, Polynomial Kernel, Radial Basis Function Kernel, Sigmoid Ker-
nel, HyperBolic Tangent Kernel, Cauchy Kernel, Quadratic Kernel, Logarithmic Kernel,
Multiquadratic Kernel and several others [12]. From these kernel functions we chose
our kernel functions selectively on the basis of these two factors 1) Part of these 3 ker-
nel function equations contains euclidean distance. In analyzing past research work,
the researcher demonstrated that the adaptation of kernel functions could improve
Euclidean distance measure customary clustering algorithms.Kernel Functions should
contain square of equilidean distance for the sake of mathmatical derivation. 2) Ker-
nels that don’t give NaN values and give better results. Since the feature vectors size
is unpredictable, we have to use scalable algorithms to implement Kernelized Fuzzy c
means. Scalable feature extraction algorithms and scalable kernelized Fuzzy c means
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algorithms are discussed in Chapter 4 in detail.

1.2 Motivation
This thesis is a study of design and analysis of scalable online fuzzy based clustering
algorithms for handling Big Data and feature extraction techniques for huge RNA Data.

Many mathematical models of feature extraction have been investigated in the lit-
erature, including Genomic Signal Processing (GSP), DNA Numerical Representation
(DNR) [14, 15], and Complex Networks [16]. Since the feature extraction pipeline algo-
rithms usually have high computational costs, scaling the framework to handle real-life
Big Data is another challenging issue. In the light of this, we propose the systematic
pipeline for feature extraction of RNA sequence and perform analysis of their clustering
outcomes. We propose two scalable feature extraction algorithms for massive RNA se-
quences utilizing the Apache Spark framework on high-performance computing (HPC)
infrastructure: a 13-dimensional Scalable Zcurve (13d-SZcurve) and a 13-dimensional
Scalable EIIP (13d-SEIIP). Using these approaches, fixed-length numeric feature vec-
tors are extracted from large RNA sequences, and the numeric feature vectors are then
passed as input to scalable clustering algorithms.

This thesis investigates Kernelized Scalable Fuzzy c-means algorithm for cluster-
ing the genome sequences. We propose Cauchy Kernelized Scalable Random Sampling
with Iterative Optimization (CKSRSIO) algorithm which uses Cauchy Kernelized Lit-
eral Fuzzy c means algorithm (CKSLFCM). This proposed algorithm uses Cauchy func-
tion as a kernel and Apache Spark framework for distributing the data points in the
dataset among the worker nodes and parallelizing the parallelizable computations in
the CKSRSIO algorithm. Apache Spark and its internal details are explained in detail, in
chapter 4. Similarly we also propose Logarithm Kernelized Scalable Random Sampling
with Iterative Optimization (LKSRSIO) algorithm, which uses Logarithm Kernelized
Scalable Literal Fuzzy c means algorithm (LKSLFCM). This proposed algorithm uses
Logarithm function as a kernel and Apache Spark framework for the same purpose as
above. We also compare the clustering efficiencies of these 2 algorithms with an already
proposed algorithm Kernelized Scalable Random Sampling with Iterative Optimization
(KSRSIO) which uses Gaussian radial basis function as a kernel, by running these 3 al-
gorithms on benchmark datasets and use the best kernelized SRSIO algorithm to cluster
the genome data. To test the scalable clustering technique on real-life genome data,
vast RNA datasets of soybean plant genomes were acquired from ICAR-IISR, Indore for
grouping and categorising huge RNA sequences.

1.3 Objectives
The main objectives of this project are:

• To develop a novel scalable feature extraction algorithm for huge real-life SNP/RNA
sequences,which extracts 13-dimensional numeric feature vector and validate its
superiority.

• GPU accelerated feature extraction techniques for genome sequences on HPC us-
ing Apache Spark cluster for improving run time.
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• Analysis of kernel mercer functions.

• To develop scalable kernelized fuzzy clustering algorithms, which use the ana-
lyzed mercer kernel functions, for handling Big Data by reducing the run-time
and optimizing the storage space and validation of their superiority.

• Gene identification of new soybean sequences using the proposed scalable feature
extraction and scalable kernelized fuzzy clustering algorithms.

The rest of the report is organized as follows. Chapter 2 Shows Related Work, Chap-
ter 3 briefs about experimental setup, apache Spark and GPU, Chapter 4 describes the
proposed methods for both preprocessing and clustering part. The results are shown
in Chapter 5 and report concludes with Chapter 6, which describes our planned future
work.
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Chapter 2

Literature Survey

The following chapter discusses literature pertaining to previously known methods of
feature extraction and scalable clustering , providing a short description of the method-
ology and the dataset used, filtering, and performance measures used for the testing.

2.1 Feature Extraction
This section shows how to extract features for Zcurve and Integer approaches using
the Discrete Fourier Transform (DFT) and numerical mappings. It is critical to clar-
ify that we are referring to a biological sequence s = s[0], s[1], ..., s[N � 1] such that
s 2 {A, C, G, T}N [17]. When time domain data is transformed into frequency domain
space, it is possible to extract features using the Discrete Fourier Transform (DFT), which
is commonly used in digital image and signal processing and can reveal latent period-
icities. The DFT of a signal with length N, x 2 R

N, at frequency k, can be represented as
follows:

X[k] =
N�1

Â
n=0

x[n]e
�j2pkn

N k = 0, 1....N � 1. (2.1)

In bioinformatics, this approach has been extensively investigated, mostly for analysing
periodicities and repetitive elements in DNA sequences and protein structures. Figure
2.1 depicts this method. We’ll utilise the Fast Fourier Transform (FFT) to calculate DFT,
which is a fast method for computing DFT for a time series. To apply GSP approaches,
however, genomic data needs be transformed or mapped using a numeric representa-
tion. These representations may be split into three groups, according to Mendizabal
Ruiz et al. [18]: single-value mapping, multidimensional sequence mapping, and cu-
mulative sequence mapping. As a result, we investigate the Zcurve numerical mapping
approach [19] and Integer single-value mapping.

2.1.1 Zcurve Representation
Zhang [19] developed the Z-curve method as a three-dimensional curve for encoding
DNA sequences. In essence, we can check a given sequence s[n] of length N by con-
sidering the n

th element of the series (n = 1, 2, ...., N). Then, for each base A, C, G, and
T, indicates the cumulative occurrence of numbers An, Cn, Gn, and Tn as the number of
times that base occurred up until s[1] and s[n].

An + Cn + Gn + Tn = n. (2.2)
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FIGURE 2.1: Fourier Transform and Numerical Mapping Pipeline of Bio-
logical Sequence.

As illustrated in Eq.2.3, the Z-curve is composed of a set of nodes designated as P1, P2, ..., PN,
each of whose coordinates x[n], y[n], and z[n] (n = 1, 2, ...) are uniquely determined by
the Z-transform.

P[n] =

8
<

:

x[n] = (An + Gn)� (Cn + Tn)
y[n] = (An + Cn)� (Gn + Tn)
z[n] = (An + Tn)� (Cn + Gn)

(2.3)

Where, x[n], y[n], z[n] 2 [�n, n] (n = 1, 2, ..., N). An entire sequence may be de-
scribed by the three independent distributions that are represented by the coordinates
x[n], y[n], and z[n] [20]. As a result, x[n] = purine/pyrimidine, y[n] = amino/keto, and
z[n] = weak hydrogen bonds/strong hydrogen bonds are the three distributions of bio-
logical significance [19]. Let s = (G, A, G, A, G, T, G, A, C, C, A), so, x= (1, 2, 3, 4, 5, 4,
5, 6, 5, 4, 5), y = (-1, 0, -1, 0, -1, -2, -3, -2, -1, 0, 1), z = (-1, 0, -1, 0, -1, 0, -1, 0, -1, 2, -1). At
each n

th index, there is either 1 or -1 difference between the dimensions compared to the
previous (n � 1) index [19]. Each dimension of an array is updated using the following
set of equations, where x[�1] = y[�1] = z[�1] = 0, where n = 1, 2, ...N.

x[n] =

⇢
x[n] = x[n � 1] + 1, s[n] = A or G

x[n] = x[n � 1]� 1, s[n] = C or T
(2.4)

y[n] =

⇢
y[n] = y[n � 1] + 1, s[n] = A or C

y[n] = y[n � 1]� 1, s[n] = G or T
(2.5)

z[n] =

⇢
z[n] = z[n � 1] + 1, s[n] = A or T

z[n] = z[n � 1]� 1, s[n] = G or C
(2.6)

Finally, the DFT (X, Y, and Z) and power spectrum (P) of the Z-Curve representation
may be defined as:

X[k] = ÂN�1
n=0 x[n]e

�j2pkn

N

Y[k] = ÂN�1
n=0 y[n]e

�j2pkn

N

Z[k] = ÂN�1
n=0 z[n]e

�j2pkn

N

(2.7)

P[k] = |X[k]|2 + |Y[k]|2 + |Z[k]|2, k = 1, 2, ....N. (2.8)
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2.1.2 Integer Representation
This representation is one-dimensional [18, 21]. This mapping can be obtained by sub-
stituting the four nucleotides (T, C, A, G) of a biological sequence for integers (0, 1,
2, 3), respectively. Following are the steps to perform feature extraction using Integer
Representation:

• Takes biological sequence as input and apply numeric mapping

b[n] =

8
>><

>>:

0, s[n] = G

1, s[n] = A

2, s[n] = C

3, s[n] = T

(2.9)

• Perform Discrete Fourier Transform on numerical sequence

B[k] =
N�1

Â
n=0

b[n]e
�j2pkn

N (2.10)

• Perform Power Spectrum for the biological sequence

P[k] = |B[k]|2 (2.11)

• Apply feature extraction on the resulted data.

2.2 Fuzzy Clustering
In general hard clustering algorithms, each data point belongs to one cluster center.
Whereas in soft clustering or fuzzy clustering algorithm, the extent to which one data
point belongs to another cluster center is defined and cluster centers are found out de-
pending on that.Membership degree represents the extent to which one data point be-
longs to another cluster center. Each data-point xi is an object and has a set of mem-
bership degrees uij : j e(1, c) associated with it. Group of all membership degrees of all
data-points make the membership matrix U. Since Bezdek’s[22] initial fuzzy clustering
technique, Fuzzy c-Means(FCM), the clustering approach has progressed significantly.
Iterative optimization is used in the FCM clustering technique to minimise an objective
function on feature space using a similarity measure.

Jm(U, V) =
n

Â
i=1

c

Â
j=1

u
m

ij
kxi � vjk2, m > 1 (1)

2.2.1 Kernel Functions
The kernel trick is an implicit non-linear map (f) from the input space X to a high
dimensional feature space R [23].

f : x ! f(x) 2 R
d
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where the data samples {x1, x2, ...., xs} ✓ X. In this, an input data space with lower
dimension is mapped to potentially much higher dimensional feature space (R) or inner
product [24]. A mercer kernel described as a function can express the inner product
operation in kernel space K below:

K(xi, vj) = f(xi)
Tf(vj)

where xi, vj 2 R
d such that i = 1, .., s and j = 1, ..., c.

By the kernel substitution, we have the following equation.

kf(xi)� f(vj)k2 = (f(xi)� f(vj))T(f(xi)� f(vj))
= f(xi)Tf(xi)� f(vj)Tf(xi)� f(xi)Tf(vj) + f(vj)Tf(vj)
= K(xi, xi) + K(vj, vj)� 2K(xi, vj)

(2.12)

This results in the creation of a new class of non-Euclidean distance measures in the
original input space (along with a Euclidean distance in feature space). As a result, the
original space will be measured differently by various kernels.
For example K(xi, vj) is the Radial Basis Function (RBF) kernel [25], which is a well-
known kernel function represented as follows:

K(xi, vj) = exp(�kxi � vjk2/s2) (2.13)

The kernel parameter is indicated by the symbol sigma. The selection of kernel parame-
ters is the most important task, according to [25]. The kernel parameter is chosen in this
study in the following manner:

s =

s
Âs

i=1(z � z̄)
s � 1

like this we have explored many other kernel functions in our work which will get
introduced in the next chapters.

2.2.2 KSLFCM
SLFCM can work with linear relationships. The kernel approach is used to expand
SLFCM in order to accommodate non-linear relations. The KSLFCM method is a ker-
nelized variant of the SLFCM algorithm that employs several kernel functions. Data
samples and cluster centre values are used to compute the membership degree. As a
result, the membership degree of specific data samples may be calculated in simultane-
ously on many slave nodes.
Algorithmic Steps:

1. KSLFCM algorithm calculates the membership degree separately for each data
sample. Eq. (6).

2. In Line 2 of KSLFCM algorithm, it parallely calculates membership values for all
data samples on apache spark by making use of the Map and ReduceByKey func-
tions.
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3. The cluster centre values are updated from membership degrees of all data sam-
ples in line 3 of the method. As a result, this line is run after all membership
degrees have been computed. The membership degrees of all data samples are
integrated and kept as a membership knowledge I

0 at the master node, which is
necessary to update the cluster centre vj by Eq (7).

4. The difference between the previous initialised cluster centre values and the newly
computed cluster centre values is calculated on line 4. This technique is repeated
until no change in the values of cluster centres is detected. Following that, all
iterations are run in order since the updated cluster centres are needed as input
for the following iteration.

PsuedoCode of KSLFCM:

Algorithm 2 : KSLFCM to Iteratively Minimize Jp(M, V
0
)

Input : X, c, p, e, (initial V); X is an array of data samples such that X = {x1, x2, ...xs}.
Output : I

0, V
0

1 : If V is not initialized, randomly initialize V = {v1, v2, ....vc}.
2 : Compute membership knowledge by using Eq. (6).

I
0 = X.Map(V).ReduceByKey()

3 : Compute the set of final cluster centers V
0 = {v

0
1, v

0
2, ....v0c} by using Eq. (7).

4 : If k V
0 � V k< e then stop, otherwise go to step 2.

5 : Return I
0, V

0.

2.2.3 KSRSIO-FCM
We propose three Kernelized Scalable Random Sampling With Iterative Optimization
Fuzzy c-Means (KSRSIO-FCM) algorithms implemented on the Apache Spark frame-
work with different three different kernels as Cauchy Kernel, Logarithmic Kernel, Gaus-
sian Radial-Basis Kernel. The objective function for these algorithms would be the same
as that of FCC. The KSRSIO-FCM algorithms work by partitioning data across slave
nodes into equal sized subsets by selecting 100% of the data without any replacement
for Big Data Algorithm summarizes the steps of the Base algorithm (KSRSIO-FCM).

The dataset is divided into a number of subsets or chunks, and the cluster centres are ini-
tialised with a few randomly selected data points in the first chunk. The base algorithm
then calculates the cluster centres and membership values for the first chunk, let’s say
X1, represented by V and I, respectively, using the second base algorithm (KSLFCM),
whose description is explained in the next section. The estimated cluster centres V are
then used as an input for clustering the second subset X2. Now, using the second base
algorithm (KSLFCM), the base algorithm (KSRSIO-FCM) clusters X2 and determines
the cluster centres and membership knowledge represented by I and V. However,for
the clustering of the third subset, KSRSIO-FCM does not use V as an input. This is be-
cause KSRSIO-FCM takes into account the fact that random partitioning might result in
two continuous subsets with data samples from different classes. As a result, the cluster
centres of these two subgroups will differ dramatically. As a result, for the clustering
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of the current subset, KSRSIO-FCM avoids using cluster centres as the original cluster
centres from the prior iteration. Rather, it combines the membership values of all the
processed subsets, i.e. it combines I and I

0, and uses Eq.(7) to update cluster centres.
Because they are computed with the combined membership knowledge of a greater
number of data samples that spans a bigger sample region, this method of determining
cluster centres is the most prominent approach of estimating real cluster centres.

The I numerator and denominator of V are computed using the KSLFCM technique.
Combining membership matrices is identical to union of the very first subset I1 and the
second subset I2 because membership values of one data sample are independent on
membership values of other data samples. As a result, rather than allocating a large
amount of storage space for I, we may integrate I1 and I2 without losing any infor-
mation. This aids in space optimization; this optimization analogy also applies to the
remaining subsets, i.e. all s 2 [3, s], where s is the number of subsets. Because opera-
tions on one subset are performed serially, KSLFCM will effectively consume only (1

s
)th

times of the space. We save a large amount of space and processing time as a result of
this.
The workflow of KSRSIO-FCM is shown in Fig. 2.1, which uses KSLFCM to compute
membership knowledge and cluster centres for all subsets. It shows how the dataset is
randomly divided into subgroups and how the underlying cluster centres for clustering
the initial subset are picked at random. [13]

PseudoCode of KSRSIO :

Algorithm 1 : KSRSIO-FCM to Iteratively Minimize Jp(M, V
0)

Input : X, c, p, e; X is an array of data samples such that X = {x1, x2, ...xs}.
Output : I

0 , V
0

1 : Partition set X into n subsets such that X = {X1, X2, . . . . . . .Xn}.
2 : Randomly select X1 from X without replacement where X1 represents the first subset
consist of random s/n samples.
3 : I

0 , V
0
= KSLFCM(X1, c, p, e)

4 : for t = 2 to n do
4.1 : I, V

0 = KSLFCM(Xt, c, p, e, V
0)

4.2 : Merge the partition of all blocks of processed subsets
for j = 1 to c do

I
0
j
=< j,< (sum_djx)Ij

,+(sum_djx)I
0
j

, (sum_dj)Ij
,+

(sum_dj)I
0
j

>>

end for
4.3 : Compute updated cluster center v

0
j

using:
< j,< sum_djx, sum_dj >> in I

0 by Eq. (7) 8 2 [1, c]
end for

5 : Compute the objective function using Eq. (5).
6 : Return I

0, V
0
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FIGURE 2.2: Workflow of KSRSIO-FCM algorithm.
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Chapter 3

Tools and Frameworks used for
computations

3.1 Introduction
The frameworks and resources utilised to handle Big Data are discussed in the next
chapter. To do calculations for our BTech research, we used a Apache Spark cluster
in Prof. Aruna Tiwari’s Big Data lab. We also utilised two HPCs: Paramshakti from
IIT Kharagpur and Param Siddhi-AI from CDAC Pune. In the next parts, we utilised
Hadoop Distributed File System (HDFS), which will be detailed in detail. Graphics
Processing Units (GPUs) on the Param Siddhi-AI supercomputer were used to paral-
lelize our feature extraction techniques.

3.2 Apache Spark

3.2.1 Spark Introduction
At the University of California, Berkeley, Apache Spark was established in 2009. It’s an
open-source data processing engine for in-depth research. It has swiftly risen to promi-
nence among consumer electronics, offering a severe challenge to Hadoop MapReduce.

3.2.2 Purpose
Apache Spark is a framework for parallelizing parallelizable calculations via Applica-
tion Programming Interfaces APIs without worrying about the complexity of parallel al-
gorithm implementation. The framework offers a wide range of APIs, making it simple
to connect their use to the parallelizable phases of the algorithm. Apache Spark is a scal-
able in-memory computing platform for big data processing. It allows for the analysis
of subsets of the dataset in parallel across a cluster. Apache Spark is a high-performance
cluster computing solution with easy and efficient programming APIs that enable the
slave node to retrieve and execute the dataset repeatedly. By executing a spark job on
the Hadoop framework to share a cluster and dataset while ensuring continuous ser-
vice and response levels, Spark’s in-memory cluster computing technology improves
application processing performance.
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3.2.3 Internal working of Apache Spark clusters
The Apache Spark clusters are depicted in Figure 3.1. One master node and a number
of worker nodes comprise the Apache Spark cluster. A driver is a master that is used
to schedule tasks. With jobs, steps, and tasks, Spark starts a hierarchical scheduling
process. The map and reduce phases are matched using a subset of tasks partitioned
from collective jobs. DAG Scheduler and Task Scheduler are two components of the
Apache Spark framework. For each job, the DAG Scheduler generates a directed acyclic
graph (DAG). It also keeps track of the RDD record for each step’s outputs, whereas
the Task Schedule sends tasks to the cluster from each step. By allowing the master to
connect to a cluster manager, standalone in our example, Apache Spark offers several
cluster modes to the user for the execution of their Apache Spark programme. Each
worker node has its own executor.The executor is responsible for running the tasks and
caching the data in memory or disk.

FIGURE 3.1: Overview of Apache Spark Cluster

3.2.4 Apache Spark APIs used for the project
We implemented our algorithms in Python and we incorporated Spark APIs in Python
through Pyspark. The APIs used in the project are map, reduceByKey, union.

3.2.4.1 map(function)

map() API implements the Map fuction described in the previous chapter. It takes a
function as an argument and applies that function to each data-point in the dataset.
This API, splits the dataset among the worker nodes and apply the function on each
data-point, on each worker node, thus parallelizing the process and reducing the time
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3.2.4.2 reduceByKey(aggregate function)

reduceByKey() API implements the ReduceByKey function described in the previous
chapter. It takes aggregate function as an argument, divides the whole RDD into buck-
ets, based on the key value and applies the aggregate function on each bucket and re-
turns a new RDD containing the output of the aggregate function on each bucket.

3.2.4.3 union(list of RDDs)

union() API coalesces two RDDs into a single RDD.

3.2.5 Hardware Description of Apache Spark clusters
There are 1 Server, 1 master, 5 slave nodes in the lab

3.2.5.1 Server specifications

Total number of cores is 32, total available memory is 187 GB and total disk space is 12
TB.

3.2.5.2 Master specifications

It is a Dell precision Tower 5810 workstation, it has 4 cores and its RAM is 32 GB

3.2.5.3 Slave Nodes specifications

They have Intel(R) Core(TM) i7-77000 CPU with 3.60 GHZ frequency and each slave
node has 1 TB storage space.

3.3 High Performance Computing through supercomput-
ers

For the project, we used 2 High Performance Computing (HPC) machines i.e supercom-
puters of India, Paramshakti and Param Siddhi-AI. The hardware descriptions of these
supercomputers are given below.

3.3.1 Paramshakti
PARAM Shakti is IIT Kharagpur’s supercomputer. PARAM Shakti systems are based on
Intel Xeon SKL G-6148, NVIDIA Tesla V100 with total peak performance of 1.6 PFLOPS.

3.3.2 Param Siddhi-AI
PARAM Siddhi-AI is CDAC- Pune’s supercomputer. Param Siddhi-AI, a machine with
210 AI Petaflops (6.5 Petaflops Peak DP), is based on the NVIDIA DGX SuperPOD ref-
erence architecture comprising of 42 NVIDIA DGX A100 systems.
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3.4 Hadoop Distributed File System
Hadoop File System is based on a distributed file system architecture. It runs on stan-
dard hardware. HDFS, unlike other distributed systems, is designed with low-cost
hardware and is highly fault-tolerant. HDFS can store a lot of data and makes it easy
to access it. The files are spread over numerous machines to accommodate such large
amounts of data. These files are duplicated to protect the system from data loss in the
event of a system failure. HDFS also enables parallel processing of applications.

FIGURE 3.2: HDFS Architecture[26]

3.4.1 Features of HDFS
• It is suitable for distributed storage and processing.

• To communicate with HDFS, Hadoop provides a command interface.

• The namenode and datanode built-in servers make it simple for users to examine
the cluster’s status.

• Access to file system data in real time.

• File permissions and authentication are provided by HDFS.

3.4.2 Namenode
The namenode is a piece of commodity hardware that houses the GNU/Linux operating
system as well as the namenode software. It’s the heart of the HDFS file system. It
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maintains the directory tree of all files in the file system and records where the file data
is stored across the cluster. It does not save the contents of these files. The master server
is the machine that contains the namenode and is responsible for the following tasks:

• Controls the namespace of the file system.

• Client access to files is regulated.

• File system activities including renaming, renaming, shutting, closing, and open-
ing files and directories are performed.

3.4.3 Datanode
The data node is made up of commodity hardware that has been installed with the
GNU/Linux operating system and data node software. Each node (common hard-
ware/system) in a cluster will have a data node. These nodes are in charge of the data
storage for the system. Client requests are handled by datanodes, which conduct read-
write operations on file systems. In accordance with the name node’s orders, they also
perform block creation, creation, deletion, deletion, and replication.

3.4.4 Block
The user data is typically saved in HDFS files. HDFS files are divided into data blocks,
which are block-sized chunks. These blocks are kept as separate units. In other terms,
a Block is the smallest quantity of data that HDFS can read or write. The default block
size is 64MB, although it can be extended if the HDFS setup requires it.

3.5 Graphics Processing Units
Unlike CPUs, GPUs have multiple Arithmetic Logic Units (ALUs), which speeds up
the parallelizable portions of the process. In this project, we employed GPUs to speed
up the process of extracting Featured vectors from snp data. To programmatically add
GPUs, we used the Python modules Numba and CuPy, which both use CUDA APIs to
communicate with the hardware GPUs.

3.5.1 CUDA
CUDA is a parallel computing platform and programming paradigm developed by
NVIDIA. They provide APIs that deal with the GPU’s low-level complexity. Many li-
braries, packages, and frameworks leverage CUDA APIs to implement their logic.

3.5.2 Numba
It’s a free Just-In-Time (JIT) compiler that converts a portion of Python and NumPy
code into machine code. By converting a chunk of Python code into CUDA kernels, this
package facilitates CUDA GPU development.
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3.5.3 CuPy
CuPy is a NumPy compatible array library for Python GPU acceleration[27].
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Chapter 4

Proposed Methods

4.1 Proposed Scalable Feature Extraction Technique
we propose two pipelines to perform clustering on various RNA datasets, extracted
from different parts of a soybean plant, and we compare the clustering efficiencies of
these two pipelines on different RNA datasets. Both of the pipelines have two parts:

1. Convert the raw RNA datasets into a workable dataset (compatible with cluster-
ing, regression, neural networks, and so on) which is also known as the Feature
Extraction sub-pipeline.

2. Using numeric features to cluster the obtained dataset.

In the first stage of the pipeline, it takes genomic data (DNA and RNA) and converts
them into a dataset containing a particular number of numerical columns. Figure 4.1
shows the workflow of proposed methods. In this paper, we constructed two such
pipelines, called 13d-SZcurve pipeline and the 13d-SEIIP pipeline, which are elucidated
in the subsequent sections, and we compared the clustering efficiencies between the
pipelines for different RNA datasets pertaining to different parts of the soybean plant.
Both of these pipelines differ only in the feature extraction sub-pipeline. The scalable
RNA feature extraction method is discussed in Algorithm 1.

Algorithm 1 Scalable RNA Feature Extraction Method
Require: X (Input data), Representation (feature extraction method(13d-SZcurve or

13d-SEIIP)).
Ensure: X

0 (features of corresponding data)
1: Compute power spectrum from input data power_spectrum = empty_RDD

2: if Representation = 13d � SEIIP then
3: power_spectrum = X.Map(13d-SEIIP)
4: Compute feature vectors.
5: X

0 = power_spectrum.Map(Feature_Extract)
6: Function Feature_Extract produce 13 features as discussed in point 7.

The Algorithm 1 presents sub-pipeline task in 7 stages. The feature extraction sub-
pipeline takes the string "representation" as input, which decides the pipeline to be run.
Stages of the feature extraction pipeline that are common between the two pipelines are:

1. Dataset parallelization: The given dataset must be converted into a Resilient Dis-
tributed Dataset (RDD) using spark APIs, where RDD is the fundamental data
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structure of Spark. By using Sparks Map Application Programming Interface
(API), for each row of the dataset, we perform the subsequent steps of the pipeline.

2. Biological Sequence: The biological sequence is a series of nucleotides in DNA and
RNA, and it cannot be computed; it has to be converted into a series of numbers by
the feature extraction pipeline, and it is the input to the whole clustering pipeline.

3. Numerical mapping: In this stage, the nucleotides A, C, G, and T are replaced by
integers or the biological sequence is converted to a sequence of numbers of the
same length. From this stage of the feature extraction pipeline, the two pipelines
that we propose in this paper differ. In one pipeline, we used the 13-dimensional
Scalable Z-curve (13d-SZcurve) numerical mapping scheme, and in the other pipeline,
we used the 13-dimensional Scalable EIIP (13d-SEIIP) numerical mapping scheme.
This step serves as a basis to get the final featured vector.

4. Numerical Sequence: In this stage, after applying the numerical mapping scheme
to each nucleotide in every row in the raw RNA dataset, a numeric sequence is
generated pertaining to each initial row in the raw RNA dataset. This sequence is
then used in the next stage.

5. Discrete Fourier Transform (DFT) and Power Spectrum: In this stage, the numeri-
cal sequence obtained from the previous step is then transformed into its DFT, and
the power spectrum is calculated from the DFT.

6. Fourier Spectrum: The fourier spectrum or power spectrum is extracted from the
Previous stage.

Steps from 2 to 6 are done in function Map(Dataset_RDD, 13d-SEIIP) and
Map(Dataset_RDD, 13d-SZcurve) algorithm procedural blocks, and the Step 6
output is stored in a RDD called power_spectrum_RDD. Then, on this RDD, by
applying Spark Map API, on each row of the RDD, we apply the Feature_Extract

transformation, which is elucidated in the subsequent step.
This is mentioned in the Map(power_spectrum_RDD, Feature_Extract).

7. Feature Extraction : In this stage, the power spectrum RDD that we got in the
previous stage is taken as an input and 13 features are extracted from power spec-
trum like average, minimum, maximum, etc. as shown in Figure 4.1. This stage
is denoted by Map(power_spectrum_RDD, Feature_Extract) in Figure 4.1. Here,
Feature_Extract is the function for calculating 13 feature vectors. And performs
feature extraction on power_spectrum_RDD by using Spark Map API, for each row
by calculating minimum, maximum, mean, median, peak, standard deviation,
standard deviation population, variance, amplitude, percentile15, percentile25,
percentile50, percentile75 of the row and return this final array and insert this
results array in a new RDD called Final_dataset_RDD, which is the final output
of the feature extraction pipeline. The detailed description of proposed scalable
feature extraction algorithms (13d-SZcurve and 13d-SEIIP) are presented next.
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4.1.1 Proposed 13d-SZcurve
As mentioned before, based on the numerical mapping stage, there are 2 pipelines.
The 13d-SZcurve pipeline and the 13d-SEIIP pipeline. The steps mentioned in the be-
low 13d-SZcurve pipeline cover only the sequence of actions which are performed in
Map(Dataset_RDD, 13d-SZcurve) and 13d-SEIIP pipeline covers only the sequence of
actions which are performed in Map(Dataset_RDD, 13d-SEIIP). Algorithm 2 discusses
13d-SZcurve method. It takes the RNA sequences as input. In Line 1, length of se-
quences is initialized. Line 2 generates the numeric mapping from the raw RNA se-
quences and return three numerical sequences x, y and z and each sequence is of the
same length as the corresponding RNA sequence. Using Line 3-16, We generate 3 sep-
arate numerical sequences x, y and z for the RNA sequence. Then perform DFT of x, y

and z sequences from Line 17-18 for the RNA sequence where, X is DFT of x sequence,
Y is DFT of y sequence, and Z is DFT of z sequence. Thus, returns three sequences of
complex numbers X, Y and Z. Line 19-20 performs power spectrum for the RNA se-
quences by using the corresponding X, Y and Z and return a sequence of real numbers
P.

Algorithm 2 13d-SZcurve
Require: s

Ensure: P

1: Initialization of arrays N = length(s), X[N], Y[N], Z[N], P[N].
2: Generating three separate numerical sequences x, y, z for each row of the raw RNA

dataset.
3: if s[0] = A or G then
4: x[0] = 1
5: else
6: x[0] = �1
7: if s[0] = A or C then
8: y[0] = 1
9: else

10: y[0] = �1
11: if s[0] = A or T then
12: z[0] = 1
13: else
14: z[0] = �1
15: for k = 1 to N -1 do
16: as per Eq. 2.4-2.6.
17: for k = 0 to N -1 do
18: Eq. 2.7
19: for k = 0 to N -1 do
20: Eq. 2.8
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FIGURE 4.1: Workflow of the scalable feature extraction sub pipeline

4.1.2 Proposed 13d-SInteger
Similarly we proposed 13d-SInteger method, basic pipeline of steps is same as 13d-
SZcurve method. Algorithm 3 discusses the proposed method. It takes the RNA se-
quences as input. In Line 1, length of sequences is initialized. Line 2 generates the
numeric mapping from the raw RNA sequences and return one numerical sequence b

and length of the sequence is same as of the corresponding RNA sequence. Then per-
form DFT of b in Line 33-37 for the RNA sequence where, B is DFT of b sequence. Line
38-39 performs power spectrum for the RNA sequences by using the corresponding B

and return a sequence of real numbers P.

Algorithm 3 13d-SInteger
Require: s

Ensure: P

1: Initialization of arrays N = length(s), B[N], P[N].
2: Generating numerical sequence b for each row of the raw RNA dataset.
3: for k = 0 to N -1 do
4: as per Eq. 2.9
5: for k = 0 to N -1 do
6: Eq. 2.10
7: for k = 0 to N -1 do
8: Eq. 2.11

4.1.3 GPU accelerated 13d-SZcurve
Algorithm 1, discusses 13d-SZcurve. First, it initializes the length of the sequence in
Line 1. In Line 2, empty RDD is created for the computation of power spectrum. In Line
3, a Map function is used to distribute Compute_Power_Spectrum_Zcurve method onto
the worker nodes for parallel processing. Line 4-8 describes the working of Compute

_Power_Spectrum_Zcurve function. Line 5 generates the numeric mapping from the
raw RNA sequences and return three numerical sequences x, y, and z and each sequence
is of the same length as the corresponding RNA sequence. Line 6-7, we updated the val-
ues of each dimension of an array. Then perform DFT of x, y and z sequences from Line
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8-9 for the RNA sequence. Thus, returns three sequences of complex numbers of DFT.
Line 10-11 performs the power spectrum for the RNA sequences by using the corre-
sponding complex numbers obtained in previous steps. In Line 11, kernel function of
power spectrum has been executed, which runs on GPU. In Line 12, feature vectors are
computed from power spectrum RDD. Line 13 returns Final_dataset_RDD, containing
numerical feature vectors of 13 dimensions.

Algorithm 1 : GPU accelerated 13d-SZcurve

Input : s (Raw RNA data)
Output : X

0 (13 feature vectors)
1 : Initialize N = length(s).
2 : Compute power spectrum from input data power_spectrum = empty_RDD.
3 : power_spectrum = X.Map(Dataset_RDD , Compute_Power_
Spectrum_Zcurve)
4 : Function Compute_Power_Spectrum_Zcurve{
5 : Generating three separate numerical sequences x, y, z for the given RNA sequence.
6 : For n = 1 to N -1
7 : Update the values of each dimension using Eq. 2.4-2.6.
8 : For k = 0 to N -1
9 : Calculate the DFT using Eq. 2.7.
10 : For k = 0 to N -1
11 : Kernel function executed to compute power spectrum using Eq. 2.8 }.
12 : X

0 = power_spectrum.Map(Feature_Extract).
13 : Return Final_dataset_RDD.

4.2 Proposed Scalable Kernelized Fuzzy Clustering Algo-
rithms

4.2.1 Proposed CKSRSIO-FCM Algorithm
In this subsection, we elucidated the mercer kernel used in the proposed CKSRSIO-
FCM algorithm, then derived the formulae for cluster centers and membership degrees
of each datapoint in each cluster using Lagrange multipliers optimization method and
then list those formulae at the end of this subsection.

4.2.1.1 Kernel Description

Cauchy kernel is derived from Cauchy distribution (Basak, 2008). It’s a long-tailed ker-
nel that may be utilised to offer high-dimensional space long-range effect and sensitiv-
ity. The following equation represents this kernel:

K(xi, vj) =
1

(1 + kxi�vjk2

s2 )
(4.1)
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4.2.1.2 Numerical Derivation

1. Objective function

J(U, V) =
n

Â
i=1

c

Â
k=1

u
m

ik
kf(xi)� f(vk)k2, m > 1 (4.2)

where f stands as map.
And distance function can be expressed using in a product space as

kf(xi)� f(vj)k2 = hf(xi), f(xi)i+ hf(vk), f(vk)i � 2 hf(xi), f(vk)i (4.3)

2. Kernel Induced Measure from Eq. (4.2) we can express kernel function as

K (xi, vk) = hf(xi), f(vk)i (4.4)

based on the explanation of similarity measure on feature space.
Therefore we have the new Kernel induced distance function as

kf(xi)� f(vj)k2 = K (xi, xi) + K (vk, vk)� 2K (xi, vk) (4.5)

where i=1,2,3 . . . n and k=1,2,3,. . . c

3. Recalculation of Effective Objective Function
Cauchy Kernel can be defined as

K(xi, vj) = 1 � log(1 + kxi � vjk2/s2) (4.6)

Now K(xi, xi) = 1 and K(vk, vk) = 1
Therefore ,

kf(xi)� f(vj)k2 = 2(1 � K (xi, vk)) (4.7)

J(U, V) = 2
n

Â
i=1

c

Â
k=1

u
m

ik
(1 � K (xi, vk)), m > 1 (4.8)

4. Obtaining Membership

4.1 To Obtain equation for calculating membership we minimize the objective
function

J(U, V) = 2
n

Â
i=1

c

Â
k=1

u
m

ik
(1 � K (xi, vk)) subject to

c

Â
k=1

uik = 1 (4.9)

4.2 Objective Function with lagrange multiplier and constraints

J (U, V, l) = 2
n

Â
i=1

c

Â
k=1

u
m

ik
(1 � K (xi, vk))�

n

Â
i=1

li

 
c

Â
k=1

uik � 1

!
(4.10)
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where l = (l1, l2, l3, ...ln) subject to constraints

c

Â
k=1

u1k = 1

c

Â
k=1

u2k = 1

...
c

Â
k=1

unk = 1

(4.11)

4.3 Write final function before calculating derivative

J(U, V, l) = 2

"
n

Â
i=1

u
m

i1 (1 � k(xi, v1)) + u
m

i2 (1 � k(xi, v2)) + · · ·+ u
m

ic
(1 � k(xi, vc))

#
�

n

Â
i=1

li ((ui1 + ui2 + ui3 + · · ·+ uic)� 1)

(4.12)
Expanding above equation we get

J(U, V, l) = [(um

11 (1 � K(x1, v1)) + u
m

21 (1 � K(x2, v1)) + · · ·+ u
m

n1 (1 � K(xn, v1)))]

+ [(um

12 (1 � K(x1, v2)) + u
m

22 (1 � K(x2, v2)) + · · ·+ u
m

n2 (1 � K(xn, v2)))]

+ · · ·+ [(um

1c
(1 � K(x1, vc)) + u

m

2c (1 � K(x2, vc)) · · ·+ u
m
nc (1 � K(xn, vc)))]�

[(l1u11 + l2u21 + · · ·+ lnun1) +

(l1u12 + l2u22 + · · ·+ lnun2) +

· · ·+ (l1u1c + l2u2c + · · ·+ lnu1c)�
(l1 + l2 + · · ·+ ln)

(4.13)
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4.4 Using the needed condition Lagrangian technique, we may take the objective
function’s derivative with respect to u and set the first derivative to zero.

∂J

∂u11
= 2mu

m�1
11 (1 � K(x1, v1))� l1 = 0

) 2mu
m�1
11 (1 � K(x1, v1)) = l1

) u
m�1
11 (1 � K(x1, v1)) =

l1
2m

) u
m�1
11 =

l1
2m(1 � K(x1, v1))

) u11 =

✓
l1

2m(1 � K(x1, v1))

◆ 1
m�1

∂J

∂u12
= 2mu

m�1
12 (1 � K(x1, v1))� l1 = 0

) u12 =

✓
l1

2m(1 � K(x1, v2))

◆1/m�1

...

) u1c =

✓
l1

2m(1 � K(x1, vc))

◆1/m�1

(4.14)

4.5 Summing up all u1c,u2c,u3k . . . and final calculation of unc

u11 + u12 + · · ·+ u1c =

✓
l1

2m(1 � K(x1, v1))

◆1/m�1
+

✓
l1

2m(1 � K(x1, v2))

◆1/m�1
+

. . .
✓

l1
2m(1 � K(x1, vc))

◆1/m�1

=

✓
l1
2m

◆1/m�1
2

4
c

Â
j=1

 
1

1 � K(x1, vj)

!1/m�1
3

5

(4.15)

Since our proposed partition matrix in an objective function satisfies the fol-
lowing conditions

c

Â
k=1

uik = 1 i = 1, 2, 3 . . . n

We have
✓

l1
2m

◆1/m�1
2

4
c

Â
j=1

 
1

1 � K(x1, vj)

!1/m�1
3

5 = 1
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We obtain ✓
l1
2m

◆1/m�1
=

1
Âc

j=1

⇣
1

1�K(x1,vj)

⌘1/m�1
� (4.16)

substituting eq. (4.15) in u11 ,we have

u11 =

⇣
1

1�K(x1,v1)

⌘ 1
m�1

Âc

j=1

⇣
1

1�K(x1,vj)

⌘ 1
m�1

Similarly we have

u12 =

⇣
1

1�K(x1,v2)

⌘ 1
m�1

Âc

j=1

⇣
1

1�K(x1,vj)

⌘ 1
m�1

...

u1c =

⇣
1

1�K(x1,vc)

⌘ 1
m�1

Âc

j=1

⇣
1

1�K(x1,vj)

⌘ 1
m�1

In similar way we obtain

u2c =

✓
l1

2m(1 � K(x2, vc))

◆1/m�1

u2c =

⇣
1

1�K(x2,vc)

⌘ 1
m�1

Âc

j=1

⇣
1

1�K(x2,vj)

⌘ 1
m�1

...

unc =

✓
l1

2m(1 � K(xn, vc))

◆1/m�1

unc =

⇣
1

1�K(xn,vc)

⌘ 1
m�1

Âc

j=1

⇣
1

1�K(xn,vj)

⌘ 1
m�1

In general we have

uik =

⇣
1

1�K(xi,vk)

⌘ 1
m�1

Âc

j=1

⇣
1

1�K(xi,vj)

⌘ 1
m�1

(4.17)
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The general equation is used to obtain membership grades for objects in data
for finding meaningful groups and we use this expression to compute the ex-
pression for Cluster Centers

5. Obtaining Cluster Center

5.1 Taking the derivative of proposed objective function

J (U, V, l) = 2
n

Â
i=1

c

Â
k=1

u
m

ik
(1 � K (xi, vk))�

n

Â
i=1

li

 
c

Â
k=1

uik � 1

!

with respect to v, The objective function can be written as

J (U, V, l) = 2
n

Â
i=1

c

Â
k=1

u
m

ik

0

@ 1

1 + kxi�vjk2

s2

1

A
 
kxi � vjk2

s2

!
�

n

Â
i=1

li

 
c

Â
k=1

uik � 1

!

(4.18)
since

K(xi, vj) = 1/(1 + kxi � vjk2/s2)

1
K(xi, vj)

= 1 +
kxi � vik2

s2

kxi � vik2

s2 =
1 � K(xi, vj)

K(xi, vj)

1 � K(xi, vj) =

0

@ 1

1 + kxi�vjk2

s2

1

A
 
kxi � vjk2

s2

!
(4.19)

5.2 Expanding

J(U, V, l) = 2
n

Â
i=1

2

4u
m

i1

0

@ 1

1 + kxi�v1k2

s2

1

A
✓
kxi � v1k2

s2

◆
+

u
m

i2

0

@ 1

1 + kxi�v2k2

s2

1

A
✓
kxi � v2k2

s2

◆
+ · · ·+

u
m

ic

0

@ 1

1 + kxi�vck2

s2

1

A
✓
kxi � vck2

s2

◆

�
n

Â
i=1

li

 
c

Â
k=1

uik � 1

!

5.3 Taking derivative
Taking the objective function’s derivative with respect to v1 and setting the
first derivative to zero using the Lagrangian method’s necessary condition,
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we get

∂J

∂v1
= 2

n

Â
i=1

u
m

i1

0

@ 1

1 + kxi�v1k2

s2

1

A
2

2 · kxi � v1k
s2 = 0

4
n

Â
i=1

u
m

i1K(xi, v1)
2 kxi � v1k = 0

since
K(xi, v1) =

1

1 + kxi�v1k2

s2

Expanding
n

Â
i=1

u
m

i1K(xi, v1)
2
xi �

n

Â
i=1

u
m

i1K(xi, v1)
2
v1 = 0

v1 =
Ân

i=1 u
m

i1 K(xi, v1)2
xi

Ân

i=1 um

i1 K(xi, v1)2

Similarly taking derivative with respect to v2

∂J

∂v2
= 2

n

Â
i=1

u
m

i2

0

@ 1

1 + kxi�v2k2

s2

1

A
2

2 · kxi � v2k
s2 = 0

4
n

Â
i=1

u
m

i2K(xi, v2)
2 kxi � v2k = 0

n

Â
i=1

u
m

i2K(xi, v2)
2
xi �

n

Â
i=1

u
m

i2K(xi, v2)
2
v2 = 0

v2 =
Ân

i=1 u
m

i2 K(xi, v2)2
xi

Ân

i=1 um

i2 K(xi, v2)2

...

∂J

∂vc

= 2
n

Â
i=1

u
m

ic

0

@ 1

1 + kxi�v1k2

s2

1

A
2

2 · kxi � v1k
s2 = 0

4
n

Â
i=1

u
m

ic
K(xi, vc)

2 kxi � vck = 0

since
K(xi, vc) =

1

1 + kxi�vck2

s2

Expanding
n

Â
i=1

u
m

ic
K(xi, vc)

2
xi �

n

Â
i=1

u
m

ic
K(xi, vc)

2
vc = 0
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vc =
Ân

i=1 u
m

ic
K(xi, vc)2

xi

Ân

i=1 um

ic
K(xi, vc)2

5.4 In general, we have

vk =
Ân

i=1 u
m

ik
K(xi, vk)

2
xi

Ân

i=1 um

ik
K(xi, vk)2 (4.20)

4.2.1.3 Membership Degree and Cluster Center Equation

Uij =
(1 � K(xi, vj))1/(m�1)

c

Â
j=1

(1 � K(xi, vj))1/(m�1)
(4.21)

Vj =

n

Â
i=1

u
m

ij
K(xi, vj)2

xi

n

Â
i=1

um

ij
K(xi, vj)2

(4.22)

4.2.2 Proposed LKSRSIO-FCM Algorithm
In this subsection, we elucidated the mercer kernel used in the proposed LKSRSIO-
FCM algorithm, then derived the formulae for cluster centers and membership degrees
of each datapoint in each cluster using Lagrange multipliers optimization method and
then list those formulae at the end of this subsection.

4.2.2.1 Kernel Description

K(xi, vj) = 1 � log(1 +
kxi � vjk2

s2 ) (4.23)

4.2.2.2 Numerical Derivation Steps

1. Change in step 3
Log Kernel can be defined as

K(xi, vj) = 1 � log(1 + kxi � vjk2/s2) (4.24)

Now K(xi, xi) = 1 and K(vk, vk) = 1
Therefore ,

kf(xi)� f(vj)k2 = 2(1 � K (xi, vk)) (4.25)

J(U, V) = 2
n

Â
i=1

c

Â
k=1

u
m

ik
(1 � K (xi, vk)), m > 1 (4.26)

2. Change in step 5.1
Taking the derivative of proposed objective function

J (U, V, l) = 2
n

Â
i=1

c

Â
k=1

u
m

ik
(1 � K (xi, vk))�

n

Â
i=1

li

 
c

Â
k=1

uik � 1

!
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with respect to v, The objective function can be written as

J (U, V, l) = 2
n

Â
i=1

c

Â
k=1

u
m

ik
log

 
1 +

kxi � vjk2

s2

!
�

n

Â
i=1

li

 
c

Â
k=1

uik � 1

!
(4.27)

since

K(xi, vj) = 1 � log

 
1 +

kxi � vjk2

s2

!

1 � K(xi, vj) = log

 
1 +

kxi � vjk2

s2

!

3. Change in step 5.2

J(U, V, l) = 2
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Â
i=1

"
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m

i1 log
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kxi � vjk2

s2

!
+

u
m

i2 log
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+ · · ·+
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log
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!
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i=1

li
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k=1

uik � 1

!

4. Change in step 5.3

∂J

∂v1
= 2

n

Â
i=1

u
m

i1

0

@ 1

1 + kxi�v1k2

s2

1

A 2 · kxi � v1k
s2 = 0

4
n

Â
i=1

u
m

i1

0

@ 1

1 + kxi�v1k2

s2

1

A kxi � v1k = 0

Therefore by following same steps from numerical derivation we get,
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�v1k2
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!
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Ân
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5. In general, we have

vk =

Ân

i=1 u
m

ik

0

@ 1

1+
kx

i
�v

j
k2

s2

1

A xi

Ân

i=1 um
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0

@ 1
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kx

i
�v

j
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A

(4.28)

4.2.2.3 Membership Degree and Cluster Center Equation

Uij =
(1 � K(xi, vj))1/(m�1)

c

Â
j=1

(1 � K(xi, vj))1/(m�1)
(4.29)

Vj =

Ân

i=1 u
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ij
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1+
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(4.30)

4.2.2.3.1 KSRSIO Algorithm Kernel Description

K(xi, vj) = exp(�kxi � vjk2/s2) (4.31)

4.2.2.3.2 Membership Degree and Cluster Center Equation

Uij =
(1 � K(xi, vj))1/(m�1)

c

Â
j=1

(1 � K(xi, vj))1/(m�1)
(4.32)

Vj =

n

Â
i=1

u
m

ij
K(xi, vj)xi

n

Â
i=1

um

ij
K(xi, vj)

After analysing number of mercer kernel functions like HyperTangent Kernel, Sig-
moid Kernel, Cauchy Kernel, Logarithmic Kernel , Quadratic Kernel , Inverse Quadratic
Kernel etc. We finally chose two of them Cauchy and Logarithmic Kernels and have de-
rived their Membership Values and Cluster Center Equations. We propose ZKSRSIO-
FCM an optimisation of kernalized fuzzy clustering, here Z represents any kernel func-
tion that we would want to encorpate and ZKSLFCM which is an kernelized version of
SLFCM. The next subsections go through both of these topics.
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4.2.3 Z-Kernelized Scalable Literal Fuzzy c-Means (ZKSLFCM), Z=
Cauchy and Logarithmic

As discussed in the introduction, SLFCM can work with linear relationships. The ker-
nel approach is used to expand SLFCM in order to accommodate non-linear relations.
The ZKSLFCM method is a kernelized variant of the SLFCM algorithm that employs
several kernel functions. Data samples and cluster centre values are used to compute
the membership degree.
Algorithmic Steps:

1. ZKSLFCM algorithm calculates the membership degree separately for each data
sample. Eq. (6).

2. In Line 2 of ZKSLFCM algorithm, it parallely calculates membership values for
all data samples on apache spark by making use of the Map and ReduceByKey
functions.

3. The cluster centre values are updated from membership degrees of all data sam-
ples in line 3 of the method. As a result, this line runs after all membership degrees
have been computed. The membership degrees of all data samples are integrated
and kept as a membership knowledge I

0 at the master node, which is necessary to
update the cluster centre vj by Eq (7).

4. The difference between the previous initialised cluster centre values and the newly
computed cluster centre values is calculated on line 4. This technique is repeated
until no change in the values of cluster centres is detected. Following that, all
iterations are run in order since the updated cluster centres are needed as input
for the following iteration.

Algorithm 4 : ZKSLFCM to Iteratively Minimize Jp(U, V
0
)

Input : X, c, p, e, (initial V); X is an array of data samples such that X = {x1, x2, ...xs}.
Output : I

0, V
0

1 : If V is not initialized, randomly initialize V
0 = {V1, V2, ....Vc}.

2 : Compute membership knowledge.
I
0 = X.Map(V).ReduceByKey()

3 : Compute cluster centers.
3.1 : If Z= Cauchy then:

3.2 : V
0
j
=

s

Â
i=1

u
p

ij
K(xi,vj)

2
xi

s

Â
i=1

u
p

ij
K(xi,vj)2

8j.

3.3 : Else if Z= Logarithmic then:

3.4 : V
0
j
=

Âs

i=1 u
p

ij

✓
1

1+kx
i
�v

j
k2/s2

◆
xi

Âs
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✓
1

1+kx
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j
k2/s2

◆ 8j.

3.5 : end if
4 : If k V

0 � V k< e then stop, otherwise V = V
0 and go to step 2.
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We avoid aggregating the membership matrix of data samples to lower the space need
in the proposed ZKSLFCM method. The membership matrix M is required in Algo-
rithm 4 to compute the cluster centres (V0)We avoid aggregating the membership ma-
trix of data samples to lower the space need in the proposed ZKSLFCM method. The
membership matrix M is required in Algorithm 4 to compute the cluster centres (V0).
Rather than saving the huge membership matrix, we use mapper and reducer technique
such that we calculate numerator contribution and denominator contribution for calcu-
lating cluster centers. So m

p

ij
K(xi, vj)xi, and m

p

ij
Z(xi, vj), where m

p

ij
is denoted as dij and

Z(xi, vj) denoted as zij. Numerator contribution is denoted as dijzijxi and denominator
contribution as dijzij. This eliminates the need to store the massive membership matrix
M. After mapping values for all data samples we do the summation of all the dijzijxi

values and all the dijzij values belonging to the particular cluster center vj and store it
as membership knowledge in variable I

0. After that, we access these values in from line
3-4 of Algorithm 4 to calculate the updated cluster centers. Fig. 4.2 shows the whole
methodology of space improvement.

FIGURE 4.2: The figure describes repository space improvement by avoid-
ing the storage of membership matrix of subsets.

4.2.3.1 Map Function

The master node divides the data logically, while the slave nodes deal with sampled
data pieces. To determine data point’s membership degree, the data sample itself and
cluster center values are employed. As a consequence, the membership degrees of two
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data points are computed separately. As a result, we run this procedure on slave node
for each data sample individually before merging the results on master node. As a result
of reduced processing time, ZKSLFCM method is significantly quicker.

Algorithm 5 : Map(x,V)

Input : xi, V

Output : < j,< dijkijxi, dijkij >>
1 : for each vj in V do
2 : j = index of cluster center v.
3 : dijkij = dij(membership degree of xi concerning vj,

kij (kernel value for an i
th data sample in the j

th cluster).
4 : dijkijxi = dijkij ⇤ xi

5 : yield < j,< dijkijxi, dijkij >>
6 : end for

4.2.3.2 ReduceByKey Function

Map function in the first stage returns multiple key-value pairs have the same key value.
Now ReduceByKey performs summation on those pairs belonging to same key. On two
different key-value pairs, Spark deals with similar tasks on all the key-value pairs. we
have to find the numerator and denominator to update the cluster center attributes. Re-
duceByKey gives the numerator and denominator of each cluster center vj as sum_djx

and sum_dj, respectively. In the algorithm a and b are the output of two Map func-
tions, concerning cluster center vj, (dijkijxi)a and (dijkijxi)b denotes the value of dijkijxi

corresponding numerator part Map algoritm outputs a and b respectively, (dijkij)a and
(dijkij)b denotes the value of dijkij corresponding to denominator part Map algorithm
outputs a and b respectively.

Algorithm 6 : ReduceByKey(a,b)

Input: a, b such that a =< j,< (dijkijxi)a, (dijkij)a >> b =< j,< (dijkijxi)b, (dijkij)b >>
Output:< j,< sum_djx, sum_dj >>
1 : sum_djx = (dijkijxi)a + (dijkijxi)b

2 : sum_dj = (dijkij)a + (dijkij)b

3 : return:< j,< sum_djx, sum_dj >>

4.2.4 Z-Kernelized Scalable Random Sampling with Iterative Opti-
mization Fuzzy c-Means (ZKSRSIO-FCM), Z= Cauchy and Log-
arithmic

The dataset is divided into a number of subsets or chunks, and the cluster centres are ini-
tialised with a few randomly selected data points in the first chunk. The base algorithm
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then calculates the cluster centres and membership values for the first chunk, let’s say
X1, represented by V and I, respectively, using the second base algorithm (ZKSLFCM),
whose description is explained in the next section. The estimated cluster centres V are
then used as an input for clustering the second subset X2. Now, using the second base
algorithm (ZKSLFCM), the base algorithm (ZKSRSIO-FCM) clusters X2 and determines
the cluster centres and membership knowledge represented by I and V. However,for
the clustering of the third subset, ZKSRSIO-FCM does not use V as an input. This is
because ZKSRSIO-FCM takes into account the fact that random partitioning might re-
sult in two continuous subsets with data samples from different classes. As a result,
the cluster centres of these two subgroups will differ dramatically. As a result, for the
clustering of the current subset, ZKSRSIO-FCM avoids using cluster centres as the orig-
inal cluster centres from the prior iteration. Rather, it combines the membership values
of all the processed subsets, i.e. it combines I and I

0, and uses Eq.(7) to update clus-
ter centres. Because they are computed with the combined membership knowledge of
a greater number of data samples that spans a bigger sample region, this method of
determining cluster centres is the most prominent approach of estimating real cluster
centres.

The I numerator and denominator of V are computed using the ZKSLFCM technique.
Combining membership matrices is identical to union of the very first subset I1 and the
second subset I2 because membership values of one data sample are independent on
membership values of other data samples. As a result, rather than allocating a large
amount of storage space for I, we may integrate I1 and I2 without losing any infor-
mation. This aids in space optimization; this optimization analogy also applies to the
remaining subsets, i.e. all s 2 [3, s], where s is the number of subsets. Because oper-
ations on one subset are performed serially, ZKSLFCM will effectively consume only
(1

s
)th times of the space. We save a large amount of space and processing time as a re-

sult of this.
The workflow of ZKSRSIO-FCM is shown in 4.3 figure, which uses KSLFCM to com-
pute membership knowledge and cluster centres for all subsets.

Algorithm 7 : ZKSRSIO-FCM to Iteratively Minimize Jp(U, V
0)

Input : X, c, p, e; X is an array of data samples such that X = {x1, x2, ...xn}.
Output : I

0 , V
0

1 : Partition set X into s subsets such that X = {X1, X2, . . . . . . .Xs}.
2 : Randomly select X1 from X without replacement where X1 represents the first subset
consist of random n/s samples.
3 : I

0 , V
0
= ZKSLFCM(X1, c, p, e)

4 : for t = 2 to s do
4.1 : I, V

0 = ZKSLFCM(Xt, c, p, e, V
0)

4.2 : Merge the partition of all blocks of processed subsets
for j = 1 to c do

I
0
j
=< j,< (sum_djx)Ij

,+(sum_djx)I
0
j

, (sum_dj)Ij
,+

(sum_dj)I
0
j

>>
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end for
4.3 : Compute updated cluster center v

0
j

using:
< j,< sum_djx, sum_dj >> in I

0 8 2 [1, c]
end for

5 : Return I
0, V

0

Fig. 4.3 demonstrates the workflow of ZKSRSIO-FCM, which makes use of ZK-
SLFCM for computing membership knowledge and cluster centers of all subsets. It
demonstrates how the data sample is randomly distributed into various subsets and
how the underlying cluster centers are randomly chosen for the clustering of the initial
subset.

FIGURE 4.3: Workflow of ZKSRSIO-FCM algorithm.

4.2.5 Complexity Analysis of ZKSRSIO-FCM and ZKSLFCM
With large amounts of data and quadratic distance equations, several researchers adopted
kernel-based clustering techniques. Our proposed ZKSLFCM and ZKSRSIO-FCM al-
gorithms have linear complexity in terms of the input data sample, according to the
complexity study. The space complexity refers to the quantity of data kept in RAM
during the calculation. X refers to the dataset that contains s data points in d high di-
mensional space such that X = {x1, ..., xs} , xi 2 R

d, where c is the number of clusters,
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w is the number of slave nodes in the Spark cluster, and X is randomly distributed
into n number of partitions, each subset containing random s/n samples. t is the num-
ber of iterations required to complete the termination. ZKSLFCM is run on the entire
dataset.Every iteration of the Map stage takes O(scdt/w) time and O(scd) space across
all slave nodes, as each slave node works on (s/w) data, assuming ZKSLFCM runs for
t iterations. Because map results are only retained in memory once each iteration, the
overall space complexity of the Map stage of ZKSLFCM is O(scd). On each slave node,
the ReduceByKey action adds s/w Map results corresponding to a specific cluster cen-
tre in parallel. Each slave node produces c outputs, which are aggregated and added
on the master node. It takes O(cd/w) time and O(cd/w) space to accomplish this. In
this vein, the ReduceByKey step has a total time complexity of O(scdt/w) and a space
complexity of O(cd/w). As a result, ZKSLFCM has a time complexity of O(scdt/w)
and a space complexity of O(scd)), where s >> w and c. The ZKSRSIO-FCM algorithm
divides the entire dataset X into n equal subsets. ZKSLFCM is run consecutively over
each of these subsets. ZKSLFCM across each subset has time and space complexity of
O(scdt/nw) and O(scd/n), respectively. The time complexity is O(scdt/w) since each
subset is treated sequentially, while the space complexity is O(scd/n) because data re-
lating to one subset is not retained in memory while processing the next subset.[13]

In Table 4.1, Clustering performed by ZKSRSIO-FCM on each subset converges by
taking the the less number of iterations (t) for each subset. Hence, ZKSRSIO-FCM has
lesser run-time as it performs clustering on a small chunk of data in each subset in
comparison with ZKSLFCM that performs clustering of the whole data.

TABLE 4.1: Complexity Analysis of Kernelized Algorithm.

Algorithm Time Complexity Space Complexity

ZKSRSIO-FCM O(scdt/w) O(scd/n)
ZKSLFCM O(scdt/w) O(scd)
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Chapter 5

Experiments and Results

In this chapter, from section 5.1 to section 5.3, we discuss the datasets we used, which
includes benchmark datasets and Real life data such as, SNP and RNA, various perfor-
mance measures used to evaluate the efficiencies of clustering algorithms, all the results
of various components of experimentation and then, in section 5.4, we discuss the way
we prepared our Real Life Dataset and at the end, in section 5.5 we discuss how we
performed gene identification on the new dataset.

5.1 Datasets Description

5.1.1 Benchmark Datasets
We use these benchmark datasets to examine the efficiency of our proposed Scalable
Kernelized Fuzzy clustering algorithms. The benchmark datasets we used are:

5.1.1.1 Avila:

Avila Dataset is a 12 class dataset, with 10 features, which contains description of the
images extracted from Avila Bible and each class represents the name of the copyist. It
is borrowed from UCI repository[28]. It is replicated to 12 GB.

5.1.1.2 Skin monarch:

Skin monarch dataset is a 2 class dataset, with 4 features. This dataset is prepared from
Skin dataset, which is available on UCI repository[28]. Skin dataset is cross multiplied
to another dataset, Monarch[29] to prepare a final dataset of size 13 GB.

5.1.1.3 Wine:

Wine dataset is a 3 class dataset, with 12 features.It is borrowed from UCI repository[28].
It is replicated to 11 GB.



40 Chapter 5. Experiments and Results

5.1.2 RNA Datasets
In the experimental study, the three soybean RNA datasets of RNA-Seq Atlas1 of Glycine
max were preprocessed using the proposed 13d-SZcurve and 13d-SEIIP methods. Soy-
bean (Glycine max) is a significant crop that provides significant amounts of protein and
oil. The RNA Seq-Atlas offered on the soybean expression atlas contains high-resolution
gene expression data from fourteen distinct tissues. We used raw data from three tis-
sues: flower, shell, and pod RNA datasets. The size of Flower, Shell, and POD is 1
GB, 1.32 GB, and 1.06 GB, respectively. We used RNA dataset for studying the Scalable
feature extraction techniques we proposed.

5.1.3 SNP Datasets
In this experimental study, we used three Single Nucleotide Polymorphism (SNP)
datasets. They are:

5.1.3.1 soysnp50k wm82.a1:

This dataset is used to validate the superiority of our proposed feature extraction tech-
niques and proposed Scalable Kernelized Fuzzy clustering algorithms.

5.1.3.2 soysnp50k wm82.a2:

This dataset is used to generate the novel dataset.

5.1.3.3 MAGIC-Raw-genotype-data:

This dataset is used to compare the performance of our proposed GPU accelerated 13d
S-Integer feature extraction technique with CPU enabled 13d S-Integer feature extrac-
tion technique.

5.2 Performance Measures
We used two kinds of measures to evaluate the efficiency of our proposed algorithms.
They are External performance measures and Internal performance measures. We
used external measures to evaluate the efficiency of various clustering algorithms on
replicated Benchmark datasets which have labels associated with them and internal
measures to evaluate the efficiency of various algorithms on RNA and SNP datasets
which don’t have labels associated with them.

5.2.1 External Performance Measures
We used three external performance measures. They are:

1https://soybase.org/soyseq/tables_lists/index.php
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5.2.1.1 Normalized Mutual Information (NMI)

The NMI [30] is used to evaluate clustering quality by calculating the proportion of
common data for clustering, ground truth, and their harmonic mean. The NMI is char-
acterized as pursues[13]:

NMI =
Âk

c=1 Âr

q=1 s
q

c log
�

s.sq

c

sc.sq

�

q�
Âk
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���
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q=1 sqlog
� sq

s

�� (5.1)

Where, s denotes the total number of data samples, sc and sq are the data samples in the
c

th cluster and the q
th class, respectively, and s

q

c is the number of common data samples
in class q and cluster c.

5.2.1.2 Adjusted Rand Index(ARI)

The ARI[31] is used to determine the similarity between two datasets’ clustering. The
fuzzy divisions of the maximum component in each column are set to 1 and all others to
0 to calculate the ARI. We use ARI to evaluate the proposed Kernelized Fuzzy clustering
algorithms to the KSRSIO-FCM findings and to contrast the clustering arrangements
and ground-truth labels[13]. The ARI is characterized as follows:
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5.2.1.3 F-Score

F-score used to calculate the accuracy of a clustering output [32]. The precision and
recall of the cluster for each given class is computed as follows:

pqc =
sqc

sc

, rqc =
sqc

sq

(5.3)

Where, sqc denotes the number of samples of class q that are also present in cluster
c, sq denotes the number of samples belonging to class q, and sc denote the number
of samples belongs to cluster c. The F-score of cluster c and class q is represented as
follows:

f (q, c) =
2 ⇤ pqc ⇤ rqc

pqc + rqc

(5.4)

The overall F-score is then defined as the weighted sum of the maximum F-scores for
each class and is given by the following:

F � score = Â
q

sq

s
max{ f (q, c)} (5.5)
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where, s is the total number of data samples. The higher value of the F-score indicates
better clustering results. An F-score value approaching 1 reflects that the attained clus-
tering results are similar to the ground truth value.[13]

5.2.2 Internal Performance Measures
We used two internal performance measures. They are:

5.2.2.1 Silhouette Index(SI)

The Silhouette Index[33] indicates the clustering efficiency by calculating the difference
between the average distance within the cluster and the minimum distance between the
clusters, and using them in the equation below:

SI =
Âs

i=1(
b(i)�a(i)

maxb(i),a(i) )

s
(5.6)

among them: a(i) represents the average distance of sample i to other samples in the
cluster, b(i) represents the minimum distance of the sample from the sample i to the
other clusters. The range of SI is [-1,1] and the higher the SI is, the better is the clustering
algorithm.

5.2.2.2 Davies Bouldin Index(DBI)

David L. Davies and Donald W. Bouldin created a metric for analysing clusters called
the Davies-Bouldin Index (DBI), which they named after themselves. The Davies-Bouldin
Index contains an internal cluster evaluation method, where the quantity and proxim-
ity of cluster results determine whether the results are satisfactory or not. The Davies-
Bouldin Index is one way for determining cluster validity in a grouping method. Co-
hesion is defined as the sum of the data’s proximity to the cluster centre point. The
distance between the cluster centre points and the cluster determines the separation.
This index seeks to reduce the distance between points in a cluster while maximising
the inter-cluster distance between Ci and Cj clusters. When the inter-cluster distance is
maximum, the similarity of characteristics between clusters is low, allowing distinctions
between clusters to be seen more clearly. Each object in the cluster has a high level of
characteristic similarity if the minimum intra-cluster distance is low[34]. The lesser the
value of DBI is, the better is the clustering.

5.3 Results
In this subsection, we will be discussing the results of various clustering algorithms on
various datasets(benchmark and SNP datasets).
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5.3.1 Results on Benchmark Datasets
Here, we will be comparing the NMI, ARI, and F-Score results of CKSRSIO-FCM, LKSRSIO-
FCM and KSRSIO-FCM on benchmark datasets by dividing the datasets into a number
of chunks.

5.3.1.1 Replicated Avila Dataset

Here, we divided the Avila dataset into 5,10,20,40 subsets and performed CKSRSIO-
FCM in(Table 5.1), LKSRSIO-FCM in(Table 5.2) and KSRSIO-FCM in(Table 5.3) on each
number of subsets. In the above 3 tables, we can see that in most of the cases, our

TABLE 5.1: Results of CKSRSIO-FCM algorithm on Avila Dataset after di-
viding the dataset into Subsets number of subsets

Subsets NMI ARI F-score
5 0.0603333229 0.01146382045 0.1413236210
10 0.0584450636 0.01261832012 0.0741841185
20 0.0590992878 0.01236370186 0.0517084392
40 0.0588603369 0.01424574721 0.0788326065

TABLE 5.2: Results of LKSRSIO-FCM algorithm on Avila Dataset after di-
viding the dataset into Subsets number of subsets.

Subsets NMI ARI F-score
5 0.116824029 0.037394917 0.08559379
10 0.07209577 0.017196797 0.12101026
20 0.07170751 0.016607399 0.10931659
40 0.11812616 0.036929863 0.06834084

TABLE 5.3: Results of KSRSIO-FCM algorithm on Avila Dataset after divid-
ing the dataset into Subsets number of subsets.

Subsets NMI ARI F-score
5 0.11687752 0.034971409 0.08602099
10 0.0690528 0.01183567084 0.111372022
20 0.06439268 0.0108595134 0.1273781569
40 0.11599797 0.0332438788 0.074327886136

Proposed LKSRSIO-FCM gives the best output.

5.3.1.2 Replicated Wine dataset

Here we divided the Wine dataset into 5,10,40,100 subsets and performed CKSRSIO-
FCM in(Table 5.4), LKSRSIO-FCM in(Table 5.5) and KSRSIO-FCM in(Table 5.6) on each
number of subsets. As you can see in the tables, in most of the cases, LKSRSIO-FCM
gives better results, compared to other clustering algorithms.
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TABLE 5.4: Results of CKSRSIO-FCM algorithm on Wine Dataset after di-
viding the dataset into Subsets number of subsets.

Subsets NMI ARI F-score
5 0.4143879799 0.4103407526 0.0159523113
10 0.4144380082 0.4102990977 0.0698262179
40 0.4357136025 0.3636449239 0.3318475122
100 0.414713556 0.4109801849 0.3994680539

TABLE 5.5: Results of LKSRSIO-FCM algorithm on Wine Dataset after di-
viding the dataset into Subsets number of subsets.

Subsets NMI ARI F-score
5 0.4181896644 0.37477401902 0.0741587611
10 0.4175601724 0.37406532136 0.0741254723
40 0.4174877930 0.37387290590 0.3936790275
100 0.417899652 0.37467090699 0.3937905582

TABLE 5.6: Results of KSRSIO-FCM algorithm on Wine Dataset after divid-
ing the dataset into Subsets number of subsets.

Subsets NMI ARI F-score
5 0.3412314369 0.274570767 0.08425009
10 0.41984259 0.3499788 0.1686616881
40 0.4148323095 0.41091484 0.0224701089
100 0.4148550148 0.4112008024 0.5564164593

5.3.1.3 Replicated Skin-Monarch dataset

Here we divided the Skin-monarch dataset into 40,100 subsets and performed CKSRSIO-
FCM in(Table 5.7), LKSRSIO-FCM in(Table 5.8) and KSRSIO-FCM in(Table 5.9) on each
number of subsets.

As you can see in the tables, we are getting the best results for LKSRSIO-FCM, com-
pared to other clustering algorithms.

5.3.2 Results on SNP data
Here, we compared the performances of GPU accelerated 13d-SInteger and CPU en-
abled 13d-SInteger on SNP dataset and RNA dataset. We also validated the superior-
ity of our proposed 13d-SZcurve Scalable Feature extraction technique and proposed
LKSRSIO-FCM algorithm.

5.3.2.1 Performance comparison of GPU accelerated 13d-SInteger with CPU enabled
13d-SInteger

We used 5.1.3.3 dataset and a reference RNA dataset to examine how efficient our pro-
posed GPU accelerated 13d-SInteger is.
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TABLE 5.7: Results of Skin-Monarch Dataset applied on CKSRSIO-FCM
algorithm.

Subsets NMI ARI F-score
40 0.0306441681 0.0120130278 0.5602171692
100 0.001885462 0.0052590431 0.5394063174

TABLE 5.8: Results of Skin-Monarch Dataset applied on LKSRSIO-FCM al-
gorithm.

Subsets NMI ARI F-score
40 0.0546113725 0.02675413217 0.5856698299
100 0.555493138 0.66653842456 0.9082192021

TABLE 5.9: Results of Skin-Monarch Dataset applied on KSRSIO-FCM al-
gorithm.

Subsets NMI ARI F-score
40 0.033156369 0.01279330 0.562064421
100 4.55628e-06 0.0001182 0.487160705

TABLE 5.10: Results of time taken by GPU accelerated 13dS-Integer Fea-
ture extraction technique and CPU enabled 13dS-Integer Feature extraction

technique on RNA dataset and 5.1.3.3 dataset

Genome Data CPU time GPU time
SNP 1:17:00 0:54:00
RNA 1:01 4:03

As we can see in the table 5.10, in the case of SNP data our GPU accelerated technique
performed well, whereas, in the case of RNA dataset, the reverse is true. This is due to
the nature of the dataset. SNP dataset has large sequences whereas, RNA dataset has
short sequences. Using GPUs has some overheads associated with it. And in the case
of large sequences, those overheads are overpowered by the positive impact of GPU
parallelization whereas, in the case of shorter sequences the overheads dominate the
performance. So, it results in performance degradation.

5.3.2.2 Validation of superiority of 13dS-Zcurve Feature Extraction Technique

We used 5.1.3.1 dataset to validate the superiority of 13dS-Zcurve. To validate this,
we used another feature extraction technique which returns a 12 dimensional feature
vector[35] and extracted two different sets of feature vectors obtained from these two
feature extraction techniques and applied LKSRSIO-FCM algorithm on both sets of fea-
ture vectors and evaluated and compared the clustering using the internal performance
measures5.2.2. Results pertaining to 13dS-Zcurve are presented in 5.11 and results per-
taining to 12 dimensional Feature extraction[35] are presented in 5.12. Since the 5.1.3.1
dataset is unlabelled, we have the freedom to choose the number of clusters for cluster-
ing. In 5.11 and 5.12, the Number of Clusters column indicates the number of cluster
centers set for LKSRSIO-FCM algorithm to cluster
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As we can see 5.11 and 5.12, SI values are drastically better in the case of 13dS-Zcurve
technique for all number of clusters ,whereas DBI values are also comparably lower
than 12 dimensional technique in most of the number of clusters and absolutely speak-
ing, since the values of DBI are very low and values of SI are very high, 13dS-Zcurve
feature extraction technique is superior to other feature extraction techniques.

TABLE 5.11: Results of 13dS-Zcurve Feature Extraction technique and
LKSRSIO-FCM clustering algorithm on Wm82.a1 dataset 5.1.3.1

Number of Clusters DBI SI
5 0.9305597102113623 0.9532872836318572
10 0.8913727135087518 0.928289926351393
15 0.8728390132216509 0.9064760999217982
20 0.8700481842851564 0.8148608044886282
25 0.8598892193804883 0.7958223204260552
30 0.8495176165865425 0.7232044277314903
35 0.8447098346501675 0.690046914142936

TABLE 5.12: Results of 12 dimensional Feature Extraction technique and
LKSRSIO-FCM clustering algorithm on Wm82.a1 dataset 5.1.3.1

Number of Clusters DBI SI
5 0.7158779701400338 0.38826054121633585
10 0.881818655434597 0.30587565872030514
15 1.0922814128352203 0.2268066000766351
20 1.2857229478158436 0.188748255465775
25 1.3548787569244078 0.1775701248189999
30 1.4247755779180309 0.16621180429185317
35 1.5515900932443547 0.14768876413693718

5.3.2.3 Validation of superiority of LKSRSIO-FCM clustering algorithm

To prove the superiority of the proposed LKSRSIO-FCM algorithm, we applied the pro-
posed 13dS-Zcurve feature extraction technique and applied two clustering algorithms,
i.e. LKSRSIO-FCM and KSRSIO-FCM on this set of feature vectors and evaluated and
compared the efficiencies of clustering by using internal performance measures5.2.2 and
the values are presented in tables 5.13 and 5.14 respectively. As it is evident, LKSRSIO-
FCM is giving the better output, when compared to KSRSIO-FCM.

5.4 Creation of Real Life Dataset
In the previous section, after investigating the best feature extraction technique and best
Scalable Kernelized Fuzzy clustering algorithm, we used them in our genome analysis,
which is the main objective of the project. In this section, we discuss the way we gener-
ated the novel dataset.
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TABLE 5.13: Results of 13dS-Zcurve Feature Extraction technique and
LKSRSIO-FCM clustering algorithm on Wm82.a1 dataset 5.1.3.1

Number of Clusters DBI SI
5 0.9305597102113623 0.9532872836318572
10 0.8913727135087518 0.928289926351393

TABLE 5.14: Results of 13dS-Zcurve Feature Extraction technique and
KSRSIO-FCM clustering algorithm on Wm82.a1 dataset 5.1.3.1

Number of Clusters DBI SI
5 0.94563 0.74876
10 4.31 0.928289926351393

5.4.1 Cat sequence description
Initially, raw SNP test sequence of approximate size 24 GB, is created by ICAR-IISR
Indore, and it was sent for sequencing to Novogene and after sequencing, the final
sequenced test sequence has 10 million characters. The cat sequence data has a column
named Pos. This column describes the position of the corresponding character in the
sequence. This column is essential for the next step.

5.4.2 Concatenation of sequenced test sequence to Wm82.a2 dataset[5.1.3.2]
Even the Wm82.a2 dataset has a Pos column. Based on value of Pos columns in the test
sequence and Wm82.a2 dataset, the intersection of these 2 data is computed and a novel
dataset named Wm82.a3 is generated. The length of sequences in the novel dataset is
2210.

5.5 Gene identification
In the previous section, we generated the novel Wm82.a3 dataset and in this section,
we discuss the way we used this dataset to perform gene identification of the given
sequenced testing gene.

5.5.1 Performing clustering on the new dataset
As discussed in the previous sections, we used GPU accelerated 13d-SZcurve Feature
extraction technique and LKSRSIO-FCM Fuzzy clustering algorithm to perform cluster-
ing.

5.5.2 Finding closely related genes
After clustering the novel dataset, we found out the cluster in which the testing gene fell
into. In that cluster, on the basis of Euclidean distance, we found out the top 50 genes
that were geometrically closely related to the testing gene. And we stored the gene ids
of those genes in a seperate file. The 50 genes look like Figure 5.1



48 Chapter 5. Experiments and Results

5.5.3 Genetic trait identification
The genetic traits of the genes present in Figure 5.1 are identified by ICAR-IISR Indore
and if a considerable number of genes fall under a particular genetic trait bucket, then
it is estimated that the testing gene is also likely to possess that particular genetic trait.
In the current scenario only top 10 out of 50 genes were analyzed and among them, the
first 5 closely related genes whose IDs are PI567429D, PI506656, PI54855, PI567299A,
PI603381B, are found out to be strongly disease resistant. This means that the probabil-
ity of the given testing gene, being strongly disease resistant is quite high. So ICAR-IISR
Indore, concluded that the given testing gene is more likely strongly disease resistant as
well.
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FIGURE 5.1: The list of top 50 closely related genes with the test sequence,
accompanied with their euclidean distance with the same
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Chapter 6

Conclusion and Future Work

In this thesis, we contributed the design and implementation of CPU Enabled Scalable
Feature Extraction techniques and GPU accelerated Scalable Feature Extraction tech-
niques. Finding the right Feature Extraction technique was crucial and challenging and
then making the algorithm scalable by using Apache Spark framework was another
challenge. We also validated the superiority of our proposed Scalable Feature Extraction
techniques by comparing the results with another Feature Extraction technique which
returns a 12-dimensional feature vector.

In this thesis, we also contributed the design and implementation of a novel scalable
kernelized fuzzy clustering algorithms. This algorithm partitioned the Big Data into
various chunks, and processed the data points present within the chunk in a parallel
manner. One distinctive characteristic of the scalable kernelized fuzzy clustering algo-
rithm is that due to the parallel processing of data points within the chunk, it achieves
a significant reduction in run-time for the clustering of such huge amounts of data,
without compromising the quality of clustering. The other important characteristic is
that during the execution of the proposed algorithm, we eliminate the need for stor-
ing the large membership matrix, which significantly reduces the run-time and storage
space and thus, it makes the execution of the proposed algorithm much faster. The scal-
able online fuzzy clustering algorithms are implemented using the Big Data processing
framework called Apache Spark to deal with the challenges associated with fuzzy clus-
tering for handling Big Data. For comparing the performance of two basic algorithms
present in literature are enhanced by making these algorithms scalable for handling Big
Data. The detailed experimentation is carried out and the reported results in the previ-
ous chapters, show the dominance of the proposed algorithms over other comparable
approaches in terms of various measures assessing the quality of clustering. The re-
sults show that the proposed scalable kernelized fuzzy clustering algorithm has a great
potential in Big Data clustering.

The proposed scalable kernelized fuzzy clustering algorithms is applied to a real-
life Big Data problem (i.e., RNA of soybean genome) for gene identification of huge
RNA/SNP sequences of real-life soybean plant. The productivity of next generation
RNA sequences can be enhanced by making RNA sequences resistance to disease, drought,
heat, high temperature, and food allergies. For this, a real-life Big Data is collected from
the ICAR-IISR, Indore which is consists of millions of sequences. First of all, this SNP
dataset is required to be preprocessed efficiently for its proper clustering and classifi-
cation. For this reason, we have proposed a novel scalable feature extraction methods
of RNA sequences. The other important characteristic is that it represents each variable
length RNA sequence consisting of a long chain of nucleotide with a fixed-length nu-
meric vector consist of only thirteen dimensions. The exhaustive experiments reported
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shows the efficacy of the proposed scalable feature extraction methods of SNP/RNA
sequences on proposed scalable clustering algorithms in terms of validity index.

Our work has received tokens of appreciation from Dr. Milind Ratnaparkhe, Princi-
pal Scientist (Biotechnology), Indian Institute of Soybean Research- Indore (IISR), owing
to its impact. Our work on gene identification has helped them in identifying the genetic
traits of the genome sequences they created, as part of their research.

This works suggest some interesting directions for future work. As this work pre-
sented the clustering of Big Data. So, it is interesting to conduct the investigation in
finding the number of clusters for specific data set A very important question that arises
is the validity of the clustering. To measure the quality of clustering, cluster validity in-
dex for Big Data are needed. Many cluster validity measures for small sized data require
full access to the data points. Hence, we aim to extend some well-known cluster validity
measures for use on Big Data by using similar extensions as presented here. Addition-
ally, we can create massive novel real-life SNP datasets. and to apply our proposed
algorithm for other species of genome datasets for identification of disease and draught
in real-life soybean crop.
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