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Preface

This project is primarily concerned with finding a scalable algorithm for classify-

ing time series vectors in resource constrained environments. To this e↵ect, vari-

ous methods for choosing landmark vectors for representation learning Nystrom’s

method have been studied. A brief introduction to time series data and classifica-

tion algorithms has been provided in Chapter 1, followed by a literature review in

Chapter 2. Chapter 3 provides an in-depth explanation regarding the methods have

been used in the proposed methods in Chapter 4. Chapter 5 provides detailed infor-

mation about the various experiments carried out in order to analyse the proposed

methods, followed by the conclusion in Chapter 6.
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Time Series Classification in Resource

Constrained Environments

Abstract

The analysis of time series is becoming prevalent across various scientific and

engineering disciplines, where the e↵ectiveness and scalability of time series mining

techniques depend on the design choices made while representing, indexing and

comparing the time series. A lot of the existing algorithms in the field of time

series classification can be resource intensive, making it di�cult to apply them in an

IoT environment, where we have several constraints on resources, with the need to

process data being streamed from multiple sensors at the same time. The primary

aim of this project is to implement an online time series classification algorithm

which can work even in constrained environments.

Keywords: Time Series Vectors, Classification, Clustering
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Chapter 1

Introduction

Time series consist of a sequential list of some data measured with respect to time

of some natural processes like weather patterns, climate, earthquakes or of human

processes like speech patterns and biomedical signals etc. The time series vectors

may also be composed of multiple signals being measured at the same time, like

ECG signals measured using 5 di↵erent leads at di↵erent position on the body,

which may be interrelated and therefore need to be analysed together for accurate

analysis. Therefore, time series vectors may be univariate or multivariate depending

on the number of variables each time series analyses at the same time.

In addition to signals, many types of data which may not be true time series lend

themselves well to analysis using methods primarily used for time series analysis and

therefore can be easily translated to time series data. These include, but are not

limited to problems consisting of analysis of DNA sequences, textures, core samples,

ASCII text, hand-writings and even shapes[11]. The Figure 1.1 shows a few examples

of time series vectors.

Due to the periodicity of such measurements, time series vectors lend themselves

e↵ectively to shape based comparison methods, as in most cases, the visualisation

of time series will be able to accurately define the trends in data and any anomalies

present. For example, visual inspection of ECG signals and timing measurements

are the primary methods with which diagnosis is carried out, while for Earthquakes,

rapid and high amplitude spikes would indicate earthquakes.

With the recent advances in data collection methods, time series mining meth-

ods are now capable of collecting enormous amounts of data using scientific instru-

ments including neuroscience[9] and astronomy[2], and in industrial settings([19],

[3]). Now, with the explosion of IoT devices, the number of large time series vectors,
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(a) Converting the Shape of a Moth to a time

series vector as in [7]

(b) ECG as a time series

Figure 1.1: Examples of Time Series Vectors

with sizes in millions of data points, have increased, and are expected to continue

to massively increase.

This is therefore a challenge for existing time series classification algorithms

for which scaling to the massive levels of time series lengths is an arduous task.

Depending on the start time and additional noise introduced during measurement,

temporal ordering of the time series combined with the high dimensionality also

introduce challenges which are not seen in other types of data. These temporal

distortions particularly a↵ect similarity measurement methods, as ideal methods

would compare the shapes of the time series methods while allowing for invariances

to distortions in amplitude, phase and timing. The algorithms which would address

these issues therefore need to be able to a) use low dimensional representations of

the data to preserve time series characteristics, b) compare time series data while

providing necessary invariances and c) index the data to enable fast querying of

large time series vectors from huge databases.

In order to address these issues, [23] introduce a two step approach for a frame-

work for querying, visualisation, classification and clustering of time series datasets.

They rely on representing the data in terms of a few landmark vectors, chosen using

k-shape[24] clustering, using the Nystrom’s method and by further approximating

the representations using a matrix sketching algorithm[16]. This method is very

accurate and fast, with a small time and space complexity, making it a good choice

when implementing time series algorithms on the Edge. However, using k-Shape to

find the landmark sequences in an online setting requires repeating multiple calcula-

tions for refining the cluster centroids at each step, which may lead to ine�ciencies
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while classifying time series vectors in an online setting.

This project therefore aims to analyse di↵erent methods to select the landmark

vectors required by Nystrom’s decomposition which may lead themselves well to

classification in online settings On the Edge.
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Chapter 2

Related Works

[6] compare various available algorithms for classifying time series datasets and con-

clude that 1NN-DTW is the best method to classify datasets, however, due to high

computational requirements for repeated calculations of DTW, the method is not

suitable for datasets with a large number of time series vectors of high dimension-

ality. Therefore, multiple methods of representing time series datasets using fewer

dimensions have been studied.

Kernel based methods which map the input to a high dimensional feature map

for an improved bias-variance tradeo↵ by calculating the Gram Matrix, where each

entry is a measure of similarity of pairwise input vectors have been very popular

for classification problems. However, due to the inherent nature of these kernels,

they generally require O(n3) in time complexity, thus making the use of approx-

imation methods necessary. Over time, multiple algorithms for this approxima-

tion have been suggested, such as Incomplete Cholesky decomposition [4], Nystrom

decomposition[35], KPCA [33] and Random Fourier Features[37]. But as Cholesky

decomposition needs the entire Gram Matrix before calculations and as the rank to

which we can decompose the matrix is much smaller than that for Nystrom decom-

position, Nystrom decomposition is generally preferred. Random Fourier Features

approximates the gram matrix sampling the input using a randomised map to a

lower dimensional vector (ideally the resulting vector has a much smaller dimen-

sion). As the quality of the approximations generated by the Nystrom’s method is

directly dependant on the quality of the feature vectors, [13] suggest a greedy algo-

rithm while [20] use a recursive method to identify the feature vectors iteratively, by

operating on the entire Gram Matrix.[38], on the other hand, select the landmark

feature vectors using k-means clustering instead.
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According to [17], even though exact linear and nonlinear dimensionality reduc-

tion methods are highly accurate, they have a tradeo↵, that is, they are extremely

costly in time and space complexity. Therefore, in [17], representation methods re-

liant on spectral decomposition have been used to project the high dimensional time

series data to fewer dimensions in order to lower the time and space complexity of

time series analysis algorithms. Some other time series represent methods represent

time series datasets using a set of sinusoidal coe�cients (DFT) in [1] , as a set

of Wavelets (DWT) in [26], and using Chebychev polynomials[10], without using

any knowledge specific to the data being used. Additionally, data aware methods

have been used to augment these methods to improve the e↵ectiveness and rely on

spectral decomposition for the same.

The field of clustering time series data is vast, however much of the works in time

series clustering calculate clusters based on features extracted from the time series.

The shape based clustering algorithms for time series data however fall into one of

two categories. Algorithms like [24] tries to include all the objects inside clusters ,

while those like [29] can leave some of the anomalous unclustered.
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Chapter 3

Background Theory

3.1 Nystrom’s Method

Nystrom’s method, introduced in [35], is a low rank matrix decomposition method

which can approximate a nxn symmetric positive semi-definite kernel matrix using

a nxl matrix, by choosing l landmark sequences. Additionally, it can also calculate

a kxn representation of the objects present in the dataset mapped to k dimensions.

For a Gram Matrix G, which can be represented as:

G =

"
W E

E
T

X

#
(3.1)

where, W is the landmark-landmark similarity matrix and E is the landmark-dataset

similarity matrix as:

G =
h
W E

iT
(3.2)

Now, in order to calculate the representation of the dataset, Nystrom’s method

carries out SVD to represent W�1 as :

W
�1 = QW⇤�1

W Q
�1
W (3.3)

And therefore, the approximated value of the kernel matrix can be written as:

K̄ = (EQW⇤�1/2
W )(EQW⇤�1/2

W )T = ZdZ
T
d (3.4)

Zd = EQW⇤�1/2
W can then be used to represent the entire dataset in terms

of their similarity with k landmark vectors. Theredore, in order to calculate the
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Nystrom’s approximation of some Gram Matrix, we need not calculate the entire

Gram Matrix, given that the landmark vectors are available. Given the landmark

vectors have already been chosen, Nystrom’s method requires a time complexity of

the order of O(l3+nl
2), and therefore, as l << n landmark sequences can be chosen

for approximation, Nystrom’s method is linear in the number of time series chosen.

The accuracy of the representations generated by Nystrom’s method, however,

depends a lot on the quality of landmark sequences used for calculating the pro-

jection. Therefore, methods belonging to mainly three main classes, namely, ran-

domised methods, clustering based methods and deterministic methods have been

studied by researchers to identify the landmark sequences.

Randomised methods select the landmark sequences from the dataset randomly,

therefore allowing for faster calculations. Methods which take into account the skew-

ness of the dataset and other parameters dependant on the nature of the dataset

which may make some type of landmark sequence more accurate have been stud-

ied, but among the randomised methods, selecting the landmark sequences using a

uniformly random distribution has been shown to be most e↵ective in terms of ac-

curacy and robustness among the randomised methods. Clustering based methods

calculate the clusters of the objects present in the dataset and use the centroids of

these clusters as the landmark sequences. The accuracy of these methods, therefore,

heavily depends on the quality of clusters and centroids formed by the clustering al-

gorithms, but the randomisation is avoided, trading some of the time complexity for

robustness. Deterministic methods however, primarily operate on the entire Gram

matrix to iteratively calculate the Nystrom’s representation while choosing the best

landmark sequence available at each step. These methods are extremely accurate,

however, due to operating on the entire Gram matrix, are unusable in cases where

the calculation of the entre Gram matrix is costly, such as in time series datasets,

where distance and similarity measures can be particularly slow.

Therefore, here, the methods of selecting the landmark sequences for Nystrom’s

method using a uniform random distribution and Clustering based approaches have

been studied.

3.2 Distance and Similarity Measures

Distance and Similarity measures used to obtain the Gram matrix (and by extension,

some submatrix of the Gram Matrix) are of course essential components of repre-
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sentation learning and classification methods using kernel methods, even in the case

of time series vectors. These measures also form crucial components of clustering

methods, where clusters are defined based on distances between the objects present

in each cluster. For time-series datasets, due to variations while measuring the data,

and due to noise, members of the same dataset may show slight distortions and devi-

ations. Therefore, in order to properly accomodate such deviations, a good distance

measure must provide some degree of invariance to shift and warping.

3.2.1 Euclidean Distance

Euclidean Distance or the L2 Norm is measured between two vectors of equal length

by measuring the square root of the sum of the distance between each entry of the

vector. Therefore the ED between vectors ~x and ~y is given as:

ED(~x, ~y) =
qX

(xi � yi)2 (3.5)

Here, as the amplitude of the time series at each point are compared to each

other directly, only O(n) time is needed to compute this distance and since it is a

metric distance, the triangle inequality can be used to optimise algorithms where

pairwise distances are repeatedly used, such as clustering algorithms like k-means.

However, in the case of time series data, as we Euclidean distance does not provide

any measure of shift invariance, ED does not provide a good accuracy and is therefore

avoided as a distance measure, atleast for small datasets.

3.2.2 Shape Based Distance

Shape Based Distance, introduced in [24], is a distance measure which computes the

distances between all possible shifts of data by means of cross-correlation and then

finds the amount of warping present in the two time series. this is done be using

Fourier transforms as the convolution function, also known as the cross-correlation

function, slides the second vector over the first after padding both the vectors with

zeros and reports the distance at each position. Therefore, the Shape Based Distance

is given as:

SBD(~x, ~y) = 1�max(
F

�1(F (x) ⇤ F (y))

kxkkyk ) (3.6)

The Discrete Fourier Transforms and Inverse Fourier Transforms need an overall

complexity of O(n2) where n is the length of the sequence. However, Fast Fourier
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Transforms and Inverse Fast Fourier Transforms are able to approximate DFT and

IDFT in O(nlogn) [18][22] and are therefore used while calculating the SBD. SBD

is a metrix measure, however, as it does not satisfy the triangular inequality, it is

not a metric distance and therefore does not enjoy any optimisations which may be

available while repeatedly calculating metric distances.

3.2.3 DTW

Dynamic Time Warping measures the warping between two time series by measuring

the edit distance between the two time series and stating that the length of the

minimum warping path is the distance determines the distance between the two

time series. This is done by first constructing a m x m matrix where:

Mi,j =
q
(xi � yj)2 (3.7)

and then calculating the warping path L = {l1, l2, ..., ln} with the minimum

warping path giving distance:

DTW (~x, ~y) =
q

min(
X

(li)) (3.8)

which can easily be calculated for two time series using Dynamic Programming in

O(m2). The matrix M can be visualised as in Figure 3.1, where we can easily see

the warping path. This path was calulated using the recurrence relation:

Di,j = dist(xi, yj) +min(Di�1,j�1, Di�1,j, Di,j�1) (3.9)

Where Dm,ngives the DTW for two time series ~x and ~y of lengths m and n respec-

tively. This version of DTW is called the Full DTW and because of its quadratic

time complexity, algorithms such as constrained DTW and fast DTW have been

developed. This algorithm takes O(n2) in time and space when a suitable dynamic

programming algorithm is used. However, as this algorithm requires only the current

and previous row, the space complexity can be reduced to O(m) and therefore, the

constraint on the e�ciency of DTW is defined by the processing speed of the CPU

rather than Memory. Constrained DTW speeds up DTW by limiting the region

where a warping path can be present to either a band (Sakoe-Chiba band [31]) or

a parallelogram (Itakura Parallelogram)[[15]] along the diagonal with a fixed radius

or width, which is determined in percentage of the length of time series. Fast DTW

[32] tries to approximate the full DTW by aggregating it into small pieces and then

refining those pieces. However, cDTW is faster and more accurate than fast DTW
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Figure 3.1: Visualisation of the path chosen by Dynamic Time Warping for two

given time series

for classification problems as shown by [36]. cDTW however introduces an addi-

tional parameter w which needs to be tuned. For classifiers, w is generally tuned

using LeaveOneOut methods, increasing the complexity and time required during

training models. It can also be seen that at w=0, cDTW becomes the Eucliedan

Distance, and that at w=1, cDTW represents full DTW, as the entire matrix M

would be traversed here.

Additionally, incase the start and end points are not exactly matched, DTW may

not give accurate classification as the warping for these points is not calulated by the

current algorithm. However, this can be resolved by either smoothing the dataset

or by relaxing the start and end point conditions for the warping path to allow

it to start and end at any point. In order to optimise indexing and classification

by DTW, multiple lower bounding methods have been developed in order to prune

most of the calculations.

3.3 Clustering Methods

In order to identify the landmark sequences for Nystrom’s method, the centers of

clusters inside the dataset can be considered to be representative of the clusters.

These can therefore act as landmark sequences e↵ectively. For clustering of time

series data, TADPole [8], k-Shape [24] and Dynamic Time Warping Barycenter
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Averaging(DBA) [25] have been discussed in subsequent subsections.

3.3.1 TADPole

TADPole, introduced in [8], is a clustering algorithm which clusters a given set of

timeseries data using the Anytime DP algorithm [29] while using a pruning strategy

using both upper and lower bounds on DTW to speedup the clustering process and

following a ’most useful first strategy’ to further reduce the required computation

time.

In [27], the authors show that the ability to ignore certain timeseries from the

dataset is extremely important while clustering time series data because this enables

the algorithm to avoid anomalous objects which are by themselves unclusterable and

also a↵ect the labels of objects which can be clustered by a↵ecting their distances

from other objects, which can be done using the Density Peaks algorithm as clusters

objects on the assumption that the clusters may form arbitrary shapes.

The Density Peaks algorithm needs the distance between all pairs of objects

in the dataset in order to calculate the local densities at each point. However, as

this would be prohibitively expensive for very large time series datasets, TADPole

takes advantage of the fact that some of the calculations may be pruned by taking

advantage of Lower Bounds on DTW like Keogh LB [30] as well as the fact that

Euclidean Distance is an Upper Bound for DTW, which can both be calculated in

O(n) time where n is the length of time series.

The TADPole algorithm takes the pairwise distance matrices made with upper

and lower bounds, i.e. the UBMatrix and the LBMatrix, in check when cDTW

needs to be calculated during the density peaks algorithm. However, for very large

datasets, even this level of pruning may be ine�cient and therefore, the algorithm

is cast on an Anytime DP framework. The UBMatrices and LBMatrices introduce

an additional space complexity of O(n2) where n is the size of the dataset, how-

ever, as DTW is primarly constrained by speed and not memory, this memory usage

is allowable. Additionally, the calculation of these matrices take less than 1% of

the time required for the entire clustering operation and are therefore inconsequen-

tial. Additionally, in order to prune the DTW calculations, TADPole uses a cuto↵

distance (dc) hyperparameter, and requires the number of clusters to be formed (k).

Given the required inputs, TADPole first calculates the local densities (⇢) for each

object in the dataset, which refers to the number of objects belonging to the dataset
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which are within a distance of dc from the i
th element. Here, they consider four

cases, namely, case 1: both the objects are identical, i.e. LB and UB will be equal

and therefore, DTW has to be equal to the UB case 2: UB  dc. i.e. the objects are

in the locality of each other and therefore the distance between them can be safely

considered to be dc without loss of any accuracy, case 3: LB � dc, i.e. the objects

are definitely too far away from each other and case 4: When none of the above

conditions are true, we need to calculate the cDTW between the two arrays, which

remains the only case where we actally need to calculate cDTW. Now, depending on

the case each comparison belongs to, two matrices, namely SparesFlagMatrix and

SparseDistMatrix are maintained, which contain the distance and the case for each

of the pairwise comparisons. Counting the number of elements in the local vicinity

of each object gives us the value of the local density ⇢.

Then in order to calculate the distance from points of higher density�, required to

find the centers, for each item we need the distance to the nearest neighbours in the

sorted list of ⇢. However, this again requires us to calculate cDTW multiple times

and therefore, UBMatrix and LBMatrix are again used to quantify this distance.

Therefore, an Upper Bound for this nearest distance (ub) is calculated to facilitate

pruning. Here, for each item, we have either calculated the actual distance Di,j or

the Upper Bound. Therefore we can scan all ⇢i’s with density greater than that

of i and set the upperbound for the nearest neighbour ubi to either Di,j or UBi,j

depending on which is available, while keeping the maximum. The ub matrix is

then used to optimise the pruning during calculation for distance from the nearest

neighbour.

Now to calculate the distance from the nearest neighbour, we only need to find

the element with the smallest distance from the higher density objects list. This

needs to be calculated using cDTW only when LBi,j  ubi i.e. the two objects

are closer than the maximum possible distance the nearest neighbour can have, and

when the distance Di,j is not known. This e↵ectively prunes the number of cDTW

calculations which need to be made, and gives us the value of �.

Now, as per [29], the cluster centers will be the objects with the top k values of

�i�i, where k is defined as the number of classes present in the dataset as we need

to choose k landmark sequences for Nystrom’s method, and we choose the k cluster

centers as the landmark sequences.
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3.3.2 k-Shape

k-Shape, introduced in [24] is a partition based method which, in a fashion similar

to k-means, refines the clusters iteratively, while minimising the sum of squared

distances for elements of clusters to produce well-seperated and uniform clusters.

As for each iteration, each object is evaluated only once, k-Shape is linear in terms

of the number of time series and is therefore scalable.

K-Shape is a to stage method, where for every iteration, it first assigns each time

series to the closest centroid to update the cluster it belongs to and then updates the

cluster centroids to better represent the new clusters. This process is repeated until

either a set number of iterations have been reached or until the algorithm converges,

i.e. no changes in cluster assignment can be observed in subsequent iterations.

The initial seed of cluster centers is randomly assigned and the in-cluster dis-

tances are measured using SBD, to provide the required invariances. The clusters

centers, however, need to be calculated again, and these are calculated by finding a

vector ~µk which maximizes the sum of NCC(~x, ~µk) for all ~x belonging to the cluster.

Here, all the sequences are alligned with the previous center in order to calculate

X
0, which is then used to calculate S = X

0T
.X

0 and after z-normalisation, the first

eigenvenctor of S’ is chosen as the new cluster center.

k-Shape has a time complexity of O(max(nkmlog(m), nm2
, km

3)) per iteration

as O(nkmlog(m)) is required for assigning each vector to the nearest cluster, O(nm2)

is required for normalisation and O(nm3) is required for eigenvalue decomposition

to find the first eigenvector. k-Shape also provides a benefit of being invariant to

start and end point alignments of time series vectors, by virtue of SBD being used

as the distance measure.

3.3.3 DTW Barycenter Averaging

DTW Barycenter Averaging as introduced in [25] is another clustering algorithm

which performs clustering by initialising with a random set of cluster centroids

chosen from the dataset and then iteratively refining the clusters by assigning each

vector to the nearest cluster and then updating the cluster center.

The primary di↵erence between k-Shape and DBA is the method with which the

cluster centroids are updated. Instead of using SBD, DBA calculates the warping

path used by DTW and then claims that the average sequence is actually the average
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of the elements the i
(
th) element of the warping path obtained while calculating

DTW maps to in both the series, known as the barycenter.

This, therefore, provides a very accurate, but slow method to obtain the centroids

at each step, as each iteration requires O(n3) in time to calculate the Barycenter,

by virtue of requiring the DTW path. Additionally, there is no scope for pruning

the DTW comparisons as the warping path requires the calculation of DTW. This

algorithm, can however still be used along with cDTW allowing a higher accuracy

while forming the clusters.

3.4 GRAIL

GRAIL, introduced in [23], is a framework which intends to provide a unified ap-

proach for fast and accurate analysis of large time series datasets. Given a compari-

son function, GRAIL extracts landmark time series, optimizes necessary parameters

and uses approximation methods based on kernel methods to represent each time

series as a combination of landmark time series in linear time and space with an

aim to: preserve pairwise similarities and serve as feature vectors for machine learn-

ing methods; lowerbound existing comparison functions; allow prefixes for scaling

methods under limited resources; support e�cient computation of new data to en-

able operations in online settings; and support eigendecomposition of the data to

data similarity matrix to exploit highly e↵ective kernel based methods. given a

comparison function, the learned representations

In order to learn representations of time series in linear time and space, GRAIL

needs to first approximate the sequence to sequence similarity matrix and then ap-

proximate its eigendecomposition. As Nystrom’s method is agnostic to the choice of

kernel function, Nystrom’s method is used to approxmiate the sequence to sequence

similarity matrix. Now, as Nystrom’s method requires a dictionary of landmark

sequences in order to approximate the Gram Matrix, GRAIL selects the landmark

sequences using k-Shape and then calculates the dictionary to dictionary and dic-

tionary to sequence similarity matrices to then compute the representation. The

representations learned using Nystrom’s method may have a higher dimensionalty

than the original vectors and may not be the optimum representations in case the

necessary parameters are not accurately estimated. GRAIL provides a methodol-

ogy to learn these parameters in an unsupervised manner along with using these

representations to learn the final representations which would have the required

dimensionality.
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Shift Invariant comparison is essential in time series comparisons to account for

timing delays and warping which may occur while measuring, storing and transmit-

ting real world signals, and therefore similarity functions like DTW, SBD and NCC

have been considered for developing kernels. However, DTW and SBD do not lead

to positive semidefinite kernels [5] which leads to convex solutions for many kernel

based learning problems. In order to address this problem, GRAIL introduces SINK,

a shift invariant kernel based on NCC.

In order to obtain a p.s.d. kernel, and to consider all possible shifts in the time

series, SINK considers all possible shifts and in a process similar to SBD, calculates

the kernel as:

ks(~x, ~y, �) =
X

e
�NCC(~x,~y) (3.10)

NCC(~x, ~y) =
F

�1(F (x) ⇤ F (y))

kxkkyk (3.11)

This might however lead to a Gram matrix with o↵ diagonal values higher than

values on the diagonal (i.e., A vector is more similar to some other vector than

itself). And therefore, SINK can be normalised as:

k
0
s(~x, ~y, �) =

ks(~x, ~y, �)p
ks(~x, ~x, �)ks(~y, ~y, �)

(3.12)

Here, we can observe that SINK requires operations in Frequency space, and

therefore calculates the Fourier Transform using the Fast Fourier Transform Algo-

rithm at every step. Now, in order to speed up calculations, we can calculate and

save the Fourier representation of each time series before hand, so that the cross

correlation operation can be calculated e�ciently. This is then followed by an in-

verse FFT back to the time domain. Now, as we are considering only the frequency

representation of time series, an e�cient method of storing these representations

and eventually speeding up the following calculations would be to save the first few

fourier coe�cients. This is possible because most of the natural time series vectors

have a skewed energy spectrum, where the first few frequencies contain most of

the signal’s energy, and therefore, determine most of its shape. This also helps by

somewhat denoising the time series.

Therefore, as the FFT step, and consequently, the IFFT steps while calculating

SINK determine its time complexity, SINK has a time complexity of O(mlogm),

where m is the length of the time series vector. SINK also satisfies the p.s.d. property
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Figure 3.2: NCC Sequences produced by SINK for time-series vectors T1 and T2

while preserving 90% of the energy

as it computes p.s.d. kernels computed for each possible alignment between two time

series. Additionally, using Figure 3.2, [23] show that a time series of length 1024

can be represented using a length of 21, while accurately calculating the NCC, by

preserving only 90% of the signal’s energy.

Once GRAIL has learned the dictionary by means of clustering using k-shape,

the parameter � still needs to be estimated as it can a↵ect the compactness and

accuracy of the learned representations In [23], the authors observe that, time se-

ries similarities with larger variance are much more likely to be present in the low

dimensional space and that the loss of information is unavoidable due to the pro-

jection to a low-dimensional space. Therefore, the values of the bandwidth � need

to be chosen such that this variance is maximised. They also state that we need to

measure the variance each eigenvalue explains, so that we can select a small number

of r eigenvalues to e↵ectively determine the bandwidth.

Therefore, considering the eigenvalue decomposition of the matrixW = QW⇤WQ
T
W

the scoring function is calculated as:

Score(�) = var(W, �)

Pr
i=1 ⇤W (i)

Pd
i=1 ⇤W (i)

(3.13)

Where var(W, �) denotes the value of W calculated using a SINK with bandwidth �.

Now, as the algorithm depends on the computation of the eigenvalue decomposition

of W, it has an overall complexity of O(d3).

Now, as SINK can be calculated and as the dictionary is known, GRAIL con-

structs the temporal representation Zd where d is the number of landmark sequences,

to approximate the Gram Matrix as ZdZ
T
d using Nystrom’s method and then uses

Zd to learn the final representation Zk where, k  d.

W
�1 = QW⇤�1

W Q
�1
W (3.14)
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Zd = EQW⇤�1/2
W (3.15)

Where E contains pairwise similarities between n time series and d landmark time

series, and where d is significantly smaller than the size of the dataset. However,

for very large datasets, a large number of time series need to be included, which

may lead to a dimensionality much higher than the length of the original time

series and therefore, further approximation is carried out by choosing only the top

k eigenvalues and eigenvectors of k. However, as the approach requires O(nd2)time

complexity, this becomes prohibitively expensive for a large number of landmark

sequences. Therefore a matrix sketching algorithm named Frequent Directions [16]

is applied on Zd instead, which retains a sketch of size b of Zd in O(ndb) instead, to

construct the representation of the input data as:

Zk = ZdQC (1:d,1:k) (3.16)

3.5 Statistical Methods

In this project, we use multiple datasets as inputs for di↵erent algorithms and we

therefore want to compare the overall performance of the di↵erent algorithms on

all the datasets. Therefore, we need to use statistical methods to rank the e�cacy

of di↵erent algorithms, including tests like Wilcoxon signed rank test[34], Friedman

test[14] and the Nemenyi test[21], following [24],[6]and [12].

The Wilcoxon signed rank test is a test which tests whether two sets of pairwise

data come from the same distribution. Therefore, with regards to the accuracies of

various datasets, the test explains whether the di↵erence in performance of the two

algorithms being compared is statistically significant.

The Friedman test is generally used to test whether multiple experiments on the

same data give consistent results. Therefore, for classification on multiple datasets,

it can be used to check whether the di↵erence in accuracies over multiple datasets

is statistically significant. Successful results from the Friedman test are generally

followed by a post-hoc Nemenyi test which calculates pairwise computations to

finally give a ranking for the algorithms with performance over all the datasets in

mind.
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Chapter 4

Methodology and Data generation

4.1 Datasets

The primary aim of this project is to find a suitable replacement to the algorithm

responsible for finding the landmark sequences used while learning representations

using the Nystrom’s method in the GRAIL framework. Therefore, as authors of

GRAIL evaluated their algorithm using the UCR Archive, All experiments in this

project were carried out on 83 datasets from the UCR archive[11]. The UCR Archive

is a collection of univariate time series datasets, belonging to multiple domains and

consisting of both simulated and measured data. These include domains like images,

spectral data, simulated data, sensor measurements, motion capture data, ECG

signals, tra�c, device usage data, trajectories and Power consumption data. As the

data in the UCR Archive is already separated into train and test sets, the same

division of test-train data was used for analysis.

4.2 Preprocessing

As we are primarily concerned with classification of time series datasets based on

their shapes, we need to account for o↵sets in the measurements. This is primar-

ily because a slight o↵set due to consitions in the wild do not directly change the

shape, however, they can directly a↵ect the similarity measurements, as these di-

rectly change the value of (xi�yj)2 in the case when ~y has some o↵set. For example,

when comparing vecx and vecy, where ~y = ~x + c, the shape of both the vectors is

the same and therefore, we expect 0 as the DTW distance between them, to ensure
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(a) Two identical vectors o↵set by constant value,

DTW = 58.75

(b) Normalised vectors, DTW = 0

Figure 4.1: Comparison of DTW distance for two identical vectors with o↵set with

and without Z-score Normalisation

ideal results during classification. However, due to the o↵set c, the distance of c2m

is obtained, where m is the length of x, which will lead to errors in similarity cal-

culation and distance measurement, a real world example is shown in Figure 4.1.

Therefore, before analysis the data from the UCR Archive needs to be preprocessed.

This is generally done by applying z-score normalization the data to have a mean

value of 1 and a standard deviation of 0, to preserve the shape while getting rid of

the o↵set, using the equation:

x
normalised
i =

xi � µ(~x)

�(~x)
(4.1)

where µ and � are the mean and standard deviation respectively.

4.3 Proposed Methods

We propose Uniform Random Selection, DTW-DBA and TADPole as suitable candi-

dates for selection of landmark vectors for approximating the representations learned

using the Nystrom’s Method. Random Selection was chosen primarily for the mini-

mal computation time required for landmark selection, DTW-DBA was chosen pri-

imarily due to its high Rand Index[28] compared to k-Shape and to observe the

benefits to accuracy due to the use of DTW-based algorithms for clustering. TAD-

Pole, which also uses DTW to cluster the data, was suggested because of the ac-

curacy observed from DBA, as it addresses the problem of the large computational

time requirement by pruning the number of DTW comparisons. Therefore, for each
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method, following [23], we calculate the landmark-landmark similarity matrix, ap-

proximate �, calculate the landmark-dataset matrix, and obtain representations for

the time series data, followed by further approximation using Frequent Directions.

A standard method of classification of the learned representation is required

in order to determine the quality of the representations generated by using the

landmark selection method for Nystrom’s method. For this the 1-Nearest Neighbour

classification algorithm was used with Euclidean Distance measured between the

learned representations as the distance measure. 1NN was selected as it is a fast and

robust algorithm which does not require any sort of tuning without any additional

training time, and classifies the data in O(n2) time complexity. Additionally, 1NN-

DTW and Elastic Ensemble, which is a combination of multiple NN-DTW classifiers,

are also regarded as State of the art algorithms[6] in terms of accuracy for time series

vectors, further reinforcing the choice of 1NN as the classification algorithm. 1NN-

ED assigns labels to objects in the test dataset, by choosing the label of its nearest

neighbour in the training set. k-NN is more accurate modification of 1NN which

chooses the class labels based on the median class from its k Nearest Neighbours,

however, as k needs to be tuned here, 1NN was chosen as the classification algorithm.

As the number of landmark sequences selected also defines the classification

accuracies, to be fair to all methods of selection, the same number of landmark

sequences need to be chosen for each method. Following [23], assuming that each

class would form a single cluster and that it can therefore be represented using a

centroid of that cluster, the number of landmark features was chosen to be equal to

the number of classes present in the dataset.
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Chapter 5

Experimental Results

In the chapter, various experiments on the usage of di↵erent approaches to selecting

landmark vectors for time series representation learning using Nystrom’s method

and further classification based on the GRAIL framework and their results have

been discussed, along with scatter plots comparing the accuracies of the methods.

Additionally, the datasets with a significant amount of di↵erence in accuracies have

been presented for additional discussion, along with discussion on processing times

of these algorithms.

5.1 Experiments

5.1.1 Comparison of Random Selection and k-Shape

In order to analyse randomised methods for selection of landmark sequences, as sug-

gested in the original paper on Nystrom’s algorithm, the landmark sequences were

selected using a uniform random distribution from the dataset, after z-score nor-

malisation. Then, the value of the parameter � was estimated to maximize variance

in W . This value of � was then used to calculate the matrices W and E, following

which the exact representations(Zd) of the dataset were obtained using Nystrom’s

method for both test and train datasets together. Using frequent directions, the

approximate representations were obtained, which were then classified using 1NN

to obtain classification accuracies. A similar method was followed to obtain the

classification accuracy using k-shape clustering as the landmark selection method.

In order to account for fluctuations in accuracy due to the randomised approach,

both worst case and average case performance for random selection were studied by
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repeating the entire process 2k times, where k is the number of classes present in

the dataset. The accuracies were then plotted as cscatter plots compared with those

obtained using k-shape as a landmark selection algorithm, followed by Wilcoxon

test with a confidence of 99% to test for statistical significance in the di↵erences

in performance. In order to provide a fair comparison in terms of processing time,

both the algorithms were implemented in python as per [24], in a CPU environment

provided by Google Colab.

5.1.2 Comparison of DTW Barycenter Averaging and k-

Shape

Then, k-shape and DTW Barycenter Averaging (DBA), a k-means based clustering

method which calculates the centroids using Barycenters, were compared by follow-

ing a similar procedure, while using the centroids as landmark sequences. As DBA

primarily uses full DTW for clustering, no additional hyperparameters were required.

However, a more fast and accurate variant of DBA using cDTW is also available,

which requires the additional parameter of band width for the Sakoe-Chiba band,

which was chosen as 10% for all datasets. The implementation of DBA was based on

[25]’s implementation. The accuracies for k-shape vs DTW-DBA and for k-shape vs

cDTW-DBA were both plotted as scatter plots, followed by the Wilcoxon test with

a confidence of 99%. Both the algorthms were implemented in a CPU environment

provided by Google Colab.

5.1.3 Comparison of TADPole and k-Shape

TADPole, which is a density peaks based clustering algorithm which selects the

centers of clusters based on the density and distance of objects in its vicinity, was

then compared with k-shape for applications in selection of landmark sequences for

Nystrom’s method. TADPole, however, requires two hyperparameters, the cut-o↵

distancedc and the cDTW band width r. Here, for all datasets, the value of dc was

chosen as 1.46 and in order to understand the e↵ect of changing r on accuracy, r = 5

and r = 10 were used. Additionally, the value of � was set as 20 for both TADPole

and k-Shape. When DTW is used on sequences where the start and end are not

alligned, the accuracy has been observed to be lower than expected. As smoothing

the data has been suggested for such use cases, the quality of representations ob-

tained using both smoothed and raw data were compared and finally, the best case

for both was compared with k-shape to obtain a useful comparison, followed by the

27



Wilcoxon test with a confidence of 99%. Both the algorithms were implemented in

MATLAB and run using the same installation for providing a meaningful runtime

comparison.

5.2 Results

5.2.1 Comparison of Random Selection and k-Shape

(a) Worst Case (b) Average case

Figure 5.1: Comparison of k-shape and random sampling for landmark selection

Method < k-Shape = k-Shape > k-Shape

Random (Worst Case) 39 11 33

Random (Average Case) 25 27 31

Table 5.1: Performance of random selection in worst and average case compared to

k-shape for landmark selection

When comparing k-shape and random selection for Nystrom’s method, it was

observed that k-shape outperformed the worst case of the random selection algorithm

according to Figure 5.1. However, k-shape performed better on less than half the

datasets as per 5.1 as compared to the average case performance of random selection.

Wilcoxon test further shows that the di↵erence in performance is significant and

therefore, as the mean for the average case of random selection is higher than that

of k-shape, we conclude that random selection outperforms k-shape in the average
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case. Additionally, random selection is much faster in terms of processing time as the

clustering operation is completely avoided. However, due to the disparity between

average and minimum performance we can say that despite the better performance in

average case, random selection fails to improve upon k-shape as in the wild, there is

no way to check whether the current performance of the algorithm is optimal without

repetition, and therefore random selection will have a lower precision, making it

unsuitable for use in an online setting. k-Shape out performing the worst case of

random selection, however, is expected as the best case for this scenario would be

selecting completely dissimilar time series, while the worst case would be selecting

the same time series. Therefore, we expect k-shape, which tries its best to select

dissimilar landmarks to perform better.

5.2.2 Comparison of DTW Barycenter Averaging and k-

Shape

(a) DTW-DBA (b) cDTW-DBA with r = 0.1

Figure 5.2: Comparison of k-shape and DTW Barycenter Averaging sampling for

landmark selection

Method < k-Shape = k-Shape > k-Shape

DTW-DBA 10 15 17

cDTW-DBA 22 25 20

Table 5.2: Performance of DTW and cDTW based Barycenter Averaging compared

to k-shape for landmark selection
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When we compare DTW based Barycenter Averaging methods and k-Shape, we

can observe that DTW-DBA outperforms k-shape. However, due to multiple cal-

culations of DTW, in terms of speed, DTW-DBA is definitely worse. Additionally,

it can be observed that cDTW-DBA with a warping width of 10% is much faster

than the DTW based method, but still slower than k-Shape. According to Table

5.2 and Figure 5.2, in comparison to k-Shape, cDTW does much better than k-

Shape on datasets it is better on, while performs slightly worse on datasets where

it is worse, giving a better performance overall. It also performs much better than

DTW-DBA on the same datasets. However, it was observed that for some datasets,

both cDTW-DBA are extremely slow and memory intensive, leading to memory

issues in the environment. Therefore, despite a great performance in terms of clas-

sification accuracy, DTW-DBA and cDTW-DBA are not suitable for application

on the edge and as online algorithms due to their slow processing speed and large

memory requirement.

5.2.3 Comparison of TADPole and k-Shape

(a) r = 0.05 compared with r = 0.10 (b) analysis on smoothed data vs raw data

Figure 5.3: Comparison of di↵erent settings for TADPole

Method 1(a) Method 2(b) a < b a = b a > b

TADPole0.05 TADPole0.10 14 49 20

TADPoleraw TADPolesmoothed 26 31 26

Table 5.3: Comparison of di↵erent settings for TADPole
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When we analyse the classification accuracy for representations obtained from

r = 0.05 and r = 0.1, as in Figure 5.3 we can clearly see that the more datasets

prefer r = 0.05. However, because as many as 14 datasets show better accuracies

with r = 0.1 5.3. we can observe that the parameter r needs to be tuned based on

information about data. This is generally done by using Leave One Out Classifiers

which optimise the band to which the warping path is restricted using algorithms

like Grid Search. As the performance for r = 0.05 is better, it is used for further

analysis of TADPole.

On analysing the classification accuracy for TADPole over smooth and un-

smoothed data, we observe that the datasets are equally split between both the

methods. However, for a few of the datasets, the di↵erence in accuracies is too high.

Example, which are know to contain time series vectors which are not alligned at the

start and end positions. Therefore, we conclude that for datasets where time series

vectors are not alligned, we see a significant increase in accuracy, while for datasets

which rely on data contained in higher frequencies and are properly alligned, a

significant drop in accuracy is observed after smoothing.

(a) Data Agnostic TADPole (b) TADPole with selective smoothing

Figure 5.4: Comparison of k-shape and TADPole for landmark selection

Method < k-Shape = k-Shape > k-Shape

Data Agnostic TADPole 29 6 43

TADPole with selective smoothing 26 6 46

Table 5.4: Performance of k-shape and TADPole sampling for landmark selection

It was observed that for the same setting of � = 20, TADPole outperformed
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k-Shape by a huge margin, as shown in Figure 5.4 and Table 5.4. Timing results

also show that because of the pruning algorithm, TADPole performs significantly

faster than k-Shape, and is therefore better at learning representations. Judging

by the results from checking di↵erent settings for TADPole, we can observe that

further optimisation in accuracy for landmark selection by TADPole is possible.

However, TADPole requires a space complexity of O(n2), where n is the length

of time series, which poses problems in scaling to very large datasets. We also

observe that additional smoothing helps a few of the datasets to outperform k-

Shape, however, barring few of the datasets, TADPole shows promising results.
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Chapter 6

Conclusion and Future Work

In this project, we have addressed the problem of selecting an algorithm for land-

mark vector selection for Nystrom’s method for time series datasets, in order to

obtain a classification algorithm which can work in an online manner in resource

constrained settings on the edge. From our experiments, we observe that TADPole,

while having an O(n2) space complexity, can be implemented with a high degree

of classification accuracy for shorter computation times, as compared to k-Shape.

We also observe that due to its iterative one-shot clustering method, it is possible

to implement it in an online setting. We also observe that selecting the landmark

sequences using a uniform random selection, while extremely fast in terms of compu-

tation time, fails to guarantee a good precision during implementation, while DTW

Barycenter Averaging is too slow and memory consuming, making it unusable in

resource constrained environments despite its relatively high accuracy. Addition-

ally, as only 1-Nearest Neighbours has been used for classifying time series vectors,

more complex methods like k-NN and SVM based classifiers can surely show a much

better performance.

As observed before, TADPole can be implemented in an online setting, primarily

due to the Density Peaks algorithm it is based on, making clustering, which is the

costliest operation in the GRAIL framework cheaper. However, exhaustive analysis

of the online algorithm in terms of time and memory consumption. Additionally, a

modification to Density Peaks to avoid the O(n2) memory complexity would ensure

that this algorithm remains scalable for larger datasets. Another possible avenue

for optimising this technique would be to study the e↵ect of using the SBD distance

measure to cluster time series data using a modification of TADPole.
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