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Preface

This report on ”Fingerprint Matching using a Deep Learning Based Approach” is

prepared under the guidance of Dr. Surya Prakash.

In this research, I have employed a very popular Deep Learning architecture namely

Vision Transformer in a Siamese Network setting to learn the similarity between a

given pair of fingerprint images. Multiple experiments with variations in the model

have been performed and the data has been recorded. A custom algorithm has been

implemented which is used to determine the threshold for predicting the label of the

outcome. I have endeavoured to ensure every part and every detail of the pipeline

has been covered succinctly.

I have endeavoured to the best of my abilities and knowledge to elucidate the content

in a lucid manner. Moreover, I have included figures and charts to make the report

more illustrative.

Smit Patel

B.Tech. IV Year

Discipline of Electrical Engineering

IIT, Indore
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FINGERPRINT MATCHING USING A DEEP

LEARNING BASED APPROACH

Abstract

As we move towards a technological driven era, the traditional methods of data

or personnel verification are becoming redundant and easier to crack. Biometric

authentication has emerged as a very promising technique as it uses features of

human body which are unique to every individual. In an effort to adopt recent

developments in Machine Learning (ML) and Natural Language Processing (NLP)

and apply them to the domain of biometric verification, I propose a novel Vision

Transformer (ViT) based Siamese Network (SN) framework for fingerprint match-

ing. Our primary focus is holistic and a end-to-end pipeline has been constructed

and implemented using an ensemble of task-specific algorithms to procure the best

possible result from the model. I have also endeavoured to identify specific problems

on the application of ViT to our problem statement and introduced two major mod-

ifications, Shifted Patch Tokenization (SPT) and Localized Self Attention (LSA) to

tackle those shortcomings effectively. I propose two variations for the model, namely

Intermediate-Merge (IM) Siamese Network and Late Merge (LM) Siamese Network

and test the performances on a fingerprint dataset from IIT Kanpur.

Keywords: Fingerprint Matching, Vision Transformer, Siamese Networks, Deep

Learning
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Chapter 1

Introduction

The project for my thesis is centered around a very popular yet important aspect

of today’s technology-driven era. In such times, protection of identity and confi-

dential data becomes extremely potent. The first means to do so were a simple

lock and key. As technology advanced, the keys were replaced by passwords and

locks were replaced by sophisticated authentication algorithms. Computerization of

verification system also indicate that spurious authentication can lead to damage on

multiple fronts including data, finance, privacy and so on. Credential replication,

malware and retracing techniques have made it possible to retrieve passwords and

abate the novelty of such methods [32].

In order to overcome the limitations of the traditional password protection regime,

researchers shifted to biometric verification [33]. In such systems, a unique biological

characteristic of an individual is used to verify one’s identity. Biometrics comprise

a broad spectrum of inputs including face, iris, heartbeat, sound, fingerprint and so

on. Figure 1.1 gives a comprehensive list of biometric features which are currently

being used for recognition systems. Amongst all of these, the most popular and

widely-used biometric authentication feature are fingerprints. Fingerprints are a

unique identification feature pattern for humans, consisting of ridges on fingers that

let people grip things with their hands. The fingerprint scanner is at the heart of this

automated verification system, and it’s in charge of capturing images based on the
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Figure 1.1: Various biometric features used for authentication systems

valleys and ridges of human fingers and matching them to stored patterns. Finger-

print matching is popular because of its scalability, convenience and ease of usage.

My Bachelor thesis involves conducting systematic research on efficient fingerprint

matching approaches, particularly in Deep Learning (DL) and use the learnings as

motivation for developing a novel end-to-end fingerprint matching system.

1.1 Motivation of the Work

In the conventional fingerprint matching process, tedious preprocessing is involved

in order to match two fingerprint images. Select data points are focused using

computer vision algorithms or physical techniques and on the pretext of the similar-

ity of the preselected features, the algorithm determines a match. These methods

are not only outdated, but also computationally inefficient and not very reliable [40].

On the contrary, when machine learning (ML), particularly Deep Learning (DL),

is employed for fingerprint matching, a majority of preprocessing is eliminated and

the results procured are state of the art. This is because the biometric features which

are extracted and learnt using Deep Learning models have superior discriminative
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ability for inter-class samples and high similarity for intraclass samples as compared

to standard models. That is, I am giving the model the freedom to determine the

most suitable features for learning and make a more advised prediction. Moreover,

DL based approaches are driven by data they are trained on, hence given a quality

dataset, DL algorithms tend to effectively fit and replicate the results meticulously.

The motivation for choosing this particular topic as a part of my BTech thesis

is two fold:

• There is great potential for biometrics in the state of the art breakthroughs

which have been researched for numerous problem-statements. Our work is

an effort to tap the potential and channelize it to the domain of fingerprints.

• The conventional fingerprint matching processes have been extensively dis-

cussed in the literature; however, the Deep Learning based approaches haven’t

been explored much for fingerprint matching.

1.2 Novelty of the work

This research conducted by us has several features which makes it novel in the

domain of biometric, particularly fingerprint research. To the best of our knowledge,

the following are the salient unique attributes of our research.

• I am the first to employ and implement Vision Transformers for Fingerprint

Matching

• I am the first to ever use Vision Transformers in a Siamese setting for learning

similarity between the two inputs and propose variations in its configuration.

• I have incorporated crucial modifications (SPT and LSA) which are inspired

from [27], that tackle the problems faced by the model due to limited dataset

size and increase accuracy.
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Figure 1.2: The singular and minutiae points in a fingerprint

• I have proposed an end-to-end pipeline for fingerprint match detection.

• I have created custom and problem statement-focused dataset augmentation

flow by drawing insights from similar works.

1.3 Fingerprint Nomenclature

Before diving deep into the research, there are some vital features in a fingerprint

which have been used extensively and play a crucial role in the pipeline. They are

as follows:

• Singular Points:

Singular point is defined as the topmost point of the innermost curving ridge.

Noticeably, this will also be the point where the corresponding ridge curvature
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Figure 1.3: The original fingerprint and its corresponding thinned-ridge template

reaches maximum in the whole template.

• Minutiae Points:

Minutiae points are specific feature points in a fingerprint image. Minutiae

points have characteristic that these are either locations of ridge bifurcation

or of a ridge ending in the fingerprint. Minutiae points are widely used to

determine the uniqueness of a fingerprint image. As shown in the Fig 1.2, the

green square indicates the singular point where as the blue circular outlines

depict the minutiae points of the fingerprint.

• Ridges:

The curved lines in a fingerprint template image is referred to as ridges. While

most ridges are continuous curves originating and terminating at edges of the

fingerprint image the others either terminate at specific points called ridge

endings or perhaps a ridge separates into two to form specific points referred

to as ridge bifurcation. ‘These points are of significance, as location of these

points correlates to uniqueness of fingerprint images. Usually we first thin the

ridges of any user biometric template to a single-pixel thick ridges so as to

process the template with more ease and precision. Fig 1.3 displays the ridges

of a standard fingerprint image on the left and the same print image with

thinned-ridges on the right for improving the data quality.
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1.4 Thesis Organisation

In this section, I introduce the theme and subject of the thesis and the motivation

driving the hypothesis. A separate subsection has also been dedicated in this section

to highlight the novelty of the work and project the same as an original research

having immense scope in the future. the organization of the rest of the thesis is as

follows. In the following section, I introduce the key algorithms which have been

used in the pipeline with focus on the fundamental concepts of Vision Transformers

(ViT), which form the backbone of the entire model.

The next chapter talks about the entire pipeline of the proposed approach and di-

vides each block into a separate section. The experimental setup and configuration

for every block has been succinctly covered in the same chapter. I follow it up with

the results and prime observations which have been derived from this experiment.

Finally, I have presented the conclusion and the scope for future work on this lie of

research.
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Chapter 2

Literature Review

Ever since biometric authentication and verification has come into the limelight,

researchers all around the world are deeply invested in making the algorithms more

secure, reliable and failproof. Fingerprint matching, being at the heart of biometric

authentication is evolving with time and rapidly advancing technology. Typically,

there are two main components for fingerprint matching, fingerprint dataset feature

extraction, and fingerprint similarity detection.

Initially, common fingerprint features such as minutiae points, ridges or singular

points were extracted as potential features and matching was performed by compar-

ison directly. [35] proposed a fingerprint matching solution where the minutiae points

are refined and and verified for matching. In order to enhance the performance, the

authors of [23] combine level 3 features such as ridges and pores with fingerprint

patterns and minutiae points to perform a holistic comparison using more number

of fingerprint details. [22] proposed a hybrid approach where minutiae points and

features from the texture of fingerprint are used for determining the similarity.

With the advert of Artificial Intelligence, research shifted their focus from tradi-

tional features mapping to more sophisticated machine learning and deep learning

algorithms. A fingerprint-based genetic algorithm has been proposed by [38] which

finds the optimal vector transformation between two different fingerprints. [15] de-
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vice a Hidden Markov Model approach for detecting the similarity between two

prints. Liu et.al. designed a deep learning model, namely Finger ConvNet in [29] as

a novel approach to improve the speed and accuracy for fingerprint matching.

There are numerous machine learning approaches which have been employed for

this problem statement. In particular, Siamese Networks stand out and outperform

most existing approaches. Siamese Networks (will be discussed in detail in 3.3) ba-

sically comprise two exactly same arms which are trained in parallel. The model in

each arm differs with the task at hand. In this regard, [7] proposed a Multi-Scale

dilated Siamese Neural Network fingerprint matching. [2] applied adversial learning

and used multi-sensor data in a siamese setting for the same.

Vision Transformer was introduced by the Google Brain team in [11] as a powerful

architecture for image classification. Since then, it has been adopted and modified

for various problem tasks such as image encoding [41] and motion object detection

[3]. This research intends to harness the superior image feature learning capability

of Vision Transformers and apply it to the task of fingerprint matching. To the best

of my knowledge, I am the first to experiment with and employ Vision transformers

for similarity detection, which is fingerprint matching in our case.
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Chapter 3

The Algorithms of Focus

3.1 Transformers

The Transformer is essential a encoder-decoder model that was proposed in [39].

The Transformer architecture is one of the most widely used architecture in Natu-

ral Language Processing (NLP) and is drawing a lot of attention in other domains

owing to its superior capabilities.

In a box, the Transformer consists of a stack of Encoders and the same number

of decoders working sequentially. The Encoders are identical in structure, but they

do not share each other’s weights. The encoder is in charge of walking through the

input time steps and encoding the whole sequence into a context vector, which is a

fixed-length vector. Where as, The decoder is in charge of reading from the context

vector while stepping through the output time steps. Since I will only be employing

the encoder part of the Transformer architecture, our focus is directed towards the

same.
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Figure 3.1: An Encoder block of Transformer
(Courtesy: [24])

Each encoder can be broken down into independent two sub-components, the Atten-

tion module and the Feed Forward Network. The Attention module is basically an

extension to seq-2-seq models that was proposed to overcome the drawback of the

model with long sequences. The attention mechanism allows output to concentrate

on input while producing output, and in the meanwhile the self-attention model

allows inputs to interact by calculating attention of other inputs with respect to

the input vector in focus. A simplifed representation of the working of attention

module is depicted in Fig 3.2. The Attention mechanism is explained as steps in

the following.

1. Firstly each encoder input vector is multiplied with the three weight matrices

W (Q), W (K), and W (V ). For each input vector, this matrix multiplication

will yield three vectors: the key vector denoted by K, the query vector denoted

by Q, and the value vector denoted by V . follows. A learnable linear projection

is applied to each token to obtain Query, Key, and Value
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Figure 3.2: Attention Mechanism simplified

2. The current input’s Query vector is multiplied with the key vectors from

other inputs to generate a score, which is the second stage of determining

self-attention. In other words, the similarity matrix is calculated, that is,

R ∈ R(N + 1)(N + 1), which indicates the semantic relation between to-

kens through the dot product operation of Key and Query. The off-diagonal

components represent inter-token relations and the diagonal components of R

represent self-token relations:

R(x) = xEq(xEk)T (3.1)

3. In the third stage, the score obtained in the previous step is divided by the

square root of the key vector’s dimensions (dk). For instance, the key vector

in the original paper has a dimension of 64, thus that will be 8. The reason for

this is that as the dot products grow larger, some self-attention scores become

very little when the softmax function is used in the future

16



4. The softmax function will be applied to all self-attention scores calculated in

relation to the query word in the fourth phase and the output vector of the

function is multiplied with the value vector of the word in focus.

5. Finally, I sum the weighted value vectors obtained in the previous step to get

the self-attention output for the word in focus.

Every input sequence is passed through the attention module. Mathematically, the

entire attention mechanism can be summarized to the following formula:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.2)

The Transformer encoder [39] essentially consists of alternating layers of MLP and

self-attention blocks. Layer normalization (LN) is applied before every block, and

residual connections exist after every block. A detailed layout of an encoder block

is shown in Fig 3.1. Mathematically, the working of the encoder is summerized by

the following expressions:

z0 = [xclass;x
1
pE;x2

pE; . . . ;xN
p E] + Epos, E ∈ R(P 2.C)×D, E ∈ R(N+1)×D (3.3)

z
′

l = SA(LN(zl−1)) + zl−1, l = 1 . . . L (3.4)

zl = MLP (LN(z
′

l)) + z
′

l , l = 1 . . . L (3.5)

y = LN(z0l ) (3.6)

3.2 Vision Transformers

Vision Transformers were first introduced in the research paper [11]. Vision Trans-

formers outperformed the state-of-the-art models in Image classification on popular

datasets.

Earlier, transformers would only be applied on sequences or audio signals are they

are extremely compute heavy, especially their quadratic complexity when computing

17



Figure 3.3: Overview of a Vision Transformer
(Courtesy: [11])

the attention matrix. Hence in case of images, where each image is a n-dimensional

matrix, the computation only gets worse. For instance, let’s take a standard 28∗28∗1

MNIST image [8]. In this case, the length of the vector would be 28 ∗ 28, and we’d

need a (28 ∗ 28)2 matrix to compute attention score, which is costly even for the

best GPU’s.

Vision Transformers (ViT) were introduced to tackle this problem for images. The

paper [11] divided the image down into square portions in order to execute a form of

lightweight ”windowed” attention. To get here from NLP, each patch in the image

problem is analogous to a word in the language problem. For producing a linear

patch projection for feeding into the transformer, these patches are flattened and

passed via a single Feed Forward layer. The Vision Transformer only uses the En-

coder setup from the original architecture, and the internal organization is more

or less the same to retain the performance. The embedding matrix E, as indicated

18



in the parent paper, is randomly generated and contained in this Feed Forward layer.

One issue with Transformers is that the order of a sequence is not automatically

guaranteed because data is sent in at once rather than timestep-wise as in RNNs

and LSTMs. To overcome this, the original Transformer paper [39] recommends

using Positional encodings/embeddings, which place the inputs in a specific order.

Hence for ViT, the positional embedding matrix Epos is randomly generated and

added to the concatenated matrix containing the patch and embedding projections.

Moreover, to enable the output of a single probability rather than a sequence of

vectors, [11] adopted the approach from BERT [9] and concatenated a learnable

[class] parameter with the patch projections. If the [class] token is not used dur-

ing the process, only positional embedding is added to the output of visual tokens.

The formulation to apply tokenization to the patch embedding layer is given in the

equation below:

Spe =


[xcls;S(x)] + Epos ifxclsexists

S(x) + Epos otherwise

where xcls ∈ RdS is a class token and Epos ∈ R(N+1)dS is the learnable positional

embedding.

The Transformer Encoder’s outputs are then used to predict the image class prob-

ability using a Multilayer Perceptron Layer(MLP). The input features effectively

capture the core of the image, making the MLP head’s classification task easier.

Multiple outputs are provided by the Transformer but the MLP head only receives

the output relating to the particular [class] embedding and the other outputs are

disregarded. The output gives the probability distribution of the classes of the im-

age. A comprehensive overview of the structure of a Vision Transformer is given in

Fig 3.3.
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3.3 Siamese Network

A Siamese Neural Network is a modification of artificial neural networks (ANNs)

that are used widely for machine learning. It is an artificial neural network that uses

the same weights while working in tandem on two different input vectors to compute

comparable output vectors. Essentially, the two arms have the same configuration

with the same parameters and weights and parameter updating is mirrored across

both sub-networks. There are three main types of Siamese Networks that are clas-

sified on the basis of their merging position in the architecture [12]: (1) Late-Merge

Siamese Networks, (2) Intermediate-Merge Siamese Networks and (3) Early-Merge

Siamese Networks. I will be using two of these three variations of Siamese Networks

for our experiment.

Traditionally, ANNs learn about the input and their corresponding output class

probabilities using the softmax equation. On the other hand, Siamese NNs learn

about the semantic similarity between the two inputs using distance metrics based

learning and output their similarity score. Since code clone detection is essentially

computing the similarity between two code fragments, the Siamese Neural Network

architecture holds promise. Moreover, several research studies have shown that

Siamese Networks yield better embeddings [16]. They are also well-suited for tasks

which have few examples per class due to pairwise learning and not point-wise clas-

sification as in other Artificial Neural Networks (ANNs) [20]. Siamese Networks

are widely used in recognizing handwritten checks, automatic detection of faces in

camera images, and matching queries with indexed documents [16] [34].

In our research, I have used a Vision Transformer architecture in place of a tra-

ditional Fully Connected CNN or RNN so that the power of ViT can be harnessed

for similarity detection. Basically, we input two image vectors in the siamese model

and procure an output probability at the tail which is used to determine the label

of the image pair, i.e. Genuine Pair (label as 1) or a Imposter Pair (label as 0/-1).
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Figure 3.4: Equal Error Rate Plot
(Courtesy: [21])

3.4 Threshold Calculation

As mentioned in the section 3.3, I procure an probability output from the Siamese

network, whose value varies between 0 and 1. I needed a threshold which deter-

mines the closed continuous range of values that can be interpreted as true and false

label. The most common and rudimentary technique is to set the threshold to 0.5.

Therefore, any probability below 0.5 is comprehended as false and one above it gets

the label as true. This technique is only suitable for a data whose output have a

uniform distribution. Since in most cases, the data has an erratic distribution, we

have to resort to a method which is more empirical and mere hit and trial.

Assuming T is the threshold. Hence, output probability (P ) >= T implies the

pair of images are identical else they are not. I have designed a custom method to

empirically calculate the threshold. Initially T is set to 0.5 for the first epoch. The

following are the steps involved in calculating T for the model:

• Firstly, for every epoch the ROC Curve [19] Loci of all the outputs are derived.
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The ROC Curve essentially is a plot between the TPR Positve Rate (TPR) of

the model vs the False Positive Rate (FPR) of the model.

• The point on the ROC curve where abs(TPR + FPR − 1) is minimum is

interpreted as T for that epoch during training. This point is also known as

the Equal Error Rate (EER) threshold. In the given Fig 3.4, The Equal

Error Rate threshold is the intersection of the FRR (which is 1 - TPR for our

ROC Curve) and FPL loci.

• The point procured from the above step is added to a list of T’s where Ti is

the threshold calculated for epoch i.

• The mean of the list of thresholds is taken as the threshold for the next epoch.

The threshold Tlast is considered the final threshold for the model. Mathematically

for every epoch i,

Ti = roc curve(min(abs(TPR + FPR− 1)) (3.7)

Ti+1 = mean(list[Ti]) (3.8)

3.5 Shifted Patch Tokenization

In a original ViT pipeline, the input images are divided into patches that are then

linearly projected into tokens. Originally, ViT had to precede pre-training on a

large-size dataset such as JFT-300M.

Since VIT’s don’t use Convolutional Neural Networks (CNN), ViT structurally lacks

locality inductive bias (weights or assumptions of model to learn target and gen-

eralize beyond train data) as compared to CNNs, and they require a very large

magnitude of training data to obtain satisfactory visual representation and compen-

sate to an acceptable extent for the low bias. the magnitude of number of elements

for a sufficiently large data is in millions. In our case, since our dataset is limited
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to few hundred test subjects, using the traditional ViT approach yields in low accu-

racy. Hence some modifications have been implemented to overcome this issue and

improve the accuracy of the entire model. These modifications have been inspired

from [27]. There are two main problems arising due to the small size of our dataset.

The problem and the solution incorporated to tackle it have been discussed in detail.

3.5.1 Problem

The first setback to the model is a lack of quality tokenization. ViT linearly projects

each patch to a visual token by dividing a given image into non-overlapping patches

of identical size (16,16 in our case). Each patch is given the same linear projection

here. This is beneficial as tokenization of the ViT has the permutation invariant

characteristic, allowing for good patch embedding, that is, it is impermeable to the

variance in the permutation of the patches and the embedding will be uniform for

all the patches of the image.

On the other hand, non-overlapping patches allow visual tokens to have a tiny

receptive area. Non-overlapping patch tokenization typically has a narrower recep-

tive field than overlapping patch tokenization with the same down-sampling ratio.

ViT tokenizes the patches with too few pixels due to small receptive fields. This

means that the spatial relationship between neighbouring pixels of two overlapping

patches is not well captured, which hinders learning as the data which will be fed

to the transformer will have missing information. Since I did not have enough data

for the model to generalize, hence this conundrum needs to be addressed.

3.5.2 Solution

Shifted Patch Tokenization (SPT) [27] has been introduced in the proposed pipeline

to combat the issue of low receptive fields during patch tokenization process. The

concept of SPT was adopted and derived from Temporal Shift Module (TSM) [28].

TSM is effective temporal modeling which basically shifts some temporal channels
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Figure 3.5: Overview of Shifted Patch Tokenization
(Courtesy: [27])

of features. Inspired by this, effective spatial modeling has been proposed that to-

kenizes images that are shifted spatially together with the input image. In this

method, the core idea remains the same, but a modification has been made so that

more spatial information of the patch can be embedded into the visual tokens and

thereby, increase the locality inductive bias for the Vision Transformer model.

For image in the dataset, first the image is shifted in its four diagonal directions

by a fixed number of pixels. This process generates four new images, which are

then taken and concatenated with the original un-shifted image along the dimen-

sion of image channels. For our dataset, I use grayscale images, hence the number

of channels of the original image is 1. After concatenating , the number of channels

of the new combined image becomes 5. Following this, non-overlapping patches of

size (p, p) are extracted from the image. then for embedding the patches into visual

tokens to input to the transformer, three processes are sequentially performed on the

procured patches, patch flattening, layer normalization and finally linear projection

into visual tokens. A graphical representation of the idea and the entire process has
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been given in the Fig 3.5. The whole process is formulated as Eq. 3.9 :

S(x) = LN(P ([xs1s2...s(Ns)]))ES (3.9)

In the above equation, si ∈ RHWC represents the i-th shifted image according to S

and ES ∈ RP 2.C.(NS+1)xdS indicates a learnable linear projection. dS represents the

hidden embedding dimension of the encoder, and NS denotes the number of images

shifted by S.

Mathematically, Equation 3.10 depicts the image dimension transformation after

concatenation of shifted images to the original image as mentioned above and equa-

tion 3.11 talks about the final dimension of the input vector to the ViT after image

flattening and patch projection. Here, p denotes the patch size, imageh and imagew

denote the height and width of the original image respectively.

[1, imageh, imagew, 1] => [1, imageh, imagew, 5] (3.10)

[1, imageh, imagew, 5] => [1, (
imageh

p
,
imagew

p
), (p, p, 5)] (3.11)

3.6 Locality Self-Attention

3.6.1 Problem

The second problem that was encountered was the inefficient functioning of the self-

attention mechanism. Because image data has a far larger feature dimension than

natural language text sequences and audio signals, the number of embedded tokens

is always high, even for a small patch of (16, 16, 1) size image. As a result, the

distribution of attention scores in the tokens’ attention module smooths out.

In other words, there is an issue where ViTs are unable to attend to significant

visual tokens on a local level. This can result in a lot of redundant attention that
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Figure 3.6: Locality Self-Attention Mechanism
(Courtesy: [27])

can’t focus on a certain class which holds important information. ViT can easily

focus on the background and miss the shape of the target class as a result of this

superfluous attention.

3.6.2 Solution

To combat this issue, Locality Self-Attention (LSA) mechanism has been introduced.

Graphically, the mechanism can be explained by Fig 3.6. Generally, a softmax func-

tion can control the smoothness of the output distribution through temperature

scaling [17]. LSA primarily sharpens the attention score distribution by learning

the softmax function’s temperature parameters. Moreover, the self-token relation is

discarded, which forcibly suppresses the diagonal components of the similarity ma-

trix computed by Key and Query when attention score in calculated. This masking

increases the attention relatively between different tokens, making the distribution

of attention scores much sharper. This can be clearly inferred from the given Fig 3.6.

As a result, LSA increases the local inductive bias of the encoder by making its at-

tention module more locally focused.
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Figure 3.7: Overview of Shifted Patch Tokenization
(Courtesy: [27])

The core of LSA is diagonal masking and learnable temperature scaling, a brief

introduction of which has been given in the previous paragraph.

Diagonal Masking

By essentially eliminating self-token relations from the softmax process, diagonal

masking helps to provide greater scores to inter-token interactions. Specifically,

diagonal masking forces −∞ on diagonal components of R of Equation 3.1 As a

result, ViT’s attention is drawn away from its own tokens and toward other tokens.

Learnable Temperature Scaling

The second technique used in LSA is the learnable temperature scaling, which en-

ables ViT to calculate the softmax temperature on its own during the learning

process. Fig 3.7 shows the average learned temperature based on depth when the

softmax temperature is used as the learnable parameter in Eq. 3.12. It can be

noticed in the plot that constant temperature of traditional ViT is higher than the

average learned temperature. In general, lower the temperature of softmax, sharper
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the score distribution. As a result, the learnable temperature scaling sharpens the

attention score distribution. Based on Eq. 3.12, the LSA with both learnable

temperature scaling and diagonal masking applied is defined mathematically by:

L(x) = softmax(RM(x)/τ)xEυ (3.12)

where τ is the learnable temperature.

In other words, LSA overcomes the smoothing problem of the attention score dis-

tribution in the attention module of ViT.
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Chapter 4

Experimental Pipeline and Setup

4.1 Dataset

I have used a fingerprint dataset which has been released by the researchers at

IT Kanpur. In the dataset, fingerprint impressions of around 1378 different sub-

jects were taken. For every subject, four identical fingerprints were extracted,

that is, 4 prints from the same finger of the same subject having different ori-

entations were taken. The nomenclature for denoting the fingerprint image is

< subjecti fingerprintj > where i is the id of the subject and j is the id of the

fingerprint of subject i.

4.1.1 Dataset Alignment

On reviewing and analysing the database, I noticed that the identical fingerprints

have the same features but have varied translations with respect to each other. For

optimizing the quality of the dataset, all identical samples should be invariant to

rotation and translation.

To address this issue, I have proposed and implemented a solution involving trans-

lating and aligning the images based on their singular points [5]. As described in

Section 1.3, Singular points are defined as points where the orientation field on the
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Figure 4.1: Original image and image after Singular point alignment

fingerprint contours is discontinuous or where the ridge curvature is maximum. It is

important to note that commonly, there is only one singular point for every finger,

hence they are popularly used as a feature for registration and identification.

In the proposed alignment algorithm, the singular point coordinates of all identical

fingerprints are extracted and stored (so 4 points for every subject). For images of

every subject, the arithmetic mean of all the coordinates of identical prints are calcu-

lated and stored separately. Essentially, for every set of 4 prints of the same subject,

the new designated singular point is the average calculated above. Mathematically

for every subject i,

(xinew , yinew) = (

j=4∑
j=1

xij

n
,

j=4∑
j=1

yij
n

) (4.1)

where j ∈ [1, n] and n = 4 in our case.

After obtaining the updated singular points, the images are translated such that

the new singular point of the image lies at the coordinates procured. As seen in

Fig 4.1, the original image is on the left and the translated image according to the
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Figure 4.2: Fingerprint template before and after Preprocessing

aforementioned algorithm is on the right. The undefined portion of the image after

alignment (the dark portion in Fig 4.1) is cropped out to avoid learning from pixels

by the model which do not exist.

4.1.2 Dataset Preprocessing

In the previous subsection, since the translation of images is not uniform for im-

ages, I noticed that the size of images in the dataset becomes erratic and cannot be

used directly for training the model. For resolving this issue, I first determined the

dimensions of the minimum portion in an image which is common to all images in

the entire dataset. The portion (size of (190, 140) in our case) is exacted from every

image regardless of its index.

Following this, the image is resized to the dimensions (224, 224) as prescribed in [11]

using inter-area interpolation method systematically [26]. Inter area interpolation

essentially is a bilinear interpolation function that does the image resampling using
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Figure 4.3: True and Imposter Fingerprint Image Pair

pixel area relation similar to inter nearest interpolation. Hence the final dimensions

of the image that is obtain after these steps is (224, 224). Fig 4.2 represents the

input and output image for dataset preprocessing step in the pipeline.

Following this, the dataset is passed through a function which generates genuine

and imposter pairs of images in the ratio of 1 : 1. For generating genuine pairs,

I paired each image for a subject to its identical part, so for every subject, about

6 genuine pairs were generated. On the other hand, for generating imposter pairs,

image of any subject were paired to any other image of a different subject, ensuring
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Figure 4.4: Gaussian Noise and Random Brightness Image Augmentation

that the number of pairs created are same as true pairs. An example of true and

imposter pair from the dataset is given by Fig 4.3. A label of 0 for imposter pair

and 1 for genuine pair is introduced corresponding to the type of pair created.

4.1.3 Dataset Augmentation

Since Deep Learning Models are usually data hungry [1], different methods are ap-

plied to increase the size of the dataset while maintaining the quality of the original

set. Data augmentation refers to approaches for increasing the amount of data by
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adding slightly changed copies of current data or creating new synthetic data from

existing data. When training a machine learning model, it functions as a regular-

izer and helps reduce overfitting [37]. It is also closely related to oversampling data

analysis.

Our pipeline allows application of any two of these three image augmentation ap-

proaches selected at random such that no two techniques are the same for a single

pair. The augmentation techniques implemented are:

• Addition of Random Gaussian Noise [30]

• Random change in Image Brightness

• Random change in Image Contrast

An example of original and their corresponding images have been given by Fig 4.4.

Each technique has probability of 1.0 for executing and the new pairs which are

created are assigned the same label as that of the parent pair and are appended to

the original image pair dataset.

4.2 Vision Transformer Model

Typically, a input vector embedding is passed to the bottom-most Encoder in a

transformer. An abstraction that is common to every encoder is that it receives

an embedding from its previous encoder directly below, of the same length. The

size of this hyperparameter is usually set during fine-tuning, however in NLP, it is

the length of the longest sequence in the training dataset. For our research I have

experimented with two embedding dimensions, 768 and 512.

In the shifted-patch tokenization of the ViT pipeline, there are multiple approaches

for converting the patches to visual tokens. I have employed and experimented with

a Dense layer of Neural Networks and a Convolutional Layer for the purpose. the
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Figure 4.5: (a) Late-Merge Siamese Net (b) Intermediate-Merge Siamese Net

output from both the techniques is the aforementioned embedding with a fixed size.

I stack 8 encoders and employ 12 attention heads in our ViT architecture. More-

over, the hidden dimension in the final Multi-Perceptron Layer (MLP) is twice the

dimension of the input embedding for every encoder and the non-linear activation

function used in the MLP is GeLU [18].

4.3 Siamese Setting

I have experiment with two different types of Siamese settings. Apart from the

structural difference and the output layer of MLP, the parameters and the overall

configuration of both the settings is kept exactly the same. The basic overlay of the

two networks is given by Fig 4.5.

4.3.1 Late Merge Siamese Network

In this setting of Siamese Network, the left and right arms of the network remain

distinct throughout the model. Hence for the two input vectors, let’s say V1 and V2,

two outputs are received, say out1 and out2. I could not use Cross-Entropy Loss to

train the model for learning similarity between the two outputs, hence I employed
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Constrastive Loss Function. This loss function takes takes two embedding vectors as

input and equated the Euclidean distance between them if the label is 1 or behaves

like Hinge Loss Function[13] if label is 0. A threshold is applied on the output of the

model to classify the code snippets. The expression for Contrastive Loss function is

given in Equation 4.2 where y is the label, f1 and f2 are the output vectors, m is

the margin which is set at 2 and d = ||f1 − f2||2 is the euclidean distance between

f1 and f2.

L(f1, f2, y) = d ∗ y + (1 − y) ∗max(m− d, 0)2 (4.2)

It is important to note that the output layer of Late Merge Network has two neurons,

i.e. it outputs two different probabilities. For empirical purposes, we also train our

model using Cosine Embedding Loss function. The formula for the same if given in

Equation 4.3.

L(f1, f2, y) =


1 − cos(f1, f2), y = 1

max(0, cos(f1, f2) −m), y = −1

(4.3)

4.3.2 Intermediate Merge Siamese Network

On the other hand, in this architecture, the two inputs V1 and V2 are given sepa-

rately to the model. They follow the pipeline separately while sharing the weights

up until the penultimate layer in the Dense Network of the Siamese architecture.

Before the output layer of the Siamese network, the absolute difference of the two

internal vectors is calculated and then fed to the final layer. Since the output is

a single vector, this architecture also uses Binary Cross-Entropy Loss function for

training the model. Mathematically, the loss function can be depicted in

Equation 4.4

L(|f1 − f2|, y) = −(y log(p) + (1 − y) log(1 − p)) (4.4)
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Figure 4.6: Pipeline of the proposed experiment

In the case of Intermediate Merge SN, the output layer has a single neuron, i.e., it

outputs a single probability.

The entire experimental pipeline of the proposed approach is depicted

by Fig 4.6.
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Chapter 5

Observations and Results

The implementation and testing for the proposed research has been done in Python

and the framework used for building and running the model is Pytorch.

There are a lot of hyperparameters and functions involved when training a complex

DL model. Since experimenting with every permutation and combination of every

parameter is not a feasible approach, some parameters are fixed based on empirical

data and research conducted for the same [6]. In the model, I split the dataset into

train and test data in the ratio 80-20. The optimizer used for training the model is

AdamW [31] as it is an improvement over Adam by incorporating variable weight

decay. I employ a scheduler which reduces the learning rate on formation of plateau

for validation accuracy. The model has been trained for 10 epochs on Nvidea Tesla

V100 32gb GPU with learning rate of 0.001 and multiple batch size configurations.

As mentioned in Section 4.3, I train the model on two types of Siamese set-

tings, Intermediate-Merge (I-M) and Late-Merge (L-M) Siamese Network. It is

possible to train both these networks with two loss functions each, Contrastive Loss

and Cosine Embedding Loss for I-M and BCE Loss and BCEWithLogits Loss for

L-M. Essentially, BCEWithLogits loss combines the BCELoss with a Sigmoid layer

in one single class. This makes it more numerically stable than using a plain Sig-

moid followed by a BCELoss as one can take advantage of the log-sum-exp trick for
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Table 5.1: Comparative study between Intermediate Merge and Late Merge Siamese
Network

Siamese Network Loss Function Accuracy TPR TNR
L-M Cosine Embedding 0.572 0.387 0.723
L-M Contrastive 0.697 0.817 0.628
I-M BCE 0.5 0.25 0.691
I-M BCEWithLogits 0.52 0.0.32 0. 677

numerical stability by combining the operations into one layer.

As it can be inferred from Table 5.1, Siamese model using Contrastive Loss function

outperforms all models having other loss functions. Note that, all other parameters

were kept the same during this experiment. In particular, it is evident that Late

Merge Siamese better perform significantly better than Intermediate Merge Siamese

Network, regardless of the loss function used. I believe this is due to the fact that,

merging at a later stage helps the model exploit the input images separately thereby

allowing the model to be more discriminative while learning features [12]. On the

other hand, merging at an intermediate position allows the model to initially exploit

the input image features and then these fused features are used further. This reduces

the discrimininative ability of the ViT in focus. For L-M Siamese setting, I choose

Contrastive Loss over Cosine Embedding Loss [4] as the former provides superior

results then the latter. Hence, I choose and propose L-M SN with Contrastive Loss

for the approach.

Hyperparameters play an important role in determining the final performance of

the model [36]. In particular, it is extremely crucial to select a proper batch size

[14]. It is seen from Table 5.2 that when the model is trained with a batch size

of 128, it produces the best results. In general, using larger batch sizes leads to

degradation of significant degradation in the quality of the model as these methods

tends to converge to sharp minimizers which lead to poor generalization [25]. This

phenomena accounts for the lesser accuracy of the model with batch size 256. On
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Table 5.2: Performance of our model on various batch sizes

Batch Size Accuracy TPR TNR
32 0.470 0.617 0.408
64 0.575 0.696 0.448
128 0.697 0.817 0.628
256 0.607 0.704 0.562

Table 5.3: Performance of the model on various embedding sizes

Embedding Size Batch Size Accuracy
256 128 0.618
512 128 0.697
768 128 0.652
1024 128 0.607

the other hand, using smaller batch sizes causes the gradient estimation to become

noisy and have large variance. Moreover, using a smaller batch sizes causes over-

fitting [10] on the mini-batch distribution instead of the actual dataset distribution

which results in decreased accuracy. This explains the poor performance of the

model with 32 (very poor) and 64 batch size.

Keeping all parameters constant, I also tested for the most suitable embedding

size for the model. The results are given in Table 5.3. Even though 768 is the

most widely used embedding for transformers, in our approach, it is not the most

suitable embedding. The results indicate that empirically, 512 is the most optimal

embedding size for our model.
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Table 5.4: Performance of our approach with and without the proposed
modifications

Shifted Patch Tokenization Locality Self Attention Accuracy
No No 0.654
No Yes 0.670
Yes No 0.688
Yes Yes 0.697

Lastly, I test the relevance of the adopted modifications, namely SPT and LSA for

my proposed approach. Table 5.4 shows that SPT alone increases the accuracy of the

model by approximately 3.4% and in combination with LSA, the overall performance

of the model is elevated by 4.3%. This proves that the proposed modifications tackle

and overcome the aforementioned problems in our Vision Transformer model with

significant success.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Deep Learning is one of the most promising areas of research which has shown a lot

of potential especially in areas such as robotics, cryptography, and computer graph-

ics. However it has been relatively less explored in the field of biometrics. With

the advert of powerful models like Vision Transformers, there is a lot of scope for

research and innovation in biometric cryptosystem research. As part of this thesis

project, I have proposed a completely novel pipeline employing Vision Transformers

in multiple Siamese settings for the task of fingerprint matching. I have also incorpo-

rated Shifted Patch Tokenization and Locality Self Induction as novel modifications

for our problem statement. I am the first to introduce such a pipeline and harness

the power of Vision Transformers for similarity detection. Our research aspires to

provide a starting point and foundation for innovation in fingerprint matching.
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6.2 Scope for Future Work

There is a lot of scope for future extensions of this work. Some of the potent ones

include implementing the proposed pipeline on other biometric similarity detection

problems where inter-class difference is not significantly small. Another interesting

direction could be adopting transfer learning approach and fine-tuning a pre-trained

model on the same dataset. Additionally, the current dataset pipeline and SPT can

be transferred to a more powerful architecture such as BERT and BART for better

performance. an addition to the current research, the proposed pipeline can be

implemented on other popular fingerprint benchmarks for comparison and analysis.

I strongly look forward to submitting and publishing this research in its refined form

to a renowned conference/journal and enable it to serve as a potential direction for

research in biometrics in the future.
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