B. TECH. PROJECT REPORT

On
PERFORMING MATHEMATICAL

OPERATIONS AND PARALLELISING
THEM ON FPGA

BY
PALASH DURUGKAR
SUNIL KUMAR PAL

Q
- ‘O"'
T INdorg
7 TV bre
I o
|| I HelsHIEa™ ||

DISCIPLINE OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE
December 2017

PERFORMING MATHEMATICAL
OPERATIONS AND PARALLELISING
THEM ON FPGA

A PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY
in

ELECTRICAL ENGINEERING

Submitted by:
PALASH DURUGKAR
SUNIL KUMAR PAL

Guided by:
Dr. SRIVATHSAN VASUDEVAN, Faculty, Electrical Engineering
DR. SATYA BULUSU, Faculty, Chemistry Department

INDIAN INSTITUTE OF TECHNOLOGY INDORE
December 2017

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Performing Mathematical Operations and
Parallelizing Them in FPGA” submitted in partial fulfillment for the award of the degree of
Bachelor of Technology in ‘ELECTRICAL ENGINEERING’ completed under the
supervision of Dr. Srivathsan Vasudevan, Asst. Professor, Electrical Engineering and Dr.

Satya Bulusu, Asst. Professor, Chemistry, IIT Indore is an authentic work.

Further, I/we declare that 1/we have not submitted this work for the award of any other

degree elsewhere.

Signature and name of the student(s) with date

Palash Durugkar Sunil Kumar Pal

CERTIFICATE by BTP Guide(s)

It is certified that the above statement made by the students is correct to the best of

my/our knowledge.

Signature of BTP Guide(s) with dates and their designation

Dr. S. Vasudevan Dr. S. Bulusu
Asst. Professor, Electrical Engg. Asst. Professor, Chemistry

II'T INDORE II'T INDORE

PREFACE

This report on “PERFORMING MATHEMATICAL OPERATIONS AND
PARALLELISING THEM IN FPGA" is prepared under the guidance of Dr. Srivathsan
Vasudevan, Professor, Electrical Engineering and Assistant Professor, Dr. Satya Bulusu,
Professor, Chemistry Department.

Through this report we have tried to present the system and architecture for solving intensive
high-level computation problems for various computational fields. The system is an effort
towards making such computational fields realize the potential of application of FPGA based
hardware designs and their optimizations for mathematical problem computations and data
analysis.

We have tried to the best of our abilities and knowledge to explain the content in a lucid
manner. We have also added designs and figures to make it more illustrative.

PALASH DURUGKAR and SUNIL KUMAR PAL
B.Tech. IV Year

Discipline of Electrical Engineering

[T Indore

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors Dr. Srivathsan Vasudevan and
Dr. Satya Bulusu for providing their invaluable guidance, comments, suggestions and kind
support throughout the course of the project.

It is through their help and support, due to which we became able to complete the design and
technical report.

Without their support this report would not have been possible.

PALASH DURUGKAR and SUNIL KUMAR PAL
B.Tech. IV Year

Discipline of Electrical Engineering

[T Indore

ABSTRACT

With the rise of Field Programmable Gate Array (FPGA) Programming, the application of hardware
designing and implementation is becoming ubiquitous. FPGA can be used to design a controller in a single
chip Integrated Circuit (IC). Most of the research oriented fields today, involve intensive high-level
computation problems to be solved within minimum possible time frame and greatest of ease. This project on
Performing of Mathematical Operations and parallelizing them in FPGA, is considered to be a key problem
solver for such fields. Through this work, we aim to offer an architecture of a setup which could perform a
pre-specified mathematical operation or a set of mathematical operations on large chunks of data packets
within very low time frames. This paper deals with designing of a high speed UART using Verilog Hardware
Description Language .The Universal Asynchronous Receiver Transmitter (UART) is a device used for
serial communication between computers and other peripheral devices. Together combining the design
structure and parallelizing techniques to reduce latency and optimization on FPGA, would be considered a
new innovation idea in intensive high-level computational fields by providing a reprogrammable software
that can demonstrate the potential of hardware development and FPGA programming.

iv.

o ok w D

TABLE OF CONTENTS

Candidate’s Declaration
Supervisor’s Certificate
Preface
Acknowledgements
Abstract

Introduction

1.1. FPGAs-A Brief Introduction

1.2. Basys 3 Board

1.3. XILINX Vivado Design Suite

1.4. RealTerm — Serial/TCP Terminal Software
Design Implementation Using HDLs(VHDL /Verilog)
Design Implementation using HLLs(C/C++)
Applications

Conclusion and Scope for Future Work

References

LIST OF FIGURES

Figure 1 — Island Type View of FPGA Architecture
Figure 2 — FPGA Components

Figure 3 — Logic Cell

Figure 4 — Basys 3 Board Features

Figure 5 - USB-UART Connection on FPGA

Figure 6 - RealTerm Screen Capture

Figure 7 — Structure Overview

Figure 8 — Data Flow in the System

Figure 9 — Steps Followed in using the software

Figure 10 — Data Packet in UART

Figure 11 — Final Synthesised Design of System

Figure 12 — State Machine Representation of Control Module
Figure 13 — RTL level design of system

Figure 14 — 1/0 Planning

Figure 15 — RTL Implementation

Figure 16 - Directives

Figure 17 - Unrolled Loops with Latency

Figure 18 - Loop Flattening

Figure 19 - Perfect and Semi Perfect Loops
Figure 20 - Before Pipelining and Loop Unrolling

Figure 21 - After Pipelining

Figure 22 - After Loop Unrolling
Figure 23 - Final RTL Design

Figure 24 - timing diagram of operation

Figure 25 - GPU and CPU relationship to accelerate work

LIST OF TABLES

Table 1 - Instruction executions in pipelined processor
Table 2 - Control Dependency
Table 3 - stallings in pipeline

Table 4 - Operand Forwarding

CHAPTER 1: INTRODUCTION

1.1 FPGAs — A Brief Introduction

The word digital has made a dramatic impact on our society. More significant is a continuous trend towards
digital solutions in all areas — from electronic instrumentation, control, data manipulation, signals processing,
telecommunications etc., to consumer electronics. Development of such solutions has been possible due to
good digital system design and modeling techniques. Digital ICs have become universally standardized and
have been accepted for use. Whenever a designer has to realize a digital function, he uses a standard set of
ICs along with a minimal set of additional discrete circuitry. Field programmable Gate Arrays (FGPAS) are
reconfigurable devices that can be electrically programmed to implement a wide variety of logic circuits. An
FPGA consists of a uniform array of programmable logic structures that are interconnected by a configurable
routing grid. Originally designed to serve as prototyping devices for testing and demonstrating the
functionality of digital circuits, FPGAs are now an integral part of high performance systems that include
digital, analog and RF components. The revolutionary success of these reconfigurable devices can be
attributed to Flexibility in design implementation. The ability to instantly reprogram the FPGA with various
circuits at no extra cost promotes reusability of the device, allows rapid design verification and reduces non-
recurring expenditure.

e The availability of high performance FPGA based IP cores for popular applications. This allows
FPGAs to function as plug and play devices in System on Chip (SoC) platforms.

e Enhanced performance due to the incorporation of specialized hardware like multipliers, high speed
memories etc., into the FPGA. Additionally, the specialized blocks are also optimized for area and
power which making the FPGA more competitive with custom chips.

Figure 1 shows the island style of FPGA architecture.

10 Pads Coonection Boxes

Configurable |
Logic Blocks

Figure 1. FPGA Architecture [3]

As we mentioned at the beginning, FPGA is an integrated circuit. However the difference from the others is
that they can be configurable as we wish. We can explain this as follows: In ordinary or standard ICs which
cannot be programmable, there are fixed interconnections between the transistors. Unless they are burned or
another unfortunate event does not come, they cannot be changed.

We may consider FPGAs as crude ICs of which their transistors were produced independently.

Interconnections between transistors can be done according to the function we defined, then they perform
the function we want. So theoretically, any operation that comes to our minds can be done by FPGAs,
depending on the transistor capacity.

FPGA is basically consists of Logic Cells, 1/0 Blocks (Input/Output) and interconnections.

logicCels| NN NNENESNNSESNSENSENSENSEEENESER
el
LI f
L]
:.1 :
%l‘
L]
10 Blocks ‘;.;

ENCE:

|

Inter }
connections|

Figure 2 FPGA parts [3]

Logic Cells form the main structure of FPGAs. A Logic-Cell consists of one Lookup Table (LUT), one D-
Flip Flop and one 2 to 1 Multiplexer.

1NdNI

il

LUT

>
clk |—

Figure 3. Logic Cell [3]
LUTs are actually small memories (RAM) that fulfil logic operations...
As a result of combination of thousands of Logic Cells, complex and large programs are created.

Interconnections of logic cells are provided by programmable switches and matrix formed data paths
(according to the installed program FPGA).

FPGA design defines the set of connections between logic functions, by determining functions of each of the
logic cells and status (open /closed) of programmable switches.

RAM Blocks

In almost all of today's FPGAs, memory units called RAMs are allocated. They are used for temporary
storage needs which occur during the operation of logic circuits. This RAMs can support single or multiple
access. With multiple access, multiple applications can run read /write operations on the RAM. Multiple
access is a good solution for transferring data between different process blocks that have different clocks.
For great RAM needs, there are Block RAMs in FPGA. However there are small scattered (distributed)
RAMSs which are interspersed among the logic cells for small data storage needs.

One of the most important feature of FPGAs is the ability to do parallel processing. Ordinary ICs cannot do
parallel processing, or they can do it limited. Whereas dozens of or perhaps thousands of parallel processing
can be done simultaneously depending on the application with FPGAs. This makes FPGAs unique in
applications that require parallel processing. If you use standard ICs like microprocessors, you start to get
second frame after processing three operations (get, filter and send) for the first frame. If this process cannot
be fast enough, you may miss the next frame. FPGAs do all these operations in parallel. That means while
we processing of filtering the first frame, we might begin to take the second frame. And while us sending the
first frame to the output, we begin to filter the second frame and get the third frame at the same time.

Furthermore, filtering process requires extensive multiplication process. With standard ICs, we have to do
this process sequentially. Whereas this process can be done in parallel with an FPGA so it can be done very
quickly.

In summary, FPGAs are hardware-programmable integrated circuits that provide us parallel processing
capabilities and opportunity to change the internal structure and its function according to the desired
application.

Intellectual Property (IP)
Intellectual Property (IP) refers to the built-in functions that are optimised for speed and performance aspects

according to a specific FPGA family. While simple functions are provided free by the manufacturer; more
advanced functions are usually required to pay a certain fee.

1.2 BASYS 3 Board

The Basys3 board is a complete, ready-to-use digital circuit development platform based on the latest Artix-
7™ Field Programmable Gate Array (FPGA) from Xilinx. With its high-capacity FPGA (Xilinx part number
XC7A35T-1CPG236C , low overall cost, and collection of USB, VGA, and other ports, the Basys3 can host
designs ranging from introductory combinational circuits to complex sequential circuits like embedded
processors and controllers. It includes enough switches, LEDs and other I/O devices to allow a large number
designs to be completed without the need for any additional hardware, and enough uncommitted FPGA 1/0
pins to allow designs to be expanded using Digilent Pmods or other custom boards and circuits.

The Artix-7 FPGA is optimized for high performance logic, and offers more capacity, higher performance,
and more resources than earlier designs. Artix-7 35T features include:

33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-flops);
1,800 Kbits of fast block RAM;

Five clock management tiles, each with a phase-locked loop (PLL);

90 DSP slices;

Internal clock speeds exceeding 450MHz;

On-chip analog-to-digital converter (XADC).

The Basys3 also offers an improved collection of ports and peripherals, including:

16 user switches

16 user LEDs

5 user pushbuttons

4-digit 7-segment display

Three Pmod ports

Pmod for XADC signals

12-bit VGA output

USB-UART Bridge

Serial Flash

Digilent USB-JTAG port for FPGA programming and communication
USB HID Host for mice, keyboards and memory sticks

Walk Around the Board

1.6‘ 15 14) 13) 12) 1 10) 7)

Y (8
(7

3

. G

M Basys3 board features

Callout | Component Description Callout | Component Description

Powergood LED FPGA configuration resetbutton
2 Pmod connector(s) 10 Programming mode jumper
3 Analog signal Pmod connector (XADC) 11 USB host connector
4 Fourdigit 7-segment display 12 VGA connector
5 Slide switches (16) 13 Shared UART/JTAG USB port
6 LEDs (16) 14 External power connector
7 Pushbuttons (5) 15 Power Switch
8 FPGA programming done LED 16 PowerSelectJumper

Figure 4. Basys 3 Board Features [4]

1.3 XILINX Vivado Design Suite

The Basys3 works with Xilinx’s new high-performance Vivado ® Design Suite. Vivado includes many new
tools and design flows that facilitate and enhance the latest design methods. It runs faster, allows better use
of FPGA resources, and allows designers to focus their time evaluating design alternatives. The System
Edition includes an on-chip logic analyzer, high-level synthesis tool, and other cutting-edge tools, and the
free “Webpack” version allows Basys3 designs to be created at no additional cost.

USB-UART Bridge (Serial Port)

The Basys3 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J4) that allows you to
use PC applications to communicate with the board using standard Windows COM port commands. Free
USB-COM port drivers, convert USB packets to UART/serial port data. Serial port data is exchanged with
the FPGA using a two-wire serial port (TXD/RXD). After the drivers are installed, I/O commands can be
used from the PC directed to the COM port to produce serial data traffic on the B18 and A18 FPGA pins.

Two on-board status LEDs provide visual feedback on traffic flowing through the port: the
transmit LED (LD18) and the receive LED (LD17). Signal names that imply direction are from the point-of-
view of the DTE (Data Terminal Equipment), in this case the PC.

The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the USB-UART and
USB-JTAG functions behave entirely independent of one another. Programmers interested in using the
UART functionality of the FT2232 within their design do not need to worry about the JTAG circuitry
interfering with the UART data transfers, and vice-versa. The combination of these two features into a single
device allows the Basys3 to be programmed, communicated with via UART, and powered from a computer
attached with a single Micro USB cable. The connections between the FT2232HQ and the Artix-7 are shown
in the below figure.

- 4
2
_l JTAG «—F+— JTAG
— TXD ——» B18
Micro-USB RXD «— A18
(J4)

FT2232 Artix-7

Figure 5. USB-UART Connection on FPGA [4]

1.4 RealTerm — Serial/TCP Terminal Software

Realterm is an engineer’s terminal program specially designed for capturing, controlling and debugging
binary and other difficult data streams. It is the best tool for debugging comms.

Display | Port | Capture | Ping | Send | EchoPaort| 120 | 1202 | 12CMisc | Misc \n| Clear Freeze
Dizplay &g v Half Duplex Binam Sunc Charz EW. Clatuz
Azl ¥ newline mode ABCD - SNE IS Connected
Ansi = Data + MNone
Ireert Data R (2]
Hexlzpace] ~| “0R
H_e:-:E+ Bz ASCI TD (3]
:'::Pgt Data Frames | AND Murnber LT3 [8)
* Hex Bytes 2 B DCD (1)
iHt16 Ch i
Wint16 Single _ Gulp / Change Leading Sync DSF (5]
Al Ring (3]
Binary Rows Cals EREAE,
HE;'E Teminal Font| |16 =| 80 & Serollback Errar
Ctrl+Tab to step through tab sheets Char Count:0000000 |(CPS:0 Port: 1 57500 8M1 None

Figure 6. RealTerm Screen Capture [5]

RealTerm is a terminal software solution that enables network administrators to capture, manage or debug
binary and other data streams. If you are looking for a tool that can debug dialling modems or BBS, you
might need to keep on looking as Real Term does not support such devices.

Its interface is meant to be as intuitive as possible, as each main function is detailed in its own tab

We can also modify the port, the parity and the data bits, so to come up with a configuration that best suits
your needs.

One of the benefits of RealTerm is that it comes with support for hotkeys, which can help you save a lot of
time when handling difficult data streams, thus allowing you to focus more on the debugging process than on
operating the application.

All'in all, RealTerm provides users with numerous functions that enable them to debug binary or other types
of data streams, yet advanced skills are required in order to make the most of its features.

CHAPTER 2: HARDWARE DESIGN IMPLEMENTATION THROUGH HDLs

The main overview of the architecture could be explained as followed in the flow chart below:

USER INPUT FPGA USER OUTPUT

Figure 7. Structure Overview

Assuming that the user has decided a fixed number of input data/numbers (very large quantity of data) to be
sent from a host PC and he/she wants that some mathematical operations or a set of mathematical operations
to be performed on the numbers/data in a pre-defined fashion and the resulting data to be shown back to the
user on the host PC.

Firstly, we need to be sure about the architecture of the process, how the data should be flowed from the PC,
through the hardware FPGA, perform mathematical operations and the resultants to go through the hardware
back to the host PC.

Secondly, we need to devise a way so that the hardware FPGA and the host PC could interact with each
other, or communicate with each other for data flow.

The user inputs the data through the keyboard also enabling the hardware through switches and making it
ready for incoming data and setting up the terminal software. Since, the main motive is to design a digital
logic system, the data flowing will be binary (8-bit). We can use any of, serial or parallel communication for
the data flow, but it is more feasible to use serial communication for the same because it is easier to use and
understand, easier to implement on chip, low cost and placing space. Hence, Serial Communication is more
preferable over the Parallel Communication Techniques.

The data is received by the receiver (first serial communication block) which then transmits the data further
serially to be stored in two separate memory locations. These memory locations are designed to store large
quantity of data at a place, and keep them stored until an instruction is given to remove data stored one at a
time. We can set the depth of the memory according to the user preferences and needs and the fashion in
which the data has to be stored (no. of bits).

Now that we have all the data stored, we can give instructions to remove data one at a time from the two
memory locations and perform mathematical operations on the corresponding pairs of data/numbers and
make the resultants to move further in another memory location. This final memory location would be
containing all the resultant datas, which need to be sent back to the user.

The resultants move on to the transmission block (second serial communication block) one at a time, which
converts these serial data back to parallel (back in the fashion in which they were input) and through some
digital logic could be made available for the user to be seen back on the terminal software.

Perform

Stored in Mathematical

onvert to Seria memory . :
“ blocks Operations, 1 pair at

a time

User Receives Result Result stored in a

onvert to Paralle
Data L CnetoraElel] separate memory
block

Figure 8. Data Flow in System

This whole process could be very well designed in XILINX Vivado Design Suite, given the knowledge of
HDLs (Hardware Description Languages) like, Verilog or VHDL. These languages are specially designed
for hardware programming. Since, FPGA is reprogrammable and we can possibly design the system for any
type of mathematical operations using HDLs given its ease of understanding and structural flow, it gives us
an advantage.

Also, the understanding of the serial communication protocol, the whole process where the conversion of
parallel data from a controlling device like a CPU into serial form, its transmission in serial to the receiving
block, which then converts the serial data back into parallel data for the receiving device, has been explained
in detail in the later stages of the report.

We had certain source files available to us, mainly the transmission and reception files for data
communication. The only problem lies in interconnecting all the modules and components through hardware
programming without any errors and successful synthesis and implementation designs as well as the placing
the 1/0 pins (switches and LEDs for the input and output ports respectively), to finally get a bitstream file for
the entire project. We can easily design a VHDL/Verilog code for the same, which has been shown in the
later stages of the report.

Below mentioned are the various stages that we need to go through while designing in XILINX Vivado
Design Suite:

e OF
es®
\‘(\((\ .
LRI Synthesise
«Combining o « W d Design

all source
files

eUsing HDL

Implement
o Y ed Design
aylie
P&S\%“ I\‘Eoc-’
oiv
—— P— “e(a‘.e
Ge

RealTerm Hardware Manger Bitstream

Software Generated

Figure 9. Steps using the softwares

SERIAL COMMUNICATION PROTOCOL - UART COMMUNICATION

Parallel vs. Serial

Parallel interfaces transfer multiple bits at the same time. They usually require buses of data - transmitting
across eight, sixteen, or more wires. Data is transferred in huge, crashing waves of 1’s and 0’s.Serial
interfaces stream their data, one single bit at a time. These interfaces can operate on as little as one wire,
usually never more than four. Think of the two interfaces as a stream of cars: a parallel interface would be
the 8+ lane mega-highway, while a serial interface is more like a two-lane rural country road. Over a set
amount of time, the mega-highway potentially gets more people to their destinations, but that rural two-laner

serves its purpose and costs a fraction of the funds to build.

Parallel communication certainly has its benefits. It’s fast, straightforward, and relatively easy to implement.
But it requires many more input/output (1/0) lines.So, we often opt for serial communication, sacrificing

potential speed for pin real estate.

Asynchronous serial communication means that data is transferred without support from an external clock
signal. This transmission method is perfect for minimizing the required wires and 1/0 pins, but it does mean

we need to put some extra effort into reliably transferring and receiving data.

SERIAL COMMUNICATION PROTOCOL (UART COMMUNICATION)

While USB has almost completely replaced those old cables and connectors, UARTS are definitely not a
thing of the past. You’ll find UARTSs being used in many DIY electronics projects to connect GPS

modules, Bluetooth modules, and RFID card reader modules to your Raspberry Pi, Arduino, or other
microcontrollers.

UART stands for Universal Asynchronous Receiver/Transmitter. It’s not a communication protocol like SPI
and 12C, but a physical circuit in a microcontroller, or a stand-alone IC. A UART’s main purpose is to

transmit and receive serial data.

One of the best things about UART is that it only uses two wires to transmit data between devices.

In UART communication, two UARTs communicate directly with each other. The transmitting UART converts
parallel data from a controlling device like a CPU into serial form, transmits it in serial to the receiving UART,
which then converts the serial data back into parallel data for the receiving device. Only two wires are needed to
transmit data between two UARTSs. Data flows from the Tx pin of the transmitting UART to the Rx pin of the
receiving UART.

UART 1 UART 2

UARTS transmit data asynchronously, which means there is no clock signal to synchronize the output of bits from
the transmitting UART to the sampling of bits by the receiving UART. Instead of a clock signal, the transmitting
UART adds start and stop bits to the data packet being transferred. These bits define the beginning and end of
the data packet so the receiving UART knows when to start reading the bits.

When the receiving UART detects a start bit, it starts to read the incoming bits at a specific frequency known as
the baud rate. Baud rate is a measure of the speed of data transfer, expressed in bits per second (bps). Both
UARTSs must operate at about the same baud rate. The baud rate between the transmitting and receiving UARTs
can only differ by about 10% before the timing of bits gets too far off.

Both UARTSs must also must be configured to transmit and receive the same data packet structure.

UART transmitted data is organized into packets. Each packet contains 1 start bit, 5 to 9 data bits (depending on

the UART), an optional parity bit, and 1 or 2 stop bits:

Packet
o to 1 :
1 start % to 9 data bhits Darity B
I ik stop biks

— e

Crata Frame

Figure 10. Data Packet in UART [6]

START BIT

The UART data transmission line is normally held at a high voltage level when it’s not transmitting data. To
start the transfer of data, the transmitting UART pulls the transmission line from high to low for one clock
cycle. When the receiving UART detects the high to low voltage transition, it begins reading the bits in the
data frame at the frequency of the baud rate.

DATA FRAME

The data frame contains the actual data being transferred. It can be 5 bits up to 8 bits long if a parity bit is
used. If no parity bit is used, the data frame can be 9 bits long. In most cases, the data is sent with the least
significant bit first.

PARITY

Parity describes the evenness or oddness of a number. The parity bit is a way for the receiving UART to tell
if any data has changed during transmission. Bits can be changed by electromagnetic radiation, mismatched
baud rates, or long distance data transfers. After the receiving UART reads the data frame, it counts the
number of bits with a value of 1 and checks if the total is an even or odd number. If the parity bit is a 0 (even
parity), the 1 bits in the data frame should total to an even number. If the parity bit is a 1 (odd parity), the 1
bits in the data frame should total to an odd number. When the parity bit matches the data, the UART knows
that the transmission was free of errors. But if the parity bit is a 0, and the total is odd; or the parity bitisa 1,
and the total is even, the UART knows that bits in the data frame have changed.

http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-UART-Packet-Frame-and-Bits-2.png
http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-UART-Packet-Frame-and-Bits-2.png

STOP BITS
To signal the end of the data packet, the sending UART drives the data transmission line from a low voltage

to a high voltage for at least two bit durations.

ADVANTAGES AND DISADVANTAGES OF UARTS

No communication protocol is perfect, but UARTS are pretty good at what they do. Here are some pros and
cons to help you decide whether or not they fit the needs of your project:

ADVANTAGES
Only uses two wires

No clock signal is necessary
Has a parity bit to allow for error checking
The structure of the data packet can be changed as long as both sides are set up for it

Well documented and widely used method

DISADVANTAGES
The size of the data frame is limited to a maximum of 9 bits

Doesn’t support multiple slave or multiple master systems

The baud rates of each UART must be within 10% of each other

WORKING AND FINAL DESIGN

COMPONENTS INVOLVED IN THE DESIGN

1. First In First Out (FIFO) Memory Block
2. UART Serial Communication Blocks — Receiver and Transmission Block
3. Clock Divider Module
4. Selection Module
5. Adder Block
2| g| 5| & 5 5|
B AEBS BB \SE SANE = N
===
=1 '-I I%‘ S A=
_=
= S | = e N |
=] =
s[=l1s5 Aa=la = 18
e, — |=
=l I
B nST ams amfoas
§
= =
|- ol 'SR I BN SR |

=

Figure 11. Final Synthesized Design of Systemw

» FIRST IN FIRST OUT (FIFO) MEMORY BLOCK

As the name suggests, FIFOs are a special kind of memory blocks for any digital logic system,
whatever be the depth of this memory block (the no. of data entries that it can store) , whichever
number was the first to be entered will be the first one to come out of the block when given certain
instruction.

The FIFO Generator core is a fully verified first-in first-out memory queue for use in any application
requiring ordered storage and retrieval, enabling high-performance and area-optimized designs. The
core provides an optimized solution for all FIFO configurations and delivers maximum performance
(up to 500 MHz) while using minimum resources. This core can be customized using the Vivado IP
customizers in the IP catalog as a complete solution with control logic already implemented,

including management of the read and write pointers and the generation of status flags.

For this project, we have used FIFO as an in-built IP (Intellectual Property) from the IP Catalog

available in the software, which is customizable according to user needs.

Here, the FIFO memory block is being used to store large data in groups, for example, a FIFO with a
write depth of 16 and write width of 8, would be able to store 16 eight- bit numbers in it. This can be

changed in the customization settings while designing the IP.

Also, another variation that has been used is the Independent Clocks Block RAM (which enables us
to choose different clocks for both read and write operations simultaneously). This is necessary to
improve the performance of the system on a whole. We cannot have slower clocks for writing the
data into the FIFO if the depth is very much.

The key components/ports of the FIFO memory block being:
= read clock - clock followed when reading data from the FIFO
= write clock — clock followed when writing data into the FIFO
= read enable — tells the FIFO when to read
= write enable — tells the FIFO when to write
= data input port — data input through this port (our case 8-bit binary numbers)
= data output port - data output through this port (our case 8-bit binary numbers)
= full flag — indicates when the FIFO memory is complete and cannot take any more entries

= empty flag — indicates when the FIFO memory is completely empty

» UART SERIAL COMMUNICATION BLOCKS
o UART TRANSMISSION BLOCK
o Metastability Hardener
e Baud Generator
e Control Module
o UART RECIVER MODULE
e Baud Generator

e Control Module

Metastability Hardener -- This is a basic meta-stability hardener; it double synchronizes an asynchronous

signal onto a new clock domain.

Metastability is a phenomenon that can cause system failure in digital devices, including FPGAs, when a
signal is transferred between circuitry in unrelated or asynchronous clock domains. If the data output signal
resolves to a valid state before the next register captures the data, then the metastable signal does not
negatively impact the system operation. But if the metastable signal does not resolve to a low or high state
before it reaches the next design register, it can cause the system to fail. Continuing the ball and hill analogy,
failure can occur when the time it takes for the ball to reach the bottom of the hill (a stable logic value 0 or 1)
exceeds the allotted time, which is the register’s tCO plus any timing slack in the path from the register.
When a metastable signal does not resolve in the allotted time, a logic failure can result if the destination
logic observes inconsistent logic states, that is, different destination registers capture different values for the

metastable signal. [Refer appendix (1)]

Baud Generator -- Generates a 16x Baud enable. This signal is generated 16 times per bit at the correct

baud rate as determined by the parameters for the system clock frequency and the Baud rate. This is essential

for the sampling of bits incoming into both UART blocks for communication.

The Baud Generator generates a signal which ticks 16 times per bit at the baud rate of 9600 bps. This
signal is essential for the sampling of data bits and to decide whether the data flowing is valid or not.

[Refer appendix (2)]

CONTROL MODULE for Input -- Implements the state machines for doing RS232 reception. Based on
the detection of the falling edge of the synchronized rxd input, this module waits 1/2 of a bit period (8
periods of baud_x16_en) to find the middle of the start bit, and resamples it. If rxd is still low it accepts it as
a valid START bit, and captures the rest of the character, otherwise it rejects the start bit and returns to idle.
After detecting the START bit, it advances 1 full bit period at a time (16 periods of baud_x16_en) to end up
in the middle of the 8 data bits, where it samples the 8 data bits. After the last bit is sampled (the MShit,
since the Lsbit is sent first), it waits one additional bit period to check for the STOP bit. If the rxd line is not
high (the value of a STOP bit), a framing error is signaled. Regardless of the value of the rxd, though, the
module returns to the IDLE state and immediately begins looking for the start of the next character. The total
cycle time through the state machine is 9 1/2 bit periods (not 10) — this allows for a mismatch between the

transmit and receive clock rates by as much as 5%.

Parity
Bit
(optional)

S |IDOyD1yD2|D3D4|D5|D6|D7|PB | S

Start Data Bits Stop
Bit Bit

If invalid START bit
return to IDLE

7

If not then Framing

Error is indicated

Figure 12. State Machine Representation of Control Module

CONTROL MODULE for Output-- Implements the state machines for doing RS232 transmission.
Whenever a character is ready for transmission (as indicated by the empty signal from the character FIFO),
this module will transmit the character. The basis of this design is a simple state machine. When in IDLE, it
waits for the character FIFO to indicate that a character is available, at which time, it immediately starts
transmission. It spends 16 baud_x16_en periods in the START state, transmitting the START condition
(1°b0), then transitions to the DATA state, where it sends the 8 data bits (Lsbit first), each lasting 16
baud_x16_en periods, and finally going to the STOP state for 16 periods, where it transmits the STOP value
(1°b1). On the last baud x16_en period of the last data bit (in the DATA state), it issues the POP signal to
the character FIFO. Since the SM is only enabled when baud_x16_en is asserted, the resulting pop signal
must then be ANDed with baud_x16_en to ensure that only one character is popped at a time. On the last
baud_x16_en period of the STOP state, the empty indication from the character FIFO is inspected; if
asserted, the SM returns to the IDLE state, otherwise it transitions directly to the START state to start the
transmission of the next character. There are two internal counters — one which counts off the 16 pulses of
baud_x16_en, and a second which counts the 8 bits of data. The generation of the output (txd_tx) follows

one complete baud_x16_en period after the state machine and other internal counters.
/I Assert the rd_en to the FIFO for only ONE clock period
assign char_fifo_rd_en = char_fifo_pop && baud_x16_en;

It is a similar finite state machine as previous one, the only addition is the logic through which every

character is popped out to be seen on the terminal screen.

» CLOCKDIVIDER MODULE
This module is essential because the read operations for the FIFO require a slower clock and since,
on the Basys 3 Board there is a single clock of 100 MHz available to us, we need to reduce the clock
frequency to much lower values for successful read operations.
For our case, we have reduced the available clock frequency of 100MHz to 1Hz.
[Refer appendix (3)]

» SELECTION MODULE
This module is necessary because it enables us to decide about the latest input data entry, that, where
among the 2 FIFOs it should be stored, because the mathematical operations have to be performed
between a pair of data entries. On the FPGA, the input is given through switch, if low, then FIFOL1, if
high, then FIFO2.
[Refer appendix (4)]

» INVERSION MODULE
This module is necessary because through this we can decide when the transmission of the result data
starts. On the FPGA, it is incorporated through a switch.
[Refer appendix (5)]

» ADDER BLOCK
This is the module where the main mathematical operation is taking place — the addition of 8-bit
binary numbers. It has the 2 inputs connected to the data output ports of both FIFOs and an enable
port which decides when the operation takes place. It passes on the 8-bit binary sum ahead to the
result storing FIFO, after performing each successive operation.
This block is being implemented as an in-built Intellectual Property (IP) in the XILINX Vivado

software. It is always customizable according to user needs.

Combining all these components we obtained the final design of the complete architecture of the
system to Perform Mathematical Operations with Interaction between the Hardware FPGA and host
PC. Next, we will look at the main design wrapper (the main code which connects all these modules

together).

MAIN PROGRAM CODE AND WORKING

Given below is the main structural code for the whole system which involves all of the above
mentioned modules to obtain the final design of the system.

“timescale 1ns / 1ps

module main(

input
input
input
output
output
output
output
output
output
output
input
output
output
input
input
input
);

CLOCK,
rst_clk_rx, // Active HIGH reset - synchronous to clk_rx
rxd_i, /Il RS232 RXD pin - Directly from pad
frm_err, // The STOP bit was not detected
full_1,
empty 1,
full_2,
empty_2,
full_3,
empty_3,
rst_clk_tx, // Active HIGH reset - synchronous to clk_tx
char_fifo_rd_en, // Pop signal to the char FIFO
txd_tx, Il The transmit serial signal
switch,
CE,

read _en

//***

// Parameter definitions

//***

parameter BAUD _RATE = 9600; // Baud rate
parameter CLOCK_RATE =100000000;
parameter sys_clk = 100000000; // 100 MHz system clock

parameter clk_out=1; // 1 Hz clock output

parameter max = sys_clk / (2*clk_out); // max-counter size

”***

/I ' Wire Declarations

I isieisisiiaisinisisiaiasiiaissiiaisiniaisainisisiaidsiaiaissiisissinisisainissiniadsiaidsiaieissiaiaissiaiaisaiaiaisiaieie
wire C;
wire write_clk;
wire wi;
wire w2;
wire write_en;
wire [7:0] data_outl;
wire [7:0] data_out2;
wire [7:0] sum;
wire [7:0] data_in;
wire [7:0] data_out3;
wire fifo3_empty;
wire trans_start;

/***

/I Code

/***

inv i0(.a(read_en), .b(trans_start));

clk_div #(.sys_clk(100000000) , .clk_out(1) , .max(50000000)) u0 (.Clk_in(CLOCK),
.CIKk_out(c));

uart_rx uart_rx_i0(
.clk_rx (CLOCK),
.rst_clk_rx (rst_clk_rx),
rxd_i (rxd_i),
.rxd_clk_rx (write_clk),
.rx_data (data_in),
.rx_data_rdy (write_en),

frm_err (frm_err)

);

selector sel(
.switch(switch),
.data(write_en),
.Clock(CLOCK),
.Outl(w2),
.Out2(wl)

);

fifo_generator 0 FIFO_1 (
wr_clk(write_clk), // input wire wr_clk
.rd_clk(c), // input wire rd_clk
.din(data_in), // input wire [7 : 0] din
wr_en(w2), //inputwirewr_en
.rd_en(CE), //input wirerd_en
.dout(data_outl), //output wire [7 : 0] dout
full(full _1), // output wire full
.empty(empty 1) // output wire empty

fifo_generator 0 FIFO_2 (
wr_clk(write_clk), // input wire wr_clk
.rd_clk(c), // input wire rd_clk
.din(data_in), /' input wire [7 : 0] din
wr_en(wl), //inputwirewr_en
.rd_en(CE), //input wirerd_en
.dout(data_out2), // output wire [7 : 0] dout
Sull(full_2), // output wire full
.empty(empty_2) // output wire empty

c_addsub_0 adder (
A(data_outl), //inputwire[7:0] A
.B(data_out2), //inputwire [7:0]B
.CLK(CLOCK), // input wire CLK

.CE(CE), /linputwire CE
.S(sum) // output wire [7: 0] S
);

fifo_generator 0 FIFO_3 (
wr_clk(c), // input wire wr_clk
.rd_clk(c), // input wire rd_clk
.din(sum), I/ input wire [7 : 0] din
wr_en(CE), //inputwirewr_en
.rd_en(read_en), // inputwire rd_en
.dout(data_out3), // output wire [7 : 0] dout
full(full _3), // output wire full
.empty(empty_3) // output wire empty

uart_tx uart_tx_i0(
.Clk_tx(CLOCK),
Jrst_clk_tx(rst_clk_tx),
/[.baud_x16_en(baud_x16_en),
.char_fifo_empty(trans_start),
.char_fifo_dout(data_out3),
.char_fifo_rd_en(char_fifo_rd_en),
txd_tx(txd_tx)

);

endmodule

We have taken a simple exam of 8-bit binary addition mathematical operation, even more complex
mathematical operations can be achieved, and we just have to design a module in HDL for that specific
operation or a set of operations.

Shown next is the elaborated RTL level design of the system after executing the main wrapper (main code)

Figure 13. RTL level design of system

= = = =
-) P = P~ = (28
= e = [y = Y ==
=,] =~ = = = il_ -
ETA B =TA 0w B oA ST W T e TN Ay -
E/NES /WE E/NES /NE EANES /B S|m E
¥ i =2 = % . EZ =
E El B
AE = =4
— 5 = =
gll_’ = |§ _In ;l—
= =1 =1 =! = s =
= - é
= G.D
' g PN
= 3 3+ ++= 2L e

4]
pgly
il

0
I
gy
bt
!
i, a0
02
]
it gmoe

T
K

i

Wtk

I Wi
)l

1l

i

|
o ik
W

Jutl

bl
0

o
[
()|
Jutl
e
(E_BUF st
In0
]’f
113
W
|
(b0 (K ot
gt—-]
dk dv

i,
) (]
P sy
Pl oK rt

e 0
]
L 1,
it

§
b
)

CLOCK_IBUF Jnat
i U

8

The user inputs the data through the keyboard also enabling the hardware through switches and making it
ready for incoming data and setting up the terminal software. It flows through the UART Block 1 as it
receives parallel data and changes it to serial fashion. The input can now go towards any of the 2 FIFOs
storing input datas, the path would be decided by the state of the selection module. The process continues
until both the FIFOs are full.

We have a common enable signals for the first 2 FIFOs and the adder enable. All of them go high together.

Now that we have all the data stored, we can give read enable signals to remove data one at a time from both

the memory locations and perform mathematical operations on the corresponding pairs of data/numbers.

First the operation between a pair of numbers takes place and the result goes on to the result storing FIFO.
Only after that the next operation on the next pair of numbers takes place. This process goes on until both the
input FIFOs get empty, and the result storing FIFO gets full.

This final memory location would be containing all the resultant datas, which need to be sent back to the
user. The read enable ensures that the data moves out one by one, through the UART Block 2 for
transmission, the serial data now is converted back to parallel fashion and popped one character at a time for

the result to be shown on the terminal software.

After synthesis of the main Verilog code, we have to designate the 1/O ports with appropriate switches and
LEDs , a screen capture of the same is also shown below, which is obtained by using the 1/0O Planning option
in the software.

Fle Edt Fow Tools Window Layout View Help
AR 2 : G 0O X I G | Broremng - £ write_bitstream Complete
Flow Navigator ? Synthesized Design synth_1 | xc7a35tpg236 1 (active ? X
\ = 1/O Ports =62 X
i ReportNoise o N Name Directon Board PartPin Board Part Interface Neg Diff Par Package Pn ed <o
% Report Utization 2 Al ports A
& Report Power v = 34 LVCMOS33 306
S
SN Y ws = 3 3.300
(Muttol %] 3.300 (vult
4 Implementation
@ Implementation Settings our N3 %] 300
Run Implementation m Ut = 300
out = 300 12 N
4 |3 Implemented Design
i, Constraints Wizard 3 empty_2 our P = 3.300 =
~ 5 FIFO REA 031 T E 0 12
J, Edit Tmng Constrain 9 FIPO_READ_A40L o %] 3.300
J Report Timing Summ: out L = 3.300
Report Clock Networ out = 3.300
@ Report Clock Interac ouT 2 1,300
' Report Methodology our %) 300
” -
Report DRC
et , our u = 300
) Report Nose > FIF ouT M 300
% Report Uthzation
. r P: = 300
€ Report Power &~
N 17 = 300
Program and Debug out U6 = 300
@ otstream Settngs our E19 = 300
¥ Generate Bitstream N vie = 300
N W16 % 300
« [l Hordware Manager ™ 818 = 300
@ OpenTarget N w17 %] 308 v
s s o avo _ «r s sresnnann - ~onn o
¥ Program Device < >
- Td Console Messages | 5l Log |) Reports DesignRuns |) Package Pins (> 1/O Ports | (& Tming

Figure 14. 1/O Planning

The Baud Rate is set at 9600 bps, both UARTs must operate at the same Baud Rate for the communication to
be successful.

ApoWersoft Screen Recorder Pro - This is a trial version

ETTES b o il ﬂl;l!ll‘llu‘l' L oUS ST

A -

H
Siaslipr
eatahs €
* Display Pot | Captue | Pns | Send | EchoPort | 12C 12C:2 | 12CMisc | Mise An| Clear| Freeze| 7|
-] Status
pras Baud EE] ~|Port [4 =] [Qpen Spy| | & Change | Connecled
Wl Bad] = C 4

Software Flow Contiol RXD [2)

Data Bits | ~Stop Bis . Receive on Char,[17 TXD(3)
Bif " 1hat 2 bits CT518)
7l Hardware Flow Control ransmit ol Char |19 DCo (1)
6t o None RTS/.CIS e DSR(6)
DTR/DSR (™ RS4854ts p Rmng (3]
BREAK

Enmor

L DTTETLRCR

j You have to click in terminal windew before you can type any cha Char Count:0 0 Port: 4 57600 8N1 None

0

B g A ENG g i

User Input in FIFO 1 (write depth-16, write width — 8bits) - 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3

User Input in FIFO 2 (write depth-16, write width — 8bits) — 4,4,4,4,4,6,6,6,6,6,8,8,8,8,8

I = 3 | ree }
Apowersoft Screen Recorder Pro - This is a trial version
Agge A0 Clsntil. b, SRR el

— e
" a R = A
m % ®m RealTerm: Serial Capture Program 2.0
RCTTIERIEt)
e

|

Al
RLVEUL)

”
~
i)

au

Seelicr
EESUCHL

Dieplay | Pot | Capture | Pns Send |EchoPort| 12C | 12C-2 | 120Misc | Mise An| Clear| Freeze| ?
- £oL 7 s
TR |] SendMunbes|_SendasCl |~ ch = rech
I M
* | SendNumbers| Send ASCII tp 2 J J J J J J J J J J %D
g et — e, c1s(8)
0] | LF| Rpeats [1 2 Literal Stip Spaces cte peD (1)
Dump File to Port DSR (6)
PsiagcintiGes [c\temp\capture b w| ...| SendEie | X Stop| Delays|0 S{|0 3 Ring (9)
e BREAK
Repeats 1 sl |0 | Emor
‘ ’un be chars, python backslash sequences, hex or decimal bytes w Char Count:0 CPS:0 Port: 4 9600 8N1 XonXoff
aniil s o) it Sl y (el

Wikl

> - 4 . 1508 M
w1 p3 0 N - . e P ENG g 207 N2

Output to User from FIFO3 (write depth -16 , write width- bits) - 5,5,5,5,5,8,8,8,8,8,11,11,11,11,11

[. = | res | ree |
Apowersoft Screen Recorder Pro - This is a trial version
Mgl 0N Gl b SRR ek

o] AT —
@ ReslTerm: Serial Capture Program 2.0.0.70

rA
eI EEeEmn 00000181 H80B0101 BUBNB161 HBVBB1A1 BUBVB1A1 BBBBH101 BBBBE1B1 BBBBB181
4 e NB00101 PBNBN101 BUBNB1D1 VBVBD101 BUBPB1B1 PEVRV101 BOBVB1G1 PROBOLB1
iy PIPNN101 PPNRN191 PNANR101 PPRRA1A1 ANAGNN101 PEEAA101 ARANA101 PENAA1A1
PANAN191 BPENA161 PANEN1A1 BPEPA161 PPRER1A1 FPERE161 PEREA1 @1
PBNEN191 BPBVE181 PEPBER1P1 BRBPE181 PBPER1A1 BRBRB101 PBARA1G1
0B0B0N101 BVBVR181 PBVBO1A1 BUBVB1B1 VBUBR1G1 POBOB101 PBRBB1B1
| PPNAN101 ANENA101 PANPA1A1 PNPR0101 PEREN191 APORO101 VPREA1A1
PANAN191 PNGENA161 PENER191 BRBRE1A1 PPRER1A1 ARERE101 PENEA1A1

et PBOBV1A1 BOBVE1G1 PARRV1AI BOPVB1G1 PEAR1A1 BORVB1G1 BRBEE1B1
e 608101 PEABV1N1 BOBVE1G1 VRBV1NI BOBVE1G1 PERRR1A1 BOBVB1B1 VBLAR1BL
00RVA191 PPVAN101 PORVB1R1 APVAN1V1 PORVD1A1 ARPGA101 POARR1A1 BEPPA18I1
VENA161 PENAA1A1 PPRAA1G1 VENAA1N1 BRRARIA1 PANAA1N1 BPPAR1A1 PAAAA1A1
VBNB181 DBNBD191 BPBAR1B1 VANHV1N1 BPBRR1B1 VBPEV1NI BPBGR1B1 VBBRB1A1
f 008101 PEABV1N1 BOBVR1G1 PEABV1NI BOBVA1R1 VERRR1A1 BOBVB1N1 BEBAB1BL
L (60000161 VPARV1A1 BOPVR101 PPORA1AI GOROA101 PPABR1A1I VARPA1G1 POGAA181
e PR 00600161 0ENPA1N1 PPRAR1G] PENAA1IN1 BRRAR1A1 PAVEA1A1
u
Eerc Uty Cind
eddbas MUC o
‘. [7]] Display| Port | Captue| Pns Send |EchoPort| 12C | 12C-2 | 12CMisc | Misc \n| Clear| Freeze
- - Ol n S
i iy € end Numbers] _Send 45C 1P| T Before Fi’g’fje
19l r hon
- ~] SendMumbers| Sendagol | [+CR et ™0 (3)
% = ' L olF | = C1s ()
» 0] °c] ¥| Agpeats [I = Literal Stip Spaces [scrc | 0D 1)
%] Dure Fie to Pot — - DSR (6)
Mg, Slay| | Memp\captue. bt v] .| sendfie | 3 stop| Deays[0 2[[0 2] Ring(9)
i : . — BREAK
Repeats [1 Exce
, |vou can use ActiveX automation to control me! Char Count:3376 Port: 4 9600 8N1 XonXoff

apit b ol el ey el
wikieneid

@ O Typeheretoseard ma s 9 a A

[= | ves | roe)
Apowersoft Screen Recorder Pro - This is a trial version
Agge 40D Csntil b, SRR el

a TR = >
© g ReslTerm: Serial Capture Program 2.0

MHN10BY PBVB1BVE BUBV1NEY PBVB1BVE BUBVIDBY VBVO1BVE BUBB1VBY BBBB1BBH
B0BN1000 PEVE1BNE BPBV1NEN PBVD1BDE BVBV1PLY PEVD1BVE BPDO1ER0 PRBD1BOD

r

Clstaisesss) ey

Hinn 00001000 90001000 PVAO1000 PPRVO1000 BEDE10E0N GE0D1000
nana1 808 PANA1008 PPAN1P0N PPPA10PA HRER1PEN GERE1000
hB081 808 PBVA1808 BRBP1PEN PBPE16ME BRPR1ABE VBBB1BBH

% oB0e1sos 08081808 BUB01000 VBVE1BDE BORE10BE BBLB1BON
| 0 00001008 00001000 AVAO1000 NEV01000 HOBR100N GRR1000
mA0eA1080 VANE1 0808 PA0NA1008 APAN1PAN PPPA160PA HRER1AEN GARE1060

Al 2216000910809 BB0B1008 ABPA1808 BRBR1MBY HBVO1008 BBBA1000 BBBB1B86

N 0 DB0B1008 BOBV1000 KBVB1BDE BUBV1NBY DBVB1B0E POBV1BOO BBBB1BBE
PB001000 PVRN1P0D PAVA1ENA BVEV1NE VRNO1000 PORV1GR0 BORA1008
PBNA16000 APNAN1PEN NENA16PA PNEN1AEN VG100 PREA1GEN PERE16H0

ﬂ PBN016800 BPEN1PBN PENB1BME BUBP1ABY NBRO1000 PEBA1VEE PBBB1ABE

? B0B01000 DBNR1BNE BUBN10B0 NBVO1BOR BORV1VBG PBOB1BOE BRBO100E BRBB1BBN

e 0 0001000 ANAN1PAN PANA10VA BPEN1PEN PPHPR1PPE PPPO10ER PEPA1000

Alead) e ARna1 896

Ditplay | Pot | Capture | Pne Send |EchoPort| 12C | 12C-2 | 120Misc | Mise \n| Clear| Freeze| ?|

Status

" oL \n "
=l 8 | /5end Number] SendSCII |1 +CR Heine Connected
A | RXD (2)
. o o :
* | SendMymbers| Send ASCII ‘j‘ XD (3)
¢l F| s = - C1518)
0| °c] LF| Agpeats [I = Literal Stip Spaces | scre DCD (1)
Durp Fie to Pott DSR (6)
Pl siascialiCor e |L \temp\capture.bet v| .| SendFie | X Stop| Delays|0 2{|0 3| Rna(3)
i — s BAEAK
Repeats 1 2] [0 2] Enor
‘ |v0h can use ActiveX automation to control me! Char Count:5028 CPS:920 Port: 4 9600 8N1 XonXoff
ol e) " Pk y (il
Wikt
8 O Treehere io s o B s 9 9o oo A maems P
ype here to searc] & = 29-11-2017 ¢

Apow-ersoft Screen Recorder Pro - This is a trial version

R 0D Gl bR, S

“m -
al T . e
@ T RealTerm: Serial Capture Program 2.0.0.] X

A
PR 00001 011 WENE1011 BUBR1N1I1 HEPH1P11 BUBR1P11 HBVB1P11 BOBE1M11 BBB1911
% - 9001011 PBAB1011 BORV1011 PAOP1011 BABO1011 PAOE1011 BAVG1011 BAB81011
— PNRN1011 PROA1A11 PAAA1IA11 PRPA1011 APAG1A11 APAA1IA11 POBA1011 BBO91011
9801911 VBNA1611 BPAA1A11 VAAA1911 BMAA1P11 PAVA1611 BAGV1@911 VAAA1811
90891011 PBNB1611 BABR1N11 HEVR1G11 BNBA1M11 HBPA1A11 BEAA1G11 GBEB16811
9901011 DBNB1011 BERV1011 PAOP1G11 BABG1011 PROB1611 BABE1611 BABB1611
| ;] 99991011 9AOA1011 AAAA1A11 AAPA1A11 AVGA1011 AGEA1A11 AOAA1911 AAOA1011
PN8A1011 9BNA1011 BAGV1911 VBAA1611 BVEA1G11 AAGE1911 BAAA1911 BE9A1811

Al 260891011 ABPB10811 BABV1A11 PBRA1811 BPRA1A11 HBOA1011 BABO1811 BBAB1811
S VAU BOBN1011 PBVO1011 PPBV1011 PBVB1011 BPBV1A11 PBVB1011 BPPV1011 PPOB1011
PPAN1011 PPNA1011 AAPP1A11 PPPO1011 APEN1A11 PPRO1011 AROV1911 BENO1011

PNAN1A11 PARA1A11 APAR1A11 PEPA1611 APER1A11 PPRG1611 APER1911 PEP61611

F o) pPNBN1A11 ABNB1G11 BABN1A11 ABAP1A11 BPPA1A11 HBAB1A11 AOBA1A11 BBGB10811
’ NB0BN1011 PBV01011 BPBN1011 PBVR1011 BPBVN1A11 PBPB1A11 PPPV1011 PPOB1011

L [00p01011 PPPR1011 APPA1P1I1 AAPA1A11 APPA1A11 AAEA1A11 GOAA1911 GAOA1011

s} PP a0en1 011 PA0A1911 APAN1A11 PAPA16911 APEA1911 PEE61611 APER1911 99961611

|EchoPort| 12C | 12C-2 | I2CMisc | Mise \n| Clear| Freeze| ?|

Ur,ola,‘\“w' Capture | Pns ~ Send

[94

Status

- s EOL \n e 4
py | £ N 3 S ecte
rr TR — 5end Numberd| Send ASCII :{g Before FQ\?’w:\
o™ - = c Alter o A
~ | SendNumbers| Send ASCII tf TXD (3)
e = - 4 5 c15(8)
Ll 0| “c| 1F| Rgpons [2 Literal Stip Spaces | scrc DED (1)
1] Dumo Fie to Port DSR (6)
Mlescaiio,, lay| |cMemp\catise bt v] .| SendFie | 3 Stog| Delysf0 2{0 2 Ring (9)
~ i BAEAK
Repeats 1 2] [0 2] Enor
] |vou can use ActiveX automation to control me Char Count:11962 CPS:1000 Port: 4 9600 8N1 XonXoff
A s o) sl Padisonting ol
LSS
- - [- s o 1509 oy
B O 1ype here to searct 4 0 | ﬁ N 9 3 3 £ A / @O NG g 207 D@

As observed the mathematical operations that were performed came out be correct, but there is on big
problem that needs to be tackled. The time taken for this process to complete was very much, which is not
desirable for the industry/computational fields, we need to devise a way to reduce this time and still obtain
proper results. The architecture is achieved but the time constraint needs to be taken care of.

CHAPTER 3: PARALLELISING AND LATENCY REDUCTION

PARALLELISING OR PARALLEL COMPUTING:

Parallelizing or parallel computing is a type of computing architecture in which several processors execute
or process an application or computation simultaneously. Parallel computing helps in performing large
computations by dividing the workload between more than one processor, all of which work through the
computation at the same time. Most supercomputers employ parallel computing principles to operate.

Parallel computing is also known as parallel processing.

Suppose you have a lot of work to be done, and want to get it done much faster, so you hire 100 workers. If
the work is 100 separate jobs that don't depend on each other, and they all take the same amount of time and
can be easily parceled out to the workers, then you'll get it done about 100 times faster. A different option
would be to parallelize each job, as discussed below, and then run these parallelization’s one after another.
However, as will be shown, this is probably a less efficient way of doing the work. Occasionally this isn't
true because on computers, doing all of the job on one processor may require storing many results on disk,
while the parallel job may spread the intermediate results in the RAM of the different processors. RAM is
much faster than disks. However, if the program isn't spending a lot of time using the disk then
embarrassingly parallel is the smart way to go? Assume this is what you should do unless you analyze the
situation and determine that it isn't. Embarrassingly parallel is simple, and if you can get the workers do it for

free then it is the cheapest solution as well.

Design Latency

Latency is the number of clock cycles it takes to complete an instruction or set of instructions to generate an
application result value

Design Throughput

Throughput is another metric used to determine overall performance of an implementation. It is the number
of clock cycles it takes for the processing logic to accept the next input data sample. With this value, it is
important to remember that the clock frequency of the circuit changes the meaning of the throughput

number.

CHAPTER 5: RTL IMPLEMENTATION ON FPGA USING VIVADO HLS

BASIC INTRODUCTION

Vivado HLS is a software that can be used to perform mathematical or any operation on FPGA using HLL
like C / C++ . Vivado Hls gives you a platform where you can easily make code to perform any operation
using c /c++ languages and you can use latency reduction techniques like on vivado hls to low latency highly

efficient output.

The flow chart below will give you a brief introduction on how we will be working on Vivado hls to perform

any RTL implementation

Create a new project
using Vivado hls (using

¢ / c++ languages)

Run c simulation and debugger

Synthesize the design and analyze it
using analysis perspective

A

Viewing simulation

Applying directives for latency reduction

y

Run c / RTL co-simulation

results in vivado

\ 4

v

Export RTL and implement it
on FPGA using Vivado design

Figure 15.RTL Implementation suite

In our project we would be multiplying two matrices A [] and B [] and we would be storing the result in a

matrix C []. We would be using ¢ language to make the code for this matrix multiplication and after that we

are going to export the RTL design and will try perform it on FPGA board.

(For simplicity we are assuming all matrices as 3*3 matrix)

C CODE FOR MATRIX MULTIPLICATION THAT WE ARE GOING TO USE

TEST BENCH FILE:

#include<stdio.h>
#include<conio.h>

#define M 3
#define N 3

void mul_mat(char A[M] [N],char B[M] [N],char C[M] [N]);

int main ()

{

char a[M] [N],b[M][N];
char c[M] [N];

printf ("\n the first matrix:");
for (int x=0;x<M;x++)
{
printf ("\n");
main labelO:for (int y=0;y<N;y++)
{
a[x] [yl=rand() %5;
printf ("sd",alx][v]);
printf ("AE")

printf ("\n the second matrix:\n");
for (int w=0;w<M;w++)
{
printf ("\n");
main labell:for(int z=0;z<N;z++)
{
blw] [z]=rand () %5;
printf ("%d",blwl[z]);
print£ ("At")
}

mul mat(a,b,c);
return 0;

}

LATENCY REDUCTION TECHNIQUES :

To optimize the result produced in the above code we are going to use certain directives present in directive
panel of vivado Hls and in the end we would be comparing the results produced by each directive and

choosing one with the lowest latency to implement on the FPGA board.
Directive panel :

Figure below contains all the directives which we can use for optimizations in vivado Hls.

Figure 16. Directives

Directives which we are going to use are pipelining and loop unrolling to reduce the latency of our code.

To improve the performance of a CPU we have two options:
1) Improve the hardware by introducing faster circuits.

2) Arrange the hardware such that more than one operation can be performed at the same time.

Since, there is a limit on the speed of hardware and the cost of faster circuits is quite high, we have to adopt

the 2" option.

PIPELINING:

Pipelining is a process of arrangement of hardware elements of the CPU such that its overall performance is
increased. Simultaneous execution of more than one instruction takes place in a pipelined processor.

Design of a basic pipeline
= Ina pipelined processor, a pipeline has two ends, the input end and the output end. Between these ends,
there are multiple stages/segments such that output of one stage is connected to input of next stage and
each stage performs a specific operation.
= Interface registers are used to hold the intermediate output between two stages. These interface
registers are also called latch or buffer.
= All the stages in the pipeline along with the interface registers are controlled by a common clock.

Execution in a pipelined processor:

Execution sequence of instructions in a pipelined processor can be visualized using a space-time diagram.
For example, consider a processor having 4 stages and let there be 2 instructions to be executed. We can
visualize the execution sequence through the following space-time diagrams:

Non overlapped execution:

StageCycle 1 2 3 4 5 6 7 8
s1 L L
52 L L
S3 L L
sS4 L L

Total time = 8 cycles

Overlapped execution:

StagéCycle 1 2 3 4 5
s1 L L
s2 L L
S3 L L
sS4 L L

Total time = 5 cycles

Table 1. Instruction executions in pipelined processor [10]

Pipeline Stages

RISC processor has 5 stage instruction pipeline to execute all the instructions in the RISC instruction set.

Following are the 5 stages of RISC pipeline with their respective operations:
e Stage 1 (instruction fetch)

In this stage the CPU reads instructions from the address in the memory whose value is present in the

program counter
e Stage 2 (instruction decode)

In this stage, instruction is decoded and the register file is accessed to get the values from the registers used

in the instruction

e Stage 3 (instruction execute)

In this stage, ALU operations are performed

e Stage 4 (memory access)

In this stage, memory operands are read and written from/to the memory that is present in the instruction
e Stage 5(write back)

In this stage, computed/fetched value is written back to the register present in the instruction.

Dependencies in a pipelined processor

There are mainly three types of dependencies possible in a pipelined processor. These are:
1) Structural Dependency

2) Control Dependency

3) Data Dependency

These dependencies may introduce stalls in the pipeline.

Stall: A stall is a cycle in pipeline without new input.

Structural dependency

This dependency arises due to the resource conflict in the pipeline. A resource conflict is a situation when
more than one instruction tries to access the same resource in the same cycle. A resource can be a register,

memory, or ALU.

http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/03/pipelining-1.png
http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/03/pipelining-1.png

Example

Control dependency (Branch Hazards)

Instruction\ 1 2 3 4 5
Cycle
I IF(Mem) ID EX Mem __
I IF(Mem)| 1D EX T —
~———_Resource conflict
Iz IF(Mem) ID EX -
L IF(Mem) | ID

This type of dependency occurs during the transfer of control instructions such as BRANCH, CALL, JMP,
etc. On many instruction architectures, the processor will not know the target address of these instructions

when it needs to insert the new instruction into the pipeline. Due to this, unwanted instructions are fed to the

pipeline.

Consider the following sequence of instructions in the program:

100:11

101:12 (IMP250)

102:13

250: Blx

Expected output: 11 -> I2 -> Bl

NOTE: Generally, the target address of the JMP instruction is known after ID stage only.

Table 2. Control Dependency [10]

Output Sequence: 11 -> |2 -> I3 -> By

So, the output sequence is not equal to the expected output that means the pipeline is not implemented

correctly.

Instruction \ 1 2 3 4 5 6
Cycle
I, IF 1D EX Mem WB
I IF ID EX Mem wWB
(PC: 250)
I IF ID EX Mem Unwanted
instruction
BI, IF ID EX

DATA HAZARDS

Data hazards occur when instructions that exhibit data dependence, modify data in different stages of a

pipeline. Hazard cause delays in the pipeline. There are mainly three types of data hazards:

1) RAW (Read after Write) [Flow dependency]
2) WAR (Write after Read) [Anti-Data dependency]
3) WAW (Write after Write) [Output dependency]

Example: Let there be two instructions 11 and 12 such that:
11:ADDR1,R2,R3

12:SUB R4, R1, R2

When the above instructions are executed in a pipelined processor, then data dependency condition will
occur, which means that I tries to read the data before I1 writes it, therefore, I incorrectly gets the old value

from Is.
Instruction\Cycle 1 2 3 4
I IF ID EX DM
I, IF ID (old value) EX

Table 3. stalls in pipeline [10]

To minimize data dependency stalls in the pipeline, operand forwarding is used.

Operand Forwarding : In operand forwarding, we use the interface registers present between the stages to

hold intermediate output so that dependent instruction can access new value from the interface register

directly.

Considering the same example:
I11: ADD R1, R2, R3
I2: SUB R4, R1, R2

Table 4. Operand Forwarding [10]

Instruction\Cycle 1 2 3 4
I, IF ID EX | DM
L IF T EX—— —_ Operand
Forwarding

Keeping all the limitations in mind we applied pipelining in the third or say the outermost loop of our main
code of matrix multiplication.

LOOP UNROLLING:

Loop unrolling is a loop transformation technique that helps to optimize the execution time of a program.
Loops with small number of iterations can be unrolled for higher performance. Loop unrolling aims to

increase the program’s speed by eliminating loop control instruction and loop test instructions.

Program 1:
// This program does not uses loop unrolling.
#include<stdio.h>

int main (void)
{
for (int 1i=0; i<5; i++)
printf ("Hello\n"); //print hello 5 times

return 0;

Program 2:
// This program uses loop unrolling.
#include<stdio.h>

int main (void)
{
// unrolled the for loop in program 1
printf ("Hello\n");
printf ("Hello\n");
printf ("Hello\n");
printf ("Hello\n");
printf ("Hello\n")

’

return 0;
}
Output:
Hello
Hello
Hello
Hello

Hello

Ilustration:
Program 2 is more efficient than program 1 because in program 1 there is a need to check the value of i and
increment the value of i every time round the loop. So small loops like this or loops where there is fixed

number of iterations are involved can be unrolled completely to reduce the loop overhead.

Advantages:

= Increases program efficiency.

= Reduces loop overhead.

= |f statements in loop are not dependent on each other, they can be executed in parallel.

Figure 17. Unrolled Loops with Latency [15]

Unrolled Loops can Reduce Latency

| void feo_top (1) {

Add: for (i=3;i>=0;i--) {
b = afi) + b;

Vivado HLS Directive Editor
Select loop “Add” in | 1. i
the directives pane | oveciv uniow . e CLILILIL
and right-click Destinaticn || opton1 @ &) @ @
Source File Opﬁon2 =N’ .’._f‘ﬂl}

Unrolled loops allow

9 Directve File g pti &
—— x EN exploration
Opticns Option3 57
skip exit chec I f_j
|

factor {optional): Le)

| region

Hel Lancal { |

Options explained on next

Unrolled loops are likely to result in more hardware

— slide — resources and higher area

Disadvantages:

= Increased program code size, which can be undesirable.

= Possible increased usage of register in a single iteration to store temporary variables which may reduce

performance.

= Apart from very small and simple codes, unrolled loops that contain branches are even slower than

recursions.

PARTIAL UNROLLING

Fully unrolling loops can create a lot of hardware

Loops can be partially unrolled
— Provides the type of exploration shown in the previous slide

Partial Unrolling
— A standard loop of N iterations can be unrolled to by a factor

— For example unroll by a factor 2, to have N/2 iterations

LOOP FLATTENING

Vivado HLS can automatically flatten nested loops

— A faster approach than manually changing the code

Flattening should be specified on the inner most loop

— It will be flattened into the loop above

— The “off” option can prevent loops in the hierarchy from being flattened

L2 for (i=3jis=@;i--)

woid foo_top (-) { void foo_top (-] {
L1 for (i=3;i>=@;i--) { L1 for (i=3;ir=@;i--) {
[Loop body L1] [loop bady L1]
T T x4

i
L31 for (j=3;35=8:3--) { L2: for (k=15,k>=B;k--) { 16
[loop bedy L3]
ik [loop body L3]
¥

n4

La1 for (i=3;ir=8;i--) { L4y For (i=3;ix=8;i--) {
[Loop body L&] [Lloop body L1]
x4 ¥ }
| Loops will be flattened by default: use “off” to disable 99 transitions

Figure 18. Loop Flattening [15]
PERFECT AND SEMI PERFECT LOOPS

Only perfect and semi-perfect loops can be flattened

— The loop should be labeled or directives cannot be applied

— Perfect Loops
— Only the inner most loop has body (contents)
— There is no logic specified between the loop statements

— The loop bounds are constant

— Semi-perfect Loops
— Only the inner most loop has body (contents)
— There is no logic specified between the loop statements

— The outer most loop bound can be variable

Figure 19.
Perfect and Semi —perfect
loop[15]

Loop_outer) for (i=3;is=dii--) {
Loap_inner1 for (j=3ij+=813--) {
[Laop body]
}
}

Loop_outer: for (i=3;18M;1--) {
Loap_inner: for (j=3;7=8;3--) {
[Loop body]
}
}

Loop_outer: for (i=3;1M;i--) {

[Loap body]

Loop_inner: for (j=3;j=M;i--) {
[loop body] (@)

}

L

RESULTS AND THEIR COMPARISON

Before pipelining and loop unrolling:

Performance Estimates

—| Timing (ns)

=] Summary

Clock Target Estimated Uncertainty

ap_clk 10,00

- Latency (clock cycles)

=] Summary

Latency
min max

106 106
-1 Detail

-l Instance

Interval

min max
107 107 none

Loop Mame

- mul_mat_|

label2

+ mul_mat_label3
++ mul_mat_labeld

Utilization Estimates

- Summary

Marme
D3P
Expression
FIFO
Instance
Memory
Multiplexer
Register
Tetal
Available
Utilization (%&)

2.21

Type

1.25

Initiation Interval

max |teration Latency achieved target Trip Count Pipelined

Latency
min
105 105
33 33
9 9

BRAM_18K DSP43E FF

100

1 -

276

185

1 461
g0 41600
1 1

LuT
160
95

255
20800

33 - - 3 no
11 - - 3 no
3 - - 3 no

Figure 20. Before pipelining and Loop Unrolling

After pipelining:

Performance Estimates
-1 Timing (ns)

= Summary
Clock Target Estimated Uncertainty
ap_clk 10,00 8.21 1.25
- Latency (clock cycles)

=| Summary

Latency Interval
min max min max Type
88 g8 &89 89 none

= Detail
Instance
=i Loop
Latency Initiation Interval
Loop Mame min max lteration Latency achieved target Trip Count Pipelined
- mul_mat_label2 a7 a7 29 - - 3 no
+ mul_mat_label3 27 27 9 - - 3 no
++ mul_mat_labeld B f 3 2 1 3 yes
Utilization Estimates
-l Summary
Mame BRAM_18K DSP43E FF LuT
DsP - 1 - -
Expressicn - - 276 184
FIFO - - - -
Instance - - - -
Mernory - - - -
Multiplexer - - - 19
Register - - 196 -
Total 0 1 472 283
Aovailable 100 90 41600 20200
Ltilization (%5) 0 1 1 1

Figure 21. After Pipelining

After loop unrolling:

Performance Estimates
- Timing {ns)

= Summary
Clock Target Estimated Uncertainty
ap_clk 10,00 9.12 1.25
- Latency (clock cycles)

= Summary

Latency Interval

min max min max Type
52 52 53 53 nene

-1 Detail

¥ Instance

=t Loop
Latency Initiation Interval
Loop Mame min rax lteration Latency achieved target Trip Count Pipelined
- mul_mat_label2 51 51 17 - - 3 no
+ mul_mat_label3 15 15 3 - - 3 no
Utilization Estimates
-| Summary
Mame BRAM_18K DSP43E FF LUT
Dsp - z - -
Expression - 0 133 138
FIFO - - - -
Instance - - - -
Mermory - - - -
Multiplexer - - - 10
Register - - B9 -
Total 0 2 202 239
HAvailable 100 90 1600 20200
Utilization (2£) 0 2 ~0 1

Figure 22. After Loop Unrolling

After comparing all three results we have come to conclusion that the latency is minimum in case of loop
unrolling also the utilization of hardware is also maximum in case of loop unrolling. Since the latency in the

case of loop unrolling is minimum so we would be using that code for further operations.

FINAL RTL CODE (VHDL)

-- RTL generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
-- Version: 2017.2
-- Copyright (C) 1986-2017 Xilinx, Inc. All Rights Reserved.

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.numeric std.all;

entity mul mat is

port (
ap_clk
ap_rst
ap_start
ap_done
ap_idle

IN STD LOGIC;
IN STD LOGIC;
IN STD LOGIC;
OUT STD LOGIC;
OUT STD LOGIC;
ap_ready OUT STD LOGIC;
A address0 OUT STD_ LOGIC_ VECTOR
A cel OUT STD LOGIC;
A g0 : IN STD LOGIC VECTOR
B _address0 OUT STD LOGIC VECTOR
B cel OUT STD LOGIC;
B g0 : IN STD LOGIC_ VECTOR
C_address0 OUT STD LOGIC VECTOR
C _cel OUT STD LOGIC;
C wel OUT STD LOGIC;
C d0 : OUT STD LOGIC VECTOR
end;

(3 downto 0);

(7 downto
(3

0);
downto 0);

(7 downto
(3

0);
downto 0);

(7 downto 0));

architecture behav of mul mat is
attribute CORE_GENERATION INFO STRING;
attribute CORE_GENERATION INFO of behav architecture is
"mul mat,hls ip 2017 2, {HLS INPUT TYPE=c,HLS INPUT FLOAT=0,HLS INPUT FIXED=0,HLS INPUT
PART=xc7a35tcpg236-
3,HLS INPUT CLOCK=10.000000,HLS INPUT ARCH=others,HLS SYN CLOCK=9.120000,HLS SYN LAT=52
,HLS SYN TPT=none,HLS SYN MEM=0,HLS SYN DSP=2,HLS SYN FF=202,HLS SYN LUT=239}";

constant ap const logic 1 STD LOGIC := '1';

constant ap const logic 0 STD_LOGIC '0';

constant ap ST fsm statel STD LOGIC VECTOR (6 downto 0) := "0000001";
constant ap ST fsm state2 STD_LOGIC VECTOR (6 downto 0) := "0000010";
constant ap ST fsm state3 STD_LOGIC VECTOR (6 downto 0) := "0000100";
constant ap ST fsm state4 STD LOGIC VECTOR (6 downto 0) := "0001000";
constant ap ST fsm stateb STD LOGIC VECTOR (6 downto 0) := "0010000";
constant ap ST fsm state6 STD LOGIC VECTOR (6 downto 0) := "0100000";
constant ap ST fsm state7 : STD LOGIC VECTOR (6 downto 0) := "1000000";
constant ap const 1v32 0 : STD LOGIC VECTOR (31 downto 0) :=

"00000000000000000000000000000000™;
constant ap const 1v32 1 STD LOGIC VECTOR (31 downto 0) :=

"00000000000000000000000000000001";
constant ap const 1vl O STD_LOGIC VECTOR
constant ap const 1v32 2 STD_LOGIC VECTOR
"00000000000000000000000000000010";

(0 downto 0)
(31 downto 0)

O";

constant ap const 1v32 3 : STD LOGIC VECTOR (31 downto 0)
"00000000000000000000000000000011";

constant ap const 1v32 4 : STD LOGIC VECTOR (31 downto 0) :=
"00000000000000000000000000000100™;

constant ap const 1v32 5 : STD LOGIC VECTOR (31 downto 0)
"00000000000000000000000000000101";

constant ap const 1v2 0 : STD LOGIC VECTOR (1 downto 0) := "00";

constant ap const 1lvl 1 : STD LOGIC VECTOR (0 downto Q) := "1";

constant ap const 1v32 6 : STD LOGIC VECTOR (31 downto 0) :=
"00000000000000000000000000000110";

constant ap const 1v2 3 : STD LOGIC VECTOR (1 downto 0) := "11";
constant ap const 1v2 1 : STD LOGIC VECTOR (1 downto 0) := "01";
constant ap const 1lv5 1 : STD LOGIC VECTOR (4 downto 0) := "00001";
constant ap const 1lv5 2 : STD LOGIC VECTOR (4 downto 0) := "00010";
constant ap const 1v4 6 : STD LOGIC VECTOR (3 downto 0) := "0110";
constant ap const 1v3 3 : STD LOGIC VECTOR (2 downto 0) := "011";
constant ap const boolean 1 : BOOLEAN := true;

signal ap CS fsm : STD LOGIC VECTOR (6 downto 0) := "0000001";
attribute fsm encoding : string;

attribute fsm encoding of ap CS fsm : signal is "none";

signal ap CS fsm statel : STD LOGIC;

attribute fsm encoding of ap CS fsm statel : signal is "none";
signal i 1 fu 138 p2 : STD LOGIC VECTOR (1 downto 0);

signal i 1 reg 275 : STD LOGIC VECTOR (1 downto 0);

signal ap CS fsm state2 : STD LOGIC;

attribute fsm encoding of ap CS fsm state2 : signal is "none";
signal tmp 4 fu 160 p2 : STD LOGIC VECTOR (4 downto 0);

signal tmp 4 reg 280 : STD LOGIC VECTOR (4 downto 0);

signal exitcond4 fu 132 p2 : STD LOGIC VECTOR (0 downto 0);
signal A addr reg 285 : STD LOGIC VECTOR (3 downto 0);

signal A addr 1 reg 290 : STD LOGIC VECTOR (3 downto 0);
signal A addr 2 reg 295 : STD LOGIC VECTOR (3 downto 0);
signal j 1 fu 199 p2 : STD LOGIC VECTOR (1 downto 0);

signal j 1 reg 303 : STD LOGIC VECTOR (1 downto 0);

signal ap CS fsm state3 : STD LOGIC;

attribute fsm encoding of ap CS fsm state3 : signal is "none";
signal exitcond3 fu 193 p2 : STD LOGIC VECTOR (0 downto 0);
signal ap CS fsm state4 : STD LOGIC;

attribute fsm encoding of ap CS fsm stated4 : signal is "none";
signal A load reg 318 : STD LOGIC VECTOR (7 downto 0);

signal B load reg 323 : STD LOGIC VECTOR (7 downto 0);

signal ap CS fsm state5 : STD LOGIC;

attribute fsm encoding of ap CS fsm stateb5 : signal is "none";
signal tmp s fu 244 p2 : STD LOGIC VECTOR (4 downto 0);

signal tmp s reg 333 : STD LOGIC VECTOR (4 downto 0);

signal tmp 9 2 fu 249 p2 : STD LOGIC VECTOR (7 downto 0);
signal tmp 9 2 reg 338 : STD LOGIC VECTOR (7 downto 0);

signal grp_ fu 264 p3 : STD LOGIC VECTOR (7 downto 0);

signal tmp 2 2 reg 343 : STD LOGIC VECTOR (7 downto 0);

signal ap CS fsm state6 : STD LOGIC;

attribute fsm encoding of ap CS fsm state6 : signal is "none";
signal i reg 109 : STD LOGIC VECTOR (1 downto 0);

signal j reg 120 : STD LOGIC VECTOR (1 downto 0);

signal ap CS fsm state7 : STD LOGIC;

attribute fsm encoding of ap CS fsm state7 : signal is "none";
signal tmp 4 cast fu 166 pl : STD LOGIC VECTOR (31 downto 0);
signal tmp 5 cast fu 177 pl : STD LOGIC VECTOR (31 downto 0);
signal tmp 6 cast fu 188 pl : STD LOGIC VECTOR (31 downto 0);
signal tmp 3 fu 205 pl : STD LOGIC VECTOR (31 downto 0);

signal tmp 8 cast fu 220 pl : STD LOGIC VECTOR (31 downto 0);
signal tmp 7 cast fu 239 pl : STD LOGIC VECTOR (31 downto 0);
signal tmp 10 cast fu 255 pl : STD LOGIC VECTOR (31 downto 0);

signal
signal
signal
signal
signal
signal
signal
Signal
signal
signal
signal
signal
signal
signal

tmp 1 fu 148 p3 : STD LOGIC VECTOR (3 downto 0);
p_shl cast fu 156 pl : STD LOGIC VECTOR (4 downto 0);
tmp cast fu 144 pl : STD LOGIC VECTOR (4 downto 0);
tmp 5 fu 171 p2 : STD LOGIC VECTOR (4 downto 0);

tmp 6 fu 182 p2 : STD LOGIC VECTOR (4 downto 0);

tmp 3 castl fu 210 pl : STD LOGIC VECTOR (3 downto 0);
tmp 8 fu 214 p2 : STD LOGIC VECTOR (3 downto 0);

tmp 3 cast fu 229 pl: STD LOGIC VECTOR (2 downto 0);
tmp 7 fu 233 p2 : STD LOGIC VECTOR (2 downto 0);

tmp 3 cast2 fu 225 pl : STD LOGIC VECTOR (4 downto 0);
tmp 9 2 fu 249 p0 : STD LOGIC VECTOR (7 downto 0);

tmp 9 2 fu 249 pl : STD LOGIC VECTOR (7 downto 0);

grp fu 259 p3 : STD LOGIC VECTOR (7 downto 0);

ap NS fsm : STD LOGIC VECTOR (6 downto 0);

component mul mat mac muladbkb IS

generic

ID

(
INTEGER;

NUM STAGE : INTEGER;
din0 WIDTH : INTEGER;
dinl WIDTH : INTEGER;
din2 WIDTH : INTEGER;
dout WIDTH : INTEGER);

port (

din0 : IN STD_LOGIC_VECTOR (7 downto 0)
dinl : IN STD_LOGIC_VECTOR (7 downto 0)
din2 : IN STD_LOGIC_VECTOR (7 downto 0)
dout : OUT STD LOGIC VECTOR (7 downto 0

’

’

))

end component;

component mul mat mac muladcud IS

generic

ID

(
INTEGER;

NUM STAGE : INTEGER;

din0_ WIDTH

INTEGER;

dinl WIDTH : INTEGER;
din2 WIDTH : INTEGER;
dout WIDTH : INTEGER);

port (

din0 : IN STD LOGIC VECTOR (7 downto 0)
dinl : IN STD LOGIC VECTOR (7 downto 0)
din2 : IN STD LOGIC VECTOR (7 downto 0)
dout : OUT STD LOGIC VECTOR (7 downto 0

’

’

))

end component;

begin

mul mat mac muladbkb UO : component mul mat mac muladbkb
generic map (

ID

= 1,

NUM STAGE => 1,

din0 WIDTH => 8,

dinl WIDTH => 8,

din2 WIDTH => 8,

dout WIDTH => 8)
port map (

din0 => B load reg 323,
dinl => A load reg 318,
din2 => tmp 9 2 reg 338,

dout => grp fu 259 p3);

mul mat mac muladcud Ul : component mul mat mac muladcud
generic map (
ID => 1,
NUM_ STAGE => 1,
din0 WIDTH => 8,
dinl WIDTH => 8,
din2 WIDTH => 8,
dout WIDTH => 8)
port map (
din0 => B g0,
dinl => A g0,
din2 => grp_ fu 259 p3,
dout => grp fu 264 p3);

ap Cs fsm assign proc : process(ap_clk)

begin
if (ap_clk'event and ap clk = 'l') then
if (ap_rst = '1l') then
ap CS fsm <= ap ST fsm statel;
else
ap CS fsm <= ap NS fsm;
end if;
end if;

end process;

i reg 109 assign proc : process (ap_clk)

begin
if (ap_clk'event and ap clk = '1') then
if (((ap_const logic 1 = ap CS fsm state3) and (exitcond3 fu 193 p2 =
ap const 1vl 1))) then
i reg 109 <= i 1 reg 275;
elsif (((ap_const logic 1 = ap CS fsm statel) and (ap_start =
ap_const logic 1))) then
i reg 109 <= ap const 1v2 0;
end 1if;
end 1if;

end process;

J _reg 120 assign proc : process (ap_clk)

begin
if (ap_clk'event and ap clk = 'l') then
if ((ap_const logic 1 = ap CS fsm state7)) then
j reg 120 <= j 1 reg 303;
elsif (((ap_const logic 1 = ap CS fsm state2) and (exitcond4 fu 132 p2 =
ap const 1vl 0))) then
j reg 120 <= ap _const 1lv2 0;
end if;
end if;

end process;
process (ap_clk)

begin
if (ap_clk'event and ap clk = 'l1') then
if (((ap_const logic 1 = ap CS fsm state2) and (exitcond4 fu 132 p2 =
ap_const 1vl 0))) then

A addr 1 reg 290 <= tmp 5 cast fu 177 pl(4 - 1 downto 0);
A addr 2 reg 295 <= tmp 6 cast fu 188 pl(4 - 1 downto 0);
A addr reg 285 <= tmp 4 cast fu 166 pl(4 - 1 downto 0);
tmp 4 reg 280 <= tmp 4 fu 160 p2;

end 1if;

end 1if;

end process;
process (ap_clk)

begin
if (ap_clk'event and ap _clk = 'l') then
if ((ap_const logic 1 = ap CS fsm state4)) then
A load reg 318 <= A g0;
B load reg 323 <= B q0;
end 1f;
end 1f;

end process;
process (ap_clk)

begin
if (ap_clk'event and ap _clk = 'l') then
if ((ap_const logic 1 = ap CS fsm state2)) then
i 1 reg 275 <= 1i 1 fu 138 p2;
end 1if;
end 1if;

end process;
process (ap_clk)

begin
if (ap_clk'event and ap clk = 'l') then
if ((ap_const logic 1 = ap CS fsm state3)) then
j 1 reg 303 <= j 1 fu 199 p2;
end if;
end if;

end process;
process (ap_clk)

begin
if (ap_clk'event and ap clk = '1l') then
if ((ap_const logic 1 = ap CS fsm state6)) then
tmp 2 2 reg 343 <= grp_fu 264 p3;
end if;
end if;

end process;
process (ap_clk)

begin
if (ap_clk'event and ap clk = 'l') then
if ((ap_const logic 1 = ap CS fsm state5)) then
tmp 9 2 reg 338 <= tmp 9 2 fu 249 p2;
tmp s reg 333 <= tmp s fu 244 p2;
end if;
end if;

end process;

ap NS fsm assign proc : process (ap_start, ap CS fsm, ap CS fsm statel,
ap CS fsm state2, exitcond4 fu 132 p2, ap CS fsm state3, exitcond3 fu 193 p2)
begin
case ap CS fsm is
when ap ST fsm statel =>

if (((ap_const logic 1 = ap CS fsm statel) and (ap start =
ap_const logic 1))) then
ap NS fsm <= ap ST fsm state2;
else
ap NS fsm <= ap ST fsm statel;
end 1f;
when ap ST fsm state2 =>
if (((ap_const logic 1 = ap CS fsm state2) and (exitcond4 fu 132 p2 =
ap const 1vl 1))) then
ap NS fsm <= ap ST fsm statel;
else

ap NS fsm <= ap ST fsm state3;

end if;
when ap ST fsm state3 =>

if (((ap_const logic 1 = ap CS fsm state3) and (exitcond3 fu 193 p2 =
ap const 1vl 1))) then
ap NS fsm <= ap ST fsm state2;
else
ap NS fsm <= ap ST fsm state4d;
end if;

when ap ST fsm stated =>
ap NS fsm <= ap ST fsm state5;
when ap ST fsm stateb =>
ap NS fsm <= ap ST fsm stateb6;
when ap ST fsm state6 =>
ap NS fsm <= ap ST fsm state’;
when ap ST fsm state7 =>
ap NS fsm <= ap ST fsm state3;
when others =>
ap NS fsm <= "XXXXXXX";
end case;
end process;

A addressO_assign proc : process (A addr reg 285, A addr 1 reg 290,
A addr 2 reg 295, ap CS fsm state3, ap CS fsm stated4, ap CS fsm stateb)
begin
if ((ap_const logic 1 = ap CS fsm stateb5)) then
A address(O0 <= A addr_ 1 reg 290;
elsif ((ap_const logic 1 = ap CS fsm state4)) then
A addressO <= A addr_ 2 reg 295;
elsif ((ap_const logic 1 = ap CS fsm state3)) then
A address0 <= A addr_reg 285;
else
A address(0 <= "XXXX";
end if;
end process;

A ce(0 _assign proc : process(ap CS fsm state3, ap CS fsm stated4, ap CS fsm stateb)

begin
if (((ap_const logic 1 = ap CS fsm state3) or (ap_const logic 1 =
ap CS fsm stated4) or (ap _const logic 1 = ap CS fsm stateb))) then
A ce(0 <= ap const logic 1;
else
A ce0 <= ap_const logic 0;
end if;

end process;

B address0 _assign proc : process(ap CS fsm state3, ap CS fsm stated,
ap CS fsm stateb5, tmp 3 fu 205 pl, tmp 8 cast fu 220 pl, tmp 7 cast fu 239 pl)
begin
if ((ap_const logic 1 = ap CS fsm stateb)) then
B addressO <= tmp 7 cast fu 239 pl(4 - 1 downto 0);
elsif ((ap_const logic 1 = ap CS fsm state4)) then
B address0 <= tmp 8 cast fu 220 pl(4 - 1 downto 0);
elsif ((ap_const logic 1 = ap CS fsm state3)) then
B addressO <= tmp 3 fu 205 pl(4 - 1 downto 0);
else
B address0 <= "XXXX";
end if;
end process;

B ce0 assign proc : process(ap_CS fsm state3, ap CS fsm state4, ap CS fsm stateb)

begin
if (((ap_const logic_ 1 = ap CS fsm state3) or (ap_const logic 1 =
ap CS fsm state4) or (ap const logic 1 = ap CS fsm stateb))) then
B ce0 <= ap const logic 1;
else
B ce0 <= ap const logic 0;
end 1f;
end process;

C_address0 <= tmp 10 cast fu 255 pl(4 - 1 downto 0);

C _ce0 _assign proc : process(ap CS fsm state7)
begin
if ((ap_const logic 1 = ap CS fsm state7)) then
C ce0 <= ap_const logic_ 1;
else
C ce0 <= ap_const logic 0;
end 1if;
end process;

C dO <= tmp 2 2 reg 343;

C we0 _assign proc : process(ap CS fsm state7)
begin
if ((ap_const logic 1 = ap CS fsm state7)) then
C we0 <= ap_const logic 1;
else
C we0 <= ap_const logic 0;
end if;
end process;

ap CS fsm statel <= ap CS fsm(0)
ap Cs fsm state2 <= ap CS fsm(1l)
ap Cs fsm state3 <= ap CS fsm(2)
ap CS fsm stated <= ap CS fsm(3);
ap CS fsm stateb <= ap CS fsm(4)
ap CS fsm state6 <= ap CS fsm(5)
ap Cs fsm state7 <= ap CS fsm(6)

ap _done assign proc : process(ap CS fsm state2, exitcond4 fu 132 p2)

begin
if (((ap_const logic 1 = ap CS fsm state2) and (exitcond4 fu 132 p2 =
ap const 1vl 1))) then
ap_done <= ap_const logic 1;
else

ap done <= ap_const logic 0;
end if;
end process;

ap idle assign proc : process(ap start, ap CS fsm statel)

begin
if (((ap_const logic 0 = ap_start) and (ap_const logic 1 = ap CS fsm statel)))
then
ap idle <= ap const logic 1;
else

ap idle <= ap const logic O0;
end if;
end process;

ap ready assign proc : process(ap CS fsm state2, exitcond4 fu 132 p2)
begin

if (((ap_const logic 1 = ap CS fsm state2) and (exitcond4 fu 132 p2 =

ap const 1vl 1))) then
ap ready <= ap const logic 1;
else
ap_ready <= ap _const logic 0;
end 1f;

end process;

exitcond3 fu 193 p2 <= "1" when (j reg 120 = ap const 1v2 3) else "0";
exitcond4 fu 132 p2 <= "1" when (i _reg 109 = ap const 1v2 3) else "0";
i 1 fu 138 p2 <= std logic vector (unsigned(i reg 109) + unsigned(ap const 1v2 1));
j 1 fu 199 p2 <= std logic vector (unsigned(j reg 120) + unsigned(ap const 1v2 1));
p_shl cast fu 156 pl <=

std logic vector (IEEE.numeric std.resize (unsigned(tmp 1 fu 148 p3),5));

tmp 10 cast fu 255 pl <=
std logic vector (IEEE.numeric_std.resize(signed(tmp s reg 333),32));

tmp 1 fu 148 p3 <= (i reg 109 & ap const 1lv2 0);
tmp 3 castl fu 210 pl <=

std logic vector (IEEE.numeric std.resize (unsigned(j reg 120),4));
tmp 3 cast2 fu 225 pl <=

std logic vector (IEEE.numeric std.resize (unsigned(j reg 120),5));
tmp 3 cast fu 229 pl <=

std logic vector (IEEE.numeric std.resize (unsigned(j reg 120),3));
tmp 3 fu 205 pl <=

std logic vector (IEEE.numeric_ std.resize(unsigned(j reg 120),32));

tmp 4 cast fu 166 pl <=
std logic vector (IEEE.numeric std.resize(signed(tmp 4 fu 160 p2),32));

tmp 4 fu 160 p2 <= std logic vector (unsigned(p shl cast fu 156 pl) -
unsigned (tmp cast fu 144 pl));
tmp 5 cast fu 177 pl <=
std logic vector (IEEE.numeric std.resize(signed(tmp 5 fu 171 p2),32));

tmp 5 fu 171 p2 <= std logic vector (unsigned(tmp 4 fu 160 p2) +
unsigned(ap_const 1v5 1));
tmp 6 cast fu 188 pl <=
std logic vector (IEEE.numeric std.resize(signed(tmp 6 fu 182 p2),32));

tmp 6 fu 182 p2 <= std logic vector (unsigned(tmp 4 fu 160 p2) +
unsigned(ap_const 1v5 2));

tmp 7 cast fu 239 pl <=
std logic vector (IEEE.numeric_ std.resize (unsigned(tmp 7 fu 233 p2),32));

tmp 7 fu 233 p2 <= std logic vector (unsigned(tmp 3 cast fu 229 pl) +
unsigned(ap_const 1v3 3));

tmp 8 cast fu 220 pl <=
std logic vector (IEEE.numeric std.resize (unsigned(tmp 8 fu 214 p2),32));

tmp 8 fu 214 p2 <= std logic vector (unsigned(tmp 3 castl fu 210 pl) +
unsigned(ap_const 1v4 6));

tmp 9 2 fu 249 p0 <= B g0;

tmp 9 2 fu 249 pl <= A g0;

tmp 9 2 fu 249 p2 <=
std logic vector (IEEE.numeric_ std.resize (unsigned(std logic vector(signed(tmp S 2 fu 24
9 p0) * signed(tmp 9 2 fu 249 pl))), 8));

tmp cast fu 144 pl <=
std logic vector (IEEE.numeric_ std.resize (unsigned(i reg 109),5));

tmp s fu 244 p2 <= std logic vector (unsigned(tmp 4 reg 280) +
unsigned (tmp 3 cast2 fu 225 pl));

end behav;

FINAL DESIGN :

The design of matrix multiplication of a 3*3 matrices produced by the code in previous chapter is as follows

- @ a d{ ® O c 46 1i0 Ports 187 Nets

101 Cells

Output

I—O— | | j
W Input B ‘ ' U= T 0 g o
o DJ I O— T T
o e T le——r——s
i g o =0
o . =0
I J .
: =5 = = T
T 1
Figure 23. Final RTL Design
And operation / control steps for this design are as follows:
| co | e | 2 | e | ca C5 ce
2 i(phi_mux)
3 exitcond4 (icmp)
4 i 1(+)
5 tmp_4(-)
5] tmp 5 (+)
7 tmp_6 (+)
a8 Hmual mat lakel3
9 j (phi_mux)
10 exitcond3 (icmp)
11 J_1(+)
12 A load(read)
1z B_load::cead}
14 tmp 8 (+)
15 A load Z(read)
16 B _load Z(read)
17 tmp_ 7 (+)
18 tmp_s (+)
19 L load 1 (read)
20 B _load_ 1 (read)
21 tmp_9_2(*)
23 tmp 9 1 (*)
24 tmpl (+)
25 tmp_2_ 2 (+)
26 node_ &4 (write)

Figure 24. timing diagram of operation

CHAPTER 4: APPLICATIONS BASED ON THE PROJECT

Computation-intensive algorithms require a high level of parallelism and programmability, which make them
good candidate for hardware acceleration using fine-grained processor arrays. Using Hardware Description
Language (HDL), it is very difficult to design and manage fine-grained processing units and therefore High-

Level Language (HLL) is a preferred alternative.

Data-intensive computing is a class of parallel computing applications which use a data parallel approach to
process large volumes of data typically terabytes or petabytes in size and typically referred to as big data.
Computing applications which devote most of their execution time to computational requirements are
deemed compute-intensive, whereas computing applications which require large volumes of data and devote

most of their processing time to I/O and manipulation of data are deemed data-intensive.

The concept of this project can be used to solve the major problems faced by many research oriented fields

which involve intensive high-level computational problems.

» The algorithms involved in climate modeling and weather predictions are very complex and
computationally demanding as they operate over large domains requiring high resolutions or very
long integration times thus exacerbating the need for high-performance resources so that accurate
estimates can be found in useful time (a weather prediction for tomorrow is hardly useful if it requires
more than 24 hours to compute). Improving prediction quality and accuracy requires higher
resolution models found by exploring a wide range of its parameters. This is a daunting and error-

prone process, demanding even more computing power.

» Astronomy and Astrophysics are two fields that often require optimizing problems of high
complexity or analyzing a huge amount of data and the so-called complete optimization methods are
inherently limited by the size of the problem/data. For instance, reliable analysis of large amounts of
data is central to modern astrophysics and astronomical sciences in general. Some of these problems,
such as the estimation of non-lineal parameters, the development of automatic learning techniques,
the implementation of control systems, or the resolution of multi-objective optimization problems,

have had (and have) a special repercussion in the fields.

> Intensive Mathematical Fields
e Statistical distributions - the Binomial, Poisson and Gaussian
e Least squares fitting to data. The extension to multi-variate least squares is made using matrix

methods

e Numerical solution to differential equations. Euler Method to Runge-Kutta method along with
Boundary Value problems

e Find periods in unequally sampled data. It is shown how a period can be extracted from noisy data.
This leads to the concept of the periodogram.

» Computational physics, to solve problems in quantum physics, electromagnetism,

biophysics, mechanics, chaos, nonlinear dynamics, and other areas.

» Computational Chemistry, for computing the interatomic distances between the particles present in
a crystal lattice. The study can be further be taken ahead to understand the potential energy behavior

for each particle in the lattice as potential energy is proportional to the interatomic distance.

The growth of FPGA Programming and hardware implementation is unimaginable, they can be used almost

for all possible digital logic setup purposes.

CHAPTER 5: CONCLUSION AND SCOPE FOR FUTURE WORK

As the FPGA offers us a dual advantage of the flexibility in hardware designing and parallelizing the design
process, the concept of the project can be explained as; we are looking to incorporate a method using FPGA
and hardware programming to combine the two aspects being, designing a complex system to solve high-
level intensive computations and to optimize the system performance to give a reduced latency (delay).

Through this work in our project we have achieved the level where we can say that the FPGA is completely
user friendly and is reprogrammable in any way so as to achieve almost any possible digital logic system.

We have designed the Structures for two separate kinds of mathematical operations, basic mathematical
operations (addition, etc.), which we achieved using HDL programming (VHDL/Verilog), and matrix

multiplication, which we achieved using HLL programming(C/C++).

We have also achieved a possible way of interaction between the hardware FPGA and the host PC, using

UART Serial Communication Protocol, and have also verified its reliability and design ease on the FPGA.

We have also studied and implemented certain parallelizing directives (pipelining, loop unrolling, etc.)
which could be used to reduce latencies for the basic architecture designs. The optimization is a key

component in today’s world and is essential for any hardware development.

Since, the project is still in developmental stage, the ultimate objective is to combine both the works that
have been done by us, one, the architecture of system and interaction of FPGA and PC, and second,
optimizing/reducing time cycles required for the operations to be completed, to create one final software that

could do both the works efficiently and provide improved and enhanced results in faster time periods.

Obviously, the architecture can be reprogrammed according to user needs and the parallelizing techniques
can always be improved according to the increasing demand in development models of hardware

implemented computation modules.

REFERENCES

» Shougian Yu ,Lili Yi, Weihai Chen, Zhaojin Wen - Implementation of a Multi-channel UART
Controller Based on FIFO Technique and FPGA

» Sonali Dhage, Manali Patil,Navnath Temgire,Pushkar Vaity, Sangeeta Parshionikar - Design and
FPGA Implementation of a High Speed UART

» FPGA Center - http://fpgacenter.com/fpga/index.php

» BASYS 3 Reference Manual - https://reference.digilentinc.com/basys3/refmanual

» RealTerm - Serial/TCP Terminal Software -
http://www.softpedia.com/get/System/SystemMiscellaneous/Real Term.shtml

» Basics of UART Communication - http://www.circuitbasics.com/basics-uart-communication/

» Evolutionary Computation in Astronomy and Astrophysics: A Review -- José A. Garcia Gutiérrez,
Carlos Cotta, Antonio J. Fernandez-Leiva

» CLIMA2016 Computational Challenges for Climate Modeling and Weather Prediction

» Computer Organization and Architecture and Pipelining - http://www.geeksforgeeks.org/computer-
organization-and-architecture-pipelining-set-2-dependencies-and-data-hazard/

» Parallel Computing - https://en.wikipedia.org/wiki/Parallel_computing

» Ruediger Willenberg, Paul Chow Electrical & Computer Engineering, University of Toronto -- A
software parallel programming approach to FPGA-accelerated computing

» Parallel Computing (EECS) - http://web.eecs.umich.edu/~gstout/parallel.html

» Loop Unrolling - http://www.geeksforgeeks.org/loop-unrolling/

» Introduction to FPGA Design with Vivado High-Level Synthesis

https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf

APPENDIX

1) Meta- Stability Hardener Source Code:

“timescale 1ns/1ps
module meta_harden (

input clk_dst, // Destination clock
input rst_dst, // Reset - synchronous to destination clock
input signal_src, // Asynchronous signal to be synchronized

outputreg signal_dst // Synchronized signal

);

”***

I/l Register declarations
”***
reg signal_meta; // After sampling the async signal, this has a high probability of being metastable.
The second sampling (signal_dst) has a much lower probability of being metastable.

/***

7:i22i**
always @ (posedge clk_dst)
begin
if (rst_dst)
begin
signal_meta <= 1'b0;
signal_dst <= 1'b0;
end
else // if 'rst_dst
begin
signal_meta <= signal_src;
signal_dst <=signal_meta;
end // if rst
end // always
endmodule

2. Baud Generator Source Code:

/I Note: Divider must be at least 2 (thus CLOCK_RATE must be at least 32x BAUD_RATE)
“timescale 1ns/1ps
module uart_baud_gen (

/I Write side inputs

input clk, /Il Clock input

input rst, /I Active HIGH reset - synchronous to clk

output baud_x16_en // Oversampled Baud rate enable

);

”***

/I Constant Functions

”***

/I Generate the ceiling of the log base 2 - i.e. the number of bits required to hold N values. A vector of size
clogb2(N) will hold the values 0 to N-1
function integer clogb2;
input [31:0] value;
reg [31:0] my_value;
begin
my_value = value - 1;
for (clogh2 = 0; my_value > 0; clogb2 = clogh2 + 1)
my_value = my_value >> 1;
end
endfunction
”***

I/ Parameter definitions
/***
parameter BAUD_RATE =9_600; // Baud rate
parameter CLOCK_RATE =100_000_000;
/l The OVERSAMPLE_RATE is the BAUD_RATE times 16
localparam OVERSAMPLE_RATE = BAUD_RATE * 16;
/I The divider is the CLOCK_RATE / OVERSAMPLE_RATE - rounded up (so add 1/2 of the
OVERSAMPLE_RATE before the integer division)
localparam DIVIDER = (CLOCK_RATE+OVERSAMPLE_RATE/2) /| OVERSAMPLE_RATE;
/l The value to reload the counter is DIVIDER-1,
localparam OVERSAMPLE_VALUE = DIVIDER - 1,
/I The required width of the counter is the ceiling of the base 2 logarithm of the DIVIDER
localparam CNT_WID = clogh2(DIVIDER);

/***

Il Reg declarations
”***
reg [CNT_WID-1:0] internal_count;
reg baud_x16 en_reg;

”***

/I Wire declarations

”***

wire [CNT_WID-1:0] internal_count_m_1; // Count minus 1

/***

Z:iiii**
assign internal_count_m_1 = internal_count - 1'b1,
/[Count from DIVIDER-1 to 0, setting baud_x16_en_reg when internal_count=0. The signal
baud_x16_en_reg must come from a flop (since it is a module output) so schedule it to be set when the next
countis 1 (i.e. when internal_count_m_1 is 0).
always @(posedge clk)
begin
if (rst)
begin
internal_count <= OVERSAMPLE_VALUE;
baud_x16_en_reg <= 1'b0;
end
else
begin
Il Assert baud_x16_en_reg in the next clock when internal_count will be zero in that clock (thus when
internal_count_m_1 is 0).

baud_x16_en_reg <= (internal_count_m_1 == {CNT_WID{1'b0}});

/I Count from OVERSAMPLE_VALUE down to 0 repeatedly
if (internal_count == {CNT_WID{1'b0}})
begin
internal_count <= OVERSAMPLE_VALUE;
end
else // internal_count is not 0
begin
internal_count <= internal_count m_1;
end
end // if rst
end // always
assign baud_x16_en =baud x16_en_reg;
endmodule
3. CLOCKDIVIDER SOURCE CODE:

/I Clock divider circuit
// From 100 MHz to 1 Hz with %50 duty cycle

module clk_div(Clk_in, Clk_out);

input CIk_in; // input ports
output reg CIk_out ; // output ports
reg Clk_out_1 ;//=1'b0; // provide initial condition for this register.

Il counter size calculation according to input and output frequencies
parameter sys_clk = 100000000; // 100 MHz system clock
parameter clk_out = 1; /I '1 Hz clock output

parameter max = sys_clk / (2*clk_out); // max-counter size

reg [31:0]counter = 0; // 32-bit counter size
initial Clk_out_1 = 1'b0;

always@(posedge Clk_in) begin

if (counter == max-1)
begin
counter <= 0;
Clk_out 1 <=~Clk out 1,
end

else
begin
counter <= counter + 1'd1;
end

Clk_out = Clk_out_1;

end
endmodule

4. SELECTION MODULE CODE

module selector (switch,data, Clock,Outl, Out2);
input switch;

input data;

input Clock;

output reg Outl,;

output reg Out2;

always@ (posedge Clock)
begin
case (switch)

1'b0: begin
Outl = data;
Out2 ="0";
end

1'bl: begin
Outl ="0";
Out2 = data;
end

endcase

end

endmodule

5. INVERSION MODULE CODE

module inv(
input a,
output b
);

not(b,a);

endmodule

6. RECEIVER UART CONTROL MODULE

“timescale 1ns/1ps
module uart_rx_ctl (
/I Write side inputs

input clk_rx, /I Clock input

input rst_clk_rx, // Active HIGH reset - synchronous to clk_rx
input baud_x16_en, // 16x oversampling enable

input rxd_clk_rx, // RS232 RXD pin - after sync to clk_rx

output reg [7:0] rx_data, // 8 bit data output

/I - valid when rx_data_rdy is asserted
outputreg rx_data_rdy, // Ready signal for rx_data
outputreg frm_err // The STOP bit was not detected

);

”***

[/l Parameter definitions
”***
// State encoding for main FSM
localparam
IDLE =2'b00,
START = 2'h01,
DATA =210,
STOP =2bl1;

”***

/I Reg declarations

”***

reg [1:0] state; /I Main state machine
reg [3:0] over_sample_cnt; // Oversample counter - 16 per bit
reg [2:0] bit_cnt; / Bit counter - which bit are we RXing

/***

I/l Wire declarations
/***
wire over_sample_cnt_done; // We are in the middle of a bit
wire bit_cnt_done; /I This is the last data bit

”***

Z:iggi**
// Main state machine
always @(posedge clk_rx)
begin
if (rst_clk_rx)
begin
state <= IDLE;
end
else
begin
if (baud_x16_en)
begin
case (state)
IDLE: begin
/I On detection of rxd_clk_rx being low, transition to the START
/] state
if ('rxd_clk_rx)
begin
state <= START,
end
end // IDLE state
START: begin
/I After 1/2 bit period, re-confirm the start state
if (over_sample_cnt_done)
begin
if (Irxd_clk_rx)
begin
/I Was a legitimate start bit (not a glitch)
state <= DATA,;

end
else
begin
/I Was a glitch - reject
state <= IDLE;
end
end // if over_sample_cnt_done
end // START state
DATA: begin
/I Once the last bit has been received, check for the stop bit
if (over_sample_cnt_done && bit_cnt_done)
begin
state <= STOP;
end
end // DATA state
STOP: begin
// Return to idle
if (over_sample_cnt_done)

begin
state <= IDLE;
end
end // STOP state
endcase

end // if baud_x16 _en
end // if rst_clk_rx
end // always
I/l Oversample counter
I/ Pre-load to 7 when a start condition is detected (rxd_clk_rx is O while in IDLE) - this will get us to the
middle of the first bit. Pre-load to 15 after the START is confirmed and between all data bits.
always @(posedge clk_rx)
begin
if (rst_clk_rx)
begin
over_sample_cnt <= 4'd0;
end
else
begin
if (baud_x16_en)
begin
if (lover_sample_cnt_done)
begin
over_sample_cnt <= over_sample_cnt - 1'b1;
end
else
begin
if ((state == IDLE) && !'rxd_clk_rx)
begin
over_sample_cnt <= 4'd7;
end
else if (((state == START) && !rxd_clk_rx) || (state == DATA))
begin
over_sample_cnt <= 4'd15;

end
end
end // if baud_x16_en
end // if rst_clk_rx
end // always
assign over_sample_cnt_done = (over_sample_cnt == 4'd0);
Il Track which bit we are about to receive
/I Set to 0 when we confirm the start condition
/I Increment in all DATA states
always @ (posedge clk_rx)
begin
if (rst_clk_rx)
begin
bit cnt <=3'b0;
end
else
begin
if (baud_x16_en)
begin
if (over_sample_cnt_done)
begin
if (state == START)
begin
bit_cnt <= 3'd0;
end
else if (state == DATA)
begin
bit_cnt <= bit_cnt + 1'b1;
end
end // if over_sample_cnt_done
end // if baud_x16_en
end // if rst_clk_rx
end // always
assign bit_cnt_done = (bit_cnt == 3'd7);
/I Capture the data and generate the rdy signal. The rdy signal will be generated as soon as the last bit of
data is captured - even though the STOP bit hasn't been confirmed. It will remain asserted for one BIT period
(16 baud_x16_en periods)
always @(posedge clk_rx)
begin
if (rst_clk_rx)
begin
rx_data <=8'b0000_0000;
rx_data_rdy <= 1'b0;
end
else
begin
if (baud_x16_en && over_sample_cnt_done)
begin
if (state == DATA)
begin
rx_data[bit_cnt] <=rxd_clk_rx;
rx_data_rdy <= (bit_cnt ==3'd7);

end
else
begin
rx_data_rdy <=1'0;
end
end
end // if rst_clk_rx
end // always
I/l Framing error generation Generate for one baud_x16_en period as soon as the framing bit is supposed to
be sampled
always @ (posedge clk_rx)
begin
if (rst_clk_rx)
begin
frm_err <=1'b0;
end
else
begin
if (baud_x16_en)
begin
if ((state == STOP) && over_sample_cnt_done && Irxd_clk_rx)
begin
frm_err <= 1'b1,
end
else
begin
frm_err <= 1'b0;
end
end // if baud_x16 en
end // if rst_clk_rx
end // always

7. TRANSMISSION UART CONTROL MODULE

“timescale 1ns/1ps
module uart_tx_ctl (

input clk_tx, // Clock input

input rst_clk_tx, // Active HIGH reset - synchronous to clk_tx
input baud_x16 en, // 16x bit oversampling pulse

input char_fifo_empty, // Empty signal from char FIFO (FWFT)
input [7:0] char_fifo_dout, // Data from the char FIFO

output char_fifo_rd_en, // Pop signal to the char FIFO

outputreg txd_tx /I The transmit serial signal

);

//***

/[Parameter definitions
//***
/[State encoding for main FSM
localparam
IDLE =2'b00,
START = 2'h01,

DATA =2'h10,
STOP =2'b11;

”***

/I Reg declarations

”***

reg [1:0] state; // Main state machine
reg [3:0] over_sample_cnt; // Oversample counter - 16 per bit
reg [2:0] bit_cnt; /I Bit counter - which bit are we RXing

reg char_fifo_pop; // POP indication to FIFO
// ANDed with baud_x16_en before module
Il output

/***

/I Wire declarations
”***
wire over_sample_cnt_done; // We are in the middle of a bit
wire bit_cnt_done; /I This is the last data bit

/***

Z:iiii**
// Main state machine
always @ (posedge clk_tx)
begin

if (rst_clk_tx)
begin
state <= IDLE;
char_fifo_pop <= 1'b0;
end
else
begin
if (baud_x16_en)
begin
char_fifo_pop <= 1'b0;
case (state)
IDLE: begin
/' When the character FIFO is not empty, transition to the START state
if (\char_fifo_empty)
begin
state <= START,
end
end // IDLE state

START: begin
if (over_sample_cnt_done)
begin
state <= DATA,;
end // if over_sample_cnt_done
end // START state
DATA: begin
/I Once the last bit has been transmitted, send the stop bit
/I Also, we need to POP the FIFO
if (over_sample_cnt_done && bit_cnt_done)
begin

char_fifo_pop <=1'b1;
state <=STOP;
end
end // DATA state
STOP: begin
if (over_sample_cnt_done)
begin
/I If there is no new character to start, return to IDLE, else
/[start it right away
if (char_fifo_empty)
begin
state <= IDLE;
end
else
begin
state <= START,
end
end
end // STOP state
endcase
end // if baud_x16_en
end // if rst_clk_tx
end // always
/I Assert the rd_en to the FIFO for only ONE clock period
assign char_fifo_rd_en = char_fifo_pop && baud_x16 _en;
/I Oversample counter-- Pre-load whenever we are starting a new character (in IDLE or in STOP), or
whenever we are within a character (when we are in START or DATA).
always @(posedge clk_tx)
begin
if (rst_clk_tx)
begin
over_sample_cnt <= 4'd0;
end
else
begin
if (baud_x16_en)
begin
if (lover_sample_cnt_done)
begin
over_sample_cnt <= over_sample_cnt - 1'b1;
end
else
begin
if (((state == IDLE) && Ichar_fifo_empty) ||
(state == START) ||
(state == DATA) ||
((state == STOP) && Ichar_fifo_empty))
begin
over_sample_cnt <= 4'd15;
end
end
end // if baud_x16_en

end // if rst_clk_tx
end // always
assign over_sample_cnt_done = (over_sample_cnt == 4'd0);
/I Track which bit we are about to transmit
// Setto 0 in the START state
/I Increment in all DATA states
always @ (posedge clk_tx)
begin
if (rst_clk_tx)
begin
bit_ cnt <=3'00;
end
else
begin
if (baud_x16_en)
begin
if (over_sample_cnt_done)
begin
if (state == START)
begin
bit_cnt <= 3'd0;
end
else if (state == DATA)
begin
bit_cnt <= bit_cnt + 1'b1,
end
end // if over_sample_cnt_done
end // if baud_x16_en
end // if rst_clk_tx
end // always
assign bit_cnt_done = (bit_cnt == 3'd7);

Il Generate the output
always @ (posedge clk_tx)
begin
if (rst_clk_tx)
begin
txd tx <=1'bl;
end
else
begin
if (baud_x16_en)
begin
if ((state == STOP) || (state == IDLE))
begin
txd_tx <= 1'bl;
end
else if (state == START)
begin
txd_tx <= 1'b0;
end

else // we are in DATA
begin

txd_tx <= char_fifo_dout[bit_cnt];
end
end // if baud_x16_en
end // if rst
end // always
endmodule
8. Matrix Multiplication Source Code:

#include<stdio.h>
#include<conio.h>

#define M 3
#define N 3
#define t 3
#define u 3
#define v 3

void mul_mat(char A[M] [N],char B[M] [N],char C[M][N])

{

char i,7,k;

if (t!=u)

{

printf ("\nNot possible");

exit (0);

}

else

{

mul mat label2:for (i=0;i<t;i++)
{

mul mat label3:for (j=0;j<u;j++)
{

Cli][31=0;

mul mat label4:for (k=0;k<v;k++)

Cli][3] += A[i][k]*B[k][]];

}
}
}

printf ("\nThe resulting matrix:\n");
mul mat labell:for (i=0;i<t;i++)
{

mul mat labelO:for (j=0;j<u;j++)
{

printf ("%d\t",C[1][]]);

}

printf ("\n");

}
}

	Realterm is an engineer’s terminal program specially designed for capturing, controlling and debugging binary and other difficult data streams. It is the best tool for debugging comms.
	Parallel vs. Serial
	START BIT
	DATA FRAME
	PARITY
	STOP BITS
	ADVANTAGES AND DISADVANTAGES OF UARTS
	ADVANTAGES
	DISADVANTAGES

