
 1

 B. TECH. PROJECT

REPORT
On

BOOLEAN

SATISFIABILITY

BY

Rohith Bellamkonda

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2022

 2

 BOOLEAN

SATISFIABILITY

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Rohith Bellamkonda

(150001004)

Guided by:

Dr. Narendra S Chaudhari

INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2022

 3

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Boolean satisfiability” submitted in

partial fulfillment for the award of the degree of Bachelor of Technology in

‘Computer Science and Engineering’ completed under the supervision of Dr.

Narendra S Chaudhari from the Department of computer science and

engineering, IIT Indore is an authentic work.

 Further, I/we declare that I/we have not submitted this work for the award of

any other degree elsewhere.

Signature and name of the student(s) with date

CERTIFICATE by BTP Guide(s)

 It is certified that the above statement made by the students is correct to the

best of my/our knowledge.

Signature of BTP Guide(s) with dates and their designation

Prof Narendra Chaudhari (Supervisor) 26 May 2022

 4

Preface

This report on “Boolean Satisfiability" is prepared under the guidance of Dr.

Narendra S Chaudhari from the Department of Computer Science and Engineering,

IIT Indore.

Through this report I have tried to implement an SAT solver using the Davis–

Putnam–Logemann–Loveland (DPLL) algorithm. The DPLL algorithm-based

Satisfiability solvers uses backtracking. In the early 1960s, two seminal articles

introduced the basic search strategy, which is today known as the Davis–Putnam–

Logemann–Loveland algorithm ("DPLL" or "DLL"). Recently many SAT solving

approaches have been derived from and have same structure as the DPLL

algorithm. They frequently only increase the efficiency of certain types of

problems on SAT, like those used in industrial applications or those created

randomly. The DPLL family of algorithms has been shown to have exponential

lower bounds theoretically.

Rohith Bellamkonda

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

 5

Acknowledgements

First and foremost, we want to convey our gratitude to our research supervisor, Dr.

Narendra S Chaudhary whose contribution to stimulating suggestions and

encouragement, helped us to coordinate our B. Tech project.

It is their help and support, due to which we were able to complete the design and

technical report.

Without their support this report would not have been possible.

Rohith Bellamkonda

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

 6

Abstract

I have tried to implement an SAT solver using the Davis–Putnam–Logemann–

Loveland (DPLL) algorithm. The DPLL algorithm consists of three stages, Unit

Propagation, Pure literal Elimination and backtracking by choosing a literal which

occurs most frequently in all the clauses combined. I used ReactJS to make the

user Interface for inputting the clauses and the internal code takes the input and

performs the unit propagation, pure literal Elimination and backtracking and

provides the output stating whether the given Boolean formula in conjunctive

normal form is satisfiable (there exists a result of true for various combination of

Boolean values) or unsatisfiable (when various combination of Boolean values of

the given literal fails to provide a true value as a result)

 7

Table of Contents

 Candidate’s Declaration

 Supervisor’s Certificate

 Preface

 Acknowledgements

 Abstract

1 INTRODUCTION 9

2 DPLL ALGORITHM 10

 2.1 The working process of DPLL 11

3 SAT HARD 12

 3.1 NP-Hard 13

 3.2 NP-Complete 13

4 MAKE DPLL EFFICIENT 15

 4.1 DPLL VS Brute force. 16

 4.2 Partial valuations 16

 4.3 Specialized data structures 17

 4.4 Choosing the branching literal rules. 18

 4.5 Basic backtracking algorithm variants. 18

 4.6 Achieving significant progress 18

5 UNIT PROPOGATION 19

 8

 5.1 Using a partial model 20

 5.2 Complexity of unit propagation 20

6 PURE LITERALS 21

7 BACKTRACKING 21

 7.1 checking whether a problem can be solved using

 Backtracking? 22

 7.2 Recursive Backtracking 23

8 DATASETS 24

9 RESULTS 25

10 CONCLUSIONS AND SCOPE FOR FUTURE WORK. 26

 9

 1 INTRODUCTION

SAT solver - A SAT solver is a computer program that seeks to solve the Boolean satisfiability

problem in computer science and formal techniques. A SAT solver outputs whether a formula

over Boolean variables, such as "(a or b)" and "(a or not b), is satisfiable, indicating that there are

conceivable values of a and b that make the formula true, or unsatisfiable, meaning that there are

no such values of a and b. The solution should return "satisfiable" in this example since the

formula is satisfiable when a is true. Modern SAT solvers have evolved into complicated

software artefacts involving a significant number of heuristics and program optimizations to

work efficiently since the advent of SAT algorithms in the 1960s.

Converting a formula to conjunctive normal form is a common first step for SAT solvers. They

are frequently built on fundamental algorithms like the DPLL algorithm, but they include a

variety of modifications and features. Most SAT solvers have time-outs, so they'll finish in a

reasonable amount of time even if they can't find a solution and return "unknown."

DPLL SAT solver – Davis–Putnam–Logemann–Loveland (DPLL) algorithm. The DPLL

algorithm-based Satisfiability solvers uses backtracking. In the early 1960s, two seminal articles

introduced the basic search strategy, which is today known as the Davis–Putnam–Logemann–

Loveland algorithm ("DPLL" or "DLL"). Recently many SAT solving approaches have been

derived from and have same structure as the DPLL algorithm. They frequently only increase the

efficiency of certain types of problems on SAT, like those used in industrial applications or those

created randomly. The DPLL family of algorithms has been shown to have exponential lower

bounds theoretically.

 10

 2 DPLL ALGORITHM

 The Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based

search technique for determining the satisfiability of propositional logic formulae in conjunctive

normal form.

 It was developed by Martin Davis, Donald W. Loveland and George Logemann, in 1961 as a

modification of the older Davis–Putnam algorithm, which was devised by Davis and Hilary

Putnam in 1960 as a resolution-based approach. The Davis–Logemann–Loveland algorithm is

also known as the "Davis–Putnam method" or the "DP algorithm" in older literature. DLL and

DPLL are two more frequent names that keep the distinction.

The normal backtracking method works by picking a random literal and assigning a Boolean

value to it and then recursively simplifying the formula, and then verifying whether the

simplified or modified formula is satisfiable; if so, the initial formula is satisfiable; if not, assume

the negation of the truth value and then again check recursively. The dividing rule divides the

issue into two subproblems. All true classes in the assignment are removed from the formula.

 11

2.1 The working process of DPLL

True or False is returned by DPLL(F) when given a CNF formula F and the procedure is given

below:

• Use unit propagation for as long as you can:

 All sentences containing l should be removed from F and ~l from the remaining clauses to get a

unit clause of the type Ci = l.

• Use as much pure literal elimination as possible:

Remove any clauses that include a literal l that only appears only either positively or negatively

• Return true if F doesn’t have any clauses or F is empty.

Return false if F includes the empty clause.

• Splitting: If not, choose a literal l and make Val(l) Equal t. All sentences containing l should be

removed from F and ~l from the remaining clauses to reduce F to F1.

Calculate the DPLL (F1). Return true if the result is true.

• If not, set val(l) = f. All sentences containing l should be removed from F and ~l from the

remaining clauses to reduce F to F2. Return the result of DPLL(F2) calculation.

 12

The picking of branching literal, which is the literal examined during backtracking, is critical to

the Davis-Logemann-Loveland algorithm. As a result, this is more of a family of algorithms, one

for each conceivable branching literal choice. The choice of branching literal has a significant

impact on efficiency: depending on the branching literals used, the execution time might be

either constant or exponential.

On average, DPLL is relatively fast; scenarios where a bad literal choice is the cause of

exponential runtime are quite rare. However, there exist formulae in which any approach for

choosing the branching variable results in an exponential runtime.

3 SAT HARD

Every problem that a machine with an infinite number of parallel threads can answer in

polynomial time may be represented as an SAT problem. So, if you can answer the SAT quickly,

 13

on a typical machine you can rapidly answer all of these questions. Theoreticians call this

property of SAT NP-completeness because they use a nondeterministic machine model to

represent unbounded parallelism – something we won't be able to do until quantum computers

are available – and have demonstrated that SAT is the most difficult problem that such a machine

can solve. While it is impossible to prove that all SAT solvers in worst case must use exponential

time, thousands of problems for which the best-known algorithm is exponential are "easier" than

SAT.

3.1 NP-HARD

 A problem X is said to be in NP-Hard if it can be reduced to X in polynomial time by an NP-

Complete problem Y. NP-Complete issues are just as difficult as NP-Hard problems. The

problem does not have to be in the NP class to be NP-Hard.

3.2 NP-COMPLETE

If there is an NP problem Y that can be reduced to X in polynomial time, then the problem X is

NP-Complete. NP-Complete problems are just as difficult as NP-Complete problems. If an issue

is part of both NP and NP-Hard Problems, it is NP-Complete. In polynomial time, a non-

deterministic Turing computer can solve an NP-Complete problem.

 14

 15

4 MAKE DPLL EFFICIENT

The fact that every problem that can be solved with a Non-Deterministic Turing Machine in

polynomial time can be encoded as a Conjunctive Normal Form formula that is SAT if and only

if the Non-Deterministic Turing Machine "accepts" the given input string indicates that SAT is a

difficult problem to solve.

 Many individuals have worked on refining the fundamental DPLL algorithm and have achieved

incredible improvements without altering the core concept.

Work on enhancing the algorithm is now being done in four ways.

(1) Do not replicate the formula.

(2) By using new data structures to speed up the method, particularly the unit propagation

section.

(3) establishing alternative branching literal selection policies

(4) describing several versions of the fundamental backtracking method

All types of optimizations are feasible in all three domains if one uses familiarity with efficient

techniques in the appropriate fields.

 16

4.1 DPLL VS BRUTEFORCE

4.2 PARTIAL VALUATIONS

Literals must be deleted from a formula at several phases of the DPLL technique. While this

looks obvious, dealing with thousands of clauses makes this impossible. we utilize partial

valuations, in which some but not all of the variables in a formula are assigned truth values.

As a result, we simply change the value of literal to f instead of removing the literal from the

clause. Actually, this literal is only needed during splitting and unit propagation, we'll have kept

~l to t, thus there won't be anything to do.

This eliminates several needless processes.

As a result, the concept of a unit clause must be redefined. A unit clause, rather than having only

one literal, has all but f is assigned to any of its literals. This is the same as removing the literals,

but there is no need for formula changing.

 17

4.3 USING DATA STRUCTURES

Counting the amount of these literals in each clause by going through the entire formula each

time makes no sense. However, because there will be millions of clauses, keeping a record of the

count of literals in every sentence that aren't false will be impossible.

The so-called watched literals method, which goes like this, is a superior approach. We choose

two unassigned literals for each clause C in F to keep an eye on.

Then we need two lists for every variable x in F, one of sentences where x is monitored, and

another of clauses where x is monitored.

When the value t is assigned to x, in the watch list for check all clauses.

– Check for another variable y in that sentence that may be watched and add that clause to y's

watch list. We have a unit clause if everything but one literal l in the phrase is assigned f, and we

may assign t to l and recur

– Continue if all literals have previously been allocated true

– if f has been assigned to every literal in the clause (through another op), F is unsat.

Even though this appears to be more complex initially, it considerably minimizes the clauses

count that must be reviewed every time.

Watch lists do not need to be restored when the algorithm wants to travel backwards.

 18

4.4 CHOOSING BRANCH LITERALS RULES

Choosing the proper literal to split has a significant impact on the runtime of algorithm.

Developers develop heuristics, but they must ensure that calculating the heuristic is not so costly.

So, variables with high frequency count are chosen.

4.5 BASIC BACKTRACKING ALGORITHM VARIANTS

The naïve algorithm frequently divides and investigates in considerable detail to discover that a

given Boolean formula is unsatisfiable. It again goes to the previous variable and does

backtracking and fails to meet the Boolean formula once more. The rationale was the same as

before, but the algorithm was unaware of this. To enhance backtracking, one must be able to

reuse data gained in a previous branch.

Clause learning is the core method: if a clause that has conflicts is detected, construct a conflict

clause comprising all variables that are currently termed false. Return to the first decision level,

when one of these literals was still to be allocated. I'll stop there since the technicalities are a

little tough, but the benefits are fantastic if you do it correctly, because we prevent a lot of

wasted time looking for a satisfactory valuation.

4.6 ACHIEVING SIGNIFICANT PROGRESS

There are further low-level enhancements that can be made, resulting in SAT solvers that can

now handle millions of literals. There exist some times when these processes underperformed on

minor formulae, but generally, they perform admirably.

"Conjunctive Normal Form" should be used for our proposal.

Before we begin, we must verify that the proposition we are working with is in CNF.

 19

It truly refers to a proposal that is full with v and ∧. So, basically, there should be no arrows.

Your parenthesis-separated sub-clauses should be separated by instead of. You should take the

following actions to do this:

1. Replace (1 ⇔ 2) with (1 ⇒ 2) ∧ (2 ⇒ 1)

2. Replace (1 ⇒ 2) with (~1 ∨ 2)

3. Move negations inside

a) ~(~1) =1

b) ~ (1 ∧ 2) = ~1 ∨ ~2

c) ~ (1 ∨ 2) = ~1 ∧ ~2

4. Distribute ∨ over ∧:

1 ∨ (2 ∧ 3) = (1 ∨ 2) ∧ (2 ∨ 3)

5 UNIT PROPOGATION

The technique is based on unit clauses, which are conjunctive normal form clauses made up of a

single literal. If a group of clauses includes the unit clause, the subsequent clauses are simplified

using the following two rules:

1) Each clause containing l is eliminated

2) This literal gets removed from every sentence that contains ~l.

When both rules are combined, new clauses are created that are identical to the previous one.

 Let's have an example, the example contains unit clause 1, and perform unit propagation

{1 V 2, ~1 V 2, ~3 V 4, 1}

This sentence 1 V 2 will be eliminated entirely because 1 V 2 contains 1. This literal -1 can be

omitted from the sentence since ¬1∨3 carries ~1. Unit clause 1 is retained; otherwise, the

resultant set would not be identical to the original; however, this clause can be omitted if the data

is already saved in another format. The following is a summary of the effect of unit propagation:

{1 V 2, ~1 V 2, ~3 V 4, 1} => {, 2, ~3 V 4,1}

The collection of clauses {3, ¬3∨4,1} coming from this is equal to the one above. The new unit

clause 3 can be used as unit literal to perform unit propagation again

 20

5.1 USING A PARTIAL MODEL

A partial model can be used to store or produce unit clauses that are present in a set of clauses. In

this instance, unit propagation is done using the partial model's literals, and unit clauses are

removed if their literal occurs in the model. In the example above, to the partial model unit

clause 1 would be added; the simplification of the set of clauses would then proceed as

previously, with the exception that unit clause 1 would be eliminated. The generated collection

of clauses is identical to the original one, assuming that the partial model's literals are valid.

5.2 COMPLEXITY OF UNIT PROPOGATION

The total set she to check, which is sum of the sizes of all clauses, where each clause's size is the

number of literals it contains, necessitates time quadratic in the total size of the set to check.

Unit propagation, on the other hand, may be done in linear time by preserving the list of clauses

containing each literal for each variable.

This fundamental data structure may be built in a time proportionate to the size of the set, and it

makes finding all sentences containing a variable fairly simple. For all unit clauses the overall

running time for performing unit propagation is proportional to the size of the collection.

 21

6 PURE LITERALS

Pure literal elimination is another feature of the original DPLL algorithm. Pure literal elimination

is a method of locating and assigning literals that only have one polarity within the clauses that

have not yet been satisfied. These literals are safe to employ since they do not falsify clauses.

However, this isn't employed in the CDCL SAT solvers' search algorithm since recognizing pure

literals is too costly for the benefit it provides.

If “a” does not appear "~a" in F, literal "a" is pure in a CNF formula. Pure literals may always be

set to true without impacting satisfiability, thereby deleting the classes that contain them.

Because this may cause additional literals to become pure, the procedure must be repeated to

create a satisfiability equivalent formula that does not contain any pure literals. This is referred to

as "pure literal elimination."

Many satisfiability algorithms employ the deletion of pure literals as a heuristic. It is still used by

DLL-type algorithms that obtain the best theoretical worst-case upper limits for the CDCL-SAT

solver implementations presently employ a data structure that is optimized for unit propagation,

sacrificing the pure literal heuristic, whereas few recent solvers still use the heuristic only in their

preparation step.

7 BACKTRACKING

Backtracking is an algorithmic strategy for recursively solving problems by attempting to

develop a solution progressively, one piece at a time, and discarding any solutions that do not

fulfil the problem's criteria at any point in time Backtracking is likewise a step up from the brute-

force technique. So, the concept behind the backtracking approach is that it looks for a solution

to a problem among all the possibilities accessible.

We begin the backtracking process by selecting one feasible choice, and if the problem is solved

with that option, we return to the solution; otherwise, we retrace and choose another option from

the remaining alternatives. There may also be instances where none of the possibilities provide a

solution, in which case we recognize that retracing will not provide a solution. Backtracking can

also be considered a type of recursion. This is due to the fact that the process of determining a

solution from the numerous options available is continued recursively until we either find a

 22

solution or reach the end state. As a result, we may infer that retracing at each stage removes

options that are unlikely to lead to a solution and instead focuses on options that are likely to lead

to a solution.

When it comes to backtracking, there are three categories of issues to consider:

We look for a feasible solution to this decision problem.

We seek the optimal solution to an optimization problem.

We find all possible solutions to the enumeration problem.

7.1 HOW TO CHECK WHETHER A PROBLEM CAN BE SOLVED USING

BACKTRACKING?

Backtracking can be used to solve any constraint satisfaction problem with clear and well-

defined constraints on any objective solution, which incrementally builds candidates to the

solution and abandons them ("backtracks") when it determines that they cannot possibly be

completed to a valid solution. Well-known algorithms such as DP or Greedy Algorithms can

outperform the backtracking technique in every way. However, there are still a few issues that

can only be solved via backtracking techniques.

 23

How to determine if a problem can be solved using Backtracking?

7.2 RECURSIVE BACKTRACKING

Following these two simplification phases, the DPLL must choose a variable to branch on. The

satisfiability problem is then divided into two parts: if the formula is satisfiable with the selected

variable set to true or false, and whether the formula is satisfiable with the chosen variable set to

true or false. In essence, the method "guesses" a variable to be true, then checks if that

subproblem is satisfiable recursively; if it isn't, the programmer "guesses" the variable to be false

and tries again.

You have complete freedom in deciding which variables to branch on. You might choose a

variable at random, choose the variable that appears the most in the formula, or just take the

alphabetically next variable. We define "reasonable" as a procedure that produces accurate

outcomes.

 24

If you don't put "involves all the original set of variables " in the check below, DPLL will only

return a partial instance, which may exclude values for variables that were eliminated during the

simplification process. We need to remember the initial set of variables because we're updating

the formula recursively.

8 DATASETS

The datasets for testing the program have been taken from various online sources and compared

the results of my sat solver to the already existing sat solvers on the internet.

The dataset which I checked consists of one thousand satisfiable Boolean formulas and one

thousand unsatisfiable Boolean formulas and this dataset is taken from GitHub. The link for

datasets has been provided in the references section.

 25

9 RESULTS

When a given Boolean formula is satisfiable, the result will be SAT

When a given Boolean formula is unsatisfiable, the result will be UNSAT

 26

10 CONCLUSIONS AND SCOPE FOR FUTURE WORK

I have implemented a SAT solver using the DPLL algorithm.

The model now only tells whether the given Boolean formula is satisfiable or unsatisfiable but

not the combination of truth values of the literals which makes the formula satisfiable if the

formula is a satisfiable one.

I want to make a SAT solver website by providing a good interface and to get the result by just

uploading the data in file instead of typing or pasting the data.

I also want to implement and present the backtracking tree of the given conjunctive normal form

on user Interface for better understanding of the DPLL algorithm.

 27

REFERENCES

1. https://davefernig.com/2018/05/07/solving-sat-in-python/

2. https://www.geeksforgeeks.org/backtracking-introduction/

3. https://www.cs.cornell.edu/courses/cs4860/2009sp/lec-04.pdf

4. https://jix.one/refactoring-varisat-3-cdcl/

5. https://www.cs.upc.edu/~erodri/webpage/cps/theory/sat/DPLL/slides.pdf

6. https://www.cs.cmu.edu/~15414/f17/lectures/10-dpll.pdf

7. http://www.diag.uniroma1.it//~liberato/ar/dpll/dpll.html

8. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.380.2837&rep=rep1&type=pd

f

9. https://cs.stackexchange.com/questions/9556/what-is-the-definition-of-p-np-np-

complete-and-np-hard

10. https://en.wikipedia.org/wiki/DPLL_algorithm

11. https://en.wikipedia.org/wiki/Unit_propagation

12. https://ptgmedia.pearsoncmg.com/images/9780134397603/samplepages/9780134397603.

pdf

13. https://www-cs-faculty.stanford.edu/~knuth/news.html

14. https://cs.stackexchange.com/questions/9556/what-is-the-definition-of-p-np-np-complete-

and-np-hard

15. https://github.com/khamkarajinkya/Davis-Putnam-Logemann-Loveland-

Algorithm/blob/master/sat_tests.zip

	7.2 RECURSIVE BACKTRACKING

