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and practicable. In order to improve the outcomes, we focused on combining Machine Learning
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possible to the best of our abilities and knowledge.
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Presentation Attack Detection in Fingerprint Biometrics

Abstract

There has been a rapid growth in services like finance which utilize fingerprint biometrics for
user authentication. This has led to an increase in the need for a secure and reliable fingerprint
recognition system to provide privacy and prevent fraud. We are proposing a novel end-to-end
fingerprint presentation attack detection method based on the combination of Machine learning
and Deep learning. In our proposed model, a Deep CNN architecture i.e. MobileNet v1 is used
for the extraction of important features from input images while the actual classification takes
place using a support vector machine.

The proposed model is tested on LivDet 2013, 2015 and 2017 datasets and compared with vari-
ous state-of-the-art methods. Our model achieves an average accuracy of 98.88% in LivDet 2013,
96.74% in LivDet 2015 and 94.90% in LivDet 2017 datasets.
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Chapter 1

Introduction

A fingerprint biometric recognition system is an easy, cost-effective, and user-friendly method
of authentication. As compared with other biometric systems, it needs less time, resources, and
human effort to validate a person’s identity. Due to such a level of easiness and automation, it
is being adapted by various commercial organizations and security agencies for person verifi-
cation and authentication. However it’s adeptness, it suffers from various challenges such as
Theft of identity, account hacking, unauthorized access,and many more. Presentation attack or
impersonation is a challenging issue for these systems. This attack is performed by presenting
an artifact of a genuine user’s fingerprint to the biometric sensor to gain access to it. Various
spoofing materials such as Woodglue, Gelatine, Modasil are available at a cheap cost that makes
it convenient to place this attack on fingerprint biometric systems.

Biometric qualities cannot be readily shared, forgotten, or copied, biometric recognition creates a
tight link between a person and it’s identity. As a result, biometric recognition is fundamentally
superior to the two traditional techniques of recognition, namely passwords and tokens, and is
more resistant to social engineering assaults (e.g., phishing).
Biometric recognition prevents users from making fraudulent repudiation claims since it re-
quires the user to be present at the moment of authentication. Furthermore, only biometrics
can offer negative identification capabilities, which are used to determine if a certain individ-
ual is enrolled in a system despite the fact that the user may deny it. Biometric recognition has
been generally acclaimed as a natural, dependable, and indispensable component of any iden-
tity management system because of these features.

Fingerprint recognition systems are vulnerable to presentation attacks. In a presentation attack,

FIGURE 1.1: Live and fake fingerprint images with different spoof materials.
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FIGURE 1.2: Live and fake fingerprint images created with different spoof materi-
als.

a synthetic fingerprint is presented for authentication that is replicated from a genuine user. Var-
ious sensors are used to acquire live and fake fingerprint images. A liveness detection method
has been developed to fight various forms of spoof attacks by identifying the features of live
and fake fingerprint photographs. Many hardware and software-based techniques have been
proposed by researchers in recent years. The concerns, however, remain difficult in terms of ro-
bustness, efficacy, and efficiency. In this work, we look at a variety of software-based solutions
for distinguishing between actual and false fingerprints, as well as a complete review of previ-
ous efforts to solve the problem.

While most methods can identify a spoof fingerprint created with a given material, their per-
formance in a cross-sensor or cross-material scenario varies. Because of their increased classifi-
cation capabilities, many researchers have turned to deep-learning-based systems to solve this
challenge. These algorithms capture minute information from fingerprint pictures using a series
of convolution layers, followed by dense layers for classification. Our main objective is to merge
machine learning with deep learning to produce a new classifier that utilises both techniques.

Moving further we have provided literature survey in Chapter 2, the proposed methodology in
Chapter 3 and thereafter the results for the proposed method.
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Chapter 2

Related Work

The literature on previously known techniques of Presentation Attack Detection is discussed
in the next chapter. It mostly focuses on Deep Learning and Transfer Learning methodolo-
gies.Researchers have suggested different state-of-the-art fingerprint presentation assault detec-
tion algorithms in this area. A reliable method for identifying PAD that uses histogram equal-
isation to improve contrast is Arora et al. [1]. Fingerprint pictures are submitted into the VGG
architecture as a classifier after contrast enhancement. The authors used a variety of finger-
print datasets to evaluate their conclusions, including FVC 2006, ATVSFFp, Finger vein dataset,
LivDet 2013 and 2015 databases. A fingerprint presentation assault detection approach based on
multi-modal CNN is offered in Anusha et al. [2]. They recommend the spatial attention module
and the channel attention module. The first uses the colour channel relationship to extract fun-
damental information from fingerprint photos and finds the most discriminating patch. A deep
learning-based approach for patching a fingerprint picture and feeding it to a CNN Model is
Chugh et al. [3].They use this fine detail information to divide a fingerprint picture into patches.
The model predicts the spoofness score for all of the patches that are fused together to give the
global spoofness score. This method was evaluated on the Livdet datasets from 2013, 2015, and
2017, as well as the MSU-FPAd dataset. In [4], Nogueira et al., in their research, they employed
pre-trained CNN architectures with style transferring. Among other designs, they used VGG,
Alexnet, and CNN with support vector machines. The Livdet datasets from 2009, 2011, and
2013 are used to validate the method. In [5], Rohith et al. emphasized on texture-based features
for fingerprint presentation attack detection . In their work, they, utilized Speeded Up Robust
Feature (SURF) and Pyramid extension of Histogram of Gradients (PHOG) to extract the shape
as a liveness property. A model based on additive learning was proposed in [6], Ajita et al..
The multi-class classifier used in this study produces three different outcomes: live, false, and
unknown. The fingerprints that have been classified as unknown are utilised to train a model
against cross-material situations. Ridge and valley clarity, Ridge and valley smoothness, Num-
ber of aberrant ridges and valleys, Frequency domain analysis, Orientation confidence level, and
more custom features were recommended for fingerprint presentation assault detection in [7],
Ram Prakash et al.. By combining these properties, the suggested technique has done a range
of tests. Random Forest was used as a classifier, and the approach was tested using the Livdet
datasets from 2009, 2013, and 2015. The utility of statistics features is shown in [8], Choi et al..The
features i.e. Histogram, Directional contrast, Ridge thickness, and ridge signal are used to train
a Support vector machine classifier on a custom-made dataset. A gradient-based technique was
proposed by Xia et al.[9].The second and third-order co-occurrence matrices of the gradients
were extracted and utilised as a feature in the SVM classifier’s training.
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Chapter 3

Proposed Methodology

We determined that deep learning and machine learning tools are equally successful for classi-
fication after analysing the literature, however that machine learning-based tools rely on other
methodologies to extract differential characteristics. The work suggested in [7], [6], [10] demon-
strates that machine learning may be used more effectively if feature extraction algorithms are
capable of extracting characteristics that aid in the categorization of fingerprint samples made
from unknown materials.
Considering the capabilities of SVM, we chose to design a hybrid technique in which a deep
learning model contributes to feature extraction and SVM contributes to feature classification.
This hybridization can take two forms. The first is static, in which both models train indepen-
dently, but in our proposed model, the loss supplied by SVM is used to train deep CNN, allow-
ing the architecture to operate end-to-end. We used both techniques in our study and discovered
that the dynamic combination outperforms the static one. Both sets of findings are compared to
several state-of-the-art approaches.

FIGURE 3.1: Block diagram of MobileNet V1 Architecture.

3.1 MobileNet v1

MobileNet 3.1 is a CNN architecture that is efficient and portable and is used in real-world ap-
plications. To build lighter models, MobileNets primarily employ depthwise separable convo-
lutions rather than the standard convolutions used in previous architectures. MobileNets adds
two new global hyperparameters (width multiplier and resolution multiplier) that allow model
developers to trade off latency or accuracy for speed and low size based on their needs.

3.1.1 Architecture

MobileNet is composed of depth-separable convolution layers. Each depthwise separable con-
volution layer is made up of a depthwise and a pointwise convolution. A MobileNet has 28
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FIGURE 3.2: Depthwise Separable Convolution.

layers if depthwise and pointwise convolutions are counted separately.
A basic MobileNet contains 4.2 million parameters, which can be further decreased by setting
the width multiplier hyperparameter properly. The size of the supplied picture is 224 × 224 x 3.

3.1.2 Depthwise Separable Convolution

The depthwise separable convolution 3.2 gets its name from the fact that it deals with not only
the spatial dimensions, but also the depth dimension — the number of channels. A depthwise
separable convolution divides a kernel into two separate kernels that perform two convolutions:
depthwise and pointwise. To apply a single filter to each input channel, we use depthwise
convolutions (input depth). The output of the depthwise layer is then linearly combined using
pointwise convolution, a simple 11 convolution. For both layers, MobileNets employ batchnorm
and ReLU nonlinearities.

3.1.3 Advantages of MobileNet v1

While enhancing spoof detection performance, MobileNet-v1 decreases model size and train-
ing/evaluation time. It’s a low-latency network that classifies an input fingerprint picture as
real or fake in 100 milliseconds, compared to 800 milliseconds for the Inception-v3 network.
MobileNet-v1 (4.24 million) has a lower number of model parameters to train than Inceptionv3
(23.2 million) and VGG (138 million), needing less regularisation and data augmentation to
avoid overfitting.
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3.2 Support Vector Machine

FIGURE 3.3: Support Vector Machine

SVM is a supervised machine learning algorithm that can be used for both classification and
regression. The purpose of the SVM method is to discover a hyperplane in an N-dimensional
space that unambiguously categorises the input points. The number of features determines the
size of the hyperplane. If there are only two input features, the hyperplane is simply a line.
There are two types of Margins in SVM, Hard Margin and Soft Margin. In Hard Margin we
linearly separate data without misclassifcation provided the data is linearly separable. But if
the data is not linearly separable then we use soft margin. In our implementation we have used
Soft Margin SVM. SVM learns the W parameters by solving the optimization problem given in
the equation below. This equation is known as the primal form problem of L1-SVM, with the
standard hinge loss.

min
w

1
2

WTW + C
p

∑
i=1

max(0, 1 − y
′
i(W

TXi + b))

Because L1-SVM is not differentiable, a common variant is the L2-SVM, which reduces squared
hinge loss.

min
w

1
2

WTW + C
p

∑
i=1

max(0, 1 − y
′
i(W

TXi + b))2

In the preceding sections, we discussed the capabilities of both tools for picture categorization;
however, machine learning relies on additional approaches for feature extraction. Several writ-
ers have developed approaches that combine Deep Learning with Machine Learning. In the next
part, we go over our process in great depth.
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3.2.1 Hinge Loss

FIGURE 3.4: Hinge Loss

The hinge loss is a form of cost function that is linearly increasing that calculates the cost based
on a margin or distance from the classification boundary. Even if additional observations are
accurately classified, they may be penalised if the margin from the decision border is insufficient.
The hinge loss ensures that the classifier will identify the classification border that is as far away
from each of the multiple classes of data points as possible during training. In other words, it
determines the categorization border that ensures the greatest possible buffer between the data
points of the various classes.
Hinge Loss Formula

max(0, 1 − yt)

where y is the actual label and t is the predicted output.

3.3 Principal Component Analysis

Principal component analysis is a technique for extracting features that mixes our input vari-
ables in a certain way, allowing us to eliminate the least important variables while keeping the
most valuable bits of all the variables. Additionally, following PCA, each of the new variables
is independent each other. Because the assumptions of a linear model demand that our inde-
pendent variables be independent of one another, this is a added benefit that PCA provides.
PCA helps to overcome overfitting problem, improves performance of model by eliminating
correlated variables, it also speeds up the model training as it reduces the number of dimension.
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3.4 Proposed Work

This research proposes a unique approach for detecting fingerprint presentation attacks based
on the hybridization of Deep-learning and Machine-learning. When significant characteristics
of the pictures are provided to the SVM, it is proved to be a very effective tool for image classi-
fication is shown in [6], [7].

Although the extraction of those characteristics involves certain image processing actions. Some
of the features are Ridge width smoothness, Local Binary Pattern and Orientation certainty level
that has been utilized by various authors in order to detect the spoof fingerprint samples. The
main disadvantage of these approaches is that they rely on other pre-processing activities and
are confined to a certain data set. When working on a fingerprint acquired with another sensing
device, the performance with several features is not the same. The results in [7] clearly show
that handmade features combined with SVM do not function well for samples generated with
the same sensor. However, this inefficiency is not due to the SVM; rather, it is owing to the limits
of the hand-crafted feature. On the other hand, numerous strategies discussed in [3],[2] displays
Deep convolution networks capacity to identify presentation assaults. CNN’s success can be as-
cribed to the use of convolution filters, which can extract minute details from fingerprint images.

The textures of the real and false fingerprint samples differ due to natural features such as
flexibility, sweat and pores, dampness, and so on. The results show that deep-learning-based
approaches are more generic and that sensing device modification has no effect on their perfor-
mance; nonetheless, they suffer from the difficulty of cross-sensor and cross-material fingerprint
presentation attack detection. Looking at the capabilities of both tools, we chose to create a hy-
brid architecture that combines the strengths of both approaches, with Deep CNN excelling at
feature extraction and SVM excelling at classification based on feature values.

The suggested architecture is made up of two parts: the Feature Extractor and the Classifier.
In our study, the feature extractor is a MobileNet-v1 Convolutional Neural Network that was
trained from scratch on standard fingerprint datasets, and the classifier is a Support Vector Ma-
chine. The model is designed to train and update weights as well as classify fingerprint samples
from start to finish. However, as proposed in many models, another option to integrate both
techniques is to train the CNN first and then extract the feature values to feed the SVM for clas-
sification.

This method works effectively for detecting IRIS presentation attacks but not for fingerprints
since fingerprint pictures lack texture and other elements. All of the aforementioned factors com-
pelled us to create an end-to-end architecture that incorporates the features of machine learning
and deep learning models. The subsections below discuss the intricacies of all the major com-
ponents, as well as their assembly and coordination toward the objective of detecting phony
fingerprint samples.
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3.4.1 Static Hybridized Architecture

FIGURE 3.5: Static Collaboration of MobileNet V1 and Support Vector Machine.

In this Architecture, Deep CNN architectures are used as a feature extractor, while machine
learning is used as a classifier. Both are taught independently in this scenario, and there is
no functional relationship between them. In some work, pre-trained architectural features are
tapped at a specific layer of the architecture and given to the SVM for training and testing. This
is referred to as static cooperation. The findings obtained by these models are provided. This
approach consists of two phases.

The current Mobile-net v1 model is initially trained for 100 iterations on standard fingerprint
datasets, and the weights of filters and dense layers are kept for the epoch with the greatest
classification accuracy. In the second stage, the network is tapped on the second last layer while
sending the training and testing data to this model, resulting in the production of CSV files for
the training and testing datasets. The data values from the previous stage are supplied into the
SVM to train and test it in the final step. For the dimensionality reduction of the input data, we
used Principle Component Analysis (PCA). 3.5 depicts the block diagram of this approach.
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3.4.2 Dynamic Hybridized Architecture

FIGURE 3.6: Dynamic Collaboration of MobileNet V1 and Support Vector Ma-
chine.

We propose a dynamic combination of MobileNet V1 and the Support Vector Machine in this
work. It is a complete architecture in which both tools are educated simultaneously. End-to-end
(E2E) learning is the method of training a potentially complex learning system with a single
model (usually a Deep Neural Network) that represents the whole target system, without the
intermediary layers observed in traditional pipeline designs.

As a feature extractor, MobileNet v1 harvests minute features and trains according to the loss
estimated by the binary Cross entropy function (in the static method) and Hinge loss (In dy-
namic approach). The spoofness score is then calculated using the retrieved feature values. Both
models are trained in the static manner, however only the deep CNN is trained in the dynamic
approach by the loss caused by the SVM.

By taking characteristics from a deep CNN architecture and putting them into an SVM, we may
combine them. Some other projects have used pre-trained deep CNN architectures for feature
extraction and then fed them to machine learning classifiers in the IRIS biometric system to
identify presentation attacks. However, while these solutions function better for IRIS biometric
systems, they do not perform as well for fingerprint biometric systems. Apart from this con-
straint, these approaches also have the drawback of not being end-to-end in nature. Keeping all
of these considerations in mind, In the above Figure 3.6. We proposed a unique architecture that
works end-to-end and has higher performance for detecting fingerprint presentation attacks.
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Chapter 4

Experimental Results

4.1 Dataset

The algorithm’s performance is evaluated in this section using three datasets totaling ten sen-
sors. The performance of the proposed model is assessed using the LivDet liveness detection
fingerprint data sets from 2013, 2015, and 2017. These fingerprint samples are separated into
training and testing sets. The sensing equipment, the quantity of training and testing live and
false samples, as well as the name of spoofing materials are all given in the 4.1.

Datasets Sensor Spoofing Materials
Biometrika Ecoflex, Gelatin, Latex, Silicone, Wood Glue
Italdata Ecoflex, Gelatin , latex, Silicone, Wood GlueLivDet 2013
Crossmatch Body Double, Latex, , Play-Doh ,Wood Glue ,
Crossmatch Body Double, Eco Flex, Play-Doh,OOMOO ,Gelatin
Digper Ecoflex, Latex, Gelatine, Wood Glue, Liquid Ecoflex, RTV
Greenbit Ecoflex, Latex, Gelatine, Wood Glue, Liquid Ecoflex, RTV

LivDet 2015

Biometrika Ecoflex, Latex, Gelatine, Wood Glue, Liquid, Ecoflex, RTV
Oracnathus Body Double, Ecoflex,Latex, Wood Glue , Gelatine, Liquid

ecoflex
Digper Body Double, Ecoflex, Wood Glue, Gelatine, Gelatine, La-

tex, Liquid, EcoflexLivDet 2017
Greenbit Body Double, Ecoflex, Latex , Wood Glue , Gelatine ,Latex

,Liquid ,Ecoflex

TABLE 4.1: Datasets LivDet 2013, LivDet 2015, LivDet 2017 with Corresponding
Sensor and spoof material used

4.2 Performance Metrics

The Attack Presentation Classification Error Rate (APCER) measures the proportion of mis-
classified spoof fingerprint photos, whereas the Bonafide Presentation Classification Error Rate
(BPCER) measures the proportion of misclassified real fingerprint images.
Average classification error (ACE), which is the averaged total of APCER and BPCER, is used
to evaluate the system’s overall performance. The following is an equation that represents the
calculation of ACE.

ACE =
APCER + BPCER

2
We can derive accuracy by : Average Accuracy = 100 - ACE
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4.3 Implementation Details

4.3.1 Hardware Specification

The proposed model is implemented using Keras library. All training and testing has been done
over NVIDIA TESLA P100 GPU. The Cross-sensor validation is performed by using the testing
data captured with the sensor other than which is used for the preparation of training data.

4.3.2 Static Hybridisation of MobileNet and SVM

We used keras library for all our implementations. For static hybridisation we followed our pro-
posed model architecture 3.5.
We started by importing MobileNet architecture availbale in Keras and removing the top layer
which was meant for 1000 classes ImageNet problem. We kept half of the layers of MobileNet
as non-trainable i.e. with the weights it has from being trained on ImageNet dataset and half of
the layers as trainable i.e. they can change their weights according to our model. Thereafter we
added the Dense and Dropout layers as shown in 3.5. On our dataset of LivDet we separated
them into two folders of training and testing both having fake and live sub-folders and fed them
using Image Data Generator from Keras. This automatically assigns labels to the fake and live
images. For the training dataset we used Image Augmentation and preprocessing techniques.
The model above is trained using Adam Optimiser and Binary Cross Entropy loss. The model
is trained for over 100 epochs and then the dense layer with 256 neurons is tapped for feature
extraction. We do feature extraction by using keras methodology of extracting output from any
named layer. The output from the dense layer is fed to PCA(Principal Component Analysis) so
as to retain the important nodes and remove the unimportant ones and the dimesion is reduces
to 100. After this we use Sklearn scikit library and pass the output from PCA into a SVM Classi-
fier for training. The accuracies obtained by this method is reported in the results section table
for LivDet 2013, LivDet 2015 and LivDet 2017 dataset.

4.3.3 Dynamic Hybridisation of MobileNet and SVM

All of our implementations used the Keras library. We used our proposed model architecture
for dynamic hybridization 3.6.
We began by importing the available MobileNet architecture in Keras and eliminating the top
layer, which was intended for the 1000-class ImageNet challenge. We left half of MobileNet’s
layers non-trainable, i.e. with the weights it learned from the ImageNet dataset, and the other
half trainable, i.e. able to adjust their weights according to our model. After that, as indicated
in 3.6, we added the Dense and Dropout layers. For introducing SVM in our CNN model we
added a Dense layer with hinge loss and the kernel regularizer as L2 regularizer. The final layer
of our CNN would act as a linear SVM for binary classification of the images as live or fake.

4.3.4 Image Augmentation

We augmented the given training images by providing our Image Data Generator with param-
eters. We performed rotation, horizontal flipping, scaling, zca whitening, zoom and shear oper-
ations. We also shuffled our images so as to introduce more randomness that would make the
model more generic.
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4.4 Results

The resulting accuracies from both of the above approaches were computed completely for all
three datasets over ten sensors. Their performance is compared to existing State-of-the-Art ap-
proaches. We tested the suggested model’s performance in three different scenarios. Training
and testing fingerprint samples may be arranged in two ways under these conditions: intra-
sensor same material and intra-sensor cross-material. All of these eventualities are described in
detail below:

4.4.1 Intra-Sensor and Known Spoof Material

The fake samples for both the training and testing sets are created with the same fabrication ma-
terials, and the training and testing sets use the same sensing equipment. LivDet 2013 data set
that we used for validation is part of this setup, in which training and testing false samples are
constructed utilising the materials, i.e. the spoofing materials’ names. An other data-set used by
us, LivDet 2015 also falls into this category, although only about two-thirds (66%) of the training
and testing phoney samples are made with the same spoof components.

Results for LivDet 2013 Dataset

The Graphs for loss and accuracy for all the sensors of LivDet 2013 dataset are provided in this
section. We also provide a comparitive analysis with the State-of-the-art methods for LivDet
2013 Dataset.

S.no. Method name and reference Biometrika Crossmatch Italdata Average
1 C. Yuan et al. [11] 99.25 97.53 99.40 98.72
2 Y. Zhang et al.[12] 99.53 - 96.99 98.26
3 H. Jung et al. [13] 94.12 99.56 97.92 96.02
4 R. Nogueira et al. [14] 99.20 96.71 97.7 98.45
5 C. Gottsc hlich et al. [15] 96.10 - 98.30 97.2

Proposed Method 99.59 97.67 99.39 98.88

TABLE 4.2: Comparison with the State-of-the-art Methods on LivDet 2013.

Dataset Sensor Mobilenet Static Hybrid Model Dynamic Hybrid Model
Biometrika 96.49 92.40 99.59
Italdata 92.95 85.50 99.39
Crossmatch 87.41 88.08 97.67

2013

Average 92.11 88.66 98.88

TABLE 4.3: Accuracy of Mobilenet , Static and Dynamic Models on LivDet 2013
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FIGURE 4.1: LivDet 2013 Biometrika Accuracy

FIGURE 4.2: LivDet 2013 Biometrika Loss

FIGURE 4.3: LivDet 2013 Italdata Accuracy
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FIGURE 4.4: LivDet 2013 Italdata Loss

FIGURE 4.5: LivDet 2013 CrossMatch Accuracy

FIGURE 4.6: LivDet 2013 CrossMatch Loss
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LivDet 2015

The Graphs for loss and accuracy for all the sensors of LivDet 2015 dataset are provided in this
section. We also provide a comparitive analysis with the State-of-the-art methods for LivDet
2015 dataset.

Sr. no. Method name and reference Biometrika Greenbit Crossmatch Digper Average
1 Yuan et al. [11] - - - - 88.99
2 Kim et al. [16] - - - - 86.39
3 Xia et al. [17] 90.36 89.18 86.28 95.47 90.32
4 G. Huang et l. [18] 95.63 96.32 93.33 89.10 93.59
5 Chugh et al. [3] - - - - 99.03

Proposed Method 96.67 96.75 98.42 95.11 96.75

TABLE 4.4: Comparison with the State-of-the-art Methods on LivDet 2015

Dataset Sensor Mobilenet Static Hybrid Model Dynamic Hybrid Model
Biometrika 94.75 84.64 96.67
Digper 91.90 83.88 95.11
Greenbit 94.52 86.77 96.75
Crossmatch 96.48 89.42 98.42

2015

Average 94.41 86.17 96.75

TABLE 4.5: Accuracy of Mobilenet , Static and Dynamic Models on LivDet 2015

FIGURE 4.7: LivDet 2015 Biometrika Accuracy
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FIGURE 4.8: LivDet 2015 Biometrika Loss

FIGURE 4.9: LivDet 2015 CrossMatch Accuracy

FIGURE 4.10: LivDet 2015 CrossMatch Loss



28 Chapter 4. Experimental Results

FIGURE 4.11: LivDet 2015 Digper Accuracy

FIGURE 4.12: LivDet 2015 Digper Loss

FIGURE 4.13: LivDet 2015 GreenBit Accuracy
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FIGURE 4.14: LivDet 2015 GreenBit Loss

4.4.2 Intra-Sensor and Unknown Spoof Material

In this approach, training and testing samples are collected using the same sensing equipment,
but bogus fingerprint samples for the training and testing data sets are created using different
spoofing materials. In this setup, any FPAD model’s performance should be better since it shows
the model’s ability to detect fake samples in a real-world setting where new and affordable
spoofing materials are discovered every day. The LivDet 2015 has one-third (33%) of the training
and testing fake samples in the training and testing set are made with different spoof materials,
this data-set falls into this category. Another set of data was utilised to test the suggested model.
Since the training and testing fake samples are made of different materials, LivDet 2017 belong
under this category altogether.

LivDet 2017

The Graphs for loss and accuracy for all the sensors of LivDet 2017 dataset are provided in this
section. We also provide a comparitive analysis with the State-of-the-art methods for LivDet
2017 dataset.

Sr. no. Method name and reference GreenBit Orcanthus DigPer Average
1 T. Chung et al. [3] 96.68 94.51 95.12 95.44
2 Y. Zhang et al. [12] 95.20 93.93 92.89 94.01

Proposed Method 94.16 95.00 95.55 94.90

TABLE 4.6: Comparison of Proposed Dynamic Model on Dataset 2017 with State-
of-the-art Methods.

Dataset Sensor Mobilenet Static Hybrid Model Dynamic Hybrid Model
Oracnathus 88.71 80.79 95.00
Digper 91.64 81.63 95.55
Greenbit 90.94 83.67 94.16

2017

Average 90.43 82.03 94.90

TABLE 4.7: Accuracy of Mobilenet , Static and Dynamic Models on LivDet 2017
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FIGURE 4.15: LivDet 2017 Orcanthus Accuracy

FIGURE 4.16: LivDet 2017 Orcanthus Loss

FIGURE 4.17: LivDet 2017 Digper Accuracy
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FIGURE 4.18: LivDet 2017 Digper Loss

FIGURE 4.19: LivDet 2017 GreenBit Accuracy

FIGURE 4.20: LivDet 2017 GreenBit Loss
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Chapter 5

Conclusion and Future Work

Starting with the analysis phase, understanding the need from real-world use cases, the in-depth
technical knowledge required to develop the machine learning model, preparing the dataset for
training the model, understanding and identifying the features that are required for training
the model, selecting the right algorithm for preparing the model, and evaluating the machine
learning model, this report has assisted us in understanding the process required to build a deep
learning model.

In this project, we have proposed a new method of Presentation Attack Detection in Finger-
print Biometrics. Our Dynamic Hybridisation of SVM and MobileNet outperforms the many
models in LivDet 2013, 2015 and 2017 datasets.

Future work in this direction would be to use some other classifiers like Random Forest instead
of SVM and see the performance of the model.
The calculation for 2019 LivDet and cross-sensor paradigm will also be performed.
Also as we have proposed an end-to-end architecture we will develop a GUI application that
can be used for Presentation Attack Detection.
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