
B. TECH. PROJECT REPORT
On

PERFORMING MATHEMATICAL

OPERATIONS AND PARALLELISING

THEM ON FPGA

BY

PALASH DURUGKAR

SUNIL KUMAR PAL

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2017

 PERFORMING MATHEMATICAL

OPERATIONS AND PARALLELISING

THEM ON FPGA

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

Submitted by:

PALASH DURUGKAR

SUNIL KUMAR PAL

Guided by:

Dr. SRIVATHSAN VASUDEVAN, Faculty, Electrical Engineering

DR. SATYA BULUSU, Faculty, Chemistry Department

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2017

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Performing Mathematical Operations and

Parallelizing Them in FPGA” submitted in partial fulfillment for the award of the degree of

Bachelor of Technology in ‘ELECTRICAL ENGINEERING’ completed under the

supervision of Dr. Srivathsan Vasudevan, Asst. Professor, Electrical Engineering and Dr.

Satya Bulusu, Asst. Professor, Chemistry, IIT Indore is an authentic work.

 Further, I/we declare that I/we have not submitted this work for the award of any other

degree elsewhere.

Signature and name of the student(s) with date

__

Palash Durugkar Sunil Kumar Pal

CERTIFICATE by BTP Guide(s)

 It is certified that the above statement made by the students is correct to the best of

my/our knowledge.

Signature of BTP Guide(s) with dates and their designation

Dr. S. Vasudevan Dr. S. Bulusu

Asst. Professor, Electrical Engg. Asst. Professor, Chemistry

IIT INDORE IIT INDORE

PREFACE

This report on “PERFORMING MATHEMATICAL OPERATIONS AND

PARALLELISING THEM IN FPGA" is prepared under the guidance of Dr. Srivathsan

Vasudevan, Professor, Electrical Engineering and Assistant Professor, Dr. Satya Bulusu,

Professor, Chemistry Department.

Through this report we have tried to present the system and architecture for solving intensive

high-level computation problems for various computational fields. The system is an effort

towards making such computational fields realize the potential of application of FPGA based

hardware designs and their optimizations for mathematical problem computations and data

analysis.

We have tried to the best of our abilities and knowledge to explain the content in a lucid

manner. We have also added designs and figures to make it more illustrative.

PALASH DURUGKAR and SUNIL KUMAR PAL

B.Tech. IV Year

Discipline of Electrical Engineering

IIT Indore

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors Dr. Srivathsan Vasudevan and

Dr. Satya Bulusu for providing their invaluable guidance, comments, suggestions and kind

support throughout the course of the project.

It is through their help and support, due to which we became able to complete the design and

technical report.

Without their support this report would not have been possible.

PALASH DURUGKAR and SUNIL KUMAR PAL

B.Tech. IV Year

Discipline of Electrical Engineering

IIT Indore

ABSTRACT

With the rise of Field Programmable Gate Array (FPGA) Programming, the application of hardware

designing and implementation is becoming ubiquitous. FPGA can be used to design a controller in a single

chip Integrated Circuit (IC). Most of the research oriented fields today, involve intensive high-level

computation problems to be solved within minimum possible time frame and greatest of ease. This project on

Performing of Mathematical Operations and parallelizing them in FPGA, is considered to be a key problem

solver for such fields. Through this work, we aim to offer an architecture of a setup which could perform a

pre-specified mathematical operation or a set of mathematical operations on large chunks of data packets

within very low time frames. This paper deals with designing of a high speed UART using Verilog Hardware

Description Language .The Universal Asynchronous Receiver Transmitter (UART) is a device used for

serial communication between computers and other peripheral devices. Together combining the design

structure and parallelizing techniques to reduce latency and optimization on FPGA, would be considered a

new innovation idea in intensive high-level computational fields by providing a reprogrammable software

that can demonstrate the potential of hardware development and FPGA programming.

TABLE OF CONTENTS

 i. Candidate’s Declaration

 ii. Supervisor’s Certificate

 iii. Preface

 iv. Acknowledgements

 v. Abstract

 1. Introduction

1.1. FPGAs-A Brief Introduction

1.2. Basys 3 Board

1.3. XILINX Vivado Design Suite

1.4. RealTerm – Serial/TCP Terminal Software

 2. Design Implementation Using HDLs(VHDL /Verilog)

 3. Design Implementation using HLLs(C/C++)

4. Applications

5. Conclusion and Scope for Future Work

6. References

LIST OF FIGURES

Figure 1 – Island Type View of FPGA Architecture

Figure 2 – FPGA Components

Figure 3 – Logic Cell

Figure 4 – Basys 3 Board Features

Figure 5 - USB-UART Connection on FPGA

Figure 6 - RealTerm Screen Capture

Figure 7 – Structure Overview

Figure 8 – Data Flow in the System

Figure 9 – Steps Followed in using the software

Figure 10 – Data Packet in UART

Figure 11 – Final Synthesised Design of System

Figure 12 – State Machine Representation of Control Module

Figure 13 – RTL level design of system

Figure 14 – I/O Planning

Figure 15 – RTL Implementation

Figure 16 - Directives

Figure 17 - Unrolled Loops with Latency

Figure 18 - Loop Flattening

Figure 19 - Perfect and Semi Perfect Loops

Figure 20 - Before Pipelining and Loop Unrolling

Figure 21 - After Pipelining

Figure 22 - After Loop Unrolling

Figure 23 - Final RTL Design

Figure 24 - timing diagram of operation

Figure 25 - GPU and CPU relationship to accelerate work

 LIST OF TABLES

Table 1 - Instruction executions in pipelined processor

Table 2 - Control Dependency

Table 3 - stallings in pipeline

Table 4 - Operand Forwarding

CHAPTER 1: INTRODUCTION

1.1 FPGAs – A Brief Introduction

The word digital has made a dramatic impact on our society. More significant is a continuous trend towards

digital solutions in all areas – from electronic instrumentation, control, data manipulation, signals processing,

telecommunications etc., to consumer electronics. Development of such solutions has been possible due to

good digital system design and modeling techniques. Digital ICs have become universally standardized and

have been accepted for use. Whenever a designer has to realize a digital function, he uses a standard set of

ICs along with a minimal set of additional discrete circuitry. Field programmable Gate Arrays (FGPAs) are

reconfigurable devices that can be electrically programmed to implement a wide variety of logic circuits. An

FPGA consists of a uniform array of programmable logic structures that are interconnected by a configurable

routing grid. Originally designed to serve as prototyping devices for testing and demonstrating the

functionality of digital circuits, FPGAs are now an integral part of high performance systems that include

digital, analog and RF components. The revolutionary success of these reconfigurable devices can be

attributed to Flexibility in design implementation. The ability to instantly reprogram the FPGA with various

circuits at no extra cost promotes reusability of the device, allows rapid design verification and reduces non-

recurring expenditure.

 The availability of high performance FPGA based IP cores for popular applications. This allows

FPGAs to function as plug and play devices in System on Chip (SoC) platforms.

 Enhanced performance due to the incorporation of specialized hardware like multipliers, high speed

memories etc., into the FPGA. Additionally, the specialized blocks are also optimized for area and

power which making the FPGA more competitive with custom chips.

 Figure 1. FPGA Architecture [3]

As we mentioned at the beginning, FPGA is an integrated circuit. However the difference from the others is

that they can be configurable as we wish. We can explain this as follows: In ordinary or standard ICs which

cannot be programmable, there are fixed interconnections between the transistors. Unless they are burned or

another unfortunate event does not come, they cannot be changed.

We may consider FPGAs as crude ICs of which their transistors were produced independently.

 Interconnections between transistors can be done according to the function we defined, then they perform

the function we want. So theoretically, any operation that comes to our minds can be done by FPGAs,

depending on the transistor capacity.

FPGA is basically consists of Logic Cells, I/O Blocks (Input/Output) and interconnections.

 Figure 2 FPGA parts [3]

Logic Cells form the main structure of FPGAs. A Logic-Cell consists of one Lookup Table (LUT), one D-

Flip Flop and one 2 to 1 Multiplexer.

 Figure 3. Logic Cell [3]

LUTs are actually small memories (RAM) that fulfil logic operations...

As a result of combination of thousands of Logic Cells, complex and large programs are created.

Interconnections of logic cells are provided by programmable switches and matrix formed data paths

(according to the installed program FPGA).

FPGA design defines the set of connections between logic functions, by determining functions of each of the

logic cells and status (open /closed) of programmable switches.

RAM Blocks

In almost all of today's FPGAs, memory units called RAMs are allocated. They are used for temporary

storage needs which occur during the operation of logic circuits. This RAMs can support single or multiple

access. With multiple access, multiple applications can run read /write operations on the RAM. Multiple

access is a good solution for transferring data between different process blocks that have different clocks.

For great RAM needs, there are Block RAMs in FPGA. However there are small scattered (distributed)

RAMs which are interspersed among the logic cells for small data storage needs.

One of the most important feature of FPGAs is the ability to do parallel processing. Ordinary ICs cannot do

parallel processing, or they can do it limited. Whereas dozens of or perhaps thousands of parallel processing

can be done simultaneously depending on the application with FPGAs. This makes FPGAs unique in

applications that require parallel processing. If you use standard ICs like microprocessors, you start to get

second frame after processing three operations (get, filter and send) for the first frame. If this process cannot

be fast enough, you may miss the next frame. FPGAs do all these operations in parallel. That means while

we processing of filtering the first frame, we might begin to take the second frame. And while us sending the

first frame to the output, we begin to filter the second frame and get the third frame at the same time.

Furthermore, filtering process requires extensive multiplication process. With standard ICs, we have to do

this process sequentially. Whereas this process can be done in parallel with an FPGA so it can be done very

quickly.

In summary, FPGAs are hardware-programmable integrated circuits that provide us parallel processing

capabilities and opportunity to change the internal structure and its function according to the desired

application.

Intellectual Property (IP)

Intellectual Property (IP) refers to the built-in functions that are optimised for speed and performance aspects

according to a specific FPGA family. While simple functions are provided free by the manufacturer; more

advanced functions are usually required to pay a certain fee.

1.2 BASYS 3 Board

The Basys3 board is a complete, ready-to-use digital circuit development platform based on the latest Artix-

7™ Field Programmable Gate Array (FPGA) from Xilinx. With its high-capacity FPGA (Xilinx part number

XC7A35T-1CPG236C , low overall cost, and collection of USB, VGA, and other ports, the Basys3 can host

designs ranging from introductory combinational circuits to complex sequential circuits like embedded

processors and controllers. It includes enough switches, LEDs and other I/O devices to allow a large number

designs to be completed without the need for any additional hardware, and enough uncommitted FPGA I/O

pins to allow designs to be expanded using Digilent Pmods or other custom boards and circuits.

The Artix-7 FPGA is optimized for high performance logic, and offers more capacity, higher performance,

and more resources than earlier designs. Artix-7 35T features include:

 33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-flops);

 1,800 Kbits of fast block RAM;

 Five clock management tiles, each with a phase-locked loop (PLL);

 90 DSP slices;

 Internal clock speeds exceeding 450MHz;

 On-chip analog-to-digital converter (XADC).

The Basys3 also offers an improved collection of ports and peripherals, including:

 16 user switches

 16 user LEDs

 5 user pushbuttons

 4-digit 7-segment display

 Three Pmod ports

 Pmod for XADC signals

 12-bit VGA output

 USB-UART Bridge

 Serial Flash

 Digilent USB-JTAG port for FPGA programming and communication

 USB HID Host for mice, keyboards and memory sticks

Walk Around the Board

Figure 4. Basys 3 Board Features [4]

1.3 XILINX Vivado Design Suite

The Basys3 works with Xilinx’s new high-performance Vivado ® Design Suite. Vivado includes many new

tools and design flows that facilitate and enhance the latest design methods. It runs faster, allows better use

of FPGA resources, and allows designers to focus their time evaluating design alternatives. The System

Edition includes an on-chip logic analyzer, high-level synthesis tool, and other cutting-edge tools, and the

free “Webpack” version allows Basys3 designs to be created at no additional cost.

USB-UART Bridge (Serial Port)

The Basys3 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J4) that allows you to

use PC applications to communicate with the board using standard Windows COM port commands. Free

USB-COM port drivers, convert USB packets to UART/serial port data. Serial port data is exchanged with

the FPGA using a two-wire serial port (TXD/RXD). After the drivers are installed, I/O commands can be

used from the PC directed to the COM port to produce serial data traffic on the B18 and A18 FPGA pins.

Two on-board status LEDs provide visual feedback on traffic flowing through the port: the

transmit LED (LD18) and the receive LED (LD17). Signal names that imply direction are from the point-of-

view of the DTE (Data Terminal Equipment), in this case the PC.

The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the USB-UART and

USB-JTAG functions behave entirely independent of one another. Programmers interested in using the

UART functionality of the FT2232 within their design do not need to worry about the JTAG circuitry

interfering with the UART data transfers, and vice-versa. The combination of these two features into a single

device allows the Basys3 to be programmed, communicated with via UART, and powered from a computer

attached with a single Micro USB cable. The connections between the FT2232HQ and the Artix-7 are shown

in the below figure.

Figure 5. USB-UART Connection on FPGA [4]

1.4 RealTerm – Serial/TCP Terminal Software

Realterm is an engineer’s terminal program specially designed for capturing, controlling and debugging

binary and other difficult data streams. It is the best tool for debugging comms.

Figure 6. RealTerm Screen Capture [5]

RealTerm is a terminal software solution that enables network administrators to capture, manage or debug

binary and other data streams. If you are looking for a tool that can debug dialling modems or BBS, you

might need to keep on looking as RealTerm does not support such devices.

Its interface is meant to be as intuitive as possible, as each main function is detailed in its own tab

We can also modify the port, the parity and the data bits, so to come up with a configuration that best suits

your needs.

One of the benefits of RealTerm is that it comes with support for hotkeys, which can help you save a lot of

time when handling difficult data streams, thus allowing you to focus more on the debugging process than on

operating the application.

All in all, RealTerm provides users with numerous functions that enable them to debug binary or other types

of data streams, yet advanced skills are required in order to make the most of its features.

CHAPTER 2: HARDWARE DESIGN IMPLEMENTATION THROUGH HDLs

The main overview of the architecture could be explained as followed in the flow chart below:

Figure 7. Structure Overview

Assuming that the user has decided a fixed number of input data/numbers (very large quantity of data) to be

sent from a host PC and he/she wants that some mathematical operations or a set of mathematical operations

to be performed on the numbers/data in a pre-defined fashion and the resulting data to be shown back to the

user on the host PC.

Firstly, we need to be sure about the architecture of the process, how the data should be flowed from the PC,

through the hardware FPGA, perform mathematical operations and the resultants to go through the hardware

back to the host PC.

Secondly, we need to devise a way so that the hardware FPGA and the host PC could interact with each

other, or communicate with each other for data flow.

The user inputs the data through the keyboard also enabling the hardware through switches and making it

ready for incoming data and setting up the terminal software. Since, the main motive is to design a digital

logic system, the data flowing will be binary (8-bit). We can use any of, serial or parallel communication for

the data flow, but it is more feasible to use serial communication for the same because it is easier to use and

understand, easier to implement on chip, low cost and placing space. Hence, Serial Communication is more

preferable over the Parallel Communication Techniques.

The data is received by the receiver (first serial communication block) which then transmits the data further

serially to be stored in two separate memory locations. These memory locations are designed to store large

quantity of data at a place, and keep them stored until an instruction is given to remove data stored one at a

time. We can set the depth of the memory according to the user preferences and needs and the fashion in

which the data has to be stored (no. of bits).

Now that we have all the data stored, we can give instructions to remove data one at a time from the two

memory locations and perform mathematical operations on the corresponding pairs of data/numbers and

make the resultants to move further in another memory location. This final memory location would be

containing all the resultant datas, which need to be sent back to the user.

The resultants move on to the transmission block (second serial communication block) one at a time, which

converts these serial data back to parallel (back in the fashion in which they were input) and through some

digital logic could be made available for the user to be seen back on the terminal software.

USER INPUT FPGA USER OUTPUT

Figure 8. Data Flow in System

This whole process could be very well designed in XILINX Vivado Design Suite, given the knowledge of

HDLs (Hardware Description Languages) like, Verilog or VHDL. These languages are specially designed

for hardware programming. Since, FPGA is reprogrammable and we can possibly design the system for any

type of mathematical operations using HDLs given its ease of understanding and structural flow, it gives us

an advantage.

Also, the understanding of the serial communication protocol, the whole process where the conversion of

parallel data from a controlling device like a CPU into serial form, its transmission in serial to the receiving

block, which then converts the serial data back into parallel data for the receiving device, has been explained

in detail in the later stages of the report.

We had certain source files available to us, mainly the transmission and reception files for data

communication. The only problem lies in interconnecting all the modules and components through hardware

programming without any errors and successful synthesis and implementation designs as well as the placing

the I/O pins (switches and LEDs for the input and output ports respectively), to finally get a bitstream file for

the entire project. We can easily design a VHDL/Verilog code for the same, which has been shown in the

later stages of the report.

User
Inputs
data

Stored in
memory
blocks

Perform
Mathematical

Operations , 1 pair at
a time

Result stored in a
separate memory

block

User Receives Result
Data

Below mentioned are the various stages that we need to go through while designing in XILINX Vivado

Design Suite:

Figure 9. Steps using the softwares

SERIAL COMMUNICATION PROTOCOL UART COMMUNICATION

Parallel vs. Serial

Parallel interfaces transfer multiple bits at the same time. They usually require buses of data - transmitting

across eight, sixteen, or more wires. Data is transferred in huge, crashing waves of 1’s and 0’s.Serial

interfaces stream their data, one single bit at a time. These interfaces can operate on as little as one wire,

usually never more than four. Think of the two interfaces as a stream of cars: a parallel interface would be

the 8+ lane mega-highway, while a serial interface is more like a two-lane rural country road. Over a set

amount of time, the mega-highway potentially gets more people to their destinations, but that rural two-laner

serves its purpose and costs a fraction of the funds to build.

Parallel communication certainly has its benefits. It’s fast, straightforward, and relatively easy to implement.

But it requires many more input/output (I/O) lines.So, we often opt for serial communication, sacrificing

potential speed for pin real estate.

Asynchronous serial communication means that data is transferred without support from an external clock

signal. This transmission method is perfect for minimizing the required wires and I/O pins, but it does mean

we need to put some extra effort into reliably transferring and receiving data.

•Combining
all source
files

•Using HDL

SOURCE
FILES

Main
Wrap
Code

Synthesise
d Design

RealTerm
Software

Hardware Manger Bitstream
Generated

Implement
ed Design

SERIAL COMMUNICATION PROTOCOL (UART COMMUNICATION)

While USB has almost completely replaced those old cables and connectors, UARTs are definitely not a

thing of the past. You’ll find UARTs being used in many DIY electronics projects to connect GPS

modules, Bluetooth modules, and RFID card reader modules to your Raspberry Pi, Arduino, or other

microcontrollers.

UART stands for Universal Asynchronous Receiver/Transmitter. It’s not a communication protocol like SPI

and I2C, but a physical circuit in a microcontroller, or a stand-alone IC. A UART’s main purpose is to

transmit and receive serial data.

One of the best things about UART is that it only uses two wires to transmit data between devices.

In UART communication, two UARTs communicate directly with each other. The transmitting UART converts

parallel data from a controlling device like a CPU into serial form, transmits it in serial to the receiving UART,

which then converts the serial data back into parallel data for the receiving device. Only two wires are needed to

transmit data between two UARTs. Data flows from the Tx pin of the transmitting UART to the Rx pin of the

receiving UART.

UARTs transmit data asynchronously, which means there is no clock signal to synchronize the output of bits from

the transmitting UART to the sampling of bits by the receiving UART. Instead of a clock signal, the transmitting

UART adds start and stop bits to the data packet being transferred. These bits define the beginning and end of

the data packet so the receiving UART knows when to start reading the bits.

When the receiving UART detects a start bit, it starts to read the incoming bits at a specific frequency known as

the baud rate. Baud rate is a measure of the speed of data transfer, expressed in bits per second (bps). Both

UARTs must operate at about the same baud rate. The baud rate between the transmitting and receiving UARTs

can only differ by about 10% before the timing of bits gets too far off.

Both UARTs must also must be configured to transmit and receive the same data packet structure.

UART transmitted data is organized into packets. Each packet contains 1 start bit, 5 to 9 data bits (depending on

the UART), an optional parity bit, and 1 or 2 stop bits:

Figure 10. Data Packet in UART [6]

START BIT

The UART data transmission line is normally held at a high voltage level when it’s not transmitting data. To

start the transfer of data, the transmitting UART pulls the transmission line from high to low for one clock

cycle. When the receiving UART detects the high to low voltage transition, it begins reading the bits in the

data frame at the frequency of the baud rate.

DATA FRAME

The data frame contains the actual data being transferred. It can be 5 bits up to 8 bits long if a parity bit is

used. If no parity bit is used, the data frame can be 9 bits long. In most cases, the data is sent with the least

significant bit first.

PARITY

Parity describes the evenness or oddness of a number. The parity bit is a way for the receiving UART to tell

if any data has changed during transmission. Bits can be changed by electromagnetic radiation, mismatched

baud rates, or long distance data transfers. After the receiving UART reads the data frame, it counts the

number of bits with a value of 1 and checks if the total is an even or odd number. If the parity bit is a 0 (even

parity), the 1 bits in the data frame should total to an even number. If the parity bit is a 1 (odd parity), the 1

bits in the data frame should total to an odd number. When the parity bit matches the data, the UART knows

that the transmission was free of errors. But if the parity bit is a 0, and the total is odd; or the parity bit is a 1,

and the total is even, the UART knows that bits in the data frame have changed.

http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-UART-Packet-Frame-and-Bits-2.png
http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-UART-Packet-Frame-and-Bits-2.png

STOP BITS

To signal the end of the data packet, the sending UART drives the data transmission line from a low voltage

to a high voltage for at least two bit durations.

ADVANTAGES AND DISADVANTAGES OF UARTS

No communication protocol is perfect, but UARTs are pretty good at what they do. Here are some pros and

cons to help you decide whether or not they fit the needs of your project:

ADVANTAGES

 Only uses two wires

 No clock signal is necessary

 Has a parity bit to allow for error checking

 The structure of the data packet can be changed as long as both sides are set up for it

 Well documented and widely used method

DISADVANTAGES

 The size of the data frame is limited to a maximum of 9 bits

 Doesn’t support multiple slave or multiple master systems

 The baud rates of each UART must be within 10% of each other

WORKING AND FINAL DESIGN

COMPONENTS INVOLVED IN THE DESIGN

1. First In First Out (FIFO) Memory Block

2. UART Serial Communication Blocks – Receiver and Transmission Block

3. Clock Divider Module

4. Selection Module

5. Adder Block

Figure 11. Final Synthesized Design of System

 FIRST IN FIRST OUT (FIFO) MEMORY BLOCK

As the name suggests, FIFOs are a special kind of memory blocks for any digital logic system,

whatever be the depth of this memory block (the no. of data entries that it can store) , whichever

number was the first to be entered will be the first one to come out of the block when given certain

instruction.

The FIFO Generator core is a fully verified first-in first-out memory queue for use in any application

requiring ordered storage and retrieval, enabling high-performance and area-optimized designs. The

core provides an optimized solution for all FIFO configurations and delivers maximum performance

(up to 500 MHz) while using minimum resources. This core can be customized using the Vivado IP

customizers in the IP catalog as a complete solution with control logic already implemented,

including management of the read and write pointers and the generation of status flags.

For this project, we have used FIFO as an in-built IP (Intellectual Property) from the IP Catalog

available in the software, which is customizable according to user needs.

Here, the FIFO memory block is being used to store large data in groups, for example, a FIFO with a

write depth of 16 and write width of 8, would be able to store 16 eight- bit numbers in it. This can be

changed in the customization settings while designing the IP.

Also, another variation that has been used is the Independent Clocks Block RAM (which enables us

to choose different clocks for both read and write operations simultaneously). This is necessary to

improve the performance of the system on a whole. We cannot have slower clocks for writing the

data into the FIFO if the depth is very much.

The key components/ports of the FIFO memory block being:

 read clock - clock followed when reading data from the FIFO

 write clock – clock followed when writing data into the FIFO

 read enable – tells the FIFO when to read

 write enable – tells the FIFO when to write

 data input port – data input through this port (our case 8-bit binary numbers)

 data output port - data output through this port (our case 8-bit binary numbers)

 full flag – indicates when the FIFO memory is complete and cannot take any more entries

 empty flag – indicates when the FIFO memory is completely empty

 UART SERIAL COMMUNICATION BLOCKS

o UART TRANSMISSION BLOCK

 Metastability Hardener

 Baud Generator

 Control Module

o UART RECIVER MODULE

 Baud Generator

 Control Module

Metastability Hardener -- This is a basic meta-stability hardener; it double synchronizes an asynchronous

signal onto a new clock domain.

Metastability is a phenomenon that can cause system failure in digital devices, including FPGAs, when a

signal is transferred between circuitry in unrelated or asynchronous clock domains. If the data output signal

resolves to a valid state before the next register captures the data, then the metastable signal does not

negatively impact the system operation. But if the metastable signal does not resolve to a low or high state

before it reaches the next design register, it can cause the system to fail. Continuing the ball and hill analogy,

failure can occur when the time it takes for the ball to reach the bottom of the hill (a stable logic value 0 or 1)

exceeds the allotted time, which is the register’s tCO plus any timing slack in the path from the register.

When a metastable signal does not resolve in the allotted time, a logic failure can result if the destination

logic observes inconsistent logic states, that is, different destination registers capture different values for the

metastable signal. [Refer appendix (1)]

Baud Generator -- Generates a 16x Baud enable. This signal is generated 16 times per bit at the correct

baud rate as determined by the parameters for the system clock frequency and the Baud rate. This is essential

for the sampling of bits incoming into both UART blocks for communication.

The Baud Generator generates a signal which ticks 16 times per bit at the baud rate of 9600 bps. This

signal is essential for the sampling of data bits and to decide whether the data flowing is valid or not.

[Refer appendix (2)]

CONTROL MODULE for Input -- Implements the state machines for doing RS232 reception. Based on

the detection of the falling edge of the synchronized rxd input, this module waits 1/2 of a bit period (8

periods of baud_x16_en) to find the middle of the start bit, and resamples it. If rxd is still low it accepts it as

a valid START bit, and captures the rest of the character, otherwise it rejects the start bit and returns to idle.

After detecting the START bit, it advances 1 full bit period at a time (16 periods of baud_x16_en) to end up

in the middle of the 8 data bits, where it samples the 8 data bits. After the last bit is sampled (the MSbit,

since the Lsbit is sent first), it waits one additional bit period to check for the STOP bit. If the rxd line is not

high (the value of a STOP bit), a framing error is signaled. Regardless of the value of the rxd, though, the

module returns to the IDLE state and immediately begins looking for the start of the next character. The total

cycle time through the state machine is 9 1/2 bit periods (not 10) – this allows for a mismatch between the

transmit and receive clock rates by as much as 5%.

Figure 12. State Machine Representation of Control Module

IDLE

START

DATA

STOP

If not then Framing

Error is indicated

If invalid START bit

return to IDLE

CONTROL MODULE for Output-- Implements the state machines for doing RS232 transmission.

Whenever a character is ready for transmission (as indicated by the empty signal from the character FIFO),

this module will transmit the character. The basis of this design is a simple state machine. When in IDLE, it

waits for the character FIFO to indicate that a character is available, at which time, it immediately starts

transmission. It spends 16 baud_x16_en periods in the START state, transmitting the START condition

(1’b0), then transitions to the DATA state, where it sends the 8 data bits (Lsbit first), each lasting 16

baud_x16_en periods, and finally going to the STOP state for 16 periods, where it transmits the STOP value

(1’b1). On the last baud_x16_en period of the last data bit (in the DATA state), it issues the POP signal to

the character FIFO. Since the SM is only enabled when baud_x16_en is asserted, the resulting pop signal

must then be ANDed with baud_x16_en to ensure that only one character is popped at a time. On the last

baud_x16_en period of the STOP state, the empty indication from the character FIFO is inspected; if

asserted, the SM returns to the IDLE state, otherwise it transitions directly to the START state to start the

transmission of the next character. There are two internal counters – one which counts off the 16 pulses of

baud_x16_en, and a second which counts the 8 bits of data. The generation of the output (txd_tx) follows

one complete baud_x16_en period after the state machine and other internal counters.

// Assert the rd_en to the FIFO for only ONE clock period

 assign char_fifo_rd_en = char_fifo_pop && baud_x16_en;

It is a similar finite state machine as previous one, the only addition is the logic through which every

character is popped out to be seen on the terminal screen.

 CLOCK DIVIDER MODULE

This module is essential because the read operations for the FIFO require a slower clock and since,

on the Basys 3 Board there is a single clock of 100 MHz available to us, we need to reduce the clock

frequency to much lower values for successful read operations.

For our case, we have reduced the available clock frequency of 100MHz to 1Hz.

[Refer appendix (3)]

 SELECTION MODULE

This module is necessary because it enables us to decide about the latest input data entry, that, where

among the 2 FIFOs it should be stored, because the mathematical operations have to be performed

between a pair of data entries. On the FPGA, the input is given through switch, if low, then FIFO1, if

high, then FIFO2.

[Refer appendix (4)]

 INVERSION MODULE

This module is necessary because through this we can decide when the transmission of the result data

starts. On the FPGA, it is incorporated through a switch.

[Refer appendix (5)]

 ADDER BLOCK

This is the module where the main mathematical operation is taking place – the addition of 8-bit

binary numbers. It has the 2 inputs connected to the data output ports of both FIFOs and an enable

port which decides when the operation takes place. It passes on the 8-bit binary sum ahead to the

result storing FIFO, after performing each successive operation.

This block is being implemented as an in-built Intellectual Property (IP) in the XILINX Vivado

software. It is always customizable according to user needs.

Combining all these components we obtained the final design of the complete architecture of the

system to Perform Mathematical Operations with Interaction between the Hardware FPGA and host

PC. Next, we will look at the main design wrapper (the main code which connects all these modules

together).

MAIN PROGRAM CODE AND WORKING

Given below is the main structural code for the whole system which involves all of the above

mentioned modules to obtain the final design of the system.

`timescale 1ns / 1ps

module main(

input CLOCK,

input rst_clk_rx, // Active HIGH reset - synchronous to clk_rx

input rxd_i, // RS232 RXD pin - Directly from pad

output frm_err, // The STOP bit was not detected

output full_1,

output empty_1,

output full_2,

output empty_2,

output full_3,

output empty_3,

input rst_clk_tx, // Active HIGH reset - synchronous to clk_tx

output char_fifo_rd_en, // Pop signal to the char FIFO

output txd_tx, // The transmit serial signal

input switch,

input CE,

input read_en

);

 //***

 // Parameter definitions

 //***

 parameter BAUD_RATE = 9600; // Baud rate

 parameter CLOCK_RATE = 100000000;

 parameter sys_clk = 100000000; // 100 MHz system clock

 parameter clk_out = 1; // 1 Hz clock output

 parameter max = sys_clk / (2*clk_out); // max-counter size

 //***

 // Wire Declarations

 //***

 wire c;

 wire write_clk;

 wire w1;

 wire w2;

 wire write_en;

 wire [7:0] data_out1;

 wire [7:0] data_out2;

 wire [7:0] sum;

 wire [7:0] data_in;

 wire [7:0] data_out3;

 wire fifo3_empty;

 wire trans_start;

 //***

 // Code

 //***

inv i0(.a(read_en) , .b(trans_start));

clk_div #(.sys_clk(100000000) , .clk_out(1) , .max(50000000)) u0 (.Clk_in(CLOCK) ,

.Clk_out(c));

uart_rx uart_rx_i0(

.clk_rx (CLOCK),

.rst_clk_rx (rst_clk_rx),

.rxd_i (rxd_i),

.rxd_clk_rx (write_clk),

.rx_data (data_in),

.rx_data_rdy (write_en),

.frm_err (frm_err)

);

selector sel(

.switch(switch),

.data(write_en),

.Clock(CLOCK),

.Out1(w2),

.Out2(w1)

);

fifo_generator_0 FIFO_1 (

 .wr_clk(write_clk), // input wire wr_clk

 .rd_clk(c), // input wire rd_clk

 .din(data_in), // input wire [7 : 0] din

 .wr_en(w2), // input wire wr_en

 .rd_en(CE), // input wire rd_en

 .dout(data_out1), // output wire [7 : 0] dout

 .full(full_1), // output wire full

 .empty(empty_1) // output wire empty

);

fifo_generator_0 FIFO_2 (

 .wr_clk(write_clk), // input wire wr_clk

 .rd_clk(c), // input wire rd_clk

 .din(data_in), // input wire [7 : 0] din

 .wr_en(w1), // input wire wr_en

 .rd_en(CE), // input wire rd_en

 .dout(data_out2), // output wire [7 : 0] dout

 .full(full_2), // output wire full

 .empty(empty_2) // output wire empty

);

c_addsub_0 adder (

 .A(data_out1), // input wire [7 : 0] A

 .B(data_out2), // input wire [7 : 0] B

 .CLK(CLOCK), // input wire CLK

 .CE(CE), // input wire CE

 .S(sum) // output wire [7 : 0] S

);

fifo_generator_0 FIFO_3 (

 .wr_clk(c), // input wire wr_clk

 .rd_clk(c), // input wire rd_clk

 .din(sum), // input wire [7 : 0] din

 .wr_en(CE), // input wire wr_en

 .rd_en(read_en), // input wire rd_en

 .dout(data_out3), // output wire [7 : 0] dout

 .full(full_3), // output wire full

 .empty(empty_3) // output wire empty

);

uart_tx uart_tx_i0(

.clk_tx(CLOCK),

.rst_clk_tx(rst_clk_tx),

//.baud_x16_en(baud_x16_en),

.char_fifo_empty(trans_start),

.char_fifo_dout(data_out3),

.char_fifo_rd_en(char_fifo_rd_en),

.txd_tx(txd_tx)

);

endmodule

We have taken a simple exam of 8-bit binary addition mathematical operation, even more complex

mathematical operations can be achieved, and we just have to design a module in HDL for that specific

operation or a set of operations.

Shown next is the elaborated RTL level design of the system after executing the main wrapper (main code)

Figure 13. RTL level design of system

The user inputs the data through the keyboard also enabling the hardware through switches and making it

ready for incoming data and setting up the terminal software. It flows through the UART Block 1 as it

receives parallel data and changes it to serial fashion. The input can now go towards any of the 2 FIFOs

storing input datas, the path would be decided by the state of the selection module. The process continues

until both the FIFOs are full.

We have a common enable signals for the first 2 FIFOs and the adder enable. All of them go high together.

Now that we have all the data stored, we can give read enable signals to remove data one at a time from both

the memory locations and perform mathematical operations on the corresponding pairs of data/numbers.

First the operation between a pair of numbers takes place and the result goes on to the result storing FIFO.

Only after that the next operation on the next pair of numbers takes place. This process goes on until both the

input FIFOs get empty, and the result storing FIFO gets full.

This final memory location would be containing all the resultant datas, which need to be sent back to the

user. The read enable ensures that the data moves out one by one, through the UART Block 2 for

transmission, the serial data now is converted back to parallel fashion and popped one character at a time for

the result to be shown on the terminal software.

After synthesis of the main Verilog code, we have to designate the I/O ports with appropriate switches and

LEDs , a screen capture of the same is also shown below, which is obtained by using the I/O Planning option

in the software.

Figure 14. I/O Planning

The Baud Rate is set at 9600 bps, both UARTs must operate at the same Baud Rate for the communication to

be successful.

User Input in FIFO 1 (write depth-16, write width – 8bits) - 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3

User Input in FIFO 2 (write depth-16, write width – 8bits) – 4,4,4,4,4,6,6,6,6,6,8,8,8,8,8

Output to User from FIFO3 (write depth -16 , write width- bits) – 5,5,5,5,5,8,8,8,8,8,11,11,11,11,11

As observed the mathematical operations that were performed came out be correct, but there is on big

problem that needs to be tackled. The time taken for this process to complete was very much, which is not

desirable for the industry/computational fields, we need to devise a way to reduce this time and still obtain

proper results. The architecture is achieved but the time constraint needs to be taken care of.

CHAPTER 3: PARALLELISING AND LATENCY REDUCTION

PARALLELISING OR PARALLEL COMPUTING:

 Parallelizing or parallel computing is a type of computing architecture in which several processors execute

or process an application or computation simultaneously. Parallel computing helps in performing large

computations by dividing the workload between more than one processor, all of which work through the

computation at the same time. Most supercomputers employ parallel computing principles to operate.

Parallel computing is also known as parallel processing.

Suppose you have a lot of work to be done, and want to get it done much faster, so you hire 100 workers. If

the work is 100 separate jobs that don't depend on each other, and they all take the same amount of time and

can be easily parceled out to the workers, then you'll get it done about 100 times faster. A different option

would be to parallelize each job, as discussed below, and then run these parallelization’s one after another.

However, as will be shown, this is probably a less efficient way of doing the work. Occasionally this isn't

true because on computers, doing all of the job on one processor may require storing many results on disk,

while the parallel job may spread the intermediate results in the RAM of the different processors. RAM is

much faster than disks. However, if the program isn't spending a lot of time using the disk then

embarrassingly parallel is the smart way to go? Assume this is what you should do unless you analyze the

situation and determine that it isn't. Embarrassingly parallel is simple, and if you can get the workers do it for

free then it is the cheapest solution as well.

Design Latency

Latency is the number of clock cycles it takes to complete an instruction or set of instructions to generate an

application result value

Design Throughput

Throughput is another metric used to determine overall performance of an implementation. It is the number

of clock cycles it takes for the processing logic to accept the next input data sample. With this value, it is

important to remember that the clock frequency of the circuit changes the meaning of the throughput

number.

CHAPTER 5: RTL IMPLEMENTATION ON FPGA USING VIVADO HLS

BASIC INTRODUCTION

Vivado HLS is a software that can be used to perform mathematical or any operation on FPGA using HLL

like C / C++ . Vivado Hls gives you a platform where you can easily make code to perform any operation

using c /c++ languages and you can use latency reduction techniques like on vivado hls to low latency highly

efficient output.

The flow chart below will give you a brief introduction on how we will be working on Vivado hls to perform

any RTL implementation

Figure 15.RTL Implementation

In our project we would be multiplying two matrices A [] and B [] and we would be storing the result in a

matrix C []. We would be using c language to make the code for this matrix multiplication and after that we

are going to export the RTL design and will try perform it on FPGA board.

(For simplicity we are assuming all matrices as 3*3 matrix)

Create a new project

using Vivado hls (using

c / c++ languages)

Run c simulation and debugger Synthesize the design and analyze it

using analysis perspective

Applying directives for latency reduction Run c / RTL co-simulation
Viewing simulation

results in vivado

Export RTL and implement it

on FPGA using Vivado design

suite

C CODE FOR MATRIX MULTIPLICATION THAT WE ARE GOING TO USE

TEST BENCH FILE:

#include<stdio.h>

#include<conio.h>

#define M 3

#define N 3

void mul_mat(char A[M][N],char B[M][N],char C[M][N]);

int main()

{

char a[M][N],b[M][N];

char c[M][N];

printf("\n the first matrix:");

for (int x=0;x<M;x++)

 {

 printf("\n");

 main_label0:for(int y=0;y<N;y++)

 {

 a[x][y]=rand()%5;

 printf("%d",a[x][y]);

 printf(" \t");

 }

 }

printf("\n the second matrix:\n");

for (int w=0;w<M;w++)

 {

 printf("\n");

 main_label1:for(int z=0;z<N;z++)

 {

 b[w][z]=rand()%5;

 printf("%d",b[w][z]);

 printf(" \t");

 }

 }

mul_mat(a,b,c);

return 0;

}

LATENCY REDUCTION TECHNIQUES :

To optimize the result produced in the above code we are going to use certain directives present in directive

panel of vivado Hls and in the end we would be comparing the results produced by each directive and

choosing one with the lowest latency to implement on the FPGA board.

Directive panel :

Figure below contains all the directives which we can use for optimizations in vivado Hls.

Figure 16. Directives

Directives which we are going to use are pipelining and loop unrolling to reduce the latency of our code.

To improve the performance of a CPU we have two options:

1) Improve the hardware by introducing faster circuits.

2) Arrange the hardware such that more than one operation can be performed at the same time.

Since, there is a limit on the speed of hardware and the cost of faster circuits is quite high, we have to adopt

the 2nd option.

PIPELINING:

Pipelining is a process of arrangement of hardware elements of the CPU such that its overall performance is

increased. Simultaneous execution of more than one instruction takes place in a pipelined processor.

Design of a basic pipeline
 In a pipelined processor, a pipeline has two ends, the input end and the output end. Between these ends,

there are multiple stages/segments such that output of one stage is connected to input of next stage and

each stage performs a specific operation.

 Interface registers are used to hold the intermediate output between two stages. These interface

registers are also called latch or buffer.

 All the stages in the pipeline along with the interface registers are controlled by a common clock.

Execution in a pipelined processor:

Execution sequence of instructions in a pipelined processor can be visualized using a space-time diagram.

For example, consider a processor having 4 stages and let there be 2 instructions to be executed. We can

visualize the execution sequence through the following space-time diagrams:

Table 1. Instruction executions in pipelined processor [10]

Pipeline Stages

RISC processor has 5 stage instruction pipeline to execute all the instructions in the RISC instruction set.

Following are the 5 stages of RISC pipeline with their respective operations:

 Stage 1 (instruction fetch)

In this stage the CPU reads instructions from the address in the memory whose value is present in the

program counter

 Stage 2 (instruction decode)

In this stage, instruction is decoded and the register file is accessed to get the values from the registers used

in the instruction

 Stage 3 (instruction execute)

In this stage, ALU operations are performed

 Stage 4 (memory access)

In this stage, memory operands are read and written from/to the memory that is present in the instruction

 Stage 5(write back)

In this stage, computed/fetched value is written back to the register present in the instruction.

Dependencies in a pipelined processor

There are mainly three types of dependencies possible in a pipelined processor. These are:

1) Structural Dependency

2) Control Dependency

3) Data Dependency

These dependencies may introduce stalls in the pipeline.

Stall: A stall is a cycle in pipeline without new input.

Structural dependency

This dependency arises due to the resource conflict in the pipeline. A resource conflict is a situation when

more than one instruction tries to access the same resource in the same cycle. A resource can be a register,

memory, or ALU.

http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/03/pipelining-1.png
http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/03/pipelining-1.png

Example

Control dependency (Branch Hazards)

This type of dependency occurs during the transfer of control instructions such as BRANCH, CALL, JMP,

etc. On many instruction architectures, the processor will not know the target address of these instructions

when it needs to insert the new instruction into the pipeline. Due to this, unwanted instructions are fed to the

pipeline.

Consider the following sequence of instructions in the program:

100:I1

101:I2 (JMP250)

102:I3

..

..

250: BI1

Expected output: I1 -> I2 -> BI1

NOTE: Generally, the target address of the JMP instruction is known after ID stage only.

Table 2. Control Dependency [10]

Output Sequence: I1 -> I2 -> I3 -> BI1

So, the output sequence is not equal to the expected output that means the pipeline is not implemented

correctly.

DATA HAZARDS

Data hazards occur when instructions that exhibit data dependence, modify data in different stages of a

pipeline. Hazard cause delays in the pipeline. There are mainly three types of data hazards:

1) RAW (Read after Write) [Flow dependency]

2) WAR (Write after Read) [Anti-Data dependency]

3) WAW (Write after Write) [Output dependency]

Example: Let there be two instructions I1 and I2 such that:

I1:ADDR1,R2,R3

I2:SUB R4, R1, R2

When the above instructions are executed in a pipelined processor, then data dependency condition will

occur, which means that I2 tries to read the data before I1 writes it, therefore, I2 incorrectly gets the old value

from I1.

Table 3. stalls in pipeline [10]

To minimize data dependency stalls in the pipeline, operand forwarding is used.

Operand Forwarding : In operand forwarding, we use the interface registers present between the stages to

hold intermediate output so that dependent instruction can access new value from the interface register

directly.

Considering the same example:

I1 : ADD R1, R2, R3

I2 : SUB R4, R1, R2

Table 4. Operand Forwarding [10]

Keeping all the limitations in mind we applied pipelining in the third or say the outermost loop of our main

code of matrix multiplication.

LOOP UNROLLING:

Loop unrolling is a loop transformation technique that helps to optimize the execution time of a program.

Loops with small number of iterations can be unrolled for higher performance. Loop unrolling aims to

increase the program’s speed by eliminating loop control instruction and loop test instructions.

Program 1:
// This program does not uses loop unrolling.
#include<stdio.h>

int main(void)
{
 for (int i=0; i<5; i++)
 printf("Hello\n"); //print hello 5 times

 return 0;
}

Program 2:
// This program uses loop unrolling.
#include<stdio.h>

int main(void)
{
 // unrolled the for loop in program 1
 printf("Hello\n");
 printf("Hello\n");
 printf("Hello\n");
 printf("Hello\n");
 printf("Hello\n");

 return 0;
}

Output:

Hello

Hello

Hello

Hello

Hello

Illustration:

Program 2 is more efficient than program 1 because in program 1 there is a need to check the value of i and

increment the value of i every time round the loop. So small loops like this or loops where there is fixed

number of iterations are involved can be unrolled completely to reduce the loop overhead.

Advantages:

 Increases program efficiency.

 Reduces loop overhead.

 If statements in loop are not dependent on each other, they can be executed in parallel.

Figure 17. Unrolled Loops with Latency [15]

Disadvantages:

 Increased program code size, which can be undesirable.

 Possible increased usage of register in a single iteration to store temporary variables which may reduce

performance.

 Apart from very small and simple codes, unrolled loops that contain branches are even slower than

recursions.

PARTIAL UNROLLING

Fully unrolling loops can create a lot of hardware

Loops can be partially unrolled

– Provides the type of exploration shown in the previous slide

Partial Unrolling

– A standard loop of N iterations can be unrolled to by a factor

– For example unroll by a factor 2, to have N/2 iterations

LOOP FLATTENING

Vivado HLS can automatically flatten nested loops

– A faster approach than manually changing the code

Flattening should be specified on the inner most loop

– It will be flattened into the loop above

– The “off” option can prevent loops in the hierarchy from being flattened

Figure 18. Loop Flattening [15]

PERFECT AND SEMI PERFECT LOOPS

Only perfect and semi-perfect loops can be flattened

– The loop should be labeled or directives cannot be applied

– Perfect Loops

– Only the inner most loop has body (contents)

– There is no logic specified between the loop statements

– The loop bounds are constant

– Semi-perfect Loops

– Only the inner most loop has body (contents)

– There is no logic specified between the loop statements

– The outer most loop bound can be variable

Figure 19.

Perfect and Semi –perfect

loop[15]

RESULTS AND THEIR COMPARISON

Before pipelining and loop unrolling:

 Figure 20. Before pipelining and Loop Unrolling

After pipelining:

 Figure 21. After Pipelining

After loop unrolling:

 Figure 22. After Loop Unrolling

After comparing all three results we have come to conclusion that the latency is minimum in case of loop

unrolling also the utilization of hardware is also maximum in case of loop unrolling. Since the latency in the

case of loop unrolling is minimum so we would be using that code for further operations.

FINAL RTL CODE (VHDL)

==

-- RTL generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC

-- Version: 2017.2

-- Copyright (C) 1986-2017 Xilinx, Inc. All Rights Reserved.

--

-- ===

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity mul_mat is

port (

 ap_clk : IN STD_LOGIC;

 ap_rst : IN STD_LOGIC;

 ap_start : IN STD_LOGIC;

 ap_done : OUT STD_LOGIC;

 ap_idle : OUT STD_LOGIC;

 ap_ready : OUT STD_LOGIC;

 A_address0 : OUT STD_LOGIC_VECTOR (3 downto 0);

 A_ce0 : OUT STD_LOGIC;

 A_q0 : IN STD_LOGIC_VECTOR (7 downto 0);

 B_address0 : OUT STD_LOGIC_VECTOR (3 downto 0);

 B_ce0 : OUT STD_LOGIC;

 B_q0 : IN STD_LOGIC_VECTOR (7 downto 0);

 C_address0 : OUT STD_LOGIC_VECTOR (3 downto 0);

 C_ce0 : OUT STD_LOGIC;

 C_we0 : OUT STD_LOGIC;

 C_d0 : OUT STD_LOGIC_VECTOR (7 downto 0));

end;

architecture behav of mul_mat is

 attribute CORE_GENERATION_INFO : STRING;

 attribute CORE_GENERATION_INFO of behav : architecture is

"mul_mat,hls_ip_2017_2,{HLS_INPUT_TYPE=c,HLS_INPUT_FLOAT=0,HLS_INPUT_FIXED=0,HLS_INPUT_

PART=xc7a35tcpg236-

3,HLS_INPUT_CLOCK=10.000000,HLS_INPUT_ARCH=others,HLS_SYN_CLOCK=9.120000,HLS_SYN_LAT=52

,HLS_SYN_TPT=none,HLS_SYN_MEM=0,HLS_SYN_DSP=2,HLS_SYN_FF=202,HLS_SYN_LUT=239}";

 constant ap_const_logic_1 : STD_LOGIC := '1';

 constant ap_const_logic_0 : STD_LOGIC := '0';

 constant ap_ST_fsm_state1 : STD_LOGIC_VECTOR (6 downto 0) := "0000001";

 constant ap_ST_fsm_state2 : STD_LOGIC_VECTOR (6 downto 0) := "0000010";

 constant ap_ST_fsm_state3 : STD_LOGIC_VECTOR (6 downto 0) := "0000100";

 constant ap_ST_fsm_state4 : STD_LOGIC_VECTOR (6 downto 0) := "0001000";

 constant ap_ST_fsm_state5 : STD_LOGIC_VECTOR (6 downto 0) := "0010000";

 constant ap_ST_fsm_state6 : STD_LOGIC_VECTOR (6 downto 0) := "0100000";

 constant ap_ST_fsm_state7 : STD_LOGIC_VECTOR (6 downto 0) := "1000000";

 constant ap_const_lv32_0 : STD_LOGIC_VECTOR (31 downto 0) :=

"00000000000000000000000000000000";

 constant ap_const_lv32_1 : STD_LOGIC_VECTOR (31 downto 0) :=

"00000000000000000000000000000001";

 constant ap_const_lv1_0 : STD_LOGIC_VECTOR (0 downto 0) := "0";

 constant ap_const_lv32_2 : STD_LOGIC_VECTOR (31 downto 0) :=

"00000000000000000000000000000010";

 constant ap_const_lv32_3 : STD_LOGIC_VECTOR (31 downto 0) :=

"00000000000000000000000000000011";

 constant ap_const_lv32_4 : STD_LOGIC_VECTOR (31 downto 0) :=

"00000000000000000000000000000100";

 constant ap_const_lv32_5 : STD_LOGIC_VECTOR (31 downto 0) :=

"00000000000000000000000000000101";

 constant ap_const_lv2_0 : STD_LOGIC_VECTOR (1 downto 0) := "00";

 constant ap_const_lv1_1 : STD_LOGIC_VECTOR (0 downto 0) := "1";

 constant ap_const_lv32_6 : STD_LOGIC_VECTOR (31 downto 0) :=

"00000000000000000000000000000110";

 constant ap_const_lv2_3 : STD_LOGIC_VECTOR (1 downto 0) := "11";

 constant ap_const_lv2_1 : STD_LOGIC_VECTOR (1 downto 0) := "01";

 constant ap_const_lv5_1 : STD_LOGIC_VECTOR (4 downto 0) := "00001";

 constant ap_const_lv5_2 : STD_LOGIC_VECTOR (4 downto 0) := "00010";

 constant ap_const_lv4_6 : STD_LOGIC_VECTOR (3 downto 0) := "0110";

 constant ap_const_lv3_3 : STD_LOGIC_VECTOR (2 downto 0) := "011";

 constant ap_const_boolean_1 : BOOLEAN := true;

 signal ap_CS_fsm : STD_LOGIC_VECTOR (6 downto 0) := "0000001";

 attribute fsm_encoding : string;

 attribute fsm_encoding of ap_CS_fsm : signal is "none";

 signal ap_CS_fsm_state1 : STD_LOGIC;

 attribute fsm_encoding of ap_CS_fsm_state1 : signal is "none";

 signal i_1_fu_138_p2 : STD_LOGIC_VECTOR (1 downto 0);

 signal i_1_reg_275 : STD_LOGIC_VECTOR (1 downto 0);

 signal ap_CS_fsm_state2 : STD_LOGIC;

 attribute fsm_encoding of ap_CS_fsm_state2 : signal is "none";

 signal tmp_4_fu_160_p2 : STD_LOGIC_VECTOR (4 downto 0);

 signal tmp_4_reg_280 : STD_LOGIC_VECTOR (4 downto 0);

 signal exitcond4_fu_132_p2 : STD_LOGIC_VECTOR (0 downto 0);

 signal A_addr_reg_285 : STD_LOGIC_VECTOR (3 downto 0);

 signal A_addr_1_reg_290 : STD_LOGIC_VECTOR (3 downto 0);

 signal A_addr_2_reg_295 : STD_LOGIC_VECTOR (3 downto 0);

 signal j_1_fu_199_p2 : STD_LOGIC_VECTOR (1 downto 0);

 signal j_1_reg_303 : STD_LOGIC_VECTOR (1 downto 0);

 signal ap_CS_fsm_state3 : STD_LOGIC;

 attribute fsm_encoding of ap_CS_fsm_state3 : signal is "none";

 signal exitcond3_fu_193_p2 : STD_LOGIC_VECTOR (0 downto 0);

 signal ap_CS_fsm_state4 : STD_LOGIC;

 attribute fsm_encoding of ap_CS_fsm_state4 : signal is "none";

 signal A_load_reg_318 : STD_LOGIC_VECTOR (7 downto 0);

 signal B_load_reg_323 : STD_LOGIC_VECTOR (7 downto 0);

 signal ap_CS_fsm_state5 : STD_LOGIC;

 attribute fsm_encoding of ap_CS_fsm_state5 : signal is "none";

 signal tmp_s_fu_244_p2 : STD_LOGIC_VECTOR (4 downto 0);

 signal tmp_s_reg_333 : STD_LOGIC_VECTOR (4 downto 0);

 signal tmp_9_2_fu_249_p2 : STD_LOGIC_VECTOR (7 downto 0);

 signal tmp_9_2_reg_338 : STD_LOGIC_VECTOR (7 downto 0);

 signal grp_fu_264_p3 : STD_LOGIC_VECTOR (7 downto 0);

 signal tmp_2_2_reg_343 : STD_LOGIC_VECTOR (7 downto 0);

 signal ap_CS_fsm_state6 : STD_LOGIC;

 attribute fsm_encoding of ap_CS_fsm_state6 : signal is "none";

 signal i_reg_109 : STD_LOGIC_VECTOR (1 downto 0);

 signal j_reg_120 : STD_LOGIC_VECTOR (1 downto 0);

 signal ap_CS_fsm_state7 : STD_LOGIC;

 attribute fsm_encoding of ap_CS_fsm_state7 : signal is "none";

 signal tmp_4_cast_fu_166_p1 : STD_LOGIC_VECTOR (31 downto 0);

 signal tmp_5_cast_fu_177_p1 : STD_LOGIC_VECTOR (31 downto 0);

 signal tmp_6_cast_fu_188_p1 : STD_LOGIC_VECTOR (31 downto 0);

 signal tmp_3_fu_205_p1 : STD_LOGIC_VECTOR (31 downto 0);

 signal tmp_8_cast_fu_220_p1 : STD_LOGIC_VECTOR (31 downto 0);

 signal tmp_7_cast_fu_239_p1 : STD_LOGIC_VECTOR (31 downto 0);

 signal tmp_10_cast_fu_255_p1 : STD_LOGIC_VECTOR (31 downto 0);

 signal tmp_1_fu_148_p3 : STD_LOGIC_VECTOR (3 downto 0);

 signal p_shl_cast_fu_156_p1 : STD_LOGIC_VECTOR (4 downto 0);

 signal tmp_cast_fu_144_p1 : STD_LOGIC_VECTOR (4 downto 0);

 signal tmp_5_fu_171_p2 : STD_LOGIC_VECTOR (4 downto 0);

 signal tmp_6_fu_182_p2 : STD_LOGIC_VECTOR (4 downto 0);

 signal tmp_3_cast1_fu_210_p1 : STD_LOGIC_VECTOR (3 downto 0);

 signal tmp_8_fu_214_p2 : STD_LOGIC_VECTOR (3 downto 0);

 Signal tmp_3_cast_fu_229_p1: STD_LOGIC_VECTOR (2 downto 0);

 signal tmp_7_fu_233_p2 : STD_LOGIC_VECTOR (2 downto 0);

 signal tmp_3_cast2_fu_225_p1 : STD_LOGIC_VECTOR (4 downto 0);

 signal tmp_9_2_fu_249_p0 : STD_LOGIC_VECTOR (7 downto 0);

 signal tmp_9_2_fu_249_p1 : STD_LOGIC_VECTOR (7 downto 0);

 signal grp_fu_259_p3 : STD_LOGIC_VECTOR (7 downto 0);

 signal ap_NS_fsm : STD_LOGIC_VECTOR (6 downto 0);

 component mul_mat_mac_muladbkb IS

 generic (

 ID : INTEGER;

 NUM_STAGE : INTEGER;

 din0_WIDTH : INTEGER;

 din1_WIDTH : INTEGER;

 din2_WIDTH : INTEGER;

 dout_WIDTH : INTEGER);

 port (

 din0 : IN STD_LOGIC_VECTOR (7 downto 0);

 din1 : IN STD_LOGIC_VECTOR (7 downto 0);

 din2 : IN STD_LOGIC_VECTOR (7 downto 0);

 dout : OUT STD_LOGIC_VECTOR (7 downto 0));

 end component;

 component mul_mat_mac_muladcud IS

 generic (

 ID : INTEGER;

 NUM_STAGE : INTEGER;

 din0_WIDTH : INTEGER;

 din1_WIDTH : INTEGER;

 din2_WIDTH : INTEGER;

 dout_WIDTH : INTEGER);

 port (

 din0 : IN STD_LOGIC_VECTOR (7 downto 0);

 din1 : IN STD_LOGIC_VECTOR (7 downto 0);

 din2 : IN STD_LOGIC_VECTOR (7 downto 0);

 dout : OUT STD_LOGIC_VECTOR (7 downto 0));

 end component;

begin

 mul_mat_mac_muladbkb_U0 : component mul_mat_mac_muladbkb

 generic map (

 ID => 1,

 NUM_STAGE => 1,

 din0_WIDTH => 8,

 din1_WIDTH => 8,

 din2_WIDTH => 8,

 dout_WIDTH => 8)

 port map (

 din0 => B_load_reg_323,

 din1 => A_load_reg_318,

 din2 => tmp_9_2_reg_338,

 dout => grp_fu_259_p3);

 mul_mat_mac_muladcud_U1 : component mul_mat_mac_muladcud

 generic map (

 ID => 1,

 NUM_STAGE => 1,

 din0_WIDTH => 8,

 din1_WIDTH => 8,

 din2_WIDTH => 8,

 dout_WIDTH => 8)

 port map (

 din0 => B_q0,

 din1 => A_q0,

 din2 => grp_fu_259_p3,

 dout => grp_fu_264_p3);

 ap_CS_fsm_assign_proc : process(ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if (ap_rst = '1') then

 ap_CS_fsm <= ap_ST_fsm_state1;

 else

 ap_CS_fsm <= ap_NS_fsm;

 end if;

 end if;

 end process;

 i_reg_109_assign_proc : process (ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if (((ap_const_logic_1 = ap_CS_fsm_state3) and (exitcond3_fu_193_p2 =

ap_const_lv1_1))) then

 i_reg_109 <= i_1_reg_275;

 elsif (((ap_const_logic_1 = ap_CS_fsm_state1) and (ap_start =

ap_const_logic_1))) then

 i_reg_109 <= ap_const_lv2_0;

 end if;

 end if;

 end process;

 j_reg_120_assign_proc : process (ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if ((ap_const_logic_1 = ap_CS_fsm_state7)) then

 j_reg_120 <= j_1_reg_303;

 elsif (((ap_const_logic_1 = ap_CS_fsm_state2) and (exitcond4_fu_132_p2 =

ap_const_lv1_0))) then

 j_reg_120 <= ap_const_lv2_0;

 end if;

 end if;

 end process;

 process (ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if (((ap_const_logic_1 = ap_CS_fsm_state2) and (exitcond4_fu_132_p2 =

ap_const_lv1_0))) then

 A_addr_1_reg_290 <= tmp_5_cast_fu_177_p1(4 - 1 downto 0);

 A_addr_2_reg_295 <= tmp_6_cast_fu_188_p1(4 - 1 downto 0);

 A_addr_reg_285 <= tmp_4_cast_fu_166_p1(4 - 1 downto 0);

 tmp_4_reg_280 <= tmp_4_fu_160_p2;

 end if;

 end if;

 end process;

 process (ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if ((ap_const_logic_1 = ap_CS_fsm_state4)) then

 A_load_reg_318 <= A_q0;

 B_load_reg_323 <= B_q0;

 end if;

 end if;

 end process;

 process (ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if ((ap_const_logic_1 = ap_CS_fsm_state2)) then

 i_1_reg_275 <= i_1_fu_138_p2;

 end if;

 end if;

 end process;

 process (ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if ((ap_const_logic_1 = ap_CS_fsm_state3)) then

 j_1_reg_303 <= j_1_fu_199_p2;

 end if;

 end if;

 end process;

 process (ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if ((ap_const_logic_1 = ap_CS_fsm_state6)) then

 tmp_2_2_reg_343 <= grp_fu_264_p3;

 end if;

 end if;

 end process;

 process (ap_clk)

 begin

 if (ap_clk'event and ap_clk = '1') then

 if ((ap_const_logic_1 = ap_CS_fsm_state5)) then

 tmp_9_2_reg_338 <= tmp_9_2_fu_249_p2;

 tmp_s_reg_333 <= tmp_s_fu_244_p2;

 end if;

 end if;

 end process;

 ap_NS_fsm_assign_proc : process (ap_start, ap_CS_fsm, ap_CS_fsm_state1,

ap_CS_fsm_state2, exitcond4_fu_132_p2, ap_CS_fsm_state3, exitcond3_fu_193_p2)

 begin

 case ap_CS_fsm is

 when ap_ST_fsm_state1 =>

 if (((ap_const_logic_1 = ap_CS_fsm_state1) and (ap_start =

ap_const_logic_1))) then

 ap_NS_fsm <= ap_ST_fsm_state2;

 else

 ap_NS_fsm <= ap_ST_fsm_state1;

 end if;

 when ap_ST_fsm_state2 =>

 if (((ap_const_logic_1 = ap_CS_fsm_state2) and (exitcond4_fu_132_p2 =

ap_const_lv1_1))) then

 ap_NS_fsm <= ap_ST_fsm_state1;

 else

 ap_NS_fsm <= ap_ST_fsm_state3;

 end if;

 when ap_ST_fsm_state3 =>

 if (((ap_const_logic_1 = ap_CS_fsm_state3) and (exitcond3_fu_193_p2 =

ap_const_lv1_1))) then

 ap_NS_fsm <= ap_ST_fsm_state2;

 else

 ap_NS_fsm <= ap_ST_fsm_state4;

 end if;

 when ap_ST_fsm_state4 =>

 ap_NS_fsm <= ap_ST_fsm_state5;

 when ap_ST_fsm_state5 =>

 ap_NS_fsm <= ap_ST_fsm_state6;

 when ap_ST_fsm_state6 =>

 ap_NS_fsm <= ap_ST_fsm_state7;

 when ap_ST_fsm_state7 =>

 ap_NS_fsm <= ap_ST_fsm_state3;

 when others =>

 ap_NS_fsm <= "XXXXXXX";

 end case;

 end process;

 A_address0_assign_proc : process(A_addr_reg_285, A_addr_1_reg_290,

A_addr_2_reg_295, ap_CS_fsm_state3, ap_CS_fsm_state4, ap_CS_fsm_state5)

 begin

 if ((ap_const_logic_1 = ap_CS_fsm_state5)) then

 A_address0 <= A_addr_1_reg_290;

 elsif ((ap_const_logic_1 = ap_CS_fsm_state4)) then

 A_address0 <= A_addr_2_reg_295;

 elsif ((ap_const_logic_1 = ap_CS_fsm_state3)) then

 A_address0 <= A_addr_reg_285;

 else

 A_address0 <= "XXXX";

 end if;

 end process;

 A_ce0_assign_proc : process(ap_CS_fsm_state3, ap_CS_fsm_state4, ap_CS_fsm_state5)

 begin

 if (((ap_const_logic_1 = ap_CS_fsm_state3) or (ap_const_logic_1 =

ap_CS_fsm_state4) or (ap_const_logic_1 = ap_CS_fsm_state5))) then

 A_ce0 <= ap_const_logic_1;

 else

 A_ce0 <= ap_const_logic_0;

 end if;

 end process;

 B_address0_assign_proc : process(ap_CS_fsm_state3, ap_CS_fsm_state4,

ap_CS_fsm_state5, tmp_3_fu_205_p1, tmp_8_cast_fu_220_p1, tmp_7_cast_fu_239_p1)

 begin

 if ((ap_const_logic_1 = ap_CS_fsm_state5)) then

 B_address0 <= tmp_7_cast_fu_239_p1(4 - 1 downto 0);

 elsif ((ap_const_logic_1 = ap_CS_fsm_state4)) then

 B_address0 <= tmp_8_cast_fu_220_p1(4 - 1 downto 0);

 elsif ((ap_const_logic_1 = ap_CS_fsm_state3)) then

 B_address0 <= tmp_3_fu_205_p1(4 - 1 downto 0);

 else

 B_address0 <= "XXXX";

 end if;

 end process;

 B_ce0_assign_proc : process(ap_CS_fsm_state3, ap_CS_fsm_state4, ap_CS_fsm_state5)

 begin

 if (((ap_const_logic_1 = ap_CS_fsm_state3) or (ap_const_logic_1 =

ap_CS_fsm_state4) or (ap_const_logic_1 = ap_CS_fsm_state5))) then

 B_ce0 <= ap_const_logic_1;

 else

 B_ce0 <= ap_const_logic_0;

 end if;

 end process;

 C_address0 <= tmp_10_cast_fu_255_p1(4 - 1 downto 0);

 C_ce0_assign_proc : process(ap_CS_fsm_state7)

 begin

 if ((ap_const_logic_1 = ap_CS_fsm_state7)) then

 C_ce0 <= ap_const_logic_1;

 else

 C_ce0 <= ap_const_logic_0;

 end if;

 end process;

 C_d0 <= tmp_2_2_reg_343;

 C_we0_assign_proc : process(ap_CS_fsm_state7)

 begin

 if ((ap_const_logic_1 = ap_CS_fsm_state7)) then

 C_we0 <= ap_const_logic_1;

 else

 C_we0 <= ap_const_logic_0;

 end if;

 end process;

 ap_CS_fsm_state1 <= ap_CS_fsm(0);

 ap_CS_fsm_state2 <= ap_CS_fsm(1);

 ap_CS_fsm_state3 <= ap_CS_fsm(2);

 ap_CS_fsm_state4 <= ap_CS_fsm(3);

 ap_CS_fsm_state5 <= ap_CS_fsm(4);

 ap_CS_fsm_state6 <= ap_CS_fsm(5);

 ap_CS_fsm_state7 <= ap_CS_fsm(6);

 ap_done_assign_proc : process(ap_CS_fsm_state2, exitcond4_fu_132_p2)

 begin

 if (((ap_const_logic_1 = ap_CS_fsm_state2) and (exitcond4_fu_132_p2 =

ap_const_lv1_1))) then

 ap_done <= ap_const_logic_1;

 else

 ap_done <= ap_const_logic_0;

 end if;

 end process;

 ap_idle_assign_proc : process(ap_start, ap_CS_fsm_state1)

 begin

 if (((ap_const_logic_0 = ap_start) and (ap_const_logic_1 = ap_CS_fsm_state1)))

then

 ap_idle <= ap_const_logic_1;

 else

 ap_idle <= ap_const_logic_0;

 end if;

 end process;

 ap_ready_assign_proc : process(ap_CS_fsm_state2, exitcond4_fu_132_p2)

 begin

 if (((ap_const_logic_1 = ap_CS_fsm_state2) and (exitcond4_fu_132_p2 =

ap_const_lv1_1))) then

 ap_ready <= ap_const_logic_1;

 else

 ap_ready <= ap_const_logic_0;

 end if;

 end process;

 exitcond3_fu_193_p2 <= "1" when (j_reg_120 = ap_const_lv2_3) else "0";

 exitcond4_fu_132_p2 <= "1" when (i_reg_109 = ap_const_lv2_3) else "0";

 i_1_fu_138_p2 <= std_logic_vector(unsigned(i_reg_109) + unsigned(ap_const_lv2_1));

 j_1_fu_199_p2 <= std_logic_vector(unsigned(j_reg_120) + unsigned(ap_const_lv2_1));

 p_shl_cast_fu_156_p1 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(tmp_1_fu_148_p3),5));

 tmp_10_cast_fu_255_p1 <=

std_logic_vector(IEEE.numeric_std.resize(signed(tmp_s_reg_333),32));

 tmp_1_fu_148_p3 <= (i_reg_109 & ap_const_lv2_0);

 tmp_3_cast1_fu_210_p1 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(j_reg_120),4));

 tmp_3_cast2_fu_225_p1 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(j_reg_120),5));

 tmp_3_cast_fu_229_p1 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(j_reg_120),3));

 tmp_3_fu_205_p1 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(j_reg_120),32));

 tmp_4_cast_fu_166_p1 <=

std_logic_vector(IEEE.numeric_std.resize(signed(tmp_4_fu_160_p2),32));

 tmp_4_fu_160_p2 <= std_logic_vector(unsigned(p_shl_cast_fu_156_p1) -

unsigned(tmp_cast_fu_144_p1));

 tmp_5_cast_fu_177_p1 <=

std_logic_vector(IEEE.numeric_std.resize(signed(tmp_5_fu_171_p2),32));

 tmp_5_fu_171_p2 <= std_logic_vector(unsigned(tmp_4_fu_160_p2) +

unsigned(ap_const_lv5_1));

 tmp_6_cast_fu_188_p1 <=

std_logic_vector(IEEE.numeric_std.resize(signed(tmp_6_fu_182_p2),32));

 tmp_6_fu_182_p2 <= std_logic_vector(unsigned(tmp_4_fu_160_p2) +

unsigned(ap_const_lv5_2));

 tmp_7_cast_fu_239_p1 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(tmp_7_fu_233_p2),32));

 tmp_7_fu_233_p2 <= std_logic_vector(unsigned(tmp_3_cast_fu_229_p1) +

unsigned(ap_const_lv3_3));

 tmp_8_cast_fu_220_p1 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(tmp_8_fu_214_p2),32));

 tmp_8_fu_214_p2 <= std_logic_vector(unsigned(tmp_3_cast1_fu_210_p1) +

unsigned(ap_const_lv4_6));

 tmp_9_2_fu_249_p0 <= B_q0;

 tmp_9_2_fu_249_p1 <= A_q0;

 tmp_9_2_fu_249_p2 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(std_logic_vector(signed(tmp_9_2_fu_24

9_p0) * signed(tmp_9_2_fu_249_p1))), 8));

 tmp_cast_fu_144_p1 <=

std_logic_vector(IEEE.numeric_std.resize(unsigned(i_reg_109),5));

 tmp_s_fu_244_p2 <= std_logic_vector(unsigned(tmp_4_reg_280) +

unsigned(tmp_3_cast2_fu_225_p1));

end behav;

FINAL DESIGN :

The design of matrix multiplication of a 3*3 matrices produced by the code in previous chapter is as follows

Figure 23. Final RTL Design

And operation / control steps for this design are as follows:

Figure 24. timing diagram of operation

Input A

Input B

Output

CHAPTER 4: APPLICATIONS BASED ON THE PROJECT

Computation-intensive algorithms require a high level of parallelism and programmability, which make them

good candidate for hardware acceleration using fine-grained processor arrays. Using Hardware Description

Language (HDL), it is very difficult to design and manage fine-grained processing units and therefore High-

Level Language (HLL) is a preferred alternative.

Data-intensive computing is a class of parallel computing applications which use a data parallel approach to

process large volumes of data typically terabytes or petabytes in size and typically referred to as big data.

Computing applications which devote most of their execution time to computational requirements are

deemed compute-intensive, whereas computing applications which require large volumes of data and devote

most of their processing time to I/O and manipulation of data are deemed data-intensive.

The concept of this project can be used to solve the major problems faced by many research oriented fields

which involve intensive high-level computational problems.

 The algorithms involved in climate modeling and weather predictions are very complex and

computationally demanding as they operate over large domains requiring high resolutions or very

long integration times thus exacerbating the need for high-performance resources so that accurate

estimates can be found in useful time (a weather prediction for tomorrow is hardly useful if it requires

more than 24 hours to compute). Improving prediction quality and accuracy requires higher

resolution models found by exploring a wide range of its parameters. This is a daunting and error-

prone process, demanding even more computing power.

 Astronomy and Astrophysics are two fields that often require optimizing problems of high

complexity or analyzing a huge amount of data and the so-called complete optimization methods are

inherently limited by the size of the problem/data. For instance, reliable analysis of large amounts of

data is central to modern astrophysics and astronomical sciences in general. Some of these problems,

such as the estimation of non-lineal parameters, the development of automatic learning techniques,

the implementation of control systems, or the resolution of multi-objective optimization problems,

have had (and have) a special repercussion in the fields.

 Intensive Mathematical Fields

 Statistical distributions - the Binomial, Poisson and Gaussian

 Least squares fitting to data. The extension to multi-variate least squares is made using matrix

methods

 Numerical solution to differential equations. Euler Method to Runge-Kutta method along with

Boundary Value problems

 Find periods in unequally sampled data. It is shown how a period can be extracted from noisy data.

This leads to the concept of the periodogram.

 Computational physics, to solve problems in quantum physics, electromagnetism,

biophysics, mechanics, chaos, nonlinear dynamics, and other areas.

 Computational Chemistry, for computing the interatomic distances between the particles present in

a crystal lattice. The study can be further be taken ahead to understand the potential energy behavior

for each particle in the lattice as potential energy is proportional to the interatomic distance.

The growth of FPGA Programming and hardware implementation is unimaginable, they can be used almost

for all possible digital logic setup purposes.

CHAPTER 5: CONCLUSION AND SCOPE FOR FUTURE WORK

As the FPGA offers us a dual advantage of the flexibility in hardware designing and parallelizing the design

process, the concept of the project can be explained as; we are looking to incorporate a method using FPGA

and hardware programming to combine the two aspects being, designing a complex system to solve high-

level intensive computations and to optimize the system performance to give a reduced latency (delay).

Through this work in our project we have achieved the level where we can say that the FPGA is completely

user friendly and is reprogrammable in any way so as to achieve almost any possible digital logic system.

We have designed the Structures for two separate kinds of mathematical operations, basic mathematical

operations (addition, etc.), which we achieved using HDL programming (VHDL/Verilog), and matrix

multiplication, which we achieved using HLL programming(C/C++).

We have also achieved a possible way of interaction between the hardware FPGA and the host PC, using

UART Serial Communication Protocol, and have also verified its reliability and design ease on the FPGA.

We have also studied and implemented certain parallelizing directives (pipelining, loop unrolling, etc.)

which could be used to reduce latencies for the basic architecture designs. The optimization is a key

component in today’s world and is essential for any hardware development.

Since, the project is still in developmental stage, the ultimate objective is to combine both the works that

have been done by us, one, the architecture of system and interaction of FPGA and PC, and second,

optimizing/reducing time cycles required for the operations to be completed, to create one final software that

could do both the works efficiently and provide improved and enhanced results in faster time periods.

Obviously, the architecture can be reprogrammed according to user needs and the parallelizing techniques

can always be improved according to the increasing demand in development models of hardware

implemented computation modules.

REFERENCES

 Shouqian Yu ,Lili Yi, Weihai Chen, Zhaojin Wen - Implementation of a Multi-channel UART

Controller Based on FIFO Technique and FPGA

 Sonali Dhage, Manali Patil,Navnath Temgire,Pushkar Vaity, Sangeeta Parshionikar - Design and

FPGA Implementation of a High Speed UART

 FPGA Center - http://fpgacenter.com/fpga/index.php

 BASYS 3 Reference Manual - https://reference.digilentinc.com/basys3/refmanual

 RealTerm - Serial/TCP Terminal Software -

http://www.softpedia.com/get/System/SystemMiscellaneous/RealTerm.shtml

 Basics of UART Communication - http://www.circuitbasics.com/basics-uart-communication/

 Evolutionary Computation in Astronomy and Astrophysics: A Review -- José A. García Gutiérrez,

Carlos Cotta, Antonio J. Fernández-Leiva

 CLIMA2016 Computational Challenges for Climate Modeling and Weather Prediction

 Computer Organization and Architecture and Pipelining - http://www.geeksforgeeks.org/computer-

organization-and-architecture-pipelining-set-2-dependencies-and-data-hazard/

 Parallel Computing - https://en.wikipedia.org/wiki/Parallel_computing

 Ruediger Willenberg, Paul Chow Electrical & Computer Engineering, University of Toronto -- A

software parallel programming approach to FPGA-accelerated computing

 Parallel Computing (EECS) - http://web.eecs.umich.edu/~qstout/parallel.html

 Loop Unrolling - http://www.geeksforgeeks.org/loop-unrolling/

 Introduction to FPGA Design with Vivado High-Level Synthesis

https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf

APPENDIX

1) Meta- Stability Hardener Source Code:

`timescale 1ns/1ps

module meta_harden (

 input clk_dst, // Destination clock

 input rst_dst, // Reset - synchronous to destination clock

 input signal_src, // Asynchronous signal to be synchronized

 output reg signal_dst // Synchronized signal

);

//***

// Register declarations

//***

 reg signal_meta; // After sampling the async signal, this has a high probability of being metastable.

 The second sampling (signal_dst) has a much lower probability of being metastable.

//***

// Code

//***

 always @(posedge clk_dst)

 begin

 if (rst_dst)

 begin

 signal_meta <= 1'b0;

 signal_dst <= 1'b0;

 end

 else // if !rst_dst

 begin

 signal_meta <= signal_src;

 signal_dst <= signal_meta;

 end // if rst

 end // always

endmodule

2. Baud Generator Source Code:

// Note: Divider must be at least 2 (thus CLOCK_RATE must be at least 32x BAUD_RATE)

`timescale 1ns/1ps

module uart_baud_gen (

 // Write side inputs

 input clk, // Clock input

 input rst, // Active HIGH reset - synchronous to clk

 output baud_x16_en // Oversampled Baud rate enable

);

//***

// Constant Functions

//***

 // Generate the ceiling of the log base 2 - i.e. the number of bits required to hold N values. A vector of size

clogb2(N) will hold the values 0 to N-1

 function integer clogb2;

 input [31:0] value;

 reg [31:0] my_value;

 begin

 my_value = value - 1;

 for (clogb2 = 0; my_value > 0; clogb2 = clogb2 + 1)

 my_value = my_value >> 1;

 end

 endfunction

//***

// Parameter definitions

//***

 parameter BAUD_RATE = 9_600; // Baud rate

 parameter CLOCK_RATE = 100_000_000;

 // The OVERSAMPLE_RATE is the BAUD_RATE times 16

 localparam OVERSAMPLE_RATE = BAUD_RATE * 16;

 // The divider is the CLOCK_RATE / OVERSAMPLE_RATE - rounded up (so add 1/2 of the

OVERSAMPLE_RATE before the integer division)

 localparam DIVIDER = (CLOCK_RATE+OVERSAMPLE_RATE/2) / OVERSAMPLE_RATE;

 // The value to reload the counter is DIVIDER-1;

 localparam OVERSAMPLE_VALUE = DIVIDER - 1;

// The required width of the counter is the ceiling of the base 2 logarithm of the DIVIDER

 localparam CNT_WID = clogb2(DIVIDER);

//***

// Reg declarations

//***

 reg [CNT_WID-1:0] internal_count;

 reg baud_x16_en_reg;

//***

// Wire declarations

//***

 wire [CNT_WID-1:0] internal_count_m_1; // Count minus 1

//***

// Code

//***

 assign internal_count_m_1 = internal_count - 1'b1;

// Count from DIVIDER-1 to 0, setting baud_x16_en_reg when internal_count=0. The signal

baud_x16_en_reg must come from a flop (since it is a module output) so schedule it to be set when the next

count is 1 (i.e. when internal_count_m_1 is 0).

 always @(posedge clk)

 begin

 if (rst)

 begin

 internal_count <= OVERSAMPLE_VALUE;

 baud_x16_en_reg <= 1'b0;

 end

 else

 begin

 // Assert baud_x16_en_reg in the next clock when internal_count will be zero in that clock (thus when

internal_count_m_1 is 0).

 baud_x16_en_reg <= (internal_count_m_1 == {CNT_WID{1'b0}});

 // Count from OVERSAMPLE_VALUE down to 0 repeatedly

 if (internal_count == {CNT_WID{1'b0}})

 begin

 internal_count <= OVERSAMPLE_VALUE;

 end

 else // internal_count is not 0

 begin

 internal_count <= internal_count_m_1;

 end

 end // if rst

 end // always

 assign baud_x16_en = baud_x16_en_reg;

endmodule

3. CLOCK DIVIDER SOURCE CODE:

// Clock divider circuit

// From 100 MHz to 1 Hz with %50 duty cycle

module clk_div(Clk_in, Clk_out);

input Clk_in; // input ports

output reg Clk_out ; // output ports

reg Clk_out_1 ;//= 1'b0; // provide initial condition for this register.

// counter size calculation according to input and output frequencies

parameter sys_clk = 100000000; // 100 MHz system clock

parameter clk_out = 1; // 1 Hz clock output

parameter max = sys_clk / (2*clk_out); // max-counter size

reg [31:0]counter = 0; // 32-bit counter size

 initial Clk_out_1 = 1'b0;

always@(posedge Clk_in) begin

 if (counter == max-1)

 begin

 counter <= 0;

 Clk_out_1 <= ~Clk_out_1;

 end

 else

 begin

 counter <= counter + 1'd1;

 end

 Clk_out = Clk_out_1;

 end

endmodule

4. SELECTION MODULE CODE

module selector (switch,data, Clock,Out1, Out2);

input switch;

input data;

input Clock;

output reg Out1;

output reg Out2;

always@(posedge Clock)

begin

case (switch)

1'b0: begin

 Out1 = data;

 Out2 = "0";

 end

1'b1: begin

 Out1 = "0";

 Out2 = data;

 end

 endcase

 end

endmodule

5. INVERSION MODULE CODE

module inv(

 input a,

 output b

);

 not(b,a);

endmodule

6. RECEIVER UART CONTROL MODULE

`timescale 1ns/1ps

module uart_rx_ctl (

 // Write side inputs

 input clk_rx, // Clock input

 input rst_clk_rx, // Active HIGH reset - synchronous to clk_rx

 input baud_x16_en, // 16x oversampling enable

 input rxd_clk_rx, // RS232 RXD pin - after sync to clk_rx

 output reg [7:0] rx_data, // 8 bit data output

 // - valid when rx_data_rdy is asserted

 output reg rx_data_rdy, // Ready signal for rx_data

 output reg frm_err // The STOP bit was not detected

);

//***

// Parameter definitions

//***

 // State encoding for main FSM

 localparam

 IDLE = 2'b00,

 START = 2'b01,

 DATA = 2'b10,

 STOP = 2'b11;

//***

// Reg declarations

//***

 reg [1:0] state; // Main state machine

 reg [3:0] over_sample_cnt; // Oversample counter - 16 per bit

 reg [2:0] bit_cnt; // Bit counter - which bit are we RXing

//***

// Wire declarations

//***

 wire over_sample_cnt_done; // We are in the middle of a bit

 wire bit_cnt_done; // This is the last data bit

//***

// Code

//***

 // Main state machine

 always @(posedge clk_rx)

 begin

 if (rst_clk_rx)

 begin

 state <= IDLE;

 end

 else

 begin

 if (baud_x16_en)

 begin

 case (state)

 IDLE: begin

 // On detection of rxd_clk_rx being low, transition to the START

 // state

 if (!rxd_clk_rx)

 begin

 state <= START;

 end

 end // IDLE state

 START: begin

 // After 1/2 bit period, re-confirm the start state

 if (over_sample_cnt_done)

 begin

 if (!rxd_clk_rx)

 begin

 // Was a legitimate start bit (not a glitch)

 state <= DATA;

 end

 else

 begin

 // Was a glitch - reject

 state <= IDLE;

 end

 end // if over_sample_cnt_done

 end // START state

 DATA: begin

 // Once the last bit has been received, check for the stop bit

 if (over_sample_cnt_done && bit_cnt_done)

 begin

 state <= STOP;

 end

 end // DATA state

 STOP: begin

 // Return to idle

 if (over_sample_cnt_done)

 begin

 state <= IDLE;

 end

 end // STOP state

 endcase

 end // if baud_x16_en

 end // if rst_clk_rx

 end // always

 // Oversample counter

 // Pre-load to 7 when a start condition is detected (rxd_clk_rx is 0 while in IDLE) - this will get us to the

middle of the first bit. Pre-load to 15 after the START is confirmed and between all data bits.

 always @(posedge clk_rx)

 begin

 if (rst_clk_rx)

 begin

 over_sample_cnt <= 4'd0;

 end

 else

 begin

 if (baud_x16_en)

 begin

 if (!over_sample_cnt_done)

 begin

 over_sample_cnt <= over_sample_cnt - 1'b1;

 end

 else

 begin

 if ((state == IDLE) && !rxd_clk_rx)

 begin

 over_sample_cnt <= 4'd7;

 end

 else if (((state == START) && !rxd_clk_rx) || (state == DATA))

 begin

 over_sample_cnt <= 4'd15;

 end

 end

 end // if baud_x16_en

 end // if rst_clk_rx

 end // always

 assign over_sample_cnt_done = (over_sample_cnt == 4'd0);

 // Track which bit we are about to receive

 // Set to 0 when we confirm the start condition

 // Increment in all DATA states

 always @(posedge clk_rx)

 begin

 if (rst_clk_rx)

 begin

 bit_cnt <= 3'b0;

 end

 else

 begin

 if (baud_x16_en)

 begin

 if (over_sample_cnt_done)

 begin

 if (state == START)

 begin

 bit_cnt <= 3'd0;

 end

 else if (state == DATA)

 begin

 bit_cnt <= bit_cnt + 1'b1;

 end

 end // if over_sample_cnt_done

 end // if baud_x16_en

 end // if rst_clk_rx

 end // always

 assign bit_cnt_done = (bit_cnt == 3'd7);

 // Capture the data and generate the rdy signal. The rdy signal will be generated as soon as the last bit of

data is captured - even though the STOP bit hasn't been confirmed. It will remain asserted for one BIT period

(16 baud_x16_en periods)

 always @(posedge clk_rx)

 begin

 if (rst_clk_rx)

 begin

 rx_data <= 8'b0000_0000;

 rx_data_rdy <= 1'b0;

 end

 else

 begin

 if (baud_x16_en && over_sample_cnt_done)

 begin

 if (state == DATA)

 begin

 rx_data[bit_cnt] <= rxd_clk_rx;

 rx_data_rdy <= (bit_cnt == 3'd7);

 end

 else

 begin

 rx_data_rdy <= 1'b0;

 end

 end

 end // if rst_clk_rx

 end // always

 // Framing error generation Generate for one baud_x16_en period as soon as the framing bit is supposed to

be sampled

 always @(posedge clk_rx)

 begin

 if (rst_clk_rx)

 begin

 frm_err <= 1'b0;

 end

 else

 begin

 if (baud_x16_en)

 begin

 if ((state == STOP) && over_sample_cnt_done && !rxd_clk_rx)

 begin

 frm_err <= 1'b1;

 end

 else

 begin

 frm_err <= 1'b0;

 end

 end // if baud_x16_en

 end // if rst_clk_rx

 end // always

7. TRANSMISSION UART CONTROL MODULE

`timescale 1ns/1ps

 module uart_tx_ctl (

 input clk_tx, // Clock input

 input rst_clk_tx, // Active HIGH reset - synchronous to clk_tx

 input baud_x16_en, // 16x bit oversampling pulse

 input char_fifo_empty, // Empty signal from char FIFO (FWFT)

 input [7:0] char_fifo_dout, // Data from the char FIFO

 output char_fifo_rd_en, // Pop signal to the char FIFO

 output reg txd_tx // The transmit serial signal

);

//***

// Parameter definitions

//***

 // State encoding for main FSM

 localparam

 IDLE = 2'b00,

 START = 2'b01,

 DATA = 2'b10,

 STOP = 2'b11;

//***

// Reg declarations

//***

 reg [1:0] state; // Main state machine

 reg [3:0] over_sample_cnt; // Oversample counter - 16 per bit

 reg [2:0] bit_cnt; // Bit counter - which bit are we RXing

 reg char_fifo_pop; // POP indication to FIFO

 // ANDed with baud_x16_en before module

 // output

//***

// Wire declarations

//***

 wire over_sample_cnt_done; // We are in the middle of a bit

 wire bit_cnt_done; // This is the last data bit

//***

// Code

//***

 // Main state machine

 always @(posedge clk_tx)

 begin

 if (rst_clk_tx)

 begin

 state <= IDLE;

 char_fifo_pop <= 1'b0;

 end

 else

 begin

 if (baud_x16_en)

 begin

 char_fifo_pop <= 1'b0;

 case (state)

 IDLE: begin

 // When the character FIFO is not empty, transition to the START state

 if (!char_fifo_empty)

 begin

 state <= START;

 end

 end // IDLE state

 START: begin

 if (over_sample_cnt_done)

 begin

 state <= DATA;

 end // if over_sample_cnt_done

 end // START state

 DATA: begin

 // Once the last bit has been transmitted, send the stop bit

 // Also, we need to POP the FIFO

 if (over_sample_cnt_done && bit_cnt_done)

 begin

 char_fifo_pop <= 1'b1;

 state <= STOP;

 end

 end // DATA state

 STOP: begin

 if (over_sample_cnt_done)

 begin

 // If there is no new character to start, return to IDLE, else

 // start it right away

 if (char_fifo_empty)

 begin

 state <= IDLE;

 end

 else

 begin

 state <= START;

 end

 end

 end // STOP state

 endcase

 end // if baud_x16_en

 end // if rst_clk_tx

 end // always

 // Assert the rd_en to the FIFO for only ONE clock period

 assign char_fifo_rd_en = char_fifo_pop && baud_x16_en;

 // Oversample counter-- Pre-load whenever we are starting a new character (in IDLE or in STOP), or

whenever we are within a character (when we are in START or DATA).

 always @(posedge clk_tx)

 begin

 if (rst_clk_tx)

 begin

 over_sample_cnt <= 4'd0;

 end

 else

 begin

 if (baud_x16_en)

 begin

 if (!over_sample_cnt_done)

 begin

 over_sample_cnt <= over_sample_cnt - 1'b1;

 end

 else

 begin

 if (((state == IDLE) && !char_fifo_empty) ||

 (state == START) ||

 (state == DATA) ||

 ((state == STOP) && !char_fifo_empty))

 begin

 over_sample_cnt <= 4'd15;

 end

 end

 end // if baud_x16_en

 end // if rst_clk_tx

 end // always

 assign over_sample_cnt_done = (over_sample_cnt == 4'd0);

 // Track which bit we are about to transmit

 // Set to 0 in the START state

 // Increment in all DATA states

 always @(posedge clk_tx)

 begin

 if (rst_clk_tx)

 begin

 bit_cnt <= 3'b0;

 end

 else

 begin

 if (baud_x16_en)

 begin

 if (over_sample_cnt_done)

 begin

 if (state == START)

 begin

 bit_cnt <= 3'd0;

 end

 else if (state == DATA)

 begin

 bit_cnt <= bit_cnt + 1'b1;

 end

 end // if over_sample_cnt_done

 end // if baud_x16_en

 end // if rst_clk_tx

 end // always

 assign bit_cnt_done = (bit_cnt == 3'd7);

 // Generate the output

 always @(posedge clk_tx)

 begin

 if (rst_clk_tx)

 begin

 txd_tx <= 1'b1;

 end

 else

 begin

 if (baud_x16_en)

 begin

 if ((state == STOP) || (state == IDLE))

 begin

 txd_tx <= 1'b1;

 end

 else if (state == START)

 begin

 txd_tx <= 1'b0;

 end

 else // we are in DATA

 begin

 txd_tx <= char_fifo_dout[bit_cnt];

 end

 end // if baud_x16_en

 end // if rst

 end // always

endmodule

8. Matrix Multiplication Source Code:

#include<stdio.h>

#include<conio.h>

#define M 3

#define N 3

#define t 3

#define u 3

#define v 3

void mul_mat(char A[M][N],char B[M][N],char C[M][N])

{

char i,j,k;

if(t!=u)

{

printf("\nNot possible");

exit(0);

}

else

{

mul_mat_label2:for(i=0;i<t;i++)

{

mul_mat_label3:for(j=0;j<u;j++)

{

C[i][j]=0;

mul_mat_label4:for(k=0;k<v;k++)

{

 C[i][j] += A[i][k]*B[k][j];

}

}

}

}

printf("\nThe resulting matrix:\n");

mul_mat_label1:for(i=0;i<t;i++)

{

mul_mat_label0:for(j=0;j<u;j++)

{

printf("%d\t",C[i][j]);

}

printf("\n");

}

}

	Realterm is an engineer’s terminal program specially designed for capturing, controlling and debugging binary and other difficult data streams. It is the best tool for debugging comms.
	Parallel vs. Serial
	START BIT
	DATA FRAME
	PARITY
	STOP BITS
	ADVANTAGES AND DISADVANTAGES OF UARTS
	ADVANTAGES
	DISADVANTAGES

