B. TECH. PROJECT REPORT
On

Development of Augmented environment through

sensor data using Machine learning Models

BY
K Abishek Kumar

DISCIPLINE OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

DEC 2017

Development of Augmented environment through

sensor data using Machine learning Models

A PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degrees

of
BACHELOR OF TECHNOLOGY
in

ELECTRICAL ENGINEERING

Submitted by:
K Abishek Kumar

Guided by:
Dr.Abhishek Srivastava
(Assistant Professor)

INDIAN INSTITUTE OF TECHNOLOGY INDORE
S5th December, 2017

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Development of Augmented
environment through sensor data using Machine learning Models”
submitted in partial fulfillment for the award of the degree of Bachelor of
Technology in Electrical Engineering completed under the supervision of
Dr. Abhishek Srivastava Assistant Professor Computer Science and

Engineering, IIT Indore is an authentic work.

Further, I declare that I have not submitted this work for the award

of any other degree elsewhere.

Signature and name of the student with date

CERTIFICATE by BTP Guide

It is certified that the above statement made by the students is

correct to the best of my knowledge.

Signature of BTP Guide with dates and their designation

Preface

This report on “Development of Augmented environment through
sensor data using Machine learning Models” is prepared under the
guidance of Dr. Abhishek Srivastava.

Through this report we have tried to give a detailed design of the model to
record, analyse and implement data from various environment sensors
and create a virtual environment inside Second Life. The best fit model is
from implementing algorithm on data from various sources and most fit
model is used to predict the future values of different environment
variables that in turn are configured to be used to form virtual
environment inside Second Life World.

We have tried to the best of our abilities and knowledge to explain the
content in a lucid manner. We have also added interactive models and

figures to make it more illustrative.

K Abishek Kumar
B.Tech. IV Year
Discipline of Electrical
IIT Indore

Acknowledgements

I would like to thank my B.Tech Project supervisor Dr. Abhishek Srivastava for his
constant support in structuring the project and his valuable feedback throughout the
course of this project. He gave me an opportunity to discover and work in such an
interesting domain. His guidance proved really valuable in all the difficulties I faced in
the course of this project.

I am really thankful to my BTP partner Himanshu Meena for his contribution and
support throughout the project. During this journey we faced a lot of problems but
since | had such an amazing partner those high hurdles didn’t seem that high and with
mutual help we completed this project together with flying colors.

I am also thankful to my family members,friends and colleagues who were a constant
source of motivation. I am really grateful to Dept. of Computer Science & Engineering
& Dept. of Electrical Engineering, IIT Indore for providing with the necessary
hardware utilities to complete the project. I offer sincere thanks to everyone who else
who knowingly or unknowingly helped me complete this project.

K Abishek Kumar

140002014

Discipline of Electrical Engineering
Indian Institute of Technology Indore

Abstract

Second Life is an online virtual world,developed and owned by the San
Francisco-based firm Linden Lab. The platform principally features 3D-based
user-generated content. The secondlife environment is scripted in Linden Scripting
Language (LSL). The climatic parameters received as a response JSON is manipulated
and optimized in this end. The script corresponding to any object in secondlife is
constrained to it in a limited radius. Thus a deep study in variation of factors were
made and scripted accordingly to get a more close weather conditions as that of in the
real world. We are building a virtual environment that could mimic real characteristics
and implement machine learning model for futuristic parameters.

Table of Contents

1 Introduction
1.1 Background
1.2 Objective
2 Model Overview
2.1 ARIMA
2.1.1 Stationarity and differencing
2.1.2 Autoregressive models
2.1.3 Arima Models
2.1.4 Maximum likelihood estimation
2.2 Secondlife Environment
2.2.1 1lHttpRequest
2.2.2 Restrained Love API
2.3 Server-Side setup
2.3.1 Flask
2.3.2 RESTful APIs
2.3.3 Ngrok
3 Setup and Implementation
3.1 Sensor Network
3.2 Network Setup
3.3 ARIMA implementation

3.4 Network and tunnel

3.5 Secondlife implementation
4 Future Scope
References
Appendix A

Appendix B

Chapter 1

Introduction

This chapter highlights the background and motivation for the project. The problem
statement of the project has been described and the importance of the results is also
clearly portrayed. Towards the end of the chapter the objectives and expectation from
this project are also outlined.

1.1 Background

Second Life is an online virtual world, developed and owned by the San
Francisco-based firm Linden Lab . The platform principally features 3D-based
user-generated content. Second Life also has its own virtual currency, the Linden
Dollar, which is exchangeable with real world currency. Users can explore the world
(known as the grid), meet other residents, socialize, participate in individual and group
activities, build, create, shop, and trade virtual property and services with one another.
Built into the software is a 3D modeling tool based on simple geometric shapes, that
allows residents to build virtual objects. There is also a procedural scripting language,
Linden Scripting Language, which can be used to add interactivity to objects. Sculpted
prims(sculpties), mesh, textures for clothing or other objects, animations, and gestures
can be created using external software and imported. The Second Life terms of service
provide that users retain copyright for any content they create, and the server and
client provide simple digital rights management (DRM) functions. With 900,000
active users a month, who get payouts of $60 million in real-world money every year.

If we see the rate at which humans are technologically advancing, the time when
humans won’t even have to move is not far away and I think virtual world if the best
way to realize that dream.Second life is, as its name suggest, a second virtual world
with infinite possibilities. Second Life is used as a platform for education by many
institutions, such as colleges, universities, libraries and government entities.The
University of San Martin de Porres of Peru has been developing Second Life
prototypes of Peruvian archeological buildings, and training teachers for this new
paradigm of education.Second Life is used for scientific research, collaboration, and
data visualization.It also gives companies the option to create virtual workplaces to

allow employees to virtually meet, hold events, practice any kind of corporate
communications, conduct training sessions in 3D immersive virtual learning
environment, simulate business processes, and prototype new products.

In our project we are contributing in creating a virtual environment based on real time
environment variable and stepping another step towards making second life as real and
as close to real world as possible.

1.2 Objective

As per the above discussion, our main objective is to the Development of Augmented
environment through sensor data using Machine learning Model for implementing the
following in secondlife . The project has been divided into different modules:

To extract weather data parameter values from physical sensors through
arduino nodes

To design a machine learning model to make it handle and process the sensor
data

To enhance the model and implement an algorithm to make it sustain on its
own

To test and compare the predictions from the model with the real values

To develop a virtual environment in Second life from the sensor data acquired

Chapter 2

Model Overview

This chapter discusses on various concept used n this project . The chapter starts with
the discussion on ARIMA model followed by explanation of how environment
parameters are handled in secondlife. the end of the chapter comprises of discussion
on flask, its features and advantages.

2.1 ARIMA

ARIMA models provide another approach to time series forecasting. Exponential
smoothing and ARIMA models are the two most widely-used approaches to time
series forecasting, and provide complementary approaches to the problem. While
exponential smoothing models were based on a description of trend and seasonality in
the data, ARIMA models aim to describe the autocorrelations in the data.

Before we introduce ARIMA models, we need to first discuss the concept of
stationarity and the technique of differencing time series. Then its composite parts
AR(AutoRegressive) and MA(Moving Average) models are discussed in next
subsection and then ARIMA is discussed.

2.1.1 Stationarity and differencing

Stationarity

A stationary time series is one whose properties do not depend on the time at
which the series is observed. So time series with trends, or with seasonality, are not
stationary — the trend and seasonality will affect the value of the time series at
different times. On the other hand, a white noise series is stationary — it does not
matter when you observe it, it should look much the same at any period of time.

Some cases can be confusing — a time series with cyclic behaviour (but not trend or
seasonality) is stationary. That is because the cycles are not of fixed length, so before

we observe the series we cannot be sure where the peaks and troughs of the cycles will
be.

In general, a stationary time series will have no predictable patterns in the long-term.
Time plots will show the series to be roughly horizontal (although some cyclic

behaviour is possible) with constant variance.

di

hsales

lynx

(a)

3800

3600

T T T T T T
0 50 100 150 200 250 300

Day
(d)

90
1

70
N

50

30
1

T
1975

T
1985
Year

(9)

T
1995

2000 40|00 6000

0
1

T T
1820

T T
1860

Year

T
1900

diff(dj)

eggs

beer

(b)

(c)

5590

- 4
Q
=< o
E o
172} v
<
o
(=3
w0
@
T T T T T T T T T T I T
0 50 100 150 200 250 300 1950 1960 1970 1980
Day Year
© s U]
S
o
N
(=3
% &
o o
o
o
84
o
T T T ¥ T T T T
1900 1940 1980 1980 1985 1990 1995
Year Year
(h) (i)
o
(=3
84
o) o
o
© o
S
o
©
o
S
o
3V

T
1993

Year

T
1995

T T T T
1960 1970 1980 1990

Year

fig: Which of these series are stationary? (a) Dow Jones index on 292 consecutive days, (b) Daily
change in Dow Jones index on 292 consecutive days; (c) Annual number of strikes in the US; (d)
Monthly sales of new one-family houses sold in the US; (e) Price of a dozen eggs in the US (constant
dollars), (f) Monthly total of pigs slaughtered in Victoria, Australia; (g) Annual total of lynx trapped in
the McKenzie River district of north-west Canada; (h) Monthly Australian beer production; (i) Monthly
Australian electricity production.(Trend rules out series (a), (c), (e), (f) and (i). Increasing variance
also rules out (i). That leaves only (b) and (g) as stationary series.)

Differencing

In Figure 2.1, notice how the Dow Jones index data was non-stationarity in panel (a),
but the daily changes were stationary in panel (b). This shows one way to make a time
series stationary — compute the differences between consecutive observations. This is
known as differencing.

Transformations such as logarithms can help to stabilize the variance of a time series.
Differencing can help stabilize the mean of a time series by removing changes in the
level of a time series, and so eliminating trend and seasonality.

As well as looking at the time plot of the data, the ACF plot is also useful for
identifying non-stationary time series. For a stationary time series, the ACF will drop
to zero relatively quickly, while the ACF of non-stationary data decreases slowly.
Also, for non-stationary data, the value of r1 is often large and positive.

2.1.2 Autoregressive models

In a multiple regression model, we forecast the variable of interest using a linear
combination of predictors. In an autoregression model, we forecast the variable of
interest using a linear combination of past values of the variable. The term
autoregression indicates that it is a regression of the variable against itself.

Thus an autoregressive model of order p can be written as:
yt =ct q)lytfl + q)zyzfz +“'+q)pytfp +8t

where c is a constant and €, is white noise. This is like a multiple regression but with

lagged values of y, as predictors. We refer to this as an AR(p) model. Autoregressive
models are remarkably flexible at handling a wide range of different time series
patterns.

AR(1) AR(2)

o _| <
= N
A
~ o |
N
~— -
& | «
oo _|
o~ ~—
0 © _|
M~
T T T T T T T T T | T T
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
v =18-08y, *+¢ yi=8-13y,, =07y, *¢

Fig: Two examples of data from autoregressive models with different parameters. Left: AR(1) .
Right: AR(2) with In both cases, €, is normally distributed white noise with mean zero and
variance on

2.1.2 Moving average models

Rather than use past values of the forecast variable in a regression, a moving average
model uses past forecast errors in a regression-like model.

y, =cteg +0g, +0,e ,+ .+ Oqeﬁq

where €, is white noise. We refer to this as an MA(q) model. Of course, we do not
observe the values of €, , so it is not really regression in the usual sense. Notice that

each value of), can be thought of as a weighted moving average of the past few

forecast errors.

Relationship between AR and MA models

It is possible to write any stationary AR(p) model as an MA(o0) model. For example,
using repeated substitution, we can demonstrate this for an AR(1) model :

Ve =0, tE
= 01(Pry, 2 e y) Tg

— 2
PIYVia T P18 TE

— 3 2
PV T O &, TOE,TE
etc.

So eventually we obtain:
Ve =g TOE TOTE L TRy, 5T
an MA(o) process.

The reverse result holds if we impose some constraints on the MA parameters. Then
the MA model is called “invertible”. That is, that we can write any invertible MA(q)
process as an AR(o0) process.

2.1.3 ARIMA models

If we combine differencing with autoregression and a moving average model, we
obtain a non-seasonal ARIMA model. ARIMA is an acronym for AutoRegressive
Integrated Moving Average model (“integration” in this context is the reverse of
differencing). The full model can be written as

yt =ct q)lyt_l Tt q>pyt_p + & + elgt—l Tt 9llgt—q

where y; is the differenced series (it may have been differenced more than once).

The “predictors™ on the right hand side include both lagged values of y, and lagged
errors. We call this an ARIMA(p,d,q) model, where

e p = order of the autoregressive part,
e d = degree of first differencing involved,
e (= order of the moving average part.

The same stationarity and invertibility conditions that are used for autoregressive and
moving average models apply to this ARIMA model.

We start combining components in this way to form more complicated models.
Selecting appropriate values for p, d and q can be difficult. To select appropriate
values for p, d, ¢ what we do actually is finding best with the help of certain
algorithms. In this project what we used is Square Mean Error and Maximum

Likelihood Estimation along with Kalman filter Algorithm. In the next section they
explained in detail.

2.1.4 Maximum Likelihood Estimation

ARIMA first make data stationary by differencing or using functions such as
logarithmic, square root, cube root etc. By doing this we have successfully found value
of d but for p and q you need to find AutoCorrelation Function(ACF) and Partial
AutoCorrelation Function(PACF) of the dataset with itself. Even by doing all this you
arrive at a range of values from which you need to find the best fit for the model that
can be done by various methods and one of them is differentiating and evaluating them
on the basis of mean square error. But to find this error you need to first find the
coefficients of AR and MA models. You can achieve it by using Kalman filter
algorithm on maximum likelihood estimation.

In this section, I describe the algorithm used to compute the maximum likelihood
estimates of the ARMA(p,q) process. Suppose that we want to fit the (mean zero) time
series to the the following ARMA(p,q) model

Vi T O et oy, et 0g o+ 08

where ¢, is an i.i.d. shock normally distributed with mean zero and variance 2. Letr
be max(p, q + 1), and rewrite the model as

Ve = Ot t oy, Tt 0e o0, 8
We interpret q>j =0 for j>pand Gj =0 for j>q.

The estimation procedure is based on the Kalman Filter. To use the Kalman Filter we
need to write the model in the following (state-space) form

xt+1 = Axt + R8t+l
Ve = th

where x, i1s anr x 1 state vector, A is an X 7 matrix, and R and Z are r x I vectors.
These matrices and vectors are defined as follows

b, 00 0 1 1
¢ 010 --- 0 1 0
o3 0 0 1 0 05 0
ey G e A
6. 000 0 | T il

To see that the system (3) and (4) is equivalent to (2), write the last row of (3) as
Xy = Op%y, 0,08,

Lagging this equation r - 1 periods we find
X

_ r—1 r—1
iz = QIL Xy 0L ‘g,

where we define L'x, =x,_ . as the r lag operator for any integer r>0. The second to

last row implies
Xpperr = Pt ¥y, X, 0,08
Lagging r x 2 periods we obtain
Ytz L e T X T 0,,L" %,
Introducing (5) into the previous equation we find
X gy = Qg L x A QL ey 40, L e 40, L
Take now row r - 2,

X, e = PppXy, Tx, 10,58,

Lagging r - 3 periods we find
— r=3 r=3
Xogppra = Ppal X TNy T 0,50 Ty

Plugging (6) into the previous equation we obtain

X ppres = [0, 0, L4 L Ty [0, L 40, L +0, 1L e,

Following this iterative procedure until row » - / we find

X =0 Tt L+ LI L Ty [0, L 0, L0, L L+ e

or

(= L = oL = =0, Lx = [0, L7 40, L2406, L+ +1]g,,

Now, the observation equation (4) and the definition of Z imply

Y= %1,
Using (7) evaluated at t we arrive at the ARMA representation (2),

A= L =L = .= L)y, = [0, L +0,,L72+0, ;L + ..+ 1]g,

which proves that the system (3), (4) is equivalent to (2).

Denote by X, = E [x,, g ¥, %,] the expected value of x,,, conditional on the
history of observations (y,...,y,). The Kalman Olter provides an algorithm for
computing recursively BC\Hl\t given an initial value 3c\1|0 =0. (Note that 0 is the
unconditional mean of x,). Associated with each of these forecasts is a mean squared
error matrix, defined as

Pt+l|t = E[(x4 _'/x\t-H\ DXt _/x\t+l|t)]

Given the estimate X we use (4) to compute the innovations

|t
a =y, _Et[xtﬂ b’o’ ""yt;xo]
=y —Z Xl

The innovation variance, denoted by w,, satisfies

w,=E[(y,—Z 3C\t\zfl)(yz_z f,‘t,l)]
= E[(Z/xt_z &\t\tfl)(zyxt_z ?t\tfl)]

=7pP. 7

t|t-1

In addition to the estimates X the Kalman Olter equations imply the following

t] -1

evolution of the matrices P,

' ! "2
PtJrl‘t:A[Pl‘l‘*l _PtlthZZPtltfl/Wt]A +RR o

Given an initial matrix P, = E(xxx,)and the initial value Xy = 0, the likelihood

function of the observation vector {y,, ...,y,} is given by

! -12 a?
L= Q(2nwt) exp(— 2—’Wt)
=

Taking logarithms, dropping the constant 2, and multiplying by 2 we obtain

T
[= =Y [in(w)+ariw]
=1

In principle, to find the MLE estimates we maximize (10) with respect to the
parameters ¢;, 6, and o2 . However, the following trick allows us to ‘concentrate-out’

the term o2, and maximize only with respect to the parameters ¢; and 6, . Suppose

we initialize the filter with the matrix P_1|0 =o?P j0 - Then, from (9) it follows that
each P 2

is also proportional to o2 . This implies that we can optimize first with respect to c2

is proportional to ¢~ , and from (8) it follows that the innovation variance

]t
‘by hand’, replace the result into the objective function, and then optimize the resulting
expression (called the ‘concentrated log-likelihood’) with respect to the parameters

¢;, 6, : To see this, note that (10) becomes

T
[= = Y[in(c*w)+a2iwc?]
=1

and o is cancelled out in the evolution equations of P

A~

X1 - S0 we can directly optimize (11) with respect to 2 to obtain

w+1, and in the projections

T
2_1 2
o” =z) a’lw,
=1

Replacing this result into (11) we obtain the concentrated log-likelihood function

T
I= = Y[In(c?) + In(w,) +a2/w,c*]
=1
T T T % a,z/wtc2
= —[X in(z Latlw)+ L In(w,)+ ———]
=1 =1 =1 _} Y allwe?
=1

T T
= —[TIn(UT)+ T+ Ty a’lw,+ Y In(w,)]
=1 =1

or, dropping irrelevant constants,

T T
I= —[T+TnY a’w,+ Y In(w,)]
=1 =1

Because the innovations a, and the variances w, are nonlinear functions of the

parameters [¢ ,0], we use numerical methods to maximize (12).

2.2 SecondLife Environment

In Secondlife users create everything by themselves from a simple pole flag to
aeroplane, from their clothes to their houses, from their hairs to their vehicles. So to do
that they need some built-in function from Secondlife creator company Linden labs so
that they can make changes to their environment. In our project, we have mainly used
llhttprequest for taking data from ngrok, llparticlesystem to create particle shower and
transformed them to snow or rain and RestrainedloveAPI to change environment with
the help of windlight settings.

2.2.1 liIHttpRequest

Function: key IHTTPRequest(string url, list parameters, string body);

Sends an HTTP request to the specified URL with the body of the request and
parameters.

Returns a handle (a key) identifying the HTTP request made.

e string url - avalid HTTP/HTTPS URL
e list parameters - configuration parameters, specified as HTTP * flag-value
pairs[parameterl, valuel, parameter2, value2,, parameterN, valueN]

e string body - Contents of the request

2.2.1 llParticleSystem

Function: lIParticleSystem(list rules);
Defines a particle system for the containing prim based on a list of rules.

e list rules - Particle system rules list in the format [rulel, datal, rule2, data2 . ..
rulen, datan |

Defines a particle system that sets the state of the particle emitter within the prim that
contains the script. Any other scripts, in the same prim, that call this function will
modify the state of the same particle emitter. As such, the particle system defined by
this function is a prim property, just like its size, shape, color, etc.

Each prim has only one (1) particle emitter, located at its geometric center, and aligned
along the prim's local Z-axis, pointing in the positive Z direction.

This is the one of the only functions which alters the state of the prim's particle
emitter; thus, if you wish to change the emitter to a different state (i.e., emitting a
different particle system entirely, or shut off the emitter completely), just call the
function with the parameters of the new particle system you wish to render instead.
Specifying an empty list (i.e., lIParticleSystem([]);) turns the emitter off.

http://wiki.secondlife.com/wiki/Category:LSL_Functions
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/List
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Category:LSL_Key/handle
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/Category:LSL_Functions
http://wiki.secondlife.com/w/index.php?title=Particle_emitter&action=edit&redlink=1
http://wiki.secondlife.com/wiki/Primitive
http://wiki.secondlife.com/wiki/Script
http://wiki.secondlife.com/w/index.php?title=Primitive_property&action=edit&redlink=1
http://wiki.secondlife.com/wiki/Geometric_center
http://wiki.secondlife.com/wiki/Viewer_coordinate_frames#Local
http://wiki.secondlife.com/wiki/Category:LSL_Particles

Particles are essentially 2D sprites and are always rendered facing the viewer's camera
(except when PSYS PART RIBBON MASK is enabled).

The rule / data values are defined can accessed from Appendix A.

2.2.2 RestrainedLoveAPI

The RestrainedLove viewer executes certain behaviours when receiving special
messages from scripts in-world. These messages are mostly calls to the [IOwnerSay/()
LSL function.

The RestrainedLove viewer intercepts every 1lOwnerSay message sent to the viewer.
Lines that begin with an at-sign ('@') are parsed as RLV commands. Other lines are
forwarded to the user in the Local Chat window, as usual. For instance, a call to
110OwnerSay ("@detach=n") sends the detach command with parameter n to the viewer
on behalf of the object running the script.

For list of commands please go to Appendix B.

http://en.wikipedia.org/wiki/Sprite_(computer_graphics)
http://realrestraint.blogspot.com/
http://wiki.secondlife.com/wiki/LlOwnerSay
http://wiki.secondlife.com/wiki/LSL
http://realrestraint.blogspot.com/
http://wiki.secondlife.com/wiki/LlOwnerSay
http://wiki.secondlife.com/wiki/LlOwnerSay

2.3 Server-Side setup

For the purpose of building a real-time streaming environment and database in a fixed
and secure environment, we implement a server system.

2.3.1 Flask

Flask is a Python web framework built with a small core and easy-to-extend
philosophy.Flask is considered more Pythonic than Django because Flask web
application code is in most cases more explicit. Flask is easy to get started with as a
beginner because there is little boilerplate code for getting a simple app up and
running.

Key Features of Flask:

Contains development server and debugger
Integrated support for unit testing

RESTful request dispatching

Uses Jinja2 templating

Support for secure cookies (client side sessions)
100% WSGI 1.0 compliant

Unicode-based

Extensive documentation

Google App Engine compatibility

Extensions available to enhance features desired

H_\—-___-_‘_—-_-‘— . ——— : : = .
HTTP Request | POST = INSERT
4 PUT = UPDATE —

DELETE = DELETE __»
FETCH = SELECT

HTTP Reque — _d
S Web $erver
Internet Cloud

MySQL

Database

In this project, we have used flask to fire up a server that could stream the Real-time
sensor data, as well as the processed data that has been updated by the ARIMA model
database.It also supports different formats of data streaming (JSON in this case) and is
being running in the server’s side.

2.3.2. RESTful APIs

Representational state transfer (REST) or RESTful web services are a way of
providing interoperability between computer systems on the Internet. REST-compliant
Web services allow requesting systems to access and manipulate textual
representations of Web resources using a uniform and predefined set of stateless
operations.By using a stateless protocol and standard operations, REST systems aim
for fast performance, reliability, and the ability to grow, by re-using components that
can be managed and updated without affecting the system as a whole, even while it is
running. Web service APIs that adhere to the REST architectural constraints are called
RESTful APIs.[13] HTTP-based RESTful APIs are defined with the following
aspects:

e base URL, such as http://api.example.com/resources

e an internet media type that defines state transition data elements (e.g., Atom,
microformats, application/vnd.collection+json:91-99 etc.) The current
representation tells the client how to compose requests for transitions to all the
next available application states. This could be as simple as a URL or as
complex as a Java applet.

e standard HTTP methods (e.g., OPTIONS, GET, PUT, POST, and DELETE)

REST API Architecture

Android App J5ON XML

PUT

GET
iPhone A SG NN
pp ISONXML POST

CUSTOM
Params

Browser/

15ON/XML
Web .

For the purpose of this project, we choose REST APIs to maintain consistency and
reliability in the data. We choose JSON (Javascript Object notation) format for the
purpose of streaming hourly data to Secondlife. In the case of database, CSV formats
are being followed (Comma separated values).

2.3.3 NGROK

Ngrok is a handy tool and service that allows you tunnel requests from the wide open
Internet to your local machine when it's behind a NAT or firewall. This is useful in a
number of cases, such as when you want to test out an add-on you've been writing for
HipChat or a custom webhook endpoint for Bitbucket, but you haven't yet deployed
your code to an Internet accessible host or PaaS. The most common usage of ngrok
sets up a tunnel to localhost using the random hostname ngrok provides by default,
e.g., Sa3e3614.ngrok.com.

In this project, the traffic hosted from the server’s end using FLASK is being directed
and hosted globally in the internet using this program. As FLASK is hosted behind a
NAT and the secondlife environment does not lie in the same domain, this has been
implemented as a key feature.

Chapter 3

Setup & Implementation

This chapter discusses on the step-by-step setup and implementation of the above
explained model in depth on different levels.

3.1 Sensor Network

For the purpose of this project, different sensor datas from several arduino nodes are
extracted and streamed into a database as discussed in chapter 2. The format of the
database was maintained to be CSV carrying hourly data of a particular day.

From several different environment variables we have chosen five major
environmental factors that can be used to effectively mimic the real world into the
Second life environment. These five environment variables are temperature,
precipitation, wind speed, wind direction and visibility. They are acquired with the
help of different sensors which in themselves different units and are connected through
the arduino nodes. Sensors used for each variables are:

Temperature - DHT11 sensor chips
Wind Speed - Anemometer

Wind Direction - Anemometer
Precipitation - WS100 sensor module
Visibility - VS2K sensor module

Arduino is an open-source platform used for building electronics projects. Arduino
consists of both a physical programmable circuit board (often referred to as a
microcontroller) and a piece of software, or IDE (Integrated Development
Environment) that runs on your computer, used to write and upload computer code to
the physical board.

The Arduino platform has become quite popular with people just starting out with
electronics, and for good reason. Unlike most previous programmable circuit boards,
the Arduino does not need a separate piece of hardware (called a programmer) in order
to load new code onto the board — you can simply use a USB cable. Additionally, the
Arduino IDE uses a simplified version of C++, making it easier to learn to program.
Finally, Arduino provides a standard form factor that breaks out the functions of the
microcontroller into a more accessible package.

Each of the sensor nodes are connected to the respective arduino from which the data
streaming takes place. These nodes are connected to a single server raspberry pi to
store and maintain the database.

ARDUINO program for each sensor

#include <SoftwareSerial.h>
int LED = 13;

int isObstaclePin = 7;

int isObstacle = HIGH;
SoftwareSerial bt (10,11);
void setup() {
pinMode(LED, OUTPUT);
pinMode(isObstaclePin, INPUT);
bt.begin(9600);
Serial.begin(9600);
}
void loop() {
isObstacle = digitalRead(isObstaclePin);
if (isObstacle == HIGH)
{
Serial.printin("OBSTACLE!!, OBSTACLE!!");
digitalWrite(LED, HIGH);
bt.print (String(1));
bt.print("\n");
delay (200);

}

else

{
Serial.println(''clear");
digitalWrite(LED, LOW);
bt.print (String(0));
bt.print("\n");}

delay(200);}

3.2 Network setup

The CSV database stored is then streamed into the ARIMA model explained in
Chapter 2. Five different datas are injected and processed separately and being stored

back in the database to predict the future five values of individual environment
variable. For example we used past days of data to predict the next day’s data and this
data in return is fed back to the model to predict the next day’s and so on. The data is
processed at this node is being updated in the database to make it ready to stream.

3.3 ARIMA implementation

The saved database is used by ARIMA to predict the future values. The predicted
value are then appended on previously saved data and again ARIMA is run on that
data so now ARIMA uses previously saved data along with newly generated predicted
value to predict new value. On each step this process is repeated five times
individually for each of the five environment variables. This process is repeated each
time you want to predict any values.

The ARIMA program consists of two section ARIMA itself and GridParameter
evaluator program for (p,d,q) values.Below is the program for both:

ARIMA main program

from statsmodels.tsa.arima_model import ARIMA

import numpy

def difference(dataset, interval=1):

diff = list()

for i in range(interval, len(dataset)):
value = float(dataset|i]) - float(dataset[i - interval])
diff.append(value)

return numpy.array(diff)

def inverse_difference(history, yhat, interval=1):

return yhat + history|[-interval]

def model(path):

series = Series.from_csv(path, header=None)
X = series.values

days_in_year = len(X)-24

differenced = difference(X, days_in_year)
print(differenced)

model = ARIMA (differenced, order=(3,1,0))
print(model)

model_fit = model.fit(disp=0)

start_index = len(differenced)

end_index = start_index + 23

forecast = model_fit.predict(start=start_index, end=end_index)
history = [x for x in X]

day =1

for yhat in forecast:
inverted = inverse_difference(history, yhat, days_in_year)
print('Day %d: %f" % (day, inverted))

history.append(inverted)

day +=1

with open('test2.csv', ""w'") as output:

writer = csv.writer(output, lineterminator="\n")
for val in history:

writer.writerow([val])

model('~/Documents/BTP_WOT/arima/git/csv/humidity.csv')

GridParameter evaluator program

import math

import warnings

from pandas import read_csv,Series

from pandas import datetime

from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error

import numpy as np

def mean_absolute percentage error(y true,y pred):
y_true,y pred = np.array(y_true), np.array(y_pred)

return np.mean(np.abs((y_true -y _pred) /y_true)) * 100

from numpy import mean, absolute

def mad(data, axis=None):

return mean(absolute(data - mean(data, axis)), axis)

evaluate an ARIMA model for a given order (p,d,q)
def evaluate arima_model(X, arima_order):

prepare training dataset

train_size = int(len(X) * 0.66)
train, test = X[0:train_size], X[train_size:]
history = [x for x in train]
make predictions
predictions = list()
for t in range(len(test)):
model = ARIMA (history, order=arima_order)
model_fit = model.fit(disp=0)
yhat = model_fit.forecast()[0]
predictions.append(yhat)
history.append(test[t])
calculate out of sample error
#print('MAPE : '+mean_absolute percentage error(test,predictions))
#print('MAD : '+mad(predictions))
ma = mad(predictions)
mape = mean_absolute_percentage error(test,predictions)
error = mean_squared_error(test, predictions)
return error,ma,mape
evaluate combinations of p, d and q values for an ARIMA model
def evaluate_models(dataset, p_values, d_values, q_values):
dataset = dataset.astype('float32')
best_score, best cfg = float(""inf"'), None
for p in p_values:
for d in d_values:
for q in q_values:
order = (p,d,q)
try:
mse,ma,mape = evaluate_arima_model(dataset, order)

if mse < best_score:

best_score, best_cfg = mse, order

print(" ARIMA%s MSE=%.3f" % (order,mse))
print("\t\tMAPE=%_.3f" % (mape))
print("\t\tRMSE=%.3f" % (math.sqrt(mse)))

except:
continue
print('Best ARIMA%s MSE=%.3f" % (best_cfg, best_score))
return best_cfg
load dataset
def parser(x):
return datetime.strptime(x, '%Y-%m-%ad")

series=Series.from_csv('~/Documents/BTP_WOT/arima/git/daily-minimum-temp
eratures-in-me.csv', header=None)

p_values = range(0,7)
d_values = range(0, 3)
q_values = range(0, 3)
warnings.filterwarnings(''ignore'")

result = evaluate_models(series.values, p_values, d_values, q_values)

3.4. Network and tunnel

The updated database contains the predicted and missing values in place is ready to be
exported to the Second Life. The CSV hourly data is packed into JSON objects to
create requests to the secondlife server. This has been implemented with python scripts
which is found below.

import sys, getopt
import csv

import json

#Get Command Line Arguments
def main(argv):

input_file=""
output_file ="'
format ="'
try:

opts, args = getopt.getopt(argv,'hi:o:f:",["ifile=""," ofile=""," format="])
except getopt.GetoptError:

print 'csv_json.py -i <path to inputfile> -0 <path to outputfile> -f
<dump/pretty>'

sys.exit(2)
for opt, arg in opts:
if opt =="-h":

print 'csv_json.py -i <path to inputfile> -0 <path to outputfile> -f
<dump/pretty>'

sys.exit()

elif opt in ("-i", "--ifile"):
input _file = arg

elif opt in (""-0", "--ofile"):
output_file = arg

elif opt in (""-f"', "--format'):
format = arg

read_csv(input_file, output_file, format)

#Read CSV File

def read_csv(file, json_file, format):
csv_rows = []
with open(file) as csvfile:

reader = csv.DictReader(csvfile)

title = reader.fieldnames
for row in reader:
csv_rows.extend([{title[i]:row][title[i]] for i in range(len(title))}])

write_json(csv_rows, json_file, format)

#Convert csv data into json and write it
def write _json(data, json_file, format):
with open(json_file, "w") as f:
if format == "pretty':

f.write(json.dumps(data, sort_keys=False, indent=4, separators=(',', '":
");encoding=""utf-8" ,ensure_ascii=False))

else:

f.write(json.dumps(data))

if name =="_main_ ":

main(sys.argv[1:])

3.5 SecondLife Implementation

With help of lIHttprquest command we can request the data in json format from the
server. We convert data from json to simple string and analyse them so that we can

assign values to different parameters and graphics to change the environment inside
second life accordingly. In this way journey of the data from sensoor to second life

giving us the virtual environment we needed to make.

There were two scripts used for this purpose. One to is the base one to convert
secondlife environment for wind speed, precipitation, temperature and visibility. Other
one is for assigning direction to prims formed by llparticlesystem function through
above scripts in accordance to the wind direction fetched from the server. Both
program are as follows:

string LINK_D = "http://3aae4093.ngrok.io";

float dlay=5;

list
A12AM=(["0.225","0.225","0.225","0.12","0.12","0.12","0.116","0.119","0.22",
"0.068","0.081","0.11"];

list
A6AM=["0.079","0.217","0.435","0.103","0.205","0.24","0.79","0.79","0.79","
0.27",""0.154","0.21"];

list
A12PM=["0.122","0.224","0.38","0.248","0.248","0.32","0.245","0.261","0.3",
"0.35","0.35","0.35"];

list
A6PM=["0.073","0.2","0.4","0.054","0.107","0.125","0.946"," 0.946","0.946","
0.34",""0.27",""0.27"];

integer t;

float temp = 9;

float prec = 0.3;

float snow_depth = 9;
float vis = 0.1;

float acc=-0.2;

float ws;

float wd;

integer toogle=1;

rain()
{
IIParticleSystem(|
/I start of particle settings

/| Texture Parameters:

PSYS_SRC _TEXTURE, liGetInventoryName(INVENTORY_TEXTURE,
0),

/* PSYS_PART START SCALE, <0.10,.5, FALSE>,
PSYS_PART END SCALE, <.05,4.0, FALSE>,*/

PSYS_PART START SCALE, <0.05,0.05, FALSE>,
PSYS PART END SCALE, <0.25,0.75, FALSE>,

PSYS PART START COLOR, <0.498, 0.859, 1.000>,
PSYS PART END COLOR, <0.000, 0.455, 0.851>,

PSYS PART_START_ALPHA, (float).7*toogle,
PSYS_PART_END_ALPHA, (float).5*toogle,

// Production Parameters:

PSYS_SRC_BURST PART_COUNT, (integer)90000%100%100,

PSYS_SRC_BURST_RATE, (float) 1,

PSYS PART MAX_AGE, (float)30.0,

PSYS_SRC_MAX_AGE,(float) 0.0,

// Placement Parameters:

PSYS_SRC_PATTERN, (integer)8, / 1=DROP, 2=EXPLODE, 4=ANGLE,
8=ANGLE_CONE,

// Placement Parameters (for any non-DROP pattern):

PSYS_SRC_BURST SPEED MIN, (float)0.0,
PSYS_SRC_BURST SPEED MAX, (float)0.2,

PSYS_SRC_BURST RADIUS, 25.0,

// Placement Parameters (only for ANGLE & CONE patterns):

PSYS _SRC_ANGLE BEGIN, (float) .33*PI, PSYS SRC_ANGLE_END,
(float)2*PI,

/I PSYS_SRC_OMEGA, <0,0,0>,

// After-Effect & Influence Parameters:

PSYS_SRC_ACCEL, <0.0,0.0,-0.2>,

// PSYS_SRC_TARGET KEY,
(key)"0ef87053-6¢78-7a04-df64-4¢2827ec51b1",

PSYS PART FLAGS, (integer)(0 /I Texture Options:

| PSYS_PART_INTERP_COLOR_MASK

| PSYS_PART INTERP SCALE_MASK

| PSYS_PART _EMISSIVE_MASK

/I | PSYS_PART_FOLLOW_VELOCITY _MASK

/I After-effect & Influence Options:

/I | PSYS_PART WIND MASK

/I | PSYS_PART BOUNCE_MASK

//| PSYS_PART FOLLOW_SRC_MASK

/I | PSYS_PART TARGET POS_MASK

//| PSYS_PART TARGET LINEAR MASK

//lend of particle settings

D;

snow()
{ NOwnerSay((string)toogle+'"**");

IIParticleSystem(|

PSYS_SRC _TEXTURE,
lIGetInventoryName(INVENTORY_TEXTURE, 0),

PSYS PART START SCALE, <.4,.4, FALSE>,
PSYS_PART END SCALE, <.2,.2, FALSE>,
PSYS PART START COLOR, <1,1,1>,

PSYS PART_END COLOR, <1,1,1>,

PSYS PART START_ALPHA, (float).9%toogle,

PSYS PART_END_ ALPHA, (float).1*toogle,

PSYS_PART MAX_AGE, 10500.0,
PSYS_SRC_MAX_AGE, 0.0,
PSYS_SRC_BURST RATE, 0.1,

PSYS_SRC_BURST_PART_COUNT, 900%100,

// Placement Parameters:

PSYS_SRC_PATTERN, (integer)8, // 1=DROP, 2=EXPLODE, 4=ANGLE,
8=ANGLE_CONE,

// Placement Parameters (for any non-DROP pattern):

PSYS_SRC_BURST SPEED MIN, (float).0,
PSYS_SRC_BURST SPEED MAX, (float).2,

PSYS_SRC_BURST_ RADIUS, 25.0,

// Placement Parameters (only for ANGLE & CONE patterns):

PSYS_SRC_ANGLE_BEGIN, (float) .33*PI, PSYS_SRC_ANGLE_END,
(float)2*PI,

// PSYS_SRC_OMEGA, <0,0,0>,

/| After-Effect & Influence Parameters:
PSYS SRC_ACCEL, <.0,.0,acc>,

PSYS SRC TARGET KEY,
(key)'"0ef87053-6¢78-7a04-df64-4e2827ecS1b1",

PSYS PART_FLAGS, (integer)(0 /l Texture Options:
| PSYS_PART_INTERP_COLOR_MASK
| PSYS_PART_INTERP_SCALE_MASK
| PSYS_PART_EMISSIVE_MASK
/Il PSYS_PART_FOLLOW_VELOCITY_MASK
/I After-effect & Influence Options:
/I | PSYS_PART_WIND MASK
//'| PSYS_PART_BOUNCE_MASK
/| PSYS_PART _FOLLOW_SRC_MASK
| PSYS_PART_TARGET POS_MASK

// | PSYS_PART_TARGET_LINEAR_MASK

)

Ds

list region(){

if(t=0 & & t<=6)

return change day(A12AM,A6AM,0);
else if(t>=6 & & t<=12)

return change day(A6AM,A12PM,6);
else if(t>=12 & & t<=18)

return change day(A12PM,A6PM,12);

else return change_day(A6PM,A12AM,18);

list change_day(list str,list end,integer to){

list new;
float d;

float val;
integer i;

for(i=0;i<12;i++){

d=(float)llList2String(end,i)-(float)llList2String(str,i);

d=d/6;

val= d*(t-to) + (float)llList2String(str,i);

new += (string)val;

// MIOwnerSay("+"+(string)val+"+");

/I MMOwnerSay(""+llList2String(new,i)+"");

t=(t/24);
l1OwnerSay(" @setenv_sunmoonposition:'+ (string)t +'"=force");

return new;

list temperature(list arr,float t)

{
float d;
float val;
d = (0.2/28)*(16-t);
float valr = (float)llList2String(arr,6)-d;
float valg = (float)llList2String(arr,7)-d;
float valb = (float)llList2String(arr,8)-d;
arr =llListReplaceList(arr,[(string)valr],6,6);
arr =llListReplaceList(arr,[(string)valg],7,7);
arr =llListReplaceList(arr,[(string)valb],8,8);
return arr;

}

Precipitation(float prec)
1
if((string)prec =="T" || (prec < 0.5 && prec >= 0)){
snow();}

else if(prec > 0.5)

rain();
}
Visibility(float vis)
{
lIOwnerSay(" @setenv_densitymultiplier:'+(string)0.0909+"=force");
vis=vis/16;
vis=vis*1000;

lIOwnerSay(" @setenv_distancemultiplier:'+(string)vis+''=force'");

default

state_entry() {
1ISay(0, "Hello world.");
IIHTTPRequest(LINK D, [], "");

lISetTimerEvent(dlay);

}

timer(){

IIHTTPRequest(LINK_D, [], "");

http_response(key request _id, integer status, list metadata, string body) {

string str;

integer num;

if (status == 200) {

list
row=["temperature","visibility"," precipitation"," windspeed"," winddirection","
time"];

str=I1JsonGetValue(body,[llList2String(row,0)]);110OwnerSay(str);
temp=(float)str;
str=IlJsonGetValue(body,[lIList2String(row,1)]);llOwnerSay(str);
vis=(float)str;//llIOwnerSay((string)vis);
str=IlJsonGetValue(body,[lIList2String(row,2)|);llOwnerSay(str);
prec=(float)str;
str=I1JsonGetValue(body,[lIList2String(row,3)]);llOwnerSay(str);
ws=(float)str;
str=IlJsonGetValue(body,[llList2String(row,4)]);110wnerSay(str);
wd=(float)str;
str=IlJsonGetValue(body,[lIList2String(row,5)]);llOwnerSay(str);

t=(integer)str;

acc=(-1)*((ws-3)*(0.15));

list new;

/I MMOwnerSay("YAY!");

new = region();

new = temperature(new,temp);
toogle=1;

if(prec==0)

toogle=0;

Precipitation(prec);

Visibility(vis);

1IOwnerSay(" @setenv_bluedensityr:'+ llIList2String(new,0) +"=force");
l1IOwnerSay(" @setenv_bluedensityg:'+ llList2String(new,1) +'"=force");
lIOwnerSay(" @setenv_bluedensityb:'"+ llList2String(new,2) +'"=force");
lIOwnerSay(" @setenv_bluehorizonr:"+ llList2String(new,3) +'"=force");
lIOwnerSay(" @setenv_bluehorizong: "+ llList2String(new,4) +"=force'");
lIOwnerSay(" @setenv_bluehorizonb:"+ lIList2String(new,S) +"=force");
lIOwnerSay(" @setenv_sunmooncolorr:'"+ llList2String(new,6) +"=force');
lIOwnerSay(" @setenv_sunmooncolorg: '+ llList2String(new,7) +'"=force');
1IOwnerSay(" @setenv_sunmooncolorb:'+ llList2String(new,8) +"=force");
lIOwnerSay(" @setenv_ambientr:'"+ lIList2String(new,9) +'"=force");
lIOwnerSay(" @setenv_ambientg: "+ llList2String(new,10) +"=force');

lIOwnerSay(" @setenv_ambientb:"+ lIList2String(new,11) +"=force");

}

else {

1l1IOwnerSay(""Unable to fetch "+LINK D);

for wind direction

string LINK D = "http://3aae4093.ngrok.io";
float dlay=5;
default

{

state_entry() {
11ISay(0, "Hello world.");
1lIOwnerSay(llGetKey());
IIHTTPRequest(LINK_D, [], """);;

lISetTimerEvent(dlay);

}

timer(){

IIHTTPRequest(LINK_D, [], "");

http_response(key request_id, integer status, list metadata, string body) {

string str;
integer num;
string wd;
float ws;

if (status == 200) {

list
row=|"temperature',"visibility"," precipitation"," windspeed"," winddirection","
time"];

str=IlJsonGetValue(body,|[lIList2String(row,4)]);//llOwnerSay(str);
wd=str;
/Il str=I1JsonGetValue(body,[llList2String(row.4)]);//llOwnerSay(str);

/Iws=(float)str;

list
dir=["North",HNNE","NE","NEE","East",HESE","SE","SSE"’"South","SSW
","SW","WSW","West","WNW","NWH,"NNW","Calm"’"Variable"];

float x;float y;float theta;

integer i;

if(str==""Calm""){
x=0;y=0;

}

else if(str==""Variable'){

x=llFrand(50)-25;
y=IIFrand(50)-25;
}

else{

for(i=0;i<16;i++){

if(str==I11List2String(dir,i)){

theta=((float)i)*22.5;
theta+=85;
x=25*1ISin(theta);
y=25*11Cos(theta);

i=16;

1IOwnerSay((string)(x)+" "+(string)(y)+" "+str);
lISetPos(llGetPos() + <x,y,0>);
lISleep(dlay+10);
lISetPos(11GetPos() + <-x,-y,0>);
}
else {

1l1IOwnerSay(''Unable to fetch "+LINK D);

Chapter 4

Future Scope

Extreme Learning Machine is a promising straightforward algorithm which can
achieve a relatively high Overall Accuracy and can significantly decrease the time of
the training phase. The models that we built here works only for this type of weather
data and is confined to this scope. Through this project we realise that as the number
of parameters increase the closeness of the environment increases to mimic the
similarity. Through this project we also realised the capabilities and limitations of
FLASK server hosting as well as database handling.

While implementing the model we came across roadblocks for trivial values of P,D,Q
as mentioned in Chapter 2. For future research, perhaps a better dataset values that
could not just determine the weather condition but also other factors of the
environment including the avator characteristics would improve the quality and
motivation on Secondlife.

References

[1] http://wiki.secondlife.com/wiki/LIParticleSystem

[2] https://www.arduino.cc/en/Main/Docs

[3] http://flask.pocoo.org/docs/0.12/

[4] https://ngrok.com/

[5]https://www.researchgate.net/publication/285356304 A _Meta-Synthesis_of Resea
rch_Using Multiuser Virtual Environments _ie Second Life in Teacher Education

[6] http://www.restapitutorial.com/lessons/whatisrest.html

[7] https://machinelearningmastery.com/make-sample-forecasts-arima-python/

[8]
https://www.digitalocean.com/community/tutorials/a-quide-to-time-series-forecasting-with-
arima-in-python-3

[9] https://www.slideshare.net/21_venkat/arima-26196965

[10] http://siteresources.worldbank.org/DEC/Resources/Hevia ARMA_estimation

http://siteresources.worldbank.org/DEC/Resources/Hevia ARMA _estimation.pdf

[11] http://wiki.secondlife.com/wiki/LSL_Protocol/RestrainedLoveAPI

[12] http://www.firestormviewer.org/

[13] http://www.statsmodels.org/stable/index.html

[14] http://www.numpy.org/

[15] https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

http://wiki.secondlife.com/wiki/LlParticleSystem
https://www.arduino.cc/en/Main/Docs
http://flask.pocoo.org/docs/0.12/
https://ngrok.com/
https://www.researchgate.net/publication/285356304_A_Meta-Synthesis_of_Research_Using_Multiuser_Virtual_Environments_ie_Second_Life_in_Teacher_Education
https://www.researchgate.net/publication/285356304_A_Meta-Synthesis_of_Research_Using_Multiuser_Virtual_Environments_ie_Second_Life_in_Teacher_Education
http://www.restapitutorial.com/lessons/whatisrest.html
https://l.messenger.com/l.php?u=https%3A%2F%2Fmachinelearningmastery.com%2Fmake-sample-forecasts-arima-python%2F&h=ATMQcdwD0Uf2z36Zowh1ycBqZ-iKj9x2J5TRRCJ0IWC41q06gs2zef3sSHFlIPJfJXbSzKzGTuAe-9Q4EZHG8zXglbjWuy5OdmX1711NXTS90dhDtbBK4ncFBSU-Hq2rNBB7kA
https://l.messenger.com/l.php?u=https%3A%2F%2Fwww.digitalocean.com%2Fcommunity%2Ftutorials%2Fa-guide-to-time-series-forecasting-with-arima-in-python-3&h=ATMQcdwD0Uf2z36Zowh1ycBqZ-iKj9x2J5TRRCJ0IWC41q06gs2zef3sSHFlIPJfJXbSzKzGTuAe-9Q4EZHG8zXglbjWuy5OdmX1711NXTS90dhDtbBK4ncFBSU-Hq2rNBB7kA
https://l.messenger.com/l.php?u=https%3A%2F%2Fwww.digitalocean.com%2Fcommunity%2Ftutorials%2Fa-guide-to-time-series-forecasting-with-arima-in-python-3&h=ATMQcdwD0Uf2z36Zowh1ycBqZ-iKj9x2J5TRRCJ0IWC41q06gs2zef3sSHFlIPJfJXbSzKzGTuAe-9Q4EZHG8zXglbjWuy5OdmX1711NXTS90dhDtbBK4ncFBSU-Hq2rNBB7kA
https://l.messenger.com/l.php?u=https%3A%2F%2Fwww.slideshare.net%2F21_venkat%2Farima-26196965&h=ATMQcdwD0Uf2z36Zowh1ycBqZ-iKj9x2J5TRRCJ0IWC41q06gs2zef3sSHFlIPJfJXbSzKzGTuAe-9Q4EZHG8zXglbjWuy5OdmX1711NXTS90dhDtbBK4ncFBSU-Hq2rNBB7kA
http://siteresources.worldbank.org/DEC/Resources/Hevia_ARMA_estimation
http://siteresources.worldbank.org/DEC/Resources/Hevia_ARMA_estimation.pdf
http://wiki.secondlife.com/wiki/LSL_Protocol/RestrainedLoveAPI
http://www.firestormviewer.org/
http://www.statsmodels.org/stable/index.html
http://www.numpy.org/

Appendix A

lIParticleSystem Parameter Sheet

A description of all the parameter that can be passed to llparticlesystem inside

secondlife script.

Rule / Rule Description
Value Paramete
Constant r

System Behavior

PSYS_PART_FLAGS integer flags

\") PSYS_PART_BOUNCE_MASK

PSYS_PART_EMISSIVE_MASK

PSYS_PART_FOLLOW_SRC_MA
SK

Value

Various flags controlling the
behavior of the particle system. The
value may be specified as an integer
in decimal or hex format, or by
ORing together (using the |
operator) one or more of the
following flag constants:

When set, specifies particles will
bounce off a plane at the region Z
height of the emitter. On "bounce",
each particle reverses velocity and
angle. This only works for particles
above the plane falling down on it.

When set, particles are full-bright
and are unaffected by global lighting
(sunlight). Otherwise, particles will
be lit depending on the current
global lighting conditions. Note that
point lights do illuminate
non-emissive particles.

When set, particles move relative to
the position of the emitter.
Otherwise, particle position and
movement are unaffected by the
position/movement of the emitter.

0x004

0x100

0x010

http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/w/index.php?title=Hexadecimal&action=edit&redlink=1
http://wiki.secondlife.com/wiki/Viewer_coordinate_frames#Region

PSYS_PART_FOLLOW_VELOCIT
Y_MASK

PSYS_PART_INTERP_COLOR_
MASK

PSYS_PART_INTERP_SCALE_M
ASK

PSYS_PART_RIBBON_MASK

PSYS_PART_TARGET_LINEAR_
MASK

This flag disables the
PSYS_SRC_BURST_RADIUS rule.

When set, particles rotate to orient 0x020
their "top" towards the direction of
movement or emission. Otherwise,

particles are oriented vertically as

their textures would appear (top of

texture at top, left at left).

When set, particle color and alpha 0x001
transition from their START settings

to their END settings during the

particle's lifetime. The transition is a

smooth interpolation.

When set, particle size/scale 0x002
transitions from its START setting to

its END setting during the particle's

lifetime.

Joins a stream of particles together 0x400
into a continuous strip. Particle
textures are stretched (or squeezed)
to join their right edges to their
predecessor's left. Ribbon 'width' is
controlled by the 'x' values of start
and end scale. (The 'y' values are
ignored. The distance between
particles controls the 'length’ of each
ribbon segment). Unlike other
particle effects, ribbon segments are
not rendered facing the viewer's
camera. The Z axis of each new
particle mimics the Z axis of the
emitter prim. Ribbon segments will
not render if they have no 'length' -
this happens when particles move
only 'up' or 'down' the local Z-axis of
their emitter prim.
PSYS_PART_FOLLOW_VELOCITY_MA
SK has no effect on ribbons. For a
simple ribbon effect, try using the
DROP pattern, TEXTURE_BLANK,
ACCEL and/or WIND.

When set, emitted particles move in | 0x080
a straight evenly-spaced line

towards the target specified by the
PSYS_SRC_TARGET_KEY rule. This

option ignores all Non-DROP

patterns and their dependent

attributes (radius, burst speeds,

angles, and omega).

PSYS_SRC_ACCEL and

PSYS_PART_TARGET_POS_MA
SK

PSYS_PART_WIND_MASK

PSYS_PART_BEAM_MASK

LL_PART_HUD

LL_PART_DEAD_MASK

System Presentation

PSYS_SRC_PATTERN integer pattern

\") PSYS_SRC_PATTERN_EXPLOD
E

a

I

u

e

s PSYS_SRC_PATTERN_ANGLE_
CONE

PSYS_PART_WIND_MASK are
ignored as well. Using
PSYS_PART_BOUNCE_MASK while
the target is 'below' the emitter will
cause the linear particle stream to
deflect upwards, terminating above
the target.

When set, emitted particles change 0x040
course during their lifetime,

attempting to move towards the

target specified by the
PSYS_SRC_TARGET_KEY rule by the

time they expire. Note that if no

target is specified, the target moves

out of range, or an invalid target is

specified, the particles target the

prim itself.

When set, particle movement is 0x008
affected by the wind. It is applied as

a secondary force on the particles.

(unimplemented) mask but in the 0x200

enum

0x4000
0000

Used by the viewer to keep HUD and
World particle sources separate.

0x8000
0000

Removes particles, not compatible
with any other PSYS_PART_*_MASK

Specifies the general emission 9
pattern.

Sprays particles outwards in a 0x02
spherical area. The Initial velocity of

each particle is determined by
PSYS_SRC_BURST_SPEED_MIN and
PSYS_SRC_BURST_SPEED_MAX.

The EXPLODE pattern ignores the

ANGLE parameters.

Sprays particles outwards in a 0x08
spherical, sub-spherical, conical or

ring shaped area, as defined by the

ANGLE parameters
PSYS_SRC_ANGLE_BEGIN and
PSYS_SRC_ANGLE_END. The

ANGLE_CONE pattern can be used

http://wiki.secondlife.com/wiki/LlWind
http://wiki.secondlife.com/wiki/Integer

PSYS_SRC_PATTERN_ANGLE

PSYS_SRC_PATTERN_DROP

PSYS_SRC_PATTERN_ANGLE_
CONE_EMPTY

PSYS_SRC_BURST_RAD
IUSs

loat radius

to imitate the EXPLODE pattern by
explicitly setting
PSYS_SRC_ANGLE_BEGIN to
0.00000 and
PSYS_SRC_ANGLE_END to 3.14159
(or PI) (or vice versa).

Sprays particles outward in a flat 0x04
circular, semi-circular, arc or ray

shaped areas, as defined by
PSYS_SRC_ANGLE_BEGIN and
PSYS_SRC_ANGLE_END. The

circular pattern radiates outwards

around the prim's local X axis line.

Creates particles with no initial 0x01
velocity. The DROP pattern will
override any values given for
PSYS_SRC_BURST_RADIUS,
PSYS_SRC_BURST_SPEED_MIN, and
PSYS_SRC_BURST_SPEED_MAX,
setting each to 0.00000. (All
patterns will behave like the DROP
pattern, if RADIUS, SPEED_MIN and
SPEED_MAX are explicitly set to
0.0000.)

(incomplete implementation) acts 0x10
the same as the
PSYS_SRC_PATTERN_DROP pattern,
it is believed that the original
intention for this pattern was to
invert the effect of the ANGLE
parameters, making them delineate
an area where particles were NOT to
be sprayed. (effectively the inverse
or opposite of the behavior of the
ANGLE_CONE pattern).

Specifies the distance from the 16
emitter where particles will be

created. This rule is ignored when

the

PSYS_PART_FOLLOW_SRC_MASK

flag is set. A test in
http://forums-archive.secondlife.co
m/327/f5/226722/1.html indicates

that the maximum value is 50.00

http://wiki.secondlife.com/wiki/Float
http://forums-archive.secondlife.com/327/f5/226722/1.html
http://forums-archive.secondlife.com/327/f5/226722/1.html

PSYS_SRC_ANGLE_BEG
IN

PSYS_SRC_ANGLE_END

PSYS_SRC_INNERANGL
E

float angle_begin

loat angle_end

loat angle_inner

Specifies a half angle, in radians, of
a circular or spherical "dimple" or
conic section (starting from the
emitter facing) within which
particles will NOT be emitted. Valid
values are the same as for
PSYS_SRC_ANGLE_END, though the
effects are reversed accordingly. If
the pattern is
PSYS_SRC_PATTERN_ANGLE, the
presentation is a 2D flat circular
section. If
PSYS_SRC_PATTERN_ANGLE_CONE
or
PSYS_SRC_PATTERN_ANGLE_CONE
_EMPTY is used, the presentation is
a 3D spherical section. Note that the
value of this parameter and
PSYS_SRC_ANGLE_END are
internally re-ordered such that this
parameter gets the smaller of the
two values.

Specifies a half angle, in radians, of
a circular or spherical "dimple" or
conic section (starting from the
emitter facing) within which
particles WILL be emitted. Valid
values are 0.0, which will result in
particles being emitted in a straight
line in the direction of the emitter
facing, to PI, which will result in
particles being emitted in a full
circular or spherical arc around the
emitter, not including the "dimple"
or conic section defined by
PSYS_SRC_ANGLE_BEGIN. If the
pattern is
PSYS_SRC_PATTERN_ANGLE, the
presentation is a 2D flat circular
section. If
PSYS_SRC_PATTERN_ANGLE_CONE
or
PSYS_SRC_PATTERN_ANGLE_CONE
_EMPTY is used, the presentation is
a 3D spherical section. Note that the
value of this parameter and
PSYS_SRC_ANGLE_BEGIN are
internally re-ordered such that this
parameter gets the larger of the two
values.

DEPRECATED: Use
PSYS_SRC_ANGLE_BEGIN
instead. Works similar to its
replacement rule, except the edge of
the section is aligned with the

22

23

10

http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/PI
http://wiki.secondlife.com/wiki/Float

PSYS_SRC_OUTERANGL
E

PSYS_SRC_TARGET_KE
Y

Particle Appearance

PSYS_PART_START_CO
LOR

PSYS_PART_END_COLO
R

PSYS_PART_START_ALP
HA

PSYS_PART_END_ALPH
A

loat angle_outer

key target

vector color_start

vector color_end

float alpha_start

float alpha_end

emitter facing, rather than its
center.

DEPRECATED: Use
PSYS_SRC_ANGLE_END instead.
Works similar to its replacement
rule, except the edge of the section
is aligned with the emitter facing,
rather than the section's center.

Specifies the key of a target object,
prim, or agent towards which the
particles will change course and
move (if
PSYS_PART_TARGET_POS_MASK is
specified) or will move in a straight
line (if
PSYS_PART_TARGET_LINEAR_MASK
is specified). They will attempt to
end up at the geometric center of
the target at the end of their
lifetime. Requires the
PSYS_PART_TARGET_POS_MASK or
PSYS_PART_TARGET_LINEAR_MASK
flag be set. caveat 4

A vector specifying the color of the
particles upon emission.

A vector specifying the color the
particles transition to during their
lifetime. Only used if the
PSYS_PART_INTERP_COLOR_MASK
flag is set.

Specifies the alpha of the particles
upon emission. Valid values are in
the range 0.0 to 1.0. Lower values
are more transparent; higher ones
are more opaque.

Specifies the alpha the particles
transition to during their lifetime.
Only used if the
PSYS_PART_INTERP_COLOR_MASK
flag is set. Valid values are the same
as PSYS_PART_START_ALPHA.

11

20

http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/LlParticleSystem#Caveats
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/wiki/Color
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/wiki/Color
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Alpha
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Alpha

PSYS_PART_START_SC | vector scale_start
ALE

PSYS_PART_END_SCAL | vector scale_end
E

PSYS_SRC_TEXTURE string texture

PSYS_PART_START_GL | float glow_start
ow

PSYS_PART_END_GLO float glow_end
w

Particle Blending

Specifies the scale or size of the
particles upon emission. Valid values
for each direction are 0.03125 to
4.0, in meters. The actual particle
size is always a multiple of 0.03125.
Smaller changes don't have any
effect. Since particles are essentially
2D sprites, the Z component of the
vector is ignored and can be set to
0.0.

Specifies the scale or size the
particles transition to during their
lifetime. Only used if the
PSYS_PART_INTERP_SCALE_MASK
flag is set. Valid values are the same
as PSYS_PART_START_SCALE.

Specifies the name of a texture in
the emitter prim's inventory to use
for each particle. Alternatively, you
may specify an asset key UUID for a
texture. If using lILinkParticleSystem
and texture is not a UUID, texture
must be in the emitter prim (not
necessarily with the script).

Specifies the glow of the particles
upon emission. Valid values are in
the range of 0.0 (no glow) to 1.0

(full glow).

Specifies the glow that the particles
transition to during their lifetime.
Valid values are the same as
PSYS_PART_START_GLOW.

12

26

27

Note: The particle system blend parameters wrap directly to OpenGL's glBlendFunc. Detailed
documentation for glBlendFunc, including formulas, can be found in the official glBlendFunc

documentation

PSYS_PART_BLEND_FU integer bf_source
NC_SOURCE

Specifies how blending function uses
the incoming particle's color and
alpha information to produce the
rendered result. Defaults to
PSYS_PART_BF_SOURCE_ALPHA.

24

http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/w/index.php?title=Scale&action=edit&redlink=1
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/w/index.php?title=Scale&action=edit&redlink=1
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/UUID
http://wiki.secondlife.com/wiki/LlLinkParticleSystem
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Float
http://www.opengl.org/sdk/docs/man/html/glBlendFunc.xhtml
http://www.opengl.org/sdk/docs/man/html/glBlendFunc.xhtml
http://wiki.secondlife.com/wiki/Integer

PSYS_PART_BLEND_FU

integer bf_dest

PSYS_PART_BF_ONE

PSYS_PART_BF_ZERO

PSYS_PART_BF_DEST_COLOR

PSYS_PART_BF_SOURCE_COL
OR

PSYS_PART_BF_ONE_MINUS_
DEST_COLOR

PSYS_PART_BF_ONE_MINUS_
SOURCE_COLOR

PSYS_PART_BF_SOURCE_ALP
HA

PSYS_PART_BF_ONE_MINUS_
SOURCE_ALPHA

Particle Flow

Specifies how blending function uses
the current framebuffer's color and
alpha information to produce the
rendered result. Defaults to
PSYS_PART_BF_ONE_MINUS_SOUR
CE_ALPHA. To make particles blend
with the background in a less
opaque and more luminescent way
use PSYS_PART_BF_ONE for dest
and the default for source. Most
other blending combinations will
render the invisible/alpha portion of
your particle texture, unless the
invisible area of your texture is all
black (or, in some cases, unless it is
all white).

Do not scale the source or
destination RGBA values.

Zero out the source or destination
RGBA values.

Scale the RGBA values by the RGBA
values of the destination.

Scale the RGBA values by the RGBA
values of the particle source.

Scale the RGBA values by the
inverted RGBA values of the
destination.

Scale the RGBA values by the
inverted RGBA values of the particle
source.

Scale the RGBA values by the alpha
values of the particle source.

Scale the RGBA values by the
inverted alpha values of the particle
source.

25

0x0

Ox1

0x2

0x3

0x4

0x5

0x7

0x9

http://wiki.secondlife.com/wiki/Integer

PSYS_SRC_MAX_AGE

PSYS_PART_MAX_AGE

PSYS_SRC_BURST_RAT
E

PSYS_SRC_BURST_PAR
T_COUNT

Particle Motion

PSYS_SRC_ACCEL

PSYS_SRC_OMEGA

float
duration_system

float
duration_particle

float burst_sleep

integerburst_parti
cle_count

vector
acceleration

vector omega

Specifies the length of time, in
seconds, that the emitter will
operate upon coming into view
range (if the particle system is
already set) or upon execution of
this function (if already in view
range). Upon expiration, no more
particles will be emitted, except as
specified above. Zero will give the
particle system an infinite duration.
(caveat 1)

Specifies the lifetime of each particle
emitted, in seconds. Maximum is
30.0 seconds. During this time, the
particle will appear, change
appearance and move according to
the parameters specified in the
other sections, and then disappear.

Specifies the time interval, in
seconds, between "bursts" of
particles being emitted. Specifying a
value of 0.0 will cause the emission
of particles as fast as the viewer can
do so.

Specifies the number of particles
emitted in each "burst".

Specifies a directional acceleration
vector applied to each particle as it
is emitted, in meters per second
squared. Valid values are 0.0 to
100.0 for each direction both
positive and negative, as region
coordinates.

Sets how far to rotate the "pattern”
after each particle burst. (Burst
frequency is set with
PSYS_SRC_BURST_RATE.) Omega
values are approximately 'radians
per burst' around the prim's global
(not local) X,Y,Z axes. For precise
and predictable pattern rotation,
rotate the prim instead of using
PSYS_SRC_OMEGA. Omega has no
visible effect on drop, explode and
certain specific angle and angle cone
patterns, depending on prim
orientation. Pattern rotation can be

19

13

15

21

http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/LlParticleSystem#Caveats
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/wiki/Viewer_coordinate_frames#Region
http://wiki.secondlife.com/wiki/Vector

PSYS_SRC_BURST_SPE
ED_MIN

PSYS_SRC_BURST_SPE
ED_MAX

loat speed_min

loat speed_max

used with prim orientation and
lITargetOmega() but won't produce
consistent results. (caveat 2 and
caveat 3)

Specifies the minimum value of a
random range of values which is
selected for each particle in a burst
as its initial speed upon emission, in
meters per second. Note that the
value of this parameter and
PSYS_SRC_BURST_SPEED_MAX are
internally re-ordered such that this
parameter gets the smaller of the
two values.

Specifies the maximum value of a
random range of values which is
selected for each particle in a burst
as its initial speed upon emission, in
meters per second. Note that the
value of this parameter and
PSYS_SRC_BURST_SPEED_MIN are
internally re-ordered such that this
parameter gets the larger of the two
values.

17

18

http://wiki.secondlife.com/wiki/LlParticleSystem#Caveats
http://wiki.secondlife.com/wiki/LlParticleSystem#Caveats
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Float

Appendix B

A description of all the syntax or command that can be used under the
RestrainedLoveAPI library.

Viewer Control
m Allow/prevent changing some debug settings : @setdebug=<y/n>

Implemented in v1.16

When prevented, the user is unable to change some viewer debug settings (Advanced
> Debug Settings). As most debug settings are either useless or critical to the user's
experience, a whitelist approach is taken : only a few debug settings are locked, the

others are always available and untouched.

m Force change a debug setting : @setdebug_ <setting>:<value>=force
(*)
Implemented in v1.16

Forces the viewer to change a particular debug setting and set it to <value>. This
command is actually a package of many sub-commands, that are regrouped under
"@setdebug_...", for instance "@setdebug_avatarsex:0=force",

"@setdebug_renderresolutiondivisor:64=force" etc.
The debug settings that can be changed are :

m AvatarSex (0 : Female, 1 : Male) : gender of the avatar at creation.

m RenderResolutionDivisor (1 -> ...) : "blurriness" of the screen. Combined
to clever @setenv commands, can simulate nice effects. Note:
renderresolutiondivisor is a Windlight only option (Basic Shaders must be
enabled in graphics preferences) and as such, is not available in
v1.19.0.5 or older viewers.

m Get the value of a debug setting :

@getdebug_<setting>=<channel_number>

Implemented in v1.16

Makes the viewer automatically answer the value of a debug setting, immediately on

the chat channel humber <channel_number> that the script can listen to. Always use

a positive integer. Remember that regular viewers do not answer anything at all so
remove the listener after a timeout. The answer is the value that has been set with the

<setting> part of the matching @setdebug command, or by hand.
The debug settings that can be changed are :

m AvatarSex (0 : Female, 1 : Male) : gender of the avatar at creation.

m RenderResolutionDivisor (1 -> ...) : "blurriness" of the screen. Combined
to clever @setenv commands, can simulate nice effects. Note:
renderresolutiondivisor is a Windlight only option (Basic Shaders must be
enabled in graphics preferences) and as such, is not available in
v1.19.0.5 or older viewers.

m RestrainedLoveForbidGiveToRLV (0/1) : When set to 1, the RLV does not
put temporary folders (folders which name begins with '~') directly into
the "#RLV" folder, but under "Inventory" instead.

m RestrainedLoveNoSetEnv (0/1) : When set to 1, @setenv commands are
ignored.

m WindLightUseAtmosShaders (0/1) : When set to 1, Windlight
atmospheric shaders are enabled.

m Allow/prevent changing the environment settings : @setenv=<y/n>

Implemented in v1.14

When prevented, the user is unable to change the viewer environment settings (World
> Environment Settings > Sunrise/Midday/Sunset/Midnight/Revert to region
default/Environment editor are all locked out).

m Force change an environment setting :

@setenv_<setting>: <value>=force (*)

Implemented in v1.14

Forces the viewer to change a particular environment setting (time of day or
Windlight) and set it to <value>. This command is actually a package of many
sub-commands, that are regrouped under "@setenv_...", for instance

"@setenv_daytime:0.5=force", "@setenv_bluehorizonr:0.21=force" etc.

This command (like any other "force" command) is silently discarded if the
corresponding restriction has been set, here "@setenv", but in this case the restriction
is ignored if the change is issued from the object that has created it. In other words, a
collar can restrict environment changes, yet force a change by itself, while another

object could not do it until the collar lifts the restriction.

Although a range is specified for every value, no check is made in the viewer so a

script can do what the UI can't do, for interesting effects. Use at your own risk,

though. The ranges indicated here are merely the ones available on the sliders on the

Environment Editor, for reference.

Each particular sub-command works as follows (the names are chosen to be as close

to the Windlight panels of the viewer as possible) :

@setenv_XXX: <value> | Sets...

<value>=force | range

where XXX is...

daytime 0.0-1.0 Time of day (sunrise:0.25, midday:0.567,

and <0 sunset:0.75, midnight:0.0, set back to region

default: <0). Attention, resets all other Windlight
parameters

preset String A Preset environment, e.g. Gelatto, Foggy.
Attention, loading a Preset is heavy on the
viewer and can slow it down for a short while,
don't do it every second

ambientr 0.0-1.0 Ambient light, Red channel

ambientg 0.0-1.0 Ambient light, Green channel

ambientb 0.0-1.0 Ambient light, Blue channel

ambienti 0.0-1.0 Ambient light, Intensity

bluedensityr 0.0-1.0 Blue Density, Red channel

bluedensityg 0.0-1.0 Blue Density, Green channel

bluedensityb 0.0-1.0 Blue Density, Blue channel

bluedensityi 0.0-1.0 Blue Density, Intensity

bluehorizonr 0.0-1.0 Blue Horizon, Red channel

bluehorizong 0.0-1.0 Blue Horizon, Green channel

bluehorizonb 0.0-1.0 Blue Horizon, Blue channel

bluehorizoni 0.0-1.0 Blue Horizon, Intensity

cloudcolorr 0.0-1.0 Cloud color, Red channel

cloudcolorg 0.0-1.0 Cloud color, Green channel

cloudcolorb 0.0-1.0 Cloud color, Blue channel

cloudcolori 0.0-1.0 Cloud color, Intensity

cloudcoverage 0.0-1.0 Cloud coverage

cloudx 0.0-1.0 Cloud offset X

cloudy 0.0-1.0 Cloud offset Y

cloudd 0.0-1.0 Cloud density

clouddetailx 0.0-1.0 Cloud detail X

clouddetaily 0.0-1.0 Cloud detail Y

clouddetaild 0.0-1.0 Cloud detail density

cloudscale 0.0-1.0 Cloud scale

cloudscrollx 0.0-1.0 Cloud scroll X

cloudscrolly 0.0-1.0 Cloud scroll Y

densitymultiplier | 0.0-0.9 Density multiplier of the fog

distancemultiplie | 0.0-100. | Distance multiplier of the fog

r 0

eastangle 0.0-1.0 Position of the east, 0.0 is normal

hazedensity 0.0-1.0 Density of the haze

hazehorizon 0.0-1.0 Haze at the horizon

maxaltitude 0.0-4000 | Maximum altitude of the fog
.0

scenegamma 0.0-10.0 | Overall gamma, 1.0 is normal

starbrightness 0.0-2.0 Brightness of the stars

sunglowfocus 0.0-0.5 Focus of the glow of the sun

sunglowsize 1.0-2.0 Size of the glow of the sun

sunmooncolorr 0.0-1.0 Sun and moon, Red channel

sunmooncolorg 0.0-1.0 Sun and moon, Green channel
sunmooncolorb 0.0-1.0 Sun and moon, Blue channel
sunmooncolori 0.0-1.0 Sun and moon, Intensity

sunmoonposition | 0.0-1.0 Position of the sun/moon, different from "daytime",
use this to set the apparent sunlight after
loading a Preset

Note: from the above settings, only the "daytime" one is supported by v1.19.0 (or
older) viewers implementing RestrainedLove v1.14 and later. The other settings are

ignored. This is because these viewers do not implement the Windlight renderer.

m Get the value of an environment setting :

@getenv_<setting>=<channel_number>

Implemented in v1.15

Makes the viewer automatically answer the value of an environment setting,
immediately on the chat channel nhumber <channel_number> that the script can listen
to. Always use a positive integer. Remember that regular viewers do not answer
anything at all so remove the listener after a timeout. The answer is the value that has
been set with the <setting> part of the matching @setenv command, or by hand. See

the table hereabove for a list of settings.

Note: only @getenv_daytime is supported by v1.19.0 (or older, i.e. non Windlight)

viewers implementing RestrainedLove v1.15 and later.

