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- A. P. J. Abdul Kalam

“If other people are putting in 40 hour workweeks and you’re putting in 100 hour workweeks, then even
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Abstract
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Bachelor of Technology

Lagrangian Heuristics Based Parallel FPGA Router

Field-Programmable Gate Arrays (FPGA) are re-programmable chips used extensively in
many areas. As per Moore’s Law, the number of transistors in an integrated circuit are dou-
bling approximately every two years. Due to this exponential increase, there is an increasing
delay in the FPGA CAD (Computer-Aided Design) Flow Process. Also, there is an increase in
the run-time of FPGA, as interconnection delays are much more than logic delays of a circuit
implemented in an FPGA. So, we need to develop better and efficient routing algorithms.

The most commonly used routing algorithm is VPR (Vertical Place and Route). It routes
effectively, but is slow in execution. One way to speed up the routing process is to use paral-
lelization. Since VPR is intrinsically sequential, it cannot be parallelized. Lately, a set of parallel
algorithms (ParaLaR and ParaLarPD) were proposed. These algorithms formulated the FPGA
Routing problem as a Linear Programming (LP) minimization problem. The dependencies that
hinder the nets from routing in parallel are investigated and relaxed using Lagrange Relaxation
in this LP. The sub-gradient approach and the Steiner tree algorithm are used to solve the re-
laxed LP in parallel. The drawback of these algorithms is that they were implemented using
VPR7.0 Framework (recently VPR8.0 framework was released), the minimum channel width
metric further needs to be improved (which indirectly reduces constraints violations) and they
were evaluated on smaller and older benchmarks. The goal of this thesis is to overcome these
drawbacks. That is, the objectives are to migrate to the latest version of VPR8.0, to develop a
heuristics to reduce the channel width requirements thereby indirectly reducing the constraints
violations, and to evaluate our proposed approach on larger benchmarks.
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Chapter 1

Introduction

In this chapter, we will be discussing the necessary background of FPGAs (Field-Programmable
Gate Arrays), the motivation and goals of this project and the organization of this report.

1.1 Background

Field-Programmable Gate Arrays (FPGA) are re-programmable chips which contain thousands
of logic gates that internally connect together to realize digital circuits. They are extensively
used in various areas (Figure 1.1).

FIGURE 1.1: FPGA Applications

• In the medical domain, FPGA chips are utilised for diagnostic and monitoring purposes.
They are also utilised in medical equipment to process data.

• In the aerospace and defense domain, FPGA chips are utilised for image processing, partial
reconfigurations for SDRs (Software Defined Radio), as well as for waveform generation.

• In the server and cloud computing domain, FPGA chips are used as a side buddy for Core
CPUs (Central Processing Units). Less relevant or less valuable Tasks can be offloaded
from the CPUs to FPGA chips.
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1.1.1 Structure of FPGA

As shown in Figure 1.2, an FPGA is made up of a two-dimensional array of programmable
blocks known as Configurable Logic Blocks – CLBs or simply logic blocks, with horizontal and
vertical routing channels between CLB’s rows and columns.

FIGURE 1.2: Blocks in FPGA and their connections

There are three types of blocks in this two-dimensional grid. They are as follows:

1. Logic Blocks: These are the blocks which implement the boolean logic of the circuit. They
internally contain LUTs (Look-Up Tables) which implement any logic function.

2. Connection Blocks: These are the blocks which connect the input-output pins of the logic
blocks to the routing channels.

3. Switching Blocks: These are the blocks which are present at the intersection of the horizon-
tal and vertical routing channels. They connect a set of routing channels to another set of
routing channels.

1.1.2 Steps in FPGA CAD Design Flow

To implement a circuit in an FPGA, we use a CAD (Computer-Aided Design) process. This
process consists of the following steps:

• Logic optimization: In this step, two-level or multi-level minimization of the logical equa-
tions are performed to optimize delay, area or a combination of both.

• Technology mapping: In this step, the Boolean equations are transformed into a circuit
of FPGA logic blocks. This phase also reduces the total number of logical blocks required
(region or area optimization) or the number of logical blocks in time-critical paths (delay
optimization).

• Placement: This step selects a specific location for each logical block in the FPGA while
attempting to minimize the overall length of interconnection required.
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• Routing: In this step, the signal is carried from where it was created to where it was used
by connecting the available routing resources in the FPGA to the logic blocks allocated
within the FPGA by the placement tool.

Routing is one of the most critical steps in the FPGA Design process since the interconnect
takes up the majority of the FPGA’s size [1] and the interconnection delays are longer than the
intended circuit’s logic delays.

1.2 Motivation

Moore’s law states that the number of transistors in an integrated circuit doubles approximately every
two years, which is an exponential rise. Routing of nets (a group of interconnected vertices, one
of which is a source and the rest are sinks) is one of the most time-consuming processes in the
FPGA design pipeline. As a result, we must design fast routing algorithms to address the issue
of rising transistor density per chip and, as a result, higher runtime of FPGA CAD (Computer-
Aided Design) tools.

VPR (Versatile Place and Route) [2] is the most widely used FPGA routing method. It does an
effective route, but it is slow in execution. This design flow can be sped up by using paralleliza-
tion. For this objective, lately, a collection of parallel algorithms have been proposed (ParaLaR
[3] and ParaLarPD [4]). These algorithms, formulated the FPGA routing problem as an LP (Lin-
ear Programming) minimization problem. The dependencies that hinder the nets from routing
in parallel are investigated and relaxed using Lagrange Relaxation in this LP. The sub-gradient
approach and the Steiner tree algorithm are used to solve the relaxed LP in parallel.

The limitations of ParaLaR and ParaLarPD are that

1. they used the placement and netlist generated by VPR 7.0 [5] (2014). Recently, VPR 8.0 [6]
(2020) (a newer and better version of VPR) was released.

2. the metric of minimum channel width needs to be further improved, which indirectly
reduces the constraints violation.

3. they were implemented and tested on MCNC Benchmark [7] circuits which are a set of
small and old benchmarks.

1.3 Goals

The goals of this project are to overcome the drawbacks of ParaLaR and ParaLarPD. That is, the
goals are:

• to migrate to the latest VPR 8.0 [6] (2020) framework and thus, improve the results by
using VPR 8.0s generated netlists and placement

• to innovate a new heuristic to improve the metric of minimum channel width

• to run as well as test our Proposed Algorithm on VTR Benchmarks which are a set of
larger benchmarks and are suitable for FPGA architecture research [5]

The Table 1.1 summarizes the focus of our project. Our novel contribution is the last row and
last column of this Table 1.1.
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TABLE 1.1: Project Focus

Algorithms VPR7 VPR8
MCNC VTR MCNC VTR

ParaLaR 3 7 7 7
ParaLarPD 3 3 3 7
Proposed Algo 3 3

1.4 Organization of the Report

Chapter 1 (Introduction)

This current chapter describes about FPGA, its structure, steps in FPGA CAD Flow and the
motivation and goals of our work

Chapter 2 (Overview of ParaLarPD)

This chapter presents an overview of ParaLarPD (the algorithm to which we are contributing
a novel heuristic) that is it includes the formulation of the optimization problem, relaxation of
constraints, updation of Lagrange multipliers, choosing the value of step size and the stopping
criteria.

Chapter 3 (Lagrange Heuristic)

In this chapter, proposed Lagrange heuristic technique for FPGA Routing is presented. Here,
we also discuss an example to elucidate our novel heuristic.

Chapter 4 (Results)

In this chapter, we present the experimentation results of our technique on the MCNC Bench-
marks and the VTR Benchmarks.

Chapter 5 (Conclusions and Future Work)

This chapter concludes the contribution of this report and the possible future directions of our
work.
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Chapter 2

Overview of ParaLarPD

ParaLarPD [4] is the algorithm to which we are contributing a novel heuristic to improve the
channel width metric, which indirectly reduces the channel width constraints violation. This chap-
ter presents an overview of ParaLarPD. The next chapter then presents our developed heuristic.

As discussed before, ParaLarPD formulates the FPGA Routing problem as an LP Minimiza-
tion problem. The LP constraints are relaxed using Lagrange Relaxation and then it is solved in a
parallel manner using the sub-gradient method and the Steiner tree algorithm. In the following
sections, the formulation of the LP, relaxing the LP constraints and the sub-gradient method for
solving the LP are described in detail.

2.1 Formulation

The routing problem in FPGA is formulated as a weighted grid graph G(V, E) of certain set
of vertices V and edges E. For each edge e, there is a cost associated with that edge which
represents various optimization goals like the path delay, channel width congestion, etc.

There are three types of vertices in the grid graph: net vertices, Steiner vertices, and other
vertices. A net is represented as a set N ✓ V consisting of all net vertices. In a net, there is
one source vertex and the rest are sink vertices. A vertex that is not part of the net vertices but
it is used to construct the net tree, is called the Steiner vertex. That is, Steiner vertices are the
supplementary vertices used to create the route of a net (that is, a sub-tree T of the graph G).
Steiner tree is another name for a net tree.

There is an example of a 4 x 4 grid graph shown in Figure 2.1. In this figure, there are two
nets shown by dotted edges, one is T-shaped and the other is mirror of L-shape. The net vertices
are represented by black colour circles, the Steiner vertices are represented by grey colour circles,
and the other vertices are represented by white colour circles. The edges are represented by the
horizontal and vertical lines (these edges have a cost associated with them but that is not marked
here).

FIGURE 2.1: A 4 × 4 grid graph depicting nets and the various types of vertices.
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We are given the number of nets and the set of vertices that belong to each net. Our goal is
to identify a route for each net that reduces the total wire length of the graph G when all routes
are added together (directly proportional to the total cost of the paths). The goal is also to keep
the channel width requirement for each edge to a minimum. These two goals are detailed after
Equation 2.1 below. In order to achieve the aforementioned two goals, the net routing problem
is defined as an LP problem as follows [4] (ParaLarPD paper):

min
xe,i

Nnets

Â
i=1

Â
e2E

wexe,i (2.1)

Subject to

Nnets

Â
i=1

xe,i  W, 8e 2 E (2.2)

Aixi = bi, i = 1, 2, 3 . . . , Nnets (2.3)
xe,i = 0 or 1 (2.4)

The total wire length is obtained by adding - for each net, the cost of each edge that is being
used by that net. The optimization problem minimizes this total wire length of FPGA routing.
The meaning of each variable is given in Table 2.1. The inequality constraints of Equation 2.2
represents the channel width constraints. It says that the total number of nets passing through
an edge should be less than or equal to the maximum allowed capacity W. These constraints also
relate to our other complementary requirement, that is, minimizing the channel width at each
edge which is achieved by iterative reduction of the solution process. The equality constraints
of Equation 2.3 ensure that a valid route is formed for each net (these are implicitly satisfied by
our solution because of the Steiner tree algorithm).

TABLE 2.1: Symbols and their meanings as used in the equations (2.1)-(2.4)

Symbols Meaning

Nnets The number of nets
E The set of edges where e denotes one such edge

xe,i The binary decision variables that can have value either 0 (if
net i does not utilize an edge e) or 1 (if net i utilizes an edge e)

we The timing delay associated with edge e
W The maximum number of nets that an edge can be a part of
Ai The node arch incidence matrix
xi The vector of all xe,i for net i that represents the ith net’s route

tree
bi The demand/ supply vector, which represents the amount of

cost flow to the ith net

2.2 Lagrange Relaxation

The inequality constraints (Equation 2.2) introduce dependencies between the routing of differ-
ent nets and therefore the LP in (2.1)-(2.4) cannot be solved parallelly. To be able to solve the LP
in (2.1)-(2.4) parallelly, the inequality constraints (Equation 2.2) need to be eliminated or relaxed.

ParaLarPD [4] uses Lagrange Relaxation to relax the inequality constraints. This method ap-
proximates a difficult problem of constrained optimization to a simpler problem. In this method,
the constraints are multiplied by a non-negative multipliers (called Lagrange Multipliers) and
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added to the objective function. Now, the solution to this resultant problem is an approximate
solution to the original problem. The Lagrange multipliers penalizes violations of inequality
constraints which imposes a cost on violations. In the optimization problem, these additional
costs are employed instead of the strict inequality constraints.

Rewriting (2.1)-(2.4) as in ParaLarPD [4].

min
xe,i ,le

 
Nnets

Â
i=1

Â
e2E

wexe,i + Â
e2E

le

 
Nnets

Â
i=1

xe,i � W

!!
(2.5)

Subject to

Aixi = bi, i = 1, 2, 3 . . . , Nnets (2.6)
xe,i = 0 or 1 (2.7)
le � 0 (2.8)

On rearranging the objective function above, we get

min
xe,i ,le

 
Nnets

Â
i=1

Â
e2E

(we + le) xe,i � W Â
e2E

le

!
(2.9)

Subject to

Aixi = bi, i = 1, 2, 3 . . . , Nnets (2.10)
xe,i = 0 or 1 (2.11)
le � 0 (2.12)

2.3 Sub-gradient Method

We see that, in the LP in (2.9)-(2.12), the variable xe,i is binary integer variable. That is, it can take
values 0 or 1. The objective function is not defined for any other values of xe,i. Therefore, the
objective function is not continuous and hence, not differentiable. Since, the objective function
in (2.9)-(2.12) is not differentiable, the usual methods like the simplex method, the interior point
method, etc. cannot be used. Hence, ParaLarPD [4] uses the sub-gradient method to solve it.

To minimise non-differentiable convex functions f (x), sub-gradient based approaches are
often used. These iteratively update the variable x as

xk+1 = xk � akgk

where ak is the step size and gk is a sub-gradient of the objective function, at the kth iteration.
The sub-gradient methods do not always yield binary solutions for the variable x. Where

as, in our case xe,i is a binary integer variable which can take value either 0 or 1. Therefore,
the sub-gradient based method does not directly solve the LP given in (2.9)–(2.12), but only the
Lagrange relaxation multipliers are obtained using it. Following that, for FPGA routing, the
minimum Steiner tree algorithm is applied in parallel. The Steiner tree approach also aids us in
achieving feasible routing by automatically satisfying the equality constraints.

From many variants of the sub-gradient method like the projected sub-gradient method,
the primal–dual sub-gradient method, the conditional sub-gradient method, the deflected sub-
gradient method, etc, ParaLarPD uses the primal-dual sub-gradient method. This is because the
LP given by (2.9)–(2.12) is the dual of LP given by (2.1)–(2.4). As a result, a sub-gradient method
that is specific to a dual problem would produce better outcomes than the usual one.
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Using the Primal-Dual Sub-gradient method, the Lagrange relaxation multipliers are up-
dated as follows [4]:

lk+1
e = lk

e + akmax

 
0,

Nnets

Â
i=1

xe,i � W

!
(2.13)

where ÂNnets
i=1 xe,i � W is a sub-gradient of the objective function at the kth iteration.

2.4 Step Size

Now, we’ll look at how ParaLarPD chooses the step size (Equation 2.13). If the step size is too
tiny, the algorithm may become stuck at the current place, or it may bounce between two non-
optimal solutions if the step size is too large. Therefore, the choice of step size plays an important
role.

The step size can be kept constant throughout the iterations or reduced with each subsequent
iteration. The step size in ParaLarPD is calculated using a combination of the iteration number
and the norm of the objective function’s Karush–Kuhn–Tucker (KKT) operator at that iteration.
This makes sure that the problem characteristic is utilised into the step size calculation. That is,
ParaLarPD [4] updates the step size as follows:

ak =
(1/k)
kTkk2

(2.14)

where k is the iteration number, Tk is the KKT operator for the objective function (2.9), and
kTkk2 is the 2-norm of Tk.

2.5 Stopping Criteria

Because sub-gradient-based algorithms are iterative, they require a mechanism or criteria to stop
them. There is no perfect stopping criterion for the sub-gradient methods. However, there are
several possible actions like stopping when the step size becomes too small (as then the sub-
gradient method would get stuck at the current iteration), stopping when the improvement in
the objective function value is less than some e (where e is a very small positive number) or
stopping when there are no constraints (Equation 2.2) being violated.

None of the above stopping conditions exactly fits in ParaLarPD [4], therefore, the algorithm
is terminated after a sufficient and fixed number of iterations.

2.6 Drawbacks

The limitations of ParaLarPD are that

1. it used the placement and netlist generated by VPR 7.0 [5] (2014). Recently, VPR 8.0 [6]
(2020) (a newer and better version of VPR) was released.

2. the metric of minimum channel width needs to be further improved, which indirectly
reduces the constraints violation.

3. it was implemented and tested on MCNC Benchmark [7] circuits which are a set of small
and old benchmarks.
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Chapter 3

Heuristic Design

As discussed previously, in ParaLarPD, the metric of minimum channel width needs to be fur-
ther improved, which indirectly reduces the constraints violation. Therefore, we develop a novel
heuristic to reduce the constraints violation by improving the minimum channel width require-
ment.

In the following sections, we present a background of heuristic technique, our proposed
approach, terms used in our proposed approach, an example to elucidate our heuristic and our
heuristic in an algorithmic form.

3.1 Background

A heuristic is any approach to problem solving or self-knowledge that does not guarantee op-
timality, completeness, or rationality, but instead uses practical methods sufficient to achieve
immediate goals. In simple terms, a heuristic acts as a guiding force towards better solutions.
Heuristics are strategies based on previous experience with similar problems.

This technique has been used successfully in a variety of situations. For example, [8] solves
a multi-plant lot-sizing problem. Given the demand and capacity limits, the authors develop
a Linear Program to minimise production costs. The introduction of Lagrangian multipliers
loosens the limitations. Each solution produced while solving for the Lagrange multipliers is
subjected to a new Lagrangian heuristic (in the form of two feasibility stages). The first stage
of feasibility is a local search in which manufacturing lots are shifted between time periods
to ensure viable options. The second feasibility stage is also a strategy based on local search
method, but this time, possible ideas are explored by shifting production batches to different
time periods as well as different plants.

Another example is [9], which is a graph partitioning issue with capacity constraints in which
students are assigned to classes depending on their preferences. This problem is then described
as a Quadratic Program (QP), and the restrictions are eased by using Lagrange multipliers,
which are solved using the sub-gradient method, similar to [8]. As expected, the discovered
solutions are not always viable, hence a Lagrange heuristic is constructed. The probability of a
constraint violation is assigned depending on certain characteristics of the solution.

3.2 Proposed Approach

We first define the various terms used by our approach and then describe the steps of our heuris-
tic.



10 Chapter 3. Heuristic Design

3.2.1 Assumption Probability

FIGURE 3.1: Net using an edge

For every edge e and net k pair, we define the assumption probability Ae,k as follows:

Ae,k =
no. o f times edge e violated edge

constraint when used in net k
no. o f iterations

In Figure 3.1, there is a snapshot of a net shown for some iteration number i. S is the source
of the net and T is one of the sinks of the net. Edge AB is currently being used by the net. For
every edge shown, the upper value indicates the assumption probability of the respective edge
belonging to the net k. The lower value indicates the utilization of the respective edge in the
current iteration i.

3.2.2 Cut-off Probability

max iterations = 50 (from ParaLarPD [4])
cut-o f f iterations = hal f o f max iterations

= 25

cut-o f f probability =
cut-o f f iterations

max iterations
= 0.5

The maximum iterations are kept constant as 50 which is the same as that of ParaLarPD [4].
There is no fixed rule for cut-off iterations. We desired to keep the cut-off iterations close to half
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of maximum number of iterations. We tested our approach with various values for the cut-off
iterations like 15, 20, 25 and since, the results were similar, we keep the cut-off iterations constant
as half of the maximum number of iterations.

While finding a new path, an edge e belonging to net k is considered to be suitable if its
assumption probability Ae,k is less than the cut-off probability.

3.2.3 Steps of our Heuristic

Now, that we have defined the necessary terms, our basic Lagrangian heuristic to remove the
constraints violation in ParaLarPD consists of the following steps.

1. We record the number of times a particular edge e was used in a net k and violated the
channel width constraint in each iteration

2. For every edge e and for every net k if e being in net k is violating the constraints and if
the assumption probability Ae,k is greater than or equal to the cut-off probability, we need to
replace the edge, if possible

3. For this, we use BFS (Breadth-First Search) to find a path between the two points connected
by the edge such that the edges in the path do not violate the channel width constraint and
have a net-edge probability (assumption probability) of violating the constraint less than
cut-off probability

4. If we find a path using BFS, we replace the edge with the edges in the path for that net

Next, we illustrate an example to elucidate our heuristic. We also present an elegant algo-
rithm of our heuristic in section 3.4

3.3 Example

The Figure 3.2 is a part of the grid graph and the values on an edge depict the number of nets
using that particular edge and the values given by ’a’ depict the assumption probability for all
the edges corresponding to a particular net k.

FIGURE 3.2: A part of Grid Graph taken as example

Now, we will apply our heuristic on this part of the graph by trying to replace an edge by
some other edges, hence reducing the channel width requirement of the edge which in turn
might reduce the total channel width requirement.



12 Chapter 3. Heuristic Design

1. Let us consider the edge connecting A and B (Figure 3.3).

FIGURE 3.3: Picked edge AB violates the edge constraint

We see that it violates the edge constraints and probability � 0.5. Now we find a path
between A and B using BFS.

FIGURE 3.4: Finding path using BFS

2. While traversing the path AE, EF ... we come across AE with probability � 0.5 so , this
path won’t be chosen (Figure 3.4)
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FIGURE 3.5: Finding another path using BFS

3. Next we come across AG ! GH ! HI ! I J ! JK ! KB. All the edges satisfy the
constraint and the edges have assumption probability < 0.5 (Figure 3.5)

FIGURE 3.6: Edge AB replaced by the new path

4. Now we’ll replace AB by the new path in net k as shown in Figure 3.6 and move to next
edge, if any.

3.4 Algorithm

We also present our heuristic in an algorithmic form as follows:
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Algorithm 1 Heuristic Design
Input: Nets and the edges used by them determined by ParaLarPD.
Output: Updated set of nets and the edges being used by them.

1: Record the number of times a particular edge was a part of the route tree of a net and it
violated the constraints.

2: Calculate assumption probabilities in the present iteration for all edge net pairs. Assumption
probability for edge e and net i:

3: Ae,k = ( no. of times edge e violated edge constraint when used in net k )/( no. of iterations
);

4: while There are edge net pair with Assumption probability greater than or equal to 0.5 do
5: If for any e 2 Netk 8k 2 1, 2...n Ae,k � 0.5
6: We perform BFS to find a path between the end points of the edge e such that:

p : e1e2e3...er, where e1, e2..., er are edges in the net
e1.start = e.start
en.end = e.end
ej.end = ej+1.start 8j 2 {1, 2...r � 1},

N

Â
i=1

xej,i  W 8j 2 {1, 2...r} (3.1)

. This last constraint ensures that no edge in our new path violates the edge constraints
7: If we can’t find a path, we move to the next edge.
8: Now in net k ,

replace e ! e1e2..er

9: end if
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Chapter 4

Experimental Results

4.1 Experimental Setup

4.1.1 Machine Specifications

We ran our experiments on a computer with a single Intel(R) Xeon(R) CPU E5-1620 v3 running
at 3.50GHz and 64 GB of RAM. The operating system used was Ubuntu 20.04.1 LTS, and the
kernel version was 5.13.0-40.

4.1.2 Compilation Specifications

GCC version 9.4.0 was used to compile our code, which was written in C++11. A variable
number of threads were used to run the resulting compiled code. Our Proposed Algo was
compared to ParaLarPD [4]. ParaLarPD was also compiled with the same GCC version for
comparison.

4.1.3 FPGA Architecture

The Table 4.1 depicts the different FPGA architecture parameters used in our experiments.

TABLE 4.1: FPGA design architecture parameters that we used in our experiments

N K Fcin Fcout Fs L

10 6 0.15 0.10 3 1
10 6 1.0 1.0 3 1
10 6 0.15 0.10 3 4
10 6 1.0 1.0 3 4

The meaning of each parameter is given in Table 4.2
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Symbol Meaning

N represents the number of fracturable logic elements (FLE) con-
tained in the CLBs in the FPGA architecture

K denotes the number of inputs of each FLE
Fcin specifies the percentage of tracks in a channel that drive every

input pin
Fcout specifies the percentage of tracks in a channel that drive every

output pin
Fs determines the number of wire segments that can be connected

to each wire segment at the intersection of horizontal and verti-
cal channels. This number can only be a multiple of 3.

L defines how many logic blocks each segment covers.

TABLE 4.2: FPGA architecture parameter meanings

The most common architecture parameters are N = 10, K = 6, Fcin = 0.15, Fcout = 0.10,
Fs = 3 , and L = 4.

4.1.4 Other Details

Initially, packing and placement of circuits is done by VPR8. After that, both approaches were
used to route the nets (that is, our Proposed Algo and ParaLarPD). We used Intel threading
building blocks (TBB) libraries, for parallelization.

There is no universal rule for selecting the initial value of the channel width [4]. In our
experiments, we initialized ParaLarPD with initial channel width (W) as 0.9Wmin, where Wmin
is the minimum channel width obtained from VPR8. Our Proposed Algo is initialized with
initial channel width (W) as 0.85Wpd where Wpd is the minimum channel width obtained from
ParaLarPD.

Choosing Number of iterations

The maximum iterations are kept constant as 50 which is the same as that of ParaLarPD [4]. The
best results out of all these iterations are reported.

4.2 Results

Traditionally, ParaLarPD was tested on the MCNC Benchmarks which are a set of small and
old circuits. We evaluate our Proposed Algo on the VTR Benchmarks which are larger than
MCNC Benchmarks and are suitable for FPGA architecture research [5]. Also, for the sake of
completeness, we also evaluate our Proposed Algo on MCNC Benchmarks. Table 4.3 elucidates
the benchmarks that we use for evaluating the performance of our Proposed Algo. We also
compare our obtained results with ParaLarPD.

The list of circuits with their approximate sizes in the MCNC Benchmarks and the VTR
Benchmarks is given in Appendix A.
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TABLE 4.3: Benchmarks used to evaluate our Proposed Algo

Algorithms VPR7 VPR8
MCNC VTR MCNC VTR

ParaLaR 3 7 7 7
ParaLarPD 3 3 3 7
Proposed Algo 3 3

Firstly, we present our experimental results on MCNC Benchmarks for various architecture
parameters as discussed in subsection 4.1.3 and then we present our experimental results on
VTR Benchmarks for the various architecture parameters.

4.2.1 MCNC Benchmarks

TABLE 4.4: MCNC Benchmark Results for Developed Heuristic on parameters:
N = 10, K = 6, L = 1, Fs = 3, Fcin = 0.15, Fcout = 0.10

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
Circuits Proposed Algo ParaLarPD Proposed Algo ParaLarPD Proposed Algo ParaLarPD

alu4 35 37 5537 5591 3.31 3.01
apex2 47 46 9260 9224 3.24 3.16
apex4 40 44 6483 6684 3.01 2.71
bigkey 17 19 3423 3432 2.03 2.33
clma 62 64 51218 51164 8.43 7.68
des 32 32 7073 7073 2.26 2.26
diffeq 33 36 4807 4702 2.86 2.94
dsip 21 23 3771 4041 2.86 2.33
elliptic 49 47 16791 16487 5.50 6.47
ex1010 49 51 21894 21868 5.87 6.02
ex5p 58 55 5726 5692 3.09 3.91
frisc 55 54 20741 20726 4.52 4.07
misex3 47 47 5941 5941 2.56 2.56
pdc 68 68 36024 36166 6.32 6.47
s298 24 28 4466 4577 3.84 3.39
s38417 38 39 17983 18322 4.07 4.37
seq 46 48 8673 8765 3.31 4.37
spla 52 58 23495 23382 6.25 4.59
tseng 32 33 2530 2507 2.41 1.66

AVERAGE 42.00 43.00 13465.00 13491.00 3.99 3.91
GEO. MEAN 39.00 41.00 9367.00 9418.00 3.69 3.60
IMPROV 4.88 — 0.54 — -2.52 —
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TABLE 4.5: MCNC Benchmark Results for Developed Heuristic on parameters:
N = 10, K = 6, L = 1, Fs = 3, Fcin = 1.0, Fcout = 1.0

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
Circuits Proposed Algo ParaLarPD Proposed Algo ParaLarPD Proposed Algo ParaLarPD

alu4 35 35 5547 5547 3.54 3.54
apex2 44 44 9417 9417 3.39 3.39
apex4 43 44 6622 6622 3.24 3.24
bigkey 16 16 3479 3479 2.79 3.01
clma 66 60 51608 51616 7.60 8.43
des 29 29 7095 7095 3.01 3.01
diffeq 40 40 4970 4970 3.46 3.01
dsip 22 22 3866 3866 2.64 3.61
elliptic 48 48 16598 16602 4.14 5.12
ex1010 42 44 21907 21907 4.97 5.57
ex5p 55 54 5740 5742 3.09 3.54
frisc 54 54 20587 20587 4.59 4.59
misex3 45 45 6146 6146 2.86 2.86
pdc 71 65 36635 36627 5.65 5.80
s298 24 25 4588 4589 4.82 4.67
s38417 37 37 18095 18096 5.80 5.35
seq 50 52 8887 8888 3.39 3.01
spla 55 55 23665 23667 5.65 5.04
tseng 29 29 2513 2513 2.18 2.18

AVERAGE 42.00 42.00 13577.00 13577.00 4.04 4.16
GEO. MEAN 39.00 39.00 9475.00 9476.00 3.84 3.94
IMPROV 0.00 — 0.01 — 2.61 —

TABLE 4.6: MCNC Benchmark Results for Developed Heuristic on parameters:
N = 10, K = 6, L = 4, Fs = 3, Fcin = 0.15, Fcout = 0.10

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
Circuits Proposed Algo ParaLarPD Proposed Algo ParaLarPD Proposed Algo ParaLarPD

alu4 36 42 5377 5522 3.01 3.01
apex2 46 52 8981 8992 3.54 3.09
apex4 45 52 6457 6393 2.33 2.33
bigkey 21 25 3404 3368 2.26 1.66
clma 63 72 50481 49855 8.66 7.15
des 34 40 6566 6997 1.96 1.96
diffeq 41 42 4657 4713 2.79 3.01
dsip 25 30 4030 3948 2.56 2.26
elliptic 48 57 15904 16107 4.67 4.44
ex1010 49 56 21367 21330 5.95 5.65
ex5p 54 56 5559 5537 2.71 2.71
frisc 55 64 20401 20840 6.02 3.69
misex3 40 48 5912 6019 2.79 2.33
pdc 63 72 35126 35043 6.70 6.55
s298 26 30 4356 4278 3.69 3.16
s38417 40 42 17947 18106 4.22 4.44
seq 45 51 8615 8451 3.54 3.31
spla 56 64 22948 22692 4.29 3.99
tseng 37 44 2452 2495 2.03 2.03

AVERAGE 43.00 49.00 13186.00 13194.00 3.88 3.51
GEO. MEAN 41.00 47.00 9188.00 9222.00 3.54 3.24
IMPROV 12.77 — 0.37 — -9.46 —
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TABLE 4.7: MCNC Benchmark Results for Developed Heuristic on parameters:
N = 10, K = 6, L = 4, Fs = 3, Fcin = 1.0, Fcout = 1.0

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
Circuits Proposed Algo ParaLarPD Proposed Algo ParaLarPD Proposed Algo ParaLarPD

alu4 34 36 5479 5391 3.91 2.86
apex2 41 47 8928 9121 3.54 3.31
apex4 41 48 6507 6316 2.79 2.64
bigkey 21 25 3455 3478 2.79 1.88
clma 67 67 50397 50559 6.47 7.68
des 30 36 6808 6672 2.18 2.56
diffeq 35 38 4642 4769 2.56 2.64
dsip 24 28 4036 4041 2.18 2.26
elliptic 47 53 16137 16052 4.44 4.37
ex1010 46 52 21633 22816 5.95 6.40
ex5p 49 51 5538 5598 2.18 2.79
frisc 54 58 21000 20725 6.55 3.99
misex3 41 42 5928 5855 3.61 2.33
pdc 62 68 35485 35611 5.27 6.78
s298 23 27 4384 4349 3.69 3.99
s38417 35 39 18055 18117 4.14 4.89
seq 44 46 8520 8497 3.54 2.79
spla 51 58 22966 22836 4.22 5.19
tseng 30 36 2428 2394 1.96 1.81

AVERAGE 40.00 45.00 13280.00 13326.00 3.79 3.74
GEO. MEAN 38.00 43.00 9249.00 9250.00 3.54 3.42
IMPROV 11.63 — 0.01 — -3.65 —

Execution Time and Speedup Comparison

Since the execution times on all the FPGA architecture parameters were similar, we present here
the execution times and speedup for the most common FPGA architecture, that is, N = 10,
K = 6, Fcin = 0.15, Fcout = 0.10, Fs = 3 , and L = 4.
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TABLE 4.8: Execution times for different threads on MCNC Benchmarks for De-
veloped Heuristic on parameters: N = 10, K = 6, L = 4, Fs = 3, Fcin = 0.15,

Fcout = 0.10

Benchmark Execution Time (s)
Circuits Proposed Algo ParaLarPD

T1 T2 T4 T8 T1 T2 T4 T8

alu4 5.14 3.02 2.33 1.79 5.35 2.85 2.10 1.56
apex2 35.08 19.02 12.80 10.93 31.06 16.44 11.24 9.28
apex4 14.73 9.11 6.06 4.79 15.09 8.02 5.53 4.54
bigkey 0.94 0.84 0.77 0.64 0.80 0.69 0.62 0.51
clma 149.23 79.57 53.77 44.64 133.86 68.49 45.76 38.16
des 5.37 2.98 2.19 1.65 4.99 2.75 2.05 1.40
diffeq 5.24 2.92 2.08 1.62 3.85 2.08 1.55 1.24
dsip 0.72 0.57 0.54 0.52 0.56 0.39 0.35 0.32
elliptic 52.66 30.40 18.95 15.59 54.61 26.97 18.17 14.90
ex1010 16.69 10.06 8.64 5.82 25.56 8.85 6.41 5.01
ex5p 2.64 1.64 1.62 1.05 2.30 1.29 0.81 0.64
frisc 24.96 13.75 12.27 8.49 23.77 12.96 8.42 7.29
misex3 16.07 9.15 7.53 5.37 17.86 10.29 7.39 5.45
pdc 112.27 58.22 39.73 33.35 114.52 58.26 40.15 32.24
s298 19.24 11.11 7.13 6.31 13.95 8.91 5.70 4.37
s38417 5.03 3.35 2.77 2.41 4.08 2.38 1.71 1.57
seq 25.53 13.95 9.99 8.16 21.58 11.89 8.91 6.96
spla 173.08 88.23 56.97 48.37 174.05 90.02 58.30 48.51
tseng 1.72 0.97 0.73 0.54 1.54 0.81 0.62 0.42

AVERAGE 35.07 18.89 12.99 10.63 34.18 17.60 11.88 9.70
GEO. MEAN 12.38 7.35 5.57 4.41 11.52 6.34 4.54 3.63

For 8 threads, the execution time of our Proposed Algo is almost 1.21 times that of Par-
aLarPD.
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TABLE 4.9: Speedups for different threads on MCNC Benchmarks for Developed
Heuristic on parameters: N = 10, K = 6, L = 4, Fs = 3, Fcin = 0.15, Fcout = 0.10

Benchmark Execution Time (s)
Circuits Proposed Algo ParaLarPD

2X vs 1X 4X vs 1X 8X vs 1X 2X vs 1X 4X vs 1X 8X vs 1X

alu4 1.70 2.21 2.87 1.88 2.55 3.43
apex2 1.84 2.74 3.21 1.89 2.76 3.35
apex4 1.62 2.43 3.08 1.88 2.73 3.32
bigkey 1.11 1.22 1.46 1.15 1.29 1.57
clma 1.88 2.78 3.34 1.95 2.93 3.51
des 1.80 2.45 3.25 1.81 2.44 3.58
diffeq 1.79 2.53 3.24 1.86 2.48 3.12
dsip 1.25 1.33 1.37 1.43 1.61 1.73
elliptic 1.73 2.78 3.38 2.03 3.01 3.66
ex1010 1.66 1.93 2.87 2.89 3.99 5.10
ex5p 1.61 1.63 2.50 1.78 2.84 3.56
frisc 1.82 2.03 2.94 1.83 2.82 3.26
misex3 1.76 2.13 3.00 1.74 2.42 3.28
pdc 1.93 2.83 3.37 1.97 2.85 3.55
s298 1.73 2.70 3.05 1.57 2.45 3.19
s38417 1.50 1.82 2.09 1.71 2.38 2.60
seq 1.83 2.56 3.13 1.81 2.42 3.10
spla 1.96 3.04 3.58 1.93 2.99 3.59
tseng 1.77 2.35 3.16 1.90 2.49 3.64

AVERAGE 1.86 2.70 3.30 1.94 2.88 3.52
GEO. MEAN 1.68 2.22 2.80 1.82 2.54 3.18

The maximum speedup achieved by our Proposed Algo is 3.58 on 8 threads for the circuit
spla whereas, the maximum speedup achieved by ParaLarPD is 5.10 on 8 threads for the circuit
ex1010
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4.2.2 VTR Benchmarks

TABLE 4.10: VTR Benchmark Results for Developed Heuristic on parameters: N =
10, K = 6, L = 1, Fs = 3, Fcin = 0.15, Fcout = 0.10

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
Circuits Proposed Algo ParaLarPD Proposed Algo ParaLarPD Proposed Algo ParaLarPD

alu4 35 37 5537 5591 3.31 3.01
bgm 61 65 234103 228709 6.78 5.80
blob_merge 54 53 37187 36714 5.50 6.63
boundtop 41 40 12076 12148 6.32 2.79
ch_intrinsics 25 24 2031 1951 1.13 1.28
diffeq1 44 52 4171 4181 1.58 1.66
diffeq2 56 61 2944 2815 1.43 1.66
LU32PEEng 131 148 923249 951324 33.73 31.24
LU8PEEng 72 72 198847 198724 9.11 9.86
mcml 85 88 559311 529490 40.65 24.77
mkDelayWorker32B 77 75 143563 139951 30.64 40.43
mkPktMerge 41 41 7784 7644 3.31 3.54
mkSMAdapter4B 50 50 11866 11866 2.86 2.86
or1200 60 60 28590 28620 4.44 4.37
raygentop 49 46 13714 13404 2.94 2.64
sha 38 41 9723 9568 3.91 3.69
stereovision0 57 43 40205 38817 4.97 5.42
stereovision1 68 71 73924 75938 6.47 6.70
stereovision2 102 120 408362 417423 35.91 21.83
stereovision3 20 19 239 272 0.45 0.53

AVERAGE 58.00 60.00 135871.00 135757.00 10.27 9.03
GEO. MEAN 53.00 53.00 26120.00 26033.00 5.18 4.90
IMPROV 0.00 — -0.33 — -5.77 —
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TABLE 4.11: VTR Benchmark Results for Developed Heuristic on parameters: N =
10, K = 6, L = 1, Fs = 3, Fcin = 1.0, Fcout = 1.0

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
Circuits Proposed Algo ParaLarPD Proposed Algo ParaLarPD Proposed Algo ParaLarPD

alu4 35 35 5547 5547 3.54 3.54
bgm 54 56 231084 231088 8.06 8.06
blob_merge 62 62 39644 39645 6.78 6.32
boundtop 38 37 12074 12075 3.99 3.69
ch_intrinsics 23 22 1868 1868 1.36 1.28
diffeq1 61 59 4138 4138 1.51 1.51
diffeq2 61 61 2822 2822 1.88 1.88
LU32PEEng 173 158 944190 944237 31.77 33.43
LU8PEEng 77 89 207689 207691 10.31 10.31
mcml 81 83 511078 511069 33.05 25.52
mkDelayWorker32B 68 68 138449 138450 29.66 28.76
mkPktMerge 42 40 7865 7865 3.24 3.24
mkSMAdapter4B 41 43 11888 11889 4.44 3.09
or1200 62 62 28612 28612 5.50 5.50
raygentop 48 53 13528 13527 3.69 2.64
sha 50 50 9463 9463 3.76 4.14
stereovision0 47 47 37334 37330 6.85 6.78
stereovision1 69 72 72994 72998 6.25 6.25
stereovision2 101 118 418895 418887 26.80 25.90
stereovision3 19 19 254 254 0.38 0.38

AVERAGE 60.00 61.00 134970.00 134972.00 9.64 9.11
GEO. MEAN 54.00 54.00 25899.00 25899.00 5.40 5.12
IMPROV 0.00 — 0.00 — -5.62 —

TABLE 4.12: VTR Benchmark Results for Developed Heuristic on parameters: N =
10, K = 6, L = 4, Fs = 3, Fcin = 0.15, Fcout = 0.10

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
Circuits Proposed Algo ParaLarPD Proposed Algo ParaLarPD Proposed Algo ParaLarPD

alu4 36 42 5377 5522 3.01 3.01
bgm 68 66 227726 227698 5.87 8.58
blob_merge 48 56 37391 37423 6.40 5.42
boundtop 40 46 12384 12498 3.84 3.24
ch_intrinsics 30 29 1914 1821 1.51 1.43
diffeq1 61 57 4041 4236 1.51 1.73
diffeq2 59 64 2848 2814 1.58 1.13
LU32PEEng 169 183 918139 934191 31.92 31.77
LU8PEEng 71 82 206596 201049 11.52 9.86
mcml 102 81 521552 494368 25.45 31.39
mkDelayWorker32B 76 73 143266 140356 23.56 32.37
mkPktMerge 52 47 7816 7570 3.76 4.52
mkSMAdapter4B 52 51 11814 11570 3.61 3.09
or1200 63 67 27790 28202 4.29 4.97
raygentop 50 55 13383 13455 4.37 3.46
sha 40 48 9627 9501 4.82 3.54
stereovision0 46 52 36540 34654 4.67 6.55
stereovision1 67 72 73095 71505 9.41 6.93
stereovision2 107 95 427324 415233 23.19 31.62
stereovision3 23 28 243 264 0.38 0.38

AVERAGE 63.00 64.00 134443.00 132696.00 8.73 9.75
GEO. MEAN 56.00 59.00 25734.00 25569.00 5.13 5.17
IMPROV 5.08 — -0.65 — 0.68 —
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TABLE 4.13: VTR Benchmark Results for Developed Heuristic on parameters: N =
10, K = 6, L = 4, Fs = 3, Fcin = 1.0, Fcout = 1.0

Benchmark Channel Width Total Wire Length Critical Path Delay (ns)
Circuits Proposed Algo ParaLarPD Proposed Algo ParaLarPD Proposed Algo ParaLarPD

alu4 34 36 5479 5391 3.91 2.86
bgm 61 68 231037 225285 7.45 6.32
blob_merge 53 61 37295 37306 5.80 7.08
boundtop 37 42 12250 12243 5.04 4.37
ch_intrinsics 31 39 1898 1914 1.28 1.28
diffeq1 66 51 4171 4153 1.73 1.51
diffeq2 59 62 2788 2762 1.88 1.66
LU32PEEng 172 145 929321 927267 27.48 33.73
LU8PEEng 73 76 198807 206558 10.24 10.09
mcml 114 92 571987 541988 30.27 35.16
mkDelayWorker32B 65 72 139486 142346 36.14 31.32
mkPktMerge 42 41 7490 7695 2.64 3.16
mkSMAdapter4B 44 47 12078 12024 4.29 2.71
or1200 68 68 28098 28098 3.84 3.84
raygentop 45 52 13242 13184 3.16 3.39
sha 38 44 9236 9704 5.04 3.61
stereovision0 50 46 37598 39243 7.30 6.78
stereovision1 67 73 75367 71653 7.83 6.78
stereovision2 137 136 415301 434102 31.77 22.51
stereovision3 20 24 265 239 0.60 0.45

AVERAGE 63.00 63.00 136659.00 136157.00 9.89 9.43
GEO. MEAN 55.00 57.00 25885.00 25828.00 5.57 5.07
IMPROV 3.51 — -0.22 — -9.89 —

Execution Time and Speedup Comparison

Since the execution times on all the FPGA architecture parameters were similar, we present here
the execution times and speedup for the most common FPGA architecture, that is, N = 10,
K = 6, Fcin = 0.15, Fcout = 0.10, Fs = 3 , and L = 4.
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TABLE 4.14: Execution times for different threads on VTR Benchmarks for De-
veloped Heuristic on parameters: N = 10, K = 6, L = 4, Fs = 3, Fcin = 0.15,

Fcout = 0.10

Benchmark Execution Time (s)
Circuits Proposed Algo ParaLarPD

T1 T2 T4 T8 T1 T2 T4 T8

alu4 8.60 4.68 2.59 1.66 8.99 4.61 2.40 1.35
bgm 6380.64 3495.93 1838.72 1280.80 6370.21 3489.68 1820.74 1258.39
blob_merge 158.54 86.72 46.31 34.97 157.28 85.01 44.51 33.32
boundtop 24.16 13.15 7.43 5.55 23.61 12.75 6.99 5.14
ch_intrinsics 0.51 0.31 0.20 0.24 0.45 0.25 0.14 0.12
diffeq1 1.39 1.12 0.92 0.62 0.80 0.45 0.25 0.22
diffeq2 1.18 0.98 0.89 0.19 0.29 0.16 0.10 0.09
LU32PEEng 17444.90 8822.98 6382.65 3755.33 15095.90 8199.02 4242.27 3458.15
LU8PEEng 1326.38 712.02 380.75 328.54 1314.24 697.77 365.85 300.85
mcml 3058.74 1842.37 1169.63 1157.09 3020.68 1792.93 1083.71 943.15
mkDelayWorker32B 406.79 298.93 242.52 66.34 216.34 119.68 61.94 55.88
mkPktMerge 0.98 0.70 0.53 0.56 0.65 0.36 0.23 0.22
mkSMAdapter4B 14.57 8.01 4.47 5.66 14.06 7.73 4.53 4.46
or1200 38.65 21.40 11.83 13.80 37.43 20.50 10.66 10.49
raygentop 5.69 3.35 1.98 2.35 5.18 2.92 1.52 1.42
sha 24.43 13.36 7.14 6.94 24.31 13.22 6.80 6.21
stereovision0 51.38 28.45 15.69 13.51 49.96 27.21 14.23 12.69
stereovision1 144.03 79.52 43.73 39.32 140.76 76.83 40.50 36.84
stereovision2 745.84 571.62 498.85 290.37 265.46 145.54 75.63 62.38
stereovision3 0.04 0.03 0.02 0.03 0.03 0.02 0.01 0.01

AVERAGE 1491.87 800.28 532.84 350.19 1337.33 734.83 389.15 309.57
GEO. MEAN 39.30 23.97 15.39 12.01 30.81 17.01 9.27 8.06

For 8 threads, the execution time of our Proposed Algo is almost 1.49 times that of Par-
aLarPD.
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TABLE 4.15: Speedups for different threads on VTR Benchmarks for Developed
Heuristic on parameters: N = 10, K = 6, L = 4, Fs = 3, Fcin = 0.15, Fcout = 0.10

Benchmark Execution Time (s)
Circuits Proposed Algo ParaLarPD

2X vs 1X 4X vs 1X 8X vs 1X 2X vs 1X 4X vs 1X 8X vs 1X

alu4 1.84 3.31 5.18 1.95 3.74 6.64
bgm 1.83 3.47 4.98 1.83 3.50 5.06
blob_merge 1.83 3.42 4.53 1.85 3.53 4.72
boundtop 1.84 3.25 4.35 1.85 3.38 4.59
ch_intrinsics 1.66 2.54 2.13 1.80 3.33 3.66
diffeq1 1.24 1.51 2.25 1.77 3.21 3.64
diffeq2 1.20 1.32 6.04 1.78 3.06 3.16
LU32PEEng 1.98 2.73 4.65 1.84 3.56 4.37
LU8PEEng 1.86 3.48 4.04 1.88 3.59 4.37
mcml 1.66 2.62 2.64 1.68 2.79 3.20
mkDelayWorker32B 1.36 1.68 6.13 1.81 3.49 3.87
mkPktMerge 1.40 1.85 1.73 1.78 2.85 2.92
mkSMAdapter4B 1.82 3.26 2.58 1.82 3.10 3.15
or1200 1.81 3.27 2.80 1.83 3.51 3.57
raygentop 1.70 2.87 2.42 1.78 3.41 3.66
sha 1.83 3.42 3.52 1.84 3.58 3.91
stereovision0 1.81 3.28 3.80 1.84 3.51 3.94
stereovision1 1.81 3.29 3.66 1.83 3.48 3.82
stereovision2 1.30 1.50 2.57 1.82 3.51 4.26
stereovision3 1.39 1.65 1.16 1.67 2.64 2.04

AVERAGE 1.86 2.80 4.26 1.82 3.44 4.32
GEO. MEAN 1.64 2.55 3.27 1.81 3.33 3.82

The maximum speedup achieved by our Proposed Algo is 6.13 on 8 threads for the circuit
mkDelayWorker32B whereas, the maximum speedup achieved by ParaLarPD is 6.64 on 8 threads
for the circuit alu4
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Chapter 5

Conclusions and Future Work

We improved the algorithm ParaLarPD results by using the latest VPR 8.0s generated placement
and netlists. We also contribute towards improving ParaLarPD’s Lagrange relaxation process
by introducing a novel Lagrange heuristic resulting in substantial reduction of the constraints
violation by the solution vector.

With experiments on the VTR benchmark circuits we show that as compared to ParaLarPD,
on an average, our Proposed Algorithm, reduces the minimum channel width metric by almost
5.08% and at the same time, also improves the critical path delay by almost 0.68% for the most
common FPGA architecture.

The additional work required to apply the heuristic slightly reduces the parallelization speedups
of Proposed Algorithm as compared to ParaLarPD, although this is readily fixable by using
more number of threads.

One future direction could be to work towards designing better heuristics to obtain im-
proved results (channel width metric, total wirelength, critical path delay). Another future direction
could be to extend our Proposed Algorithm on Titan Benchmarks which are a set of very Large
Benchmarks, good for large-scale FPGA CAD research [10].
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Appendix A

Benchmarks

A.1 MCNC Benchmarks

The circuits included in the MCNC Benchmarks and their approximate sizes are listed in Ta-
ble A.1

TABLE A.1: The MCNC benchmarks

Benchmark Approximate Number of Nets

alu4 712
apex2 1062
apex4 720
bigkey 549
clma 4845
des 1033
diffeq 885
dsip 746
elliptic 1818
ex1010 2729
ex5p 686
frisc 1827
misex3 738
pdc 2537
s298 638
s38417 3183
seq 962
spla 1959
tseng 619

Their sizes range from small sized (few hundreds) to large sized logic blocks (few thou-
sands).

A.2 VTR Benchmarks

The circuits included in the VTR benchmarks and their approximate sizes are listed in Table A.2
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Benchmark Approximate Number of Nets

alu4 712
bgm 20868
blob_merge 2734
boundtop 2126
ch_intrinsics 408
diffeq1 695
diffeq2 454
LU32PEEng 54737
LU8PEEng 16216
mcml 52144
mkDelayWorker32B 5115
mkPktMerge 972
mkSMAdapter4B 1597
or1200 2511
raygentop 1998
sha 1258
stereovision0 7204
stereovision1 10287
stereovision2 35275
stereovision3 126

TABLE A.2: The VTR benchmarks

The minimum size is 126 nets for stereovision3 circuit and the maximum size is 54737 nets for
LU32PEEng circuit.
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