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Abstract
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Bachelor of Technology

Data-Driven Model Reduction for Slowing Climate Change

Climate and weather models anticipate future climate and weather based on numer-

ical solutions of a set of time-dependent partial differential equations given beginning

circumstances that describe meteorological field values of the atmosphere at a certain

point in time. Even the most powerful computers can’t keep up with the computing

needs of today’s models. Models are requiring more calculations as they grow to rep-

resent a more thorough knowledge of atmospheric dynamics. Concerns regarding the

viability of a desired solution for a given model on a certain hardware platform stem

from the high expenses of both model creation and computational resources.

The goal of this project is to reduce these vast, complex models to smaller, simpler mod-

els that can properly describe the behaviour of the original process under a range of

operating situations. Model Order Reduction (MOR) is a time-saving, systematic tech-

nique for creating a dynamical system that evolves in a much smaller area while main-

taining similar response characteristics to the original system. Reduced order models

might be utilised as efficient surrogates for the original model in bigger simulations,

substituting it as a component. The Loewner framework for model reduction of linear

systems will be used in this regard.
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Chapter 1

Introduction

1.1 Background

The problem of Slowing Climate Change is the problem of predicting future climate

and weather conditions or detecting the cause of any sudden aberrations in climate

or weather patterns based on a set of initial conditions that represent meteorological

field values of the atmosphere. Some of these conditions include evaporation, friction,

precipitation, radiation, advection, pressure forces, etc. These values act as inputs to

various state-of-the-art climate and weather models used worldwide by meteorological

agencies.

Even the most powerful computers can’t keep up with the computing needs of today’s

climate and weather models. Models are requiring more calculations as they grow to

represent a more thorough knowledge of atmospheric dynamics. Concerns regarding

the viability of a desired solution for a given model on a certain hardware platform stem

from the high expenses of both model creation and computational resources [1].

To cope with this problem, Model Order Reduction (MOR) is introduced in this field.

To simulate and regulate complicated physical processes, Model Order Reduction is of-

ten utilised. In such instances, the systems that eventually emerge are frequently too

complicated to fulfil the time constraints of interactive design, optimization, or real-

time control [2]. MOR was devised a time-saving, systematic technique for creating a
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dynamical system that evolves in a much smaller area while maintaining similar re-

sponse characteristics to the original system. Reduced order models might be utilised

as efficient surrogates for the original model in bigger simulations, substituting it as a

component [3].

Singular Value Decomposition (SVD) based (e.g. balanced truncation), Krylov-based or

moment matching methods, proper orthogonal decomposition (POD), and reduced ba-

sis (RB) approaches are all examples of model reduction methods. The majority of these

approaches belong to the projection-based method family, in which the internal state

variable is approximated by a projected variable into a certain subspace [3]. Here we

are going to focus on a particular Data-Driven Model Order Reduction method for our

task as in that case, the model essentials functions as a black box and all that is required

are a set of data or interpolation points.

Data-Driven MOR involves constructing generalized state space representations of in-

terpolants matching tangential interpolation data [4]. In simpler words, we construct

models that fit (interpolate) given sets of data using rational interpolation. The Loewner

and shifted Loewner matrices are the key tools for this approach.

The Loewner matrix is a flexible approach for data-driven model reduction that was

originally created for rational interpolation but has now been expanded to the Loewner

framework. Its main characteristic is that it allows for a trade-off between model com-

plexity and fit precision. Furthermore, building models from the data is a natural pro-

cess.



3

Chapter 2

Literature Survey

The following chapter discusses literature pertaining to linear systems and Model Order

Reduction methods. It describes the data-driven MOR with focus on Loewner frame-

work in detail. Some context on the climate equation used for our work is also provided.

2.1 Model Reduction of Linear Systems

2.1.1 Linear Systems

A linear time-invariant dynamical system S with m inputs, n internal variables, and

p outputs in descriptor-form representation is given by a set of differential algebraic

equations (DAEs):

S : E
d
dt

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (2.1)

where x(t) 2 Rn is the internal variable; x(t0) = x0, where t is the time and x0 is the

initial state; u(t) 2 Rm is the input function, and y(t) 2 Rp is the output function; and:

E, A 2 Rn⇥n, B 2 Rn⇥m, C 2 Rp⇥n, D 2 Rp⇥m

are constant matrices. If the matrix A� lE is non-singular for some finite l 2 C, the

matrix pencil (A,E) is said to be regular.
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These set of differential equations, called as linear differential equations, are ordi-

nary differential equations that are linear in their derivatives with respect to time, linear

in the dependent variables, and linear in the input function or control.

2.1.2 Transfer Function

The Transfer Function of a linear system works in the frequency domain. The transfer

function for continuous-time input and output signals is the linear mapping of the input

Laplace transform to the output Laplace transform. In the domains of communication

theory, signal processing, and control theory, it is often utilised in single-input single-

output systems. It connects one linear system input to one output.

The transfer function of S from Equation 2.1 is the p⇥m rational matrix function:

H(s) = C(sE�A)�1B + D (2.2)

The set of matrices (E,A,B,C,D) is called a descriptor realization of H(s).

2.1.3 Rank-Revealing Factorization

We eliminate D in Equation 2.1 by incorporating it in the remaining matrices. The reason

for introducing descriptor realizations where the D-term is incorporated in the remain-

ing matrices is that the Loewner framework yields precisely such descriptor realizations

[2].

A rank-revealing factorization of a matrix A 2 Rmxn is a factorization

A = XDYT, X 2 Rmxp, D 2 Rpxp, Y 2 Rnxp,

where p <= min(m, n), D is a diagonal and non-singular matrix, and X and Y are well

conditioned.

To achieve this, we have to allow the dimension of the realization to increase by rank

D. Consider a rank-revealing factorization
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D = D1D2 where D1 2 Rp⇥r, D2 2 Rr⇥m, (2.3)

and r = rank D. It readily follows that

Ed =

0

B@
E 0

0 Or⇥r

1

CA , Ad =

0

B@
A 0

0 �Ir

1

CA , Bd =

0

B@
B

D2

1

CA , Cd =

✓
C D1

◆
(2.4)

is a descriptor realization of the same system with no D-term (i.e., Dd = 0).

The model reduction problem consists of constructing reduced-order DAE systems of

the form

Ŝ : Ê
d
dt

x̂(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t) + D̂u(t), (2.5)

where x̂(t) 2 Rr is the internal variable (the state if Ê is invertible), ŷ(t) 2 Rp is the

output of Ŝ corresponding to the same input u(t), and

Ê, Â 2 Rr⇥r, B̂ 2 Rr⇥m, Ĉ 2 Rp⇥r, D̂ 2 Rp⇥m.

Thus, the number of inputs m and output p remains the same while r ⌧ n [2].

2.1.4 Interpolatory reduction for linear systems

Consider the system S and its transfer function H(s) defined by Equation 2.2. Given left

interpolation points {µj| 1  j  q} ⇢ C, left tangential directions {`j| 1  j  q} ⇢ Cp,

right interpolation points {li| 1  i  k} ⇢ C, right tangential directions {ri| 1  i 

k} ⇢ Cm. We seek a reduced-order system Ŝ such that the associated transfer function

Ĥ(s) is a tangential interpolant to H(s):
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Ĥ(li)ri = H(li)ri

for i = 1, · · · , k
and

`T
j Ĥ(µj) = `T

j H(µj)

for j = 1, · · · , q
(2.6)

If we are given input/output data instead of descriptor-form data as in Equation 2.1, the

resulting problem is slightly modified. Given a set of input-output response measure-

ments specified by left driving frequencies {µj| 1  j  q} ⇢ C, using left input or tan-

gential directions {`j| 1  j  q} ⇢ Cp, producing left responses {vj| 1  j  q} ⇢ Cm,

and right interpolation points {li| 1  i  k} ⇢ C, using right input or tangential

directions {ri| 1  i  k} ⇢ Cm, producing right responses {wi| 1  i  k} ⇢ Cp,

find a low-order system Ŝ such that the resulting transfer function Ĥ(s) is an tangential

interpolant to the data:

Ĥ(li)ri = wi

for i = 1, · · · , k
and

`T
j Ĥ(µj) = vT

j

for j = 1, · · · , q
(2.7)

Interpolation points and tangential directions are determined by the problem. A

specific case of this is the systems with a single input and a single output (m = p = 1),

in other words, the SISO systems. Here, left and right directions can be taken equal to

one (`j = 1, ri = 1). So, conditions 2.6 become

Ĥ(µj) = H(µj), j = 1, · · · , q, Ĥ(li) = H(li), i = 1, · · · , k (2.8)

while conditions 2.7 become

Ĥ(µj) = vj, j = 1, · · · , q, Ĥ(li) = wi, i = 1, · · · , k (2.9)



2.2. The Loewner framework for Linear Systems 7

2.2 The Loewner framework for Linear Systems

Given a row array of pairs of complex numbers (µj, vj), j = 1, ..., q, and a column ar-

ray of pairs of complex numbers (li, wi), i = 1, ..., k, with li, µj distinct, the associated

Loewner or, also known as, the divided-differences matrix is:

L =

2

666664

v1 �w1
µ1 � l1

· · · v1 �wk
µ1 � lk

... . . . ...
vq �w1

µq � l1
· · ·

vq �wk

µq � lk

3

777775
2 Cq⇥k (2.10)

The key characteristic of the Loewner matrix is that its rank conveys information about

the minimal admissible complexity of the solutions of the interpolation problem. When

dealing with measured data, determining the numerical rank of an appropriate Loewner

matrix or a Loewner pencil is required.

2.2.1 The Loewner Pencil

We will formulate the results for the more general tangential interpolation problem.

We are given the right data, (li; ri, wi), i = 1, · · · , k, and the left data, (µj; `T
j , vT

j ), j =

1, · · · , q. The data can be organized as follows:

The right data are:

L = diag [l1, l2, · · · , lk] 2 Ck⇥k,

R = [r1, r2, · · · , rk] 2 Cm⇥k,

W = [w1, w2, · · · , wk] 2 Cp⇥k,

and the left data are:

M = diag
⇥
µ1, µ2, · · · , µq

⇤
2 Cq⇥q,

LT =
⇥
`1, `2, · · · , `q

⇤
2 Cq⇥p,

VT =
⇥
v1, v2, · · · , vq

⇤
2 Cq⇥m
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The Loewner matrix L 2 Cq⇥k is then defined as:

L =

2

6666664

vT
1 r1 � `T

1 w1

µ1 � l1
· · ·

vT
1 rk � `T

1 wk
µ1 � lk

... . . . ...
vT

q r1 � `T
q w1

µq � l1
· · ·

vT
q rk � `T

q wk

µq � lk

3

7777775
(2.11)

The shifted Loewner matrix Ls 2 Cq⇥k is then defined as:

Ls =

2

6666664

µ1vT
1 r1 � `T

1 w1l1

µ1 � l1
· · ·

µ1vT
1 rk � `T

1 wklk
µ1 � lk

... . . . ...
µqvT

q r1 � `T
q w1l1

µq � l1
· · ·

µqvT
q rk � `T

q wklk

µq � lk

3

7777775
(2.12)

The shifted Loewner Matrix Ls , along with the Loewner Matrix L forms the Loewner

pencil which constitutes a high-order realization of the underlying (A, E) pencil.

2.3 Construction of Reduced Order models

Model Order Reduction has several important applications such as autonomous soft

robotic fishtail, commercial aircraft design, Euler-Bernoulli beam, spring-mass-damper

systems, baroclinic instabilities described by Eady’s model, cantilever Timoshenko beam,

and many other real-life use cases [5].

2.3.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization of an mxn real or complex matrix

into three matrices. It is given by:
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M = USVT, (2.13)

where, U is an mxn matrix of the orthonormal eigenvectors of AAT,

S is an nxn diagonal matrix of the singular values which are the square roots of the

eigenvalues of AAT,

V is an nxn matrix containing the orthonormal eigenvectors of ATA.

SVD has various applications including computing the matrix approximation, pseu-

doinverse, and determining the null space, range, and rank of a matrix.

2.3.2 MOR for right amount of data

Assume that k = q, and let (Ls, L) be a regular pencil such that none of the interpolation

points li, µj are its eigenvalues. Then

E = �L, A = �Ls, B = V, C = W (2.14)

is a minimal realization of an interpolant of the data, i.e., the rational function H(s) =

W(Ls � sL)�1V interpolates the data.

2.3.3 MOR for redundant amount of data

If (Ls, L) is a singular pencil, then we’re dealing with the case of more realistic redun-

dant amount of data. In this case, if the assumption

rank(gL�Ls) = rank

0

B@
L

Ls

1

CA = rank
✓

L Ls

◆
= r  k (2.15)

is satisfied for all g 2 {li|1  i  k}S{µj|1  j  q}, we consider the following

SVD factorizations:
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✓
L Ls

◆
= Y(1)S(1)(X(1))T,

0

B@
L

Ls

1

CA = Y(2)S(2)(X(2))T (2.16)

where Y(1), X(2) 2 Ck⇥k. The projection matrices Y 2 Ck⇥r and X 2 Ck⇥r are ob-

tained by selecting the first r columns of the matrices Y(1) and X(2), respectively.

A realization (E, A, B, C) of an approximate interpolant is given by the system ma-

trices:

E = �YTLX, A = �YTLsX, B = YTV, C = WX. (2.17)

Hence, the transfer function H(s) = WX(YTLsX � sYTLsX)�1YTV approximately

matches the data.

Thus, if we have more data than necessary, we can consider (Ls, L, V, W) as a singu-

lar model of the data. An appropriate projection then yields a reduced system of order

k.

As a direct result of the singular values of L, the Loewner framework provides a trade-

off between reduced order system accuracy and complexity.

2.4 Climate Change Equation

Coming to the theory of the second half of our research topic, we introduce an atmo-

spheric equation concerning the movement of individual or a set of clouds in their entire

lifetime, or through multiple lifetimes. Movement of clouds play an important role in

determining the temperature and humidity conditions of any place. Accurate predic-

tion of the cloud quality of any particular area can help in determining the cause of any
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sudden weather or climate change of that place. This also helps in tacking the problem

of slowing climate change in different parts of the world.

2.4.1 Cloud System-Resolving Model

Since the mid-1908s, Cloud System-Resolving Models (CSRMs) have been used to eval-

uate cloud parameterizations. Yamasaki (1975), Krueger (1988), Arakawa, and Xu were

among the first to use CSRMs to the parameterization problem in the mid-1980s. CSRMs

may now be found in hundreds of locations throughout the world. CSRMs were for-

merly confined to two dimensions (2D) in order to save computing costs, but with to-

day’s computers, 3D CSRMs are now feasible for a wide range of applications [6].

CSRM is a numerical model with fine enough grid spacing to allow precise simulations

of individual clouds during their whole life cycle or a portion of it. Large-scale circula-

tions in the homogeneous direction can form spontaneously in CSRM simulations with

horizontally or zonally homogenous border and driving conditions [7].

Linear Response Function of a CSRM encapsulates the macroscopic behavior of moist

convection. It is useful for understanding the linear stability of moist convecting atmo-

sphere as represented by the CSRM. Thunderstorms are formed by moist convection

and are frequently responsible for severe weather across the world. Hail, downbursts,

and tornadoes are all potential risks from thunderstorms. So, moist convection is re-

sponsible for so-called instability in the climatic conditions, that is, severe or unexpected

climate anywhere in the world.

2.4.2 Linear Stability Problem

When moist convection is connected to 2D linear gravity waves, the linear stability

problem is now investigated. The essential characteristics of the interaction between

convection and largescale dynamics are captured in this prototype problem, to which

effects such as those from an equatorial b plane can be incorporated. [7].
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For each horizontal wavenumber k, the system can be written as

d
dt

0

B@
x

w

1

CA =

0

B@
M A

k2C D

1

CA

0

B@
x

w

1

CA (2.18)

where, x is a vector containing the vertical profiles of temperature and specific hu-

midity,

M is the linear response function derived from the CSRM,

A represents the effect of vertical temperature and moisture advection on x,

k2C is the effect of temperature and specific humidity on the vertical velocity profile x,

D represents momentum damping.

Gravity waves are formed when gravity or buoyancy seeks to reestablish balance

in a fluid medium or at the interface between two mediums. The contact between the

atmosphere and the water, which causes wind waves, is an example of such an interac-

tion. These wind waves are responsible for the movement of clouds all across the globe,

and thus play an important role in our equation concerning the movement of individual

clouds.
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Chapter 3

Analysis and Objectives

Model Order Reduction has been used for quite some time now in various different

fields like aeronautics, cantilever beams, and so on. There have been few recent ad-

vances in Model Order Reduction in the climate change context too. Chen, Chen, et

al. ([8]) did several empirical model reduction framework experiments for the advance-

ment of the understanding of diversity, nonlinearity, seasonality, and memory effect in

ENSO simulation and prediction. Kuang et al. ([7]) did model order reduction for the

linear stability problem concerning the climate change equation involving the move-

ment of individual clouds using the algorithm of Safanov and Chiang (1989) ([9]). It

used Balanced-Truncation method for model order reduction. This, along with all other

model reduction methods, use the original model for its reduction, so the model does

not act as a black box as such. Loewner framework, on the other hand, is used for

data-driven model order reduction as it only uses input and output data to reduce the

original model.

The main contributions of this project are as follows:

• We first implement the Loewner framework for model order reduction on right

amount of data using Equation 2.14. This code will have further usage in imple-

menting MOR for the climate change case.

• We compare the climate change equation with the Linear Time-Invariant Control

System equation and try to analyse if we can apply the Loewner framework for
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linear systems onto the linear stability equation.

• We conduct two experiments for applying Loewner framework to the climate

change equation:

1. First, we take the matrix M value as 0 and compare our results of the interpo-

lation points to the original values.

2. Next we apply rank-revealing facorization of D matrix to convert all other

matrices into a descriptor realization of the same system with no D-term.

The rest of the report is organized as follows. In Section 4, we describe the pseudocode

and examples used to implement the Loewner framework. We also propose the compar-

ison of the climate change equation with the climate change equation. Along with that,

we propose our strategy for applying the Loewner framework to the climate change

equation. Section 5 describes our experimental setup and evaluates the results obtained

from our tests. The report concludes in Section 6.
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Chapter 4

Design Proposal

4.1 Interpolation using Loewner Framework

We could not find any code for implementing the interpolation using the Loewner

framework. So the pseudocode as well as the code are written by us from scratch.

4.1.1 Pseudocode

Algorithm 1 INTERPOLATE(L, R, W, M, L, V)
1: m, k = R.shape
2: q, p = L.shape
3: Initialise L and Ls as matrices of dimension q⇥ k.
4: for i 1 to q do
5: for j 1 to k do

6: L[i, j] 
vi

Trj � `T
i wj

µi � lj

7: Ls[i, j] 
µivi

Trj � `T
i wjlj

µi � lj

8: Set E = �L, A = �Ls, B = V, C = W
9: Initialise V̂T =

⇥
v̂1, v̂2, · · · , v̂q

⇤
and Ŵ = [ŵ1, ŵ2, · · · , ŵk], with dimensions same as

V and W respectively.
10: for i 1 to k do
11: ŵi  C(liE�A)�1Bri

12: for i 1 to q do
13: v̂T

i  `T
i C(µiE�A)�1B
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4.1.2 Examples

We test our implementation of the Loewner framework for interpolation through sev-

eral examples of varying dimensions. Some of those are shown here.

Example 1

Left data:

M =

2

64
1 0

0 �1

3

75 , LT =

2

64
i 1� i

�i 2

3

75 , VT =

2

64
�1 1 + i

2 �1

3

75

Right data:

L =

2

64
i 0

0 �i

3

75 , R =

2

64
1 + i 0

i 1� i

3

75 , W =

2

64
1 �1 + i

i �1� i

3

75

Using Steps 6 and 7 of the above algorithm, we obtain the Loewner and Shifted Loewner

matrices:

L =

2

64
�1� i 1� 3i

0.5� 0.5i �i

3

75 , Ls =

2

64
0 �1� 3i

0.5 + 1.5i 0

3

75

Using Step 8, we obtain the E, A, B, C matrices which are used to obtain Ŵ and V̂T using

Steps 10-13:

Ŵ =

2

64
1 �1 + i

i �1� i

3

75 , V̂T =

2

64
�1 1 + i

2 �1

3

75

As we can see, Ŵ comes out to be exactly equal to W and V̂T comes out to be exactly

equal to VT.
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4.2 Comparison with Linear Systems

Climate change equation, that is, Equation 2.18 can be expressed as two ordinary differ-

ential equations as follows:

dw
dt

= Dw + k2Cx,
dx
dt

= Aw + Mx (4.1)

where, w is the internal state variable,

x is the input, and
dw
dt is the output.

The Linear-Time Invariant control system equation is of the form:

Ē
dx̄
dt

= Āx̄ + B̄u, ȳ = C̄x̄ + D̄u (4.2)

We can convert the simplified linear stability equation into LTI control system form as

follows:

x̄ = w, Ā = D,

B̄ = k2C, C̄ = A,

D̄ = M, Ē = I (Identity matrix),

u = x, ȳ =
dx
dt

(4.3)

This means that we can now try if we can apply the Loewner Framework for linear

systems onto the linear stability equation.
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4.3 Applying Loewner to Climate Change Equation

We first describe here the algorithm used for applying Loewner framework. Then, Sec-

tion 5 presents some examples to verify the results obtained from our method. The steps

of the algorithm are as follows:

• For applying the Loewner Framework to the simplified Climate Change Equation

described above, we first take the most common values of A, C, D matrices.

• We take the wavenumber k as 1, and Ē as identity matrix.

• As the Loewner framework does not have any D-term, but it is present in the

simplified form of the climate change equation, we need to accomodate D-term

when applying the loewner framework here. So, we consider two cases for the

matrix D:

1. We don’t consider the D-term. So, we get the matrix M as 0.

2. We compute the rank-revealing factorization of the matrix D. This results in

two matrices as described in Equation 2.3. This converts the E, A, B, C matri-

ces into a descriptor system which does not contain any D-term as described

by the Equation 2.4.

• Next, we use the E, A, B, C values obtained from the previous step to obtain the

transfer function H(s).

• This transfer function is used to obtain the values of V, W matrices.

• To use L, Ls V, W in Equation 2.17, we also need Y and X. They can be obtained

by Singular Value Decomposition (SVD) factorization of Loewner (L) and Shifted

Loewner (Ls) matrices.

• Now we use the Equation 2.17 to obtain the final E, A, B, C values.
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4.3.1 Pseudocode

We present the algorithm for the above process here:

Algorithm 2 INTERPOLATE(L, R, W , M, L, V )
1: m, k = R.shape
2: q, p = L.shape
3: Initialise L and Ls as matrices of dimension q⇥ k.
4: for i 1 to q do
5: for j 1 to k do

6: L[i, j] 
vi

Trj � `T
i wj

µi � lj

7: Ls[i, j] 
µ4ivi

Trj � `T
i wjlj

µi � lj

8: Let L1 =
⇥

L Ls
⇤
, L2 =


L

Ls

�
, r = rank(L1) = rank(L2)

9: Compute the SVD factorizations L1 = Y(1)S(1)(X(1))T and L2 = Y(2)S(2)(X(2))T

10: Define Y, X 2 Ck⇥r by selecting the first r columns of Y(1) and X(2) respectively.
11: Set E = �YTLX, A = �YTLsX, B = YV, C = WX
12: Initialise V̂T =

⇥
v̂1, v̂2, · · · , v̂q

⇤
and Ŵ = [ŵ1, ŵ2, · · · , ŵk], with dimensions same as

V and W respectively.
13: for i 1 to k do
14: ŵi  C(liE�A)�1Bri

15: for i 1 to q do
16: v̂T

i  `T
i C(µiE�A)�1B
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Chapter 5

Experiments

5.1 Datasets

We use real-life climatic data from various sources for all our experiments. These data

are used by meteorological agencies all around the world to predict future climatic and

weather conditions.

5.2 Experimental Setup

All the experiments1 have been conducted on Python 3.0 in Linux (Ubuntu) environ-

ment. Multi-dimensional Numpy arrays are used to define all input matrix data.

5.3 Experiment: Applying Loewner Framework to Climate

Change Equation

We consider both cases mentioned in Chapter 4 of accomodating the D-term here.

5.3.1 Case 1: Not considering the D-term

As the D-term is not considered, the matrix M will be a null matrix.

The input data is as follows:

1All presented results in this report are reproducible. Codes can be produced on request.
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M = O5,5, k = 1

A =

2

66666666664

3 4 9 7 5

5 9 5 4 5

1 4 5 2 6

3 8 6 2 2

3 4 7 9 5

3

77777777775

, C =

2

66666666664

2 9 7 3 9

2 3 5 2 2

1 8 5 8 3

9 6 3 4 8

3 5 2 4 8

3

77777777775

, D =

2

66666666664

6 2 7 4 3

3 1 1 3 6

5 1 6 9 5

2 3 1 6 4

5 5 8 3 7

3

77777777775

Ē is considered as an Identity matrix.

Setting Ā = D, B̄ = k2C, C̄ = A, D̄ = M

The right data obtained is:

L =

2

66664

7.6

11.4

1.4

3

77775
, R =

2

66666666664

17 17.8 2

16.6 4 18.8

12.2 8.2 0.8

5 14.4 10.6

14 11.2 2.6

3

77777777775

, W =

2

66666666664

�644.64 �671.77 1460.21

�758.3 �733.24 �1429.43

�661.84 �568.1 1417.57

�546.51 �538.11 �624.93

�588.54 �614.99 1093.27

3

77777777775

The left data obtained is:

M =

2

66664

6.6

17.8

7.4

3

77775
, LT =

2

66666666664

0.2 17.4 5.8

16.4 17.2 11.6

6.2 2 1.6

1 7.6 19.6

6.4 15.8 4.4

3

77777777775

, VT =

2

66666666664

�281.73 �1398.21 �342.71

�387.1 �2466.95 �501.57

�204.44 �1594.23 �257.25

�251.83 �1686.61 �326.33

�412.44 �2464.91 �557.43

3

77777777775
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We compare the original values of vj and wi with their values that we just obtained. The

error matrices obtained are:

DW = W� Ŵ = 10�13 ⇥

2

66666666664

�160.30 �10.230 �97.770

112.55 10.230 95.500

�159.16 �12.510 �40.930

42.060 5.6800 43.200

�123.92 �5.6800 �75.030

3

77777777775

,

DVT = (V� V̂)
T
= 10�14 ⇥

2

66666666664

39.80 136.4 113.7

28.40 318.3 56.80

5.700 204.6 0

11.40 181.9 28.40

34.10 318.3 79.60

3

77777777775

5.3.2 Case 2: Accommodating the D-term in Loewner Equations

The input data is given as follows:

M =

2

66666666664

67.77 83.18 72.22 63.35 60.05

32.78 13.05 46.88 39.53 85.61

3.9 23.78 62.33 11.37 24.44

61.07 94.65 42.63 47 15.3

30.7 56.72 64.91 62.46 64.78

3

77777777775

, A =

2

66666666664

74.73 40.3 19.89 91.26 87.95

28.78 53.46 23.47 23.39 53.76

0.55 64.37 33 38.24 31.92

72.83 92.92 99.67 18.06 7.84

47.65 15.87 65.27 90.93 0.14

3

77777777775

,

C =

2

66666666664

34.82 16.27 48.19 47.82 89.09

18.1 57.55 49.21 68.34 10.01

36.22 31.58 17.33 3.43 25.24

6.26 35.01 91.1 93.11 2.94

86.04 48.26 86.87 95.59 8.9

3

77777777775

, D =

2

66666666664

26.25 61.43 24.43 84.97 69.76

98.77 80.6 75.02 31.83 33.53

17.33 81.98 76.97 64.88 73.02

4.8 97.21 53.01 69.19 39.78

2.63 38.59 82.89 13.91 73.06

3

77777777775

,
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k = 1

Ā = D, B̄ = C, C̄ = A, D̄ = M

To accommodate the D-term, we do rank-revealing factorization:

D =

2

66666666664

67.77 83.18 72.22 63.35 60.05

32.78 13.05 46.88 39.53 85.61

3.9 23.78 62.33 11.37 24.44

61.07 94.65 42.63 47 15.3

30.7 56.72 64.91 62.46 64.78

3

77777777775

(5.1)

=

2

66666666664

67.77 83.18 72.22 63.35 60.05

32.78 13.05 46.88 39.53 85.61

3.9 23.78 62.33 11.37 24.44

61.07 94.65 42.63 47 15.3

30.7 56.72 64.91 62.46 64.78

3

77777777775

2

66666666664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3

77777777775

(5.2)

= D1D2 (5.3)

This converts E, A, B, C matrices into the following form:
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E =

2

6666666666666666666666666664

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

3

7777777777777777777777777775

A =

2

6666666666666666666666666664

26.25 61.43 24.43 84.97 69.76 0 0 0 0 0

98.77 80.6 75.02 31.83 33.53 0 0 0 0 0

17.33 81.98 76.97 64.88 73.02 0 0 0 0 0

4.8 97.21 53.01 69.19 39.78 0 0 0 0 0

2.63 38.59 82.89 13.91 73.06 0 0 0 0 0

0 0 0 0 0 �1 0 0 0 0

0 0 0 0 0 0 �1 0 0 0

0 0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 0 �1

3

7777777777777777777777777775

,
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B =

2

6666666666666666666666666664

34.82 16.27 48.19 47.82 89.09

18.1 57.55 49.21 68.34 10.01

36.22 31.58 17.33 3.43 25.24

6.26 35.01 91.1 93.11 2.94

86.04 48.26 86.87 95.59 8.9

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3

7777777777777777777777777775

,

C =

2

66666666664

74.73 40.3 19.89 91.26 87.95 67.77 83.18 72.22 63.35 60.05

28.78 53.46 23.47 23.39 53.76 32.78 13.05 46.88 39.53 85.61

0.55 64.37 33 38.24 31.92 3.9 23.78 62.33 11.37 24.44

72.83 92.92 99.67 18.06 7.84 61.07 94.65 42.63 47 15.3

47.65 15.87 65.27 90.93 0.14 30.7 56.72 64.91 62.46 64.78

3

77777777775

,

The right data obtained is:

L =

2

66664

2.25

9.21

9.91

3

77775
, R =

2

66666666664

0.38, 0.95, 0.84

0.96, 0.61, 0.45

0.78, 0.37, 0.49

0.86, 0.22, 0.68

0.35, 0.63, 0.22

3

77777777775

, W =

2

66666666664

286.25 276.70 408.28

�1759.57 1841.77 2058.04

�521.40 300.58 289.27

644.00 �575.03 �741.88

5428.31 �5017.30 �5639.16

3

77777777775

The left data obtained is:
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M =

2

66664

8.51

2.64

10.44

3

77775
, LT =

2

66666666664

0.72 0.4 0.98

0.15 0.84 0.58

0.36 0.99 0.42

0.6 0.31 0.91

0.56 0.56 0.28

3

77777777775

, VT =

2

66666666664

�778.11 183.72 4.05

�483.22 160.38 41.48

�3513.62 681.10 �275.92

�4481.97 764.56 �418.68

�827.83 142.34 �58.44

3

77777777775

Again comparing the original values of vj and wi with their values that we just ob-

tained, we get the following error matrices:

DW = W� Ŵ = 10�13 ⇥

2

66666666664

68.78 �25.58 5.12

�43.20 4.55 �4.55

�42.06 14.78 �3.41

�37.52 19.33 �7.96

136.42 �9.09 0

3

77777777775

,

DVT = (V� V̂)
T
= 10�13 ⇥

2

66666666664

34.11 �6.54 1.42

�23.31 2.84 �4.41

�113.69 20.46 �13.64

0 �4.5500 0

45.47 �7.67 4.26

3

77777777775

5.4 Results and Discussion:

In order to verify our results for applying the Loewner framework on the climate change

equation, we perform a series of experiments. The resulting error matrices are shown

at the end of each experiment. As can be observed from the error matrices, the error

obtained between the values that we obtained and the original values comes out in the

range of 10�14 to 10�12. The accuracy of our implementation comes out to be quite

high. Hence, we can say that our experiments are successful.
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Conclusion and Future Work

The objectives of this project were to

• Introduce a form of data-driven model order reduction to the climate change con-

text.

• Verify its correctness

• Evaluate its results through various experiments with real-life data of different

sizes.

In this project, we proposed a new application of data-driven model order reduc-

tion by introducing it to the field of climate change. We used Loewner framework for

this task. Previous non-empirical methods used for model order reduction in climate

change context had their strengths and shortcomings, which are explained in the previ-

ous sections of the report, and are addressed by the proposed empirical method.

We also proposed the conversion of the climate change equation into Linear-Time In-

variant Control System equation form. This helped in the usage of Loewner framework

for linear systems in this context.

The results are discussed for several experiments where real-life climatic data obtained

from various sources is taken into consideration. The data comprised of different di-

mensions of matrices and the model reduction method performed exceptionally well

on that.

This verifies that:
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• Climate change equation based on linear stability problem can be efficiently con-

verted to a set of Ordinary Differential Equations (ODEs) of the Linear System

form by removing one variable (D-term) using Rank-Revealing factorization.

• The data-driven model reduction procedure for the above climate change equation

can be successfully performed using Loewner framework with negligible error.

Future work in this field can be in the following directions:

• Using Loewner framework for other climate-based equations.

• Using Loewner framework in other fields where computationally expensive mod-

els are used.

• Using other data-driven Model Order Reduction methods in climate context.
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