
B. TECH. PROJECT REPORT
 On

Development of Augmented environment through

sensor data using Machine learning Models

 BY
K Abishek Kumar

 DISCIPLINE OF ELECTRICAL ENGINEERING
 INDIAN INSTITUTE OF TECHNOLOGY INDORE

 DEC 2017

 Development of Augmented environment through

 sensor data using Machine learning Models

 A PROJECT REPORT

 Submitted in partial fulfillment of the
 requirements for the award of the degrees

 of
 BACHELOR OF TECHNOLOGY

in

 ELECTRICAL ENGINEERING

Submitted by:
 K Abishek Kumar

 Guided by:

 Dr.Abhishek Srivastava
 (Assistant Professor)

INDIAN INSTITUTE OF TECHNOLOGY INDORE
 5th December, 2017

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Development of Augmented

environment through sensor data using Machine learning Models”

submitted in partial fulfillment for the award of the degree of Bachelor of

Technology in Electrical Engineering completed under the supervision of

Dr. Abhishek Srivastava Assistant Professor Computer Science and

Engineering, IIT Indore is an authentic work.

Further, I declare that I have not submitted this work for the award

of any other degree elsewhere.

Signature and name of the student with date

CERTIFICATE by BTP Guide

It is certified that the above statement made by the students is

correct to the best of my knowledge.

Signature of BTP Guide with dates and their designation

Preface

This report on “Development of Augmented environment through
sensor data using Machine learning Models” is prepared under the
guidance of Dr. Abhishek Srivastava.

Through this report we have tried to give a detailed design of the model to
record, analyse and implement data from various environment sensors
and create a virtual environment inside Second Life. The best fit model is
from implementing algorithm on data from various sources and most fit
model is used to predict the future values of different environment
variables that in turn are configured to be used to form virtual
environment inside Second Life World.

We have tried to the best of our abilities and knowledge to explain the
content in a lucid manner. We have also added interactive models and
figures to make it more illustrative.

K Abishek Kumar
B.Tech. IV Year
Discipline of Electrical
IIT Indore

Acknowledgements

I would like to thank my B.Tech Project supervisor Dr. Abhishek Srivastava for his
constant support in structuring the project and his valuable feedback throughout the
course of this project. He gave me an opportunity to discover and work in such an
interesting domain. His guidance proved really valuable in all the difficulties I faced in
the course of this project.

I am really thankful to my BTP partner Himanshu Meena for his contribution and
support throughout the project. During this journey we faced a lot of problems but
since I had such an amazing partner those high hurdles didn’t seem that high and with
mutual help we completed this project together with flying colors.

I am also thankful to my family members,friends and colleagues who were a constant
source of motivation. I am really grateful to Dept. of Computer Science & Engineering
& Dept. of Electrical Engineering, IIT Indore for providing with the necessary
hardware utilities to complete the project. I offer sincere thanks to everyone who else
who knowingly or unknowingly helped me complete this project.

K Abishek Kumar
140002014
Discipline of Electrical Engineering
Indian Institute of Technology Indore

Abstract

Second Life is an online virtual world,developed and owned by the San
Francisco-based firm Linden Lab. The platform principally features 3D-based
user-generated content. The secondlife environment is scripted in Linden Scripting
Language (LSL). The climatic parameters received as a response JSON is manipulated
and optimized in this end. The script corresponding to any object in secondlife is
constrained to it in a limited radius. Thus a deep study in variation of factors were
made and scripted accordingly to get a more close weather conditions as that of in the
real world. We are building a virtual environment that could mimic real characteristics
and implement machine learning model for futuristic parameters.

Table of Contents

1 Introduction

 1.1 Background

 1.2 Objective

2 Model Overview

 2.1 ARIMA

 2.1.1 Stationarity and differencing

 2.1.2 Autoregressive models

 2.1.3 Arima Models

 2.1.4 Maximum likelihood estimation

 2.2 Secondlife Environment

 2.2.1 llHttpRequest

 2.2.2 Restrained Love API

 2.3 Server-Side setup

 2.3.1 Flask

 2.3.2 RESTful APIs

 2.3.3 Ngrok

3 Setup and Implementation

 3.1 Sensor Network

 3.2 Network Setup

 3.3 ARIMA implementation

 3.4 Network and tunnel

 3.5 Secondlife implementation

4 Future Scope

References

Appendix A

Appendix B

Chapter 1

Introduction

This chapter highlights the background and motivation for the project. The problem
statement of the project has been described and the importance of the results is also
clearly portrayed. Towards the end of the chapter the objectives and expectation from
this project are also outlined.

1.1 Background

Second Life is an online virtual world, developed and owned by the San
Francisco-based firm Linden Lab . The platform principally features 3D-based
user-generated content. Second Life also has its own virtual currency, the Linden
Dollar, which is exchangeable with real world currency. Users can explore the world
(known as the grid), meet other residents, socialize, participate in individual and group
activities, build, create, shop, and trade virtual property and services with one another.
Built into the software is a 3D modeling tool based on simple geometric shapes, that
allows residents to build virtual objects. There is also a procedural scripting language,
Linden Scripting Language, which can be used to add interactivity to objects. Sculpted
prims(sculpties), mesh, textures for clothing or other objects, animations, and gestures
can be created using external software and imported. The Second Life terms of service
provide that users retain copyright for any content they create, and the server and
client provide simple digital rights management (DRM) functions. With 900,000
active users a month, who get payouts of $60 million in real-world money every year.

If we see the rate at which humans are technologically advancing, the time when
humans won’t even have to move is not far away and I think virtual world if the best
way to realize that dream.Second life is, as its name suggest, a second virtual world
with infinite possibilities. Second Life is used as a platform for education by many
institutions, such as colleges, universities, libraries and government entities.The
University of San Martin de Porres of Peru has been developing Second Life
prototypes of Peruvian archeological buildings, and training teachers for this new
paradigm of education.Second Life is used for scientific research, collaboration, and
data visualization.It also gives companies the option to create virtual workplaces to

allow employees to virtually meet, hold events, practice any kind of corporate
communications, conduct training sessions in 3D immersive virtual learning
environment, simulate business processes, and prototype new products.

In our project we are contributing in creating a virtual environment based on real time
environment variable and stepping another step towards making second life as real and
as close to real world as possible.

1.2 Objective

As per the above discussion, our main objective is to the Development of Augmented
environment through sensor data using Machine learning Model for implementing the
following in secondlife . The project has been divided into different modules:

● To extract weather data parameter values from physical sensors through
arduino nodes

● To design a machine learning model to make it handle and process the sensor
data

● To enhance the model and implement an algorithm to make it sustain on its
own

● To test and compare the predictions from the model with the real values
● To develop a virtual environment in Second life from the sensor data acquired

Chapter 2

Model Overview

This chapter discusses on various concept used n this project . The chapter starts with
the discussion on ARIMA model followed by explanation of how environment
parameters are handled in secondlife. the end of the chapter comprises of discussion
on flask, its features and advantages.

2.1 ARIMA

ARIMA models provide another approach to time series forecasting. Exponential
smoothing and ARIMA models are the two most widely-used approaches to time
series forecasting, and provide complementary approaches to the problem. While
exponential smoothing models were based on a description of trend and seasonality in
the data, ARIMA models aim to describe the autocorrelations in the data.

Before we introduce ARIMA models, we need to first discuss the concept of
stationarity and the technique of differencing time series. Then its composite parts
AR(AutoRegressive) and MA(Moving Average) models are discussed in next
subsection and then ARIMA is discussed.

2.1.1 Stationarity and differencing

Stationarity

A stationary time series is one whose properties do not depend on the time at
which the series is observed. So time series with trends, or with seasonality, are not
stationary — the trend and seasonality will affect the value of the time series at
different times. On the other hand, a white noise series is stationary — it does not
matter when you observe it, it should look much the same at any period of time.

Some cases can be confusing — a time series with cyclic behaviour (but not trend or
seasonality) is stationary. That is because the cycles are not of fixed length, so before
we observe the series we cannot be sure where the peaks and troughs of the cycles will
be.

In general, a stationary time series will have no predictable patterns in the long-term.
Time plots will show the series to be roughly horizontal (although some cyclic
behaviour is possible) with constant variance.

fig: Which of these series are stationary? (a) Dow Jones index on 292 consecutive days; (b) Daily
change in Dow Jones index on 292 consecutive days; (c) Annual number of strikes in the US; (d)
Monthly sales of new one-family houses sold in the US; (e) Price of a dozen eggs in the US (constant
dollars); (f) Monthly total of pigs slaughtered in Victoria, Australia; (g) Annual total of lynx trapped in
the McKenzie River district of north-west Canada; (h) Monthly Australian beer production; (i) Monthly
Australian electricity production.(Trend rules out series (a), (c), (e), (f) and (i). Increasing variance
also rules out (i). That leaves only (b) and (g) as stationary series.)

Differencing

In Figure 2.1, notice how the Dow Jones index data was non-stationarity in panel (a),
but the daily changes were stationary in panel (b). This shows one way to make a time
series stationary — compute the differences between consecutive observations. This is
known as differencing.

Transformations such as logarithms can help to stabilize the variance of a time series.
Differencing can help stabilize the mean of a time series by removing changes in the
level of a time series, and so eliminating trend and seasonality.

As well as looking at the time plot of the data, the ACF plot is also useful for
identifying non-stationary time series. For a stationary time series, the ACF will drop
to zero relatively quickly, while the ACF of non-stationary data decreases slowly.
Also, for non-stationary data, the value of r1 is often large and positive.

2.1.2 Autoregressive models

In a multiple regression model, we forecast the variable of interest using a linear
combination of predictors. In an autoregression model, we forecast the variable of
interest using a linear combination of past values of the variable. The term
autoregression indicates that it is a regression of the variable against itself.

Thus an autoregressive model of order p can be written as:

 ϕ y ϕ y .. y yt = c + 1 t−1 + 2 t−2 + . + ϕp t−p + εt

where c is a constant and is white noise. This is like a multiple regression but with εt

lagged values of as predictors. We refer to this as an AR(p) model. Autoregressive yt
models are remarkably flexible at handling a wide range of different time series
patterns.

 = 18 - 0.8yt yt −1 + εt = 8 - 1.3yt .7yyt −1 − 0 t −2 + εt

Fig: Two examples of data from autoregressive models with different parameters. Left: AR(1) .
Right: AR(2) with In both cases, is normally distributed white noise with mean zero andεt
variance on

2.1.2 Moving average models
Rather than use past values of the forecast variable in a regression, a moving average
model uses past forecast errors in a regression-like model.

 ε ε .. εyt = c + εt + θ1 t−1 + θ2 t−2 + . + θq t−q

where is white noise. We refer to this as an MA(q) model. Of course, we do not εt

observe the values of , so it is not really regression in the usual sense. Notice that εt

each value of can be thought of as a weighted moving average of the past few yt
forecast errors.

Relationship between AR and MA models

It is possible to write any stationary AR(p) model as an MA(∞) model. For example,
using repeated substitution, we can demonstrate this for an AR(1) model :

 y yt = ϕ1 t −1 + εt

 (ϕ y) = ϕ1 1 t −2 + εt−1 + εt

 y = ϕ
2
1 t −2 + ϕ ε1 t−1 + εt

 ε= ϕ y
3
1 t −3 + ϕ

2
1 t−2 + ϕ ε1 t−1 + εt

etc.

So eventually we obtain:

 y εt = εt + ϕ1 t−1 ε y .., + ϕ
2
1 t−2 + ϕ

3
1 t −3 + .

an MA(∞) process.

The reverse result holds if we impose some constraints on the MA parameters. Then
the MA model is called “invertible”. That is, that we can write any invertible MA(q)
process as an AR(∞) process.

2.1.3 ARIMA models
If we combine differencing with autoregression and a moving average model, we
obtain a non-seasonal ARIMA model. ARIMA is an acronym for AutoRegressive
Integrated Moving Average model (“integration” in this context is the reverse of
differencing). The full model can be written as

y .. y ε .. εy′
t = c + ϕ1

′
t−1 + . + ϕp

′
t−p + εt + θ1 t−1 + . + θq t−q

where is the differenced series (it may have been differenced more than once).y′
t

The “predictors” on the right hand side include both lagged values of and laggedy
t

errors. We call this an ARIMA(p,d,q) model, where

● p = order of the autoregressive part,
● d = degree of first differencing involved,
● q = order of the moving average part.

The same stationarity and invertibility conditions that are used for autoregressive and
moving average models apply to this ARIMA model.

We start combining components in this way to form more complicated models.
Selecting appropriate values for p, d and q can be difficult. To select appropriate
values for p, d, q what we do actually is finding best with the help of certain
algorithms. In this project what we used is Square Mean Error and Maximum

Likelihood Estimation along with Kalman filter Algorithm. In the next section they
explained in detail.

2.1.4 Maximum Likelihood Estimation
ARIMA first make data stationary by differencing or using functions such as
logarithmic, square root, cube root etc. By doing this we have successfully found value
of d but for p and q you need to find AutoCorrelation Function(ACF) and Partial
AutoCorrelation Function(PACF) of the dataset with itself. Even by doing all this you
arrive at a range of values from which you need to find the best fit for the model that
can be done by various methods and one of them is differentiating and evaluating them
on the basis of mean square error. But to find this error you need to first find the
coefficients of AR and MA models. You can achieve it by using Kalman filter
algorithm on maximum likelihood estimation.

In this section, I describe the algorithm used to compute the maximum likelihood
estimates of the ARMA(p,q) process. Suppose that we want to fit the (mean zero) time
series to the the following ARMA(p,q) model

 ϕ y .. y ε .. ε yt = 1 t−1 + . + ϕp t−p + εt + θ1 t−1 + . + θq t−q

where is an i.i.d. shock normally distributed with mean zero and variance . Let r εt σ2
be max(p, q + 1), and rewrite the model as

 ϕ y .. y ε .. ε yt = 1 t−1 + . + ϕr t−r + εt + θ1 t−1 + . + θr−1 t−r+1

We interpret = 0 for j > p and = 0 for j > q.ϕj θj

The estimation procedure is based on the Kalman Filter. To use the Kalman Filter we
need to write the model in the following (state-space) form

x εxt+1 = A t + R t+1

 xyt = Z ′
t

where is an r x 1 state vector, A is an r x r matrix, and R and Z are r x 1 vectors.xt
These matrices and vectors are defined as follows

To see that the system (3) and (4) is equivalent to (2), write the last row of (3) as

x ε xr,t−1 = ϕ1 1,t + θr−1 t+1

Lagging this equation r - 1 periods we find

L x L εxr,t−r+2 = ϕ1
r−1

1,t + θr−1
r−1

t+1

where we define as the r lag operator for any integer r 0. The second to xLr
t = xt−r ≥

last row implies

x ε xr−1,t+1 = ϕr−1 1,t + xr,t + θr−2 t+1

Lagging r x 2 periods we obtain

 L x L εxr−1,t−r+3 = ϕr−1
r−2

1,t + xr,t−r+2 + θr−2
r−2

t+1

Introducing (5) into the previous equation we find

 L x L x L ε L εxr−1,t−r+3 = ϕr−1
r−2

1,t + ϕr
r−1

1,t + θr−1
r−1

t+1 + θr−2
r−2

t+1

Take now row r - 2,

x ε xr−2,t+1 = ϕr−2 1,t + xr−1,t + θr−3 t+1

Lagging r - 3 periods we find
 x L x L ε r−2,t−r+4 = ϕr−2

r−3
1,t + xr−1,t−r+3 + θr−3

r−3
t+1

Plugging (6) into the previous equation we obtain

L L L]x θ L L L]εxr−2,t−r+4 = [ϕr−2

r−3 + ϕr−1
r−2 + ϕr

r−1
1,t + [r−1

r−1 + θr−2
r−2 + θr−3

r−3
t+1

Following this iterative procedure until row r - 1 we find

L L L]x θ L L L ..]εx1,t+1 = [ϕ ..1 + . + ϕr−2
r−3 + ϕr−1

r−2 + ϕr
r−1

1,t + [r−1
r−1 + θr−2

r−2 + θr−3
r−3 + . + 1 t+1

or

θ L L L ..]ε(1 L)x− ϕ L L ..1
1 − ϕ2

2 − . − ϕr
r

1,t+1 = [r−1
r−1 + θr−2

r−2 + θr−3
r−3 + . + 1 t+1

Now, the observation equation (4) and the definition of Z imply

yt = x1,t

Using (7) evaluated at t we arrive at the ARMA representation (2),

θ L L L ..]ε(1 L)y− ϕ L L ..1
1 − ϕ2

2 − . − ϕr
r

1,t = [r−1
r−1 + θr−2

r−2 + θr−3
r−3 + . + 1 t

which proves that the system (3), (4) is equivalent to (2).

Denote by the expected value of conditional on the [x |y , .., ;]x︿ t+1| t = Et t+1 0 . yt x0 xt+1
history of observations . The Kalman Ölter provides an algorithm for y , ..,)(0 . yt
computing recursively given an initial value = . (Note that is the x︿ t+1| t x︿ 1| 0 0 0
unconditional mean of). Associated with each of these forecasts is a mean squared xt
error matrix, defined as

[(x)(x)]P t+1|t = E t+1 − x︿ t+1| t t+1 − x︿ t+1| t
 ′

Given the estimate , we use (4) to compute the innovationsx︿ t+1| t

 [x |y , .., ;]at = yt − Et t+1 0 . yt x0

 x= yt − Z ′︿
 t | t−1

The innovation variance, denoted by , satisfieswt

wt = [(y x)(y x)]E t − Z ′︿
 t | t−1 t − Z ′︿

 t | t−1
 ′

 = [(Z x x)(Z x x)]E ′
t − Z ′︿

 t | t−1
′

t − Z ′︿
 t | t−1

 ′

 P Z = Z ′
t | t−1

In addition to the estimates , the Kalman Ölter equations imply the following x︿ t | t−1
evolution of the matrices P t+1|t

 P [P ZZ P /w]A R σ t+1|t = A t | t−1 − P t | t−1
′

t | t−1 t
 ′ + R ′ 2

Given an initial matrix and the initial value , the likelihood (x x)P 1|0 = E t t
′ x︿ 1|0 = 0

function of the observation vector is given byy , .., }{ 0 . yt

 (2πw) exp(−)L = ∩
T

t=1
t

−1/2 at
2

2wt

Taking logarithms, dropping the constant 2, and multiplying by 2 we obtain

 [ln(w) /w]l = − ∑
T

t=1
t + at

2
t

In principle, to find the MLE estimates we maximize (10) with respect to the
parameters . However, the following trick allows us to ‘concentrate-out’, and σ ϕj θj

2
the term , and maximize only with respect to the parameters . Supposeσ2 and θ ϕj j
we initialize the filter with the matrix . Then, from (9) it follows thatPP 1|0 = σ2

1|0
each is proportional to , and from (8) it follows that the innovation varianceP t+1|t σ2
is also proportional to . This implies that we can optimize first with respect to σ2 σ2
‘by hand’, replace the result into the objective function, and then optimize the resulting
expression (called the ‘concentrated log-likelihood’) with respect to the parameters

: To see this, note that (10) becomes, ϕj θj

[ln(σ w) /w σ]l = − ∑
T

t=1

2
t + at

2
t

2

and is cancelled out in the evolution equations of and in the projectionsσ2 P t+1|t
 . So we can directly optimize (11) with respect to to obtainx︿ t+1 | t σ2

/wσ2 = 1
T ∑

T

t=1
at

2
t

Replacing this result into (11) we obtain the concentrated log-likelihood function

[ln(σ) n(w) /w σ]l = − ∑
T

t=1

2 + l t + at
2

t
2

 n(/w) n(w)]l = − [∑
T

 t=1
l 1

T ∑
T

t=1
at

2
t + ∑

T

 t=1
l t +

/w σ∑
T

 t=1
at

2
t

2

/w σ1
T ∑

T

 t=1
at

2
t

2

T ln(1/T) ln /w n(w)]l = − [+ T + T ∑
T

t=1
at

2
t + ∑

T

 t=1
l t

or, dropping irrelevant constants,

 l T ln /w n(w)] = − [+ T ∑
T

t=1
at

2
t + ∑

T

 t=1
l t

Because the innovations and the variances are nonlinear functions of theat wt
parameters [], we use numerical methods to maximize (12)., ϕ θ

2.2 SecondLife Environment

In Secondlife users create everything by themselves from a simple pole flag to
aeroplane, from their clothes to their houses, from their hairs to their vehicles. So to do
that they need some built-in function from Secondlife creator company Linden labs so
that they can make changes to their environment. In our project, we have mainly used
llhttprequest for taking data from ngrok, llparticlesystem to create particle shower and
transformed them to snow or rain and RestrainedloveAPI to change environment with
the help of windlight settings.

2.2.1 llHttpRequest

Function: key llHTTPRequest(string url, list parameters, string body);

Sends an HTTP request to the specified URL with the body of the request and
parameters.

Returns a handle (a key) identifying the HTTP request made.

● string url - a valid HTTP/HTTPS URL
● list parameters - configuration parameters, specified as HTTP_* flag-value

pairs[parameter1, value1, parameter2, value2,, parameterN, valueN]
● string body - Contents of the request

2.2.1 llParticleSystem

Function: llParticleSystem(list rules);

Defines a particle system for the containing prim based on a list of rules.

● list rules - Particle system rules list in the format [rule1, data1, rule2, data2 . . .
rulen, datan]

Defines a particle system that sets the state of the particle emitter within the prim that
contains the script. Any other scripts, in the same prim, that call this function will
modify the state of the same particle emitter. As such, the particle system defined by
this function is a prim property, just like its size, shape, color, etc.

Each prim has only one (1) particle emitter, located at its geometric center, and aligned
along the prim's local Z-axis, pointing in the positive Z direction.

This is the one of the only functions which alters the state of the prim's particle
emitter; thus, if you wish to change the emitter to a different state (i.e., emitting a
different particle system entirely, or shut off the emitter completely), just call the
function with the parameters of the new particle system you wish to render instead.
Specifying an empty list (i.e., llParticleSystem([]);) turns the emitter off.

http://wiki.secondlife.com/wiki/Category:LSL_Functions
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/List
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Category:LSL_Key/handle
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/Category:LSL_Functions
http://wiki.secondlife.com/w/index.php?title=Particle_emitter&action=edit&redlink=1
http://wiki.secondlife.com/wiki/Primitive
http://wiki.secondlife.com/wiki/Script
http://wiki.secondlife.com/w/index.php?title=Primitive_property&action=edit&redlink=1
http://wiki.secondlife.com/wiki/Geometric_center
http://wiki.secondlife.com/wiki/Viewer_coordinate_frames#Local
http://wiki.secondlife.com/wiki/Category:LSL_Particles

Particles are essentially 2D sprites and are always rendered facing the viewer's camera
(except when PSYS_PART_RIBBON_MASK is enabled).

The rule / data values are defined can accessed from Appendix A.

2.2.2 RestrainedLoveAPI

The RestrainedLove viewer executes certain behaviours when receiving special
messages from scripts in-world. These messages are mostly calls to the llOwnerSay()
LSL function.

The RestrainedLove viewer intercepts every llOwnerSay message sent to the viewer.
Lines that begin with an at-sign ('@') are parsed as RLV commands. Other lines are
forwarded to the user in the Local Chat window, as usual. For instance, a call to
llOwnerSay ("@detach=n") sends the detach command with parameter n to the viewer
on behalf of the object running the script.

For list of commands please go to Appendix B.

http://en.wikipedia.org/wiki/Sprite_(computer_graphics)
http://realrestraint.blogspot.com/
http://wiki.secondlife.com/wiki/LlOwnerSay
http://wiki.secondlife.com/wiki/LSL
http://realrestraint.blogspot.com/
http://wiki.secondlife.com/wiki/LlOwnerSay
http://wiki.secondlife.com/wiki/LlOwnerSay

2.3 Server-Side setup
For the purpose of building a real-time streaming environment and database in a fixed
and secure environment, we implement a server system.

2.3.1 Flask
Flask is a Python web framework built with a small core and easy-to-extend
philosophy.Flask is considered more Pythonic than Django because Flask web
application code is in most cases more explicit. Flask is easy to get started with as a
beginner because there is little boilerplate code for getting a simple app up and
running.

Key Features of Flask:

● Contains development server and debugger
● Integrated support for unit testing
● RESTful request dispatching
● Uses Jinja2 templating
● Support for secure cookies (client side sessions)
● 100% WSGI 1.0 compliant
● Unicode-based
● Extensive documentation
● Google App Engine compatibility
● Extensions available to enhance features desired

In this project, we have used flask to fire up a server that could stream the Real-time
sensor data, as well as the processed data that has been updated by the ARIMA model
database.It also supports different formats of data streaming (JSON in this case) and is
being running in the server’s side.

2.3.2. RESTful APIs

Representational state transfer (REST) or RESTful web services are a way of
providing interoperability between computer systems on the Internet. REST-compliant
Web services allow requesting systems to access and manipulate textual
representations of Web resources using a uniform and predefined set of stateless
operations.By using a stateless protocol and standard operations, REST systems aim
for fast performance, reliability, and the ability to grow, by re-using components that
can be managed and updated without affecting the system as a whole, even while it is
running.Web service APIs that adhere to the REST architectural constraints are called
RESTful APIs.[13] HTTP-based RESTful APIs are defined with the following
aspects:

● base URL, such as http://api.example.com/resources
● an internet media type that defines state transition data elements (e.g., Atom,

microformats, application/vnd.collection+json:91–99 etc.) The current
representation tells the client how to compose requests for transitions to all the
next available application states. This could be as simple as a URL or as
complex as a Java applet.

● standard HTTP methods (e.g., OPTIONS, GET, PUT, POST, and DELETE)

For the purpose of this project, we choose REST APIs to maintain consistency and
reliability in the data. We choose JSON (Javascript Object notation) format for the
purpose of streaming hourly data to Secondlife. In the case of database, CSV formats
are being followed (Comma separated values).

2.3.3 NGROK

Ngrok is a handy tool and service that allows you tunnel requests from the wide open
Internet to your local machine when it's behind a NAT or firewall. This is useful in a
number of cases, such as when you want to test out an add-on you've been writing for
HipChat or a custom webhook endpoint for Bitbucket, but you haven't yet deployed
your code to an Internet accessible host or PaaS. The most common usage of ngrok
sets up a tunnel to localhost using the random hostname ngrok provides by default,
e.g., 5a3e3614.ngrok.com.

In this project, the traffic hosted from the server’s end using FLASK is being directed
and hosted globally in the internet using this program. As FLASK is hosted behind a
NAT and the secondlife environment does not lie in the same domain, this has been
implemented as a key feature.

Chapter 3

Setup & Implementation

This chapter discusses on the step-by-step setup and implementation of the above
explained model in depth on different levels.

3.1 Sensor Network

For the purpose of this project, different sensor datas from several arduino nodes are
extracted and streamed into a database as discussed in chapter 2. The format of the
database was maintained to be CSV carrying hourly data of a particular day.

From several different environment variables we have chosen five major
environmental factors that can be used to effectively mimic the real world into the
Second life environment. These five environment variables are temperature,
precipitation, wind speed, wind direction and visibility. They are acquired with the
help of different sensors which in themselves different units and are connected through
the arduino nodes. Sensors used for each variables are:

● Temperature - DHT11 sensor chips
● Wind Speed - Anemometer
● Wind Direction - Anemometer
● Precipitation - WS100 sensor module
● Visibility - VS2K sensor module

Arduino is an open-source platform used for building electronics projects. Arduino
consists of both a physical programmable circuit board (often referred to as a
microcontroller) and a piece of software, or IDE (Integrated Development
Environment) that runs on your computer, used to write and upload computer code to
the physical board.

The Arduino platform has become quite popular with people just starting out with
electronics, and for good reason. Unlike most previous programmable circuit boards,
the Arduino does not need a separate piece of hardware (called a programmer) in order
to load new code onto the board – you can simply use a USB cable. Additionally, the
Arduino IDE uses a simplified version of C++, making it easier to learn to program.
Finally, Arduino provides a standard form factor that breaks out the functions of the
microcontroller into a more accessible package.

Each of the sensor nodes are connected to the respective arduino from which the data
streaming takes place. These nodes are connected to a single server raspberry pi to
store and maintain the database.

ARDUINO program for each sensor

#include <SoftwareSerial.h>

int LED = 13;

int isObstaclePin = 7;

int isObstacle = HIGH;

SoftwareSerial bt (10,11);

void setup() {

 pinMode(LED, OUTPUT);

 pinMode(isObstaclePin, INPUT);

 bt.begin(9600);

 Serial.begin(9600);

}

void loop() {

 isObstacle = digitalRead(isObstaclePin);

 if (isObstacle == HIGH)

 {

 Serial.println("OBSTACLE!!, OBSTACLE!!");

 digitalWrite(LED, HIGH);

 bt.print (String(1));

 bt.print("\n");

 delay (200);

 }

 else

 {

 Serial.println("clear");

 digitalWrite(LED, LOW);

 bt.print (String(0));

 bt.print("\n");}

 delay(200);}

3.2 Network setup

The CSV database stored is then streamed into the ARIMA model explained in
Chapter 2. Five different datas are injected and processed separately and being stored

back in the database to predict the future five values of individual environment
variable. For example we used past days of data to predict the next day’s data and this
data in return is fed back to the model to predict the next day’s and so on. The data is
processed at this node is being updated in the database to make it ready to stream.

3.3 ARIMA implementation

The saved database is used by ARIMA to predict the future values. The predicted
value are then appended on previously saved data and again ARIMA is run on that
data so now ARIMA uses previously saved data along with newly generated predicted
value to predict new value. On each step this process is repeated five times
individually for each of the five environment variables. This process is repeated each
time you want to predict any values.

The ARIMA program consists of two section ARIMA itself and GridParameter
evaluator program for (p,d,q) values.Below is the program for both:

ARIMA main program

from statsmodels.tsa.arima_model import ARIMA

import numpy

def difference(dataset, interval=1):

diff = list()

for i in range(interval, len(dataset)):

value = float(dataset[i]) - float(dataset[i - interval])

diff.append(value)

return numpy.array(diff)

def inverse_difference(history, yhat, interval=1):

return yhat + history[-interval]

def model(path):

series = Series.from_csv(path, header=None)

X = series.values

days_in_year = len(X)-24

differenced = difference(X, days_in_year)

print(differenced)

model = ARIMA(differenced, order=(3,1,0))

print(model)

model_fit = model.fit(disp=0)

start_index = len(differenced)

end_index = start_index + 23

forecast = model_fit.predict(start=start_index, end=end_index)

history = [x for x in X]

day = 1

for yhat in forecast:

inverted = inverse_difference(history, yhat, days_in_year)

print('Day %d: %f' % (day, inverted))

history.append(inverted)

day += 1

with open('test2.csv', "w") as output:

writer = csv.writer(output, lineterminator='\n')

for val in history:

writer.writerow([val])

model('~/Documents/BTP_WOT/arima/git/csv/humidity.csv')

GridParameter evaluator program

import math

import warnings

from pandas import read_csv,Series

from pandas import datetime

from statsmodels.tsa.arima_model import ARIMA

from sklearn.metrics import mean_squared_error

import numpy as np

def mean_absolute_percentage_error(y_true, y_pred):

 y_true, y_pred = np.array(y_true), np.array(y_pred)

 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

from numpy import mean, absolute

def mad(data, axis=None):

 return mean(absolute(data - mean(data, axis)), axis)

evaluate an ARIMA model for a given order (p,d,q)

def evaluate_arima_model(X, arima_order):

prepare training dataset

train_size = int(len(X) * 0.66)

train, test = X[0:train_size], X[train_size:]

history = [x for x in train]

make predictions

predictions = list()

for t in range(len(test)):

model = ARIMA(history, order=arima_order)

model_fit = model.fit(disp=0)

yhat = model_fit.forecast()[0]

predictions.append(yhat)

history.append(test[t])

calculate out of sample error

#print('MAPE : '+mean_absolute_percentage_error(test,predictions))

#print('MAD : '+mad(predictions))

ma = mad(predictions)

mape = mean_absolute_percentage_error(test,predictions)

error = mean_squared_error(test, predictions)

return error,ma,mape

evaluate combinations of p, d and q values for an ARIMA model

def evaluate_models(dataset, p_values, d_values, q_values):

dataset = dataset.astype('float32')

best_score, best_cfg = float("inf"), None

for p in p_values:

for d in d_values:

for q in q_values:

order = (p,d,q)

try:

mse,ma,mape = evaluate_arima_model(dataset, order)

if mse < best_score:

best_score, best_cfg = mse, order

print('ARIMA%s MSE=%.3f' % (order,mse))
print('\t\tMAPE=%.3f' % (mape))
print('\t\tRMSE=%.3f' % (math.sqrt(mse)))

except:

continue

print('Best ARIMA%s MSE=%.3f' % (best_cfg, best_score))

return best_cfg

load dataset

def parser(x):

return datetime.strptime(x, '%Y-%m-%d')

series=Series.from_csv('~/Documents/BTP_WOT/arima/git/daily-minimum-temp
eratures-in-me.csv', header=None)

p_values = range(0,7)

d_values = range(0, 3)

q_values = range(0, 3)

warnings.filterwarnings("ignore")

result = evaluate_models(series.values, p_values, d_values, q_values)

3.4. Network and tunnel

The updated database contains the predicted and missing values in place is ready to be
exported to the Second Life. The CSV hourly data is packed into JSON objects to
create requests to the secondlife server. This has been implemented with python scripts
which is found below.

import sys, getopt

import csv

import json

#Get Command Line Arguments

def main(argv):

 input_file = ''

 output_file = ''

 format = ''

 try:

 opts, args = getopt.getopt(argv,"hi:o:f:",["ifile=","ofile=","format="])

 except getopt.GetoptError:

 print 'csv_json.py -i <path to inputfile> -o <path to outputfile> -f
<dump/pretty>'

 sys.exit(2)

 for opt, arg in opts:

 if opt == '-h':

 print 'csv_json.py -i <path to inputfile> -o <path to outputfile> -f
<dump/pretty>'

 sys.exit()

 elif opt in ("-i", "--ifile"):

 input_file = arg

 elif opt in ("-o", "--ofile"):

 output_file = arg

 elif opt in ("-f", "--format"):

 format = arg

 read_csv(input_file, output_file, format)

#Read CSV File

def read_csv(file, json_file, format):

 csv_rows = []

 with open(file) as csvfile:

 reader = csv.DictReader(csvfile)

 title = reader.fieldnames

 for row in reader:

 csv_rows.extend([{title[i]:row[title[i]] for i in range(len(title))}])

 write_json(csv_rows, json_file, format)

#Convert csv data into json and write it

def write_json(data, json_file, format):

 with open(json_file, "w") as f:

 if format == "pretty":

 f.write(json.dumps(data, sort_keys=False, indent=4, separators=(',', ':
'),encoding="utf-8",ensure_ascii=False))

 else:

 f.write(json.dumps(data))

if __name__ == "__main__":

 main(sys.argv[1:])

3.5 SecondLife Implementation

With help of llHttprquest command we can request the data in json format from the
server. We convert data from json to simple string and analyse them so that we can
assign values to different parameters and graphics to change the environment inside
second life accordingly. In this way journey of the data from sensoor to second life
giving us the virtual environment we needed to make.

There were two scripts used for this purpose. One to is the base one to convert
secondlife environment for wind speed, precipitation, temperature and visibility. Other
one is for assigning direction to prims formed by llparticlesystem function through
above scripts in accordance to the wind direction fetched from the server. Both
program are as follows:

string LINK_D = "http://3aae4093.ngrok.io";

float dlay=5;

list
A12AM=["0.225","0.225","0.225","0.12","0.12","0.12","0.116","0.119","0.22",
"0.068","0.081","0.11"];

list
A6AM=["0.079","0.217","0.435","0.103","0.205","0.24","0.79","0.79","0.79","
0.27","0.154","0.21"];

list
A12PM=["0.122","0.224","0.38","0.248","0.248","0.32","0.245","0.261","0.3",
"0.35","0.35","0.35"];

list
A6PM=["0.073","0.2","0.4","0.054","0.107","0.125","0.946","0.946","0.946","
0.34","0.27","0.27"];

integer t;

float temp = 9;

float prec = 0.3;

float snow_depth = 9;

float vis = 0.1;

float acc=-0.2;

float ws;

float wd;

integer toogle=1;

rain()

{

 llParticleSystem([

 // start of particle settings

 // Texture Parameters:

 PSYS_SRC_TEXTURE, llGetInventoryName(INVENTORY_TEXTURE,
0),

 /* PSYS_PART_START_SCALE, <0.10,.5, FALSE>,
PSYS_PART_END_SCALE, <.05,4.0, FALSE>,*/

 PSYS_PART_START_SCALE, <0.05,0.05, FALSE>,
PSYS_PART_END_SCALE, <0.25,0.75, FALSE>,

 PSYS_PART_START_COLOR, <0.498, 0.859, 1.000>,
PSYS_PART_END_COLOR, <0.000, 0.455, 0.851>,

 PSYS_PART_START_ALPHA, (float).7*toogle,
PSYS_PART_END_ALPHA, (float).5*toogle,

 // Production Parameters:

 PSYS_SRC_BURST_PART_COUNT, (integer)90000*100*100,

 PSYS_SRC_BURST_RATE, (float) 1,

 PSYS_PART_MAX_AGE, (float)30.0,

 PSYS_SRC_MAX_AGE,(float) 0.0,

 // Placement Parameters:

 PSYS_SRC_PATTERN, (integer)8, // 1=DROP, 2=EXPLODE, 4=ANGLE,
8=ANGLE_CONE,

 // Placement Parameters (for any non-DROP pattern):

 PSYS_SRC_BURST_SPEED_MIN, (float)0.0,
PSYS_SRC_BURST_SPEED_MAX, (float)0.2,

 PSYS_SRC_BURST_RADIUS, 25.0,

 // Placement Parameters (only for ANGLE & CONE patterns):

 PSYS_SRC_ANGLE_BEGIN, (float) .33*PI, PSYS_SRC_ANGLE_END,
(float)2*PI,

 // PSYS_SRC_OMEGA, <0,0,0>,

 // After-Effect & Influence Parameters:

 PSYS_SRC_ACCEL, <0.0,0.0,-0.2>,

 // PSYS_SRC_TARGET_KEY,
(key)"0ef87053-6c78-7a04-df64-4e2827ec51b1",

 PSYS_PART_FLAGS, (integer)(0 // Texture Options:

 | PSYS_PART_INTERP_COLOR_MASK

 | PSYS_PART_INTERP_SCALE_MASK

 | PSYS_PART_EMISSIVE_MASK

 // | PSYS_PART_FOLLOW_VELOCITY_MASK

 // After-effect & Influence Options:

 // | PSYS_PART_WIND_MASK

 // | PSYS_PART_BOUNCE_MASK

 // | PSYS_PART_FOLLOW_SRC_MASK

 // | PSYS_PART_TARGET_POS_MASK

 // | PSYS_PART_TARGET_LINEAR_MASK

)

 //end of particle settings

]);

}

snow()

{ llOwnerSay((string)toogle+"**");

 llParticleSystem([

 PSYS_SRC_TEXTURE,
llGetInventoryName(INVENTORY_TEXTURE, 0),

 PSYS_PART_START_SCALE, <.4,.4, FALSE>,

 PSYS_PART_END_SCALE, <.2,.2, FALSE>,

 PSYS_PART_START_COLOR, <1,1,1>,

 PSYS_PART_END_COLOR, <1,1,1>,

 PSYS_PART_START_ALPHA, (float).9*toogle,

 PSYS_PART_END_ALPHA, (float).1*toogle,

 PSYS_PART_MAX_AGE, 10500.0,

 PSYS_SRC_MAX_AGE, 0.0,

 PSYS_SRC_BURST_RATE, 0.1,

 PSYS_SRC_BURST_PART_COUNT, 900*100,

 // Placement Parameters:

 PSYS_SRC_PATTERN, (integer)8, // 1=DROP, 2=EXPLODE, 4=ANGLE,
8=ANGLE_CONE,

 // Placement Parameters (for any non-DROP pattern):

 PSYS_SRC_BURST_SPEED_MIN, (float).0,
PSYS_SRC_BURST_SPEED_MAX, (float).2,

 PSYS_SRC_BURST_RADIUS, 25.0,

 // Placement Parameters (only for ANGLE & CONE patterns):

 PSYS_SRC_ANGLE_BEGIN, (float) .33*PI, PSYS_SRC_ANGLE_END,
(float)2*PI,

 // PSYS_SRC_OMEGA, <0,0,0>,

 // After-Effect & Influence Parameters:

 PSYS_SRC_ACCEL, <.0,.0,acc>,

 PSYS_SRC_TARGET_KEY,
(key)"0ef87053-6c78-7a04-df64-4e2827ec51b1",

 PSYS_PART_FLAGS, (integer)(0 // Texture Options:

 | PSYS_PART_INTERP_COLOR_MASK

 | PSYS_PART_INTERP_SCALE_MASK

 | PSYS_PART_EMISSIVE_MASK

 // | PSYS_PART_FOLLOW_VELOCITY_MASK

 // After-effect & Influence Options:

 // | PSYS_PART_WIND_MASK

 // | PSYS_PART_BOUNCE_MASK

 // | PSYS_PART_FOLLOW_SRC_MASK

 | PSYS_PART_TARGET_POS_MASK

 // | PSYS_PART_TARGET_LINEAR_MASK

)

]);

}

list region(){

 if(t>=0 && t<=6)

 return change_day(A12AM,A6AM,0);

 else if(t>=6 && t<=12)

 return change_day(A6AM,A12PM,6);

 else if(t>=12 && t<=18)

 return change_day(A12PM,A6PM,12);

 else return change_day(A6PM,A12AM,18);

}

list change_day(list str,list end,integer to){

 list new;

 float d;

 float val;

 integer i;

 for(i=0;i<12;i++){

 d=(float)llList2String(end,i)-(float)llList2String(str,i);

 d=d/6;

 val= d*(t-to) + (float)llList2String(str,i);

 new += (string)val;

 // llOwnerSay("+"+(string)val+"+");

 // llOwnerSay(""+llList2String(new,i)+"");

 }

 t=(t/24);

 llOwnerSay("@setenv_sunmoonposition:"+ (string)t +"=force");

 return new;

}

list temperature(list arr,float t)

{

 float d;

 float val;

 d = (0.2/28)*(16-t);

 float valr = (float)llList2String(arr,6)-d;

 float valg = (float)llList2String(arr,7)-d;

 float valb = (float)llList2String(arr,8)-d;

 arr =llListReplaceList(arr,[(string)valr],6,6);

 arr =llListReplaceList(arr,[(string)valg],7,7);

 arr =llListReplaceList(arr,[(string)valb],8,8);

 return arr;

}

Precipitation(float prec)

{

 if((string)prec == "T" || (prec < 0.5 && prec >= 0)){

 snow();}

 else if(prec > 0.5)

 rain();

}

Visibility(float vis)

{

 llOwnerSay("@setenv_densitymultiplier:"+(string)0.0909+"=force");

 vis=vis/16;

 vis=vis*1000;

 llOwnerSay("@setenv_distancemultiplier:"+(string)vis+"=force");

}

default

{

 state_entry() {

 llSay(0, "Hello world.");

 llHTTPRequest(LINK_D, [], "");

 llSetTimerEvent(dlay);

 }

 timer(){

 llHTTPRequest(LINK_D, [], "");

 }

 http_response(key request_id, integer status, list metadata, string body) {

 string str;

 integer num;

 if (status == 200) {

 list
row=["temperature","visibility","precipitation","windspeed","winddirection","
time"];

 str=llJsonGetValue(body,[llList2String(row,0)]);llOwnerSay(str);

 temp=(float)str;

 str=llJsonGetValue(body,[llList2String(row,1)]);llOwnerSay(str);

 vis=(float)str;//llOwnerSay((string)vis);

 str=llJsonGetValue(body,[llList2String(row,2)]);llOwnerSay(str);

 prec=(float)str;

 str=llJsonGetValue(body,[llList2String(row,3)]);llOwnerSay(str);

 ws=(float)str;

 str=llJsonGetValue(body,[llList2String(row,4)]);llOwnerSay(str);

 wd=(float)str;

 str=llJsonGetValue(body,[llList2String(row,5)]);llOwnerSay(str);

 t=(integer)str;

 acc=(-1)*((ws-3)*(0.15));

 list new;

 // llOwnerSay("YAY!");

 new = region();

 new = temperature(new,temp);

 toogle=1;

 if(prec==0)

 toogle=0;

 Precipitation(prec);

 Visibility(vis);

 llOwnerSay("@setenv_bluedensityr:"+ llList2String(new,0) +"=force");

 llOwnerSay("@setenv_bluedensityg:"+ llList2String(new,1) +"=force");

 llOwnerSay("@setenv_bluedensityb:"+ llList2String(new,2) +"=force");

 llOwnerSay("@setenv_bluehorizonr:"+ llList2String(new,3) +"=force");

 llOwnerSay("@setenv_bluehorizong:"+ llList2String(new,4) +"=force");

 llOwnerSay("@setenv_bluehorizonb:"+ llList2String(new,5) +"=force");

 llOwnerSay("@setenv_sunmooncolorr:"+ llList2String(new,6) +"=force");

 llOwnerSay("@setenv_sunmooncolorg:"+ llList2String(new,7) +"=force");

 llOwnerSay("@setenv_sunmooncolorb:"+ llList2String(new,8) +"=force");

 llOwnerSay("@setenv_ambientr:"+ llList2String(new,9) +"=force");

 llOwnerSay("@setenv_ambientg:"+ llList2String(new,10) +"=force");

 llOwnerSay("@setenv_ambientb:"+ llList2String(new,11) +"=force");

 }

 else {

 llOwnerSay("Unable to fetch "+LINK_D);

 }

 }

 }

for wind direction

string LINK_D = "http://3aae4093.ngrok.io";

float dlay=5;

default

{

 state_entry() {

 llSay(0, "Hello world.");

 llOwnerSay(llGetKey());

 llHTTPRequest(LINK_D, [], "");;

 llSetTimerEvent(dlay);

 }

 timer(){

 llHTTPRequest(LINK_D, [], "");

 }

 http_response(key request_id, integer status, list metadata, string body) {

 string str;

 integer num;

 string wd;

 float ws;

 if (status == 200) {

 list
row=["temperature","visibility","precipitation","windspeed","winddirection","
time"];

 str=llJsonGetValue(body,[llList2String(row,4)]);//llOwnerSay(str);

 wd=str;

 // str=llJsonGetValue(body,[llList2String(row,4)]);//llOwnerSay(str);

 //ws=(float)str;

 list
dir=["North","NNE","NE","NEE","East","ESE","SE","SSE","South","SSW
","SW","WSW","West","WNW","NW","NNW","Calm","Variable"];

 float x;float y;float theta;

 integer i;

 if(str=="Calm"){

 x=0;y=0;

 }

 else if(str=="Variable"){

 x=llFrand(50)-25;

 y=llFrand(50)-25;

 }

 else{

 for(i=0;i<16;i++){

 if(str==llList2String(dir,i)){

 theta=((float)i)*22.5;

 theta+=85;

 x=25*llSin(theta);

 y=25*llCos(theta);

 i=16;

 }

 }

 }

 llOwnerSay((string)(x)+" "+(string)(y)+" "+str);

 llSetPos(llGetPos() + <x,y,0>);

 llSleep(dlay+10);

 llSetPos(llGetPos() + <-x,-y,0>);

 }

 else {

 llOwnerSay("Unable to fetch "+LINK_D);

 }

 }

}

Chapter 4

Future Scope
Extreme Learning Machine is a promising straightforward algorithm which can
achieve a relatively high Overall Accuracy and can significantly decrease the time of
the training phase. The models that we built here works only for this type of weather
data and is confined to this scope. Through this project we realise that as the number
of parameters increase the closeness of the environment increases to mimic the
similarity. Through this project we also realised the capabilities and limitations of
FLASK server hosting as well as database handling.

While implementing the model we came across roadblocks for trivial values of P,D,Q
as mentioned in Chapter 2. For future research, perhaps a better dataset values that
could not just determine the weather condition but also other factors of the
environment including the avator characteristics would improve the quality and
motivation on Secondlife.

References

[1] http://wiki.secondlife.com/wiki/LlParticleSystem

[2] https://www.arduino.cc/en/Main/Docs

[3] http://flask.pocoo.org/docs/0.12/

[4] https://ngrok.com/

[5]https://www.researchgate.net/publication/285356304_A_Meta-Synthesis_of_Resea
rch_Using_Multiuser_Virtual_Environments_ie_Second_Life_in_Teacher_Education

[6] http://www.restapitutorial.com/lessons/whatisrest.html

[7] https://machinelearningmastery.com/make-sample-forecasts-arima-python/

[8]
https://www.digitalocean.com/community/tutorials/a-guide-to-time-series-forecasting-with-
arima-in-python-3

[9] https://www.slideshare.net/21_venkat/arima-26196965

[10] http://siteresources.worldbank.org/DEC/Resources/Hevia_ARMA_estimation

http://siteresources.worldbank.org/DEC/Resources/Hevia_ARMA_estimation.pdf

[11] http://wiki.secondlife.com/wiki/LSL_Protocol/RestrainedLoveAPI

[12] http://www.firestormviewer.org/

[13] http://www.statsmodels.org/stable/index.html

[14] http://www.numpy.org/

[15] https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

http://wiki.secondlife.com/wiki/LlParticleSystem
https://www.arduino.cc/en/Main/Docs
http://flask.pocoo.org/docs/0.12/
https://ngrok.com/
https://www.researchgate.net/publication/285356304_A_Meta-Synthesis_of_Research_Using_Multiuser_Virtual_Environments_ie_Second_Life_in_Teacher_Education
https://www.researchgate.net/publication/285356304_A_Meta-Synthesis_of_Research_Using_Multiuser_Virtual_Environments_ie_Second_Life_in_Teacher_Education
http://www.restapitutorial.com/lessons/whatisrest.html
https://l.messenger.com/l.php?u=https%3A%2F%2Fmachinelearningmastery.com%2Fmake-sample-forecasts-arima-python%2F&h=ATMQcdwD0Uf2z36Zowh1ycBqZ-iKj9x2J5TRRCJ0IWC41q06gs2zef3sSHFlIPJfJXbSzKzGTuAe-9Q4EZHG8zXglbjWuy5OdmX1711NXTS90dhDtbBK4ncFBSU-Hq2rNBB7kA
https://l.messenger.com/l.php?u=https%3A%2F%2Fwww.digitalocean.com%2Fcommunity%2Ftutorials%2Fa-guide-to-time-series-forecasting-with-arima-in-python-3&h=ATMQcdwD0Uf2z36Zowh1ycBqZ-iKj9x2J5TRRCJ0IWC41q06gs2zef3sSHFlIPJfJXbSzKzGTuAe-9Q4EZHG8zXglbjWuy5OdmX1711NXTS90dhDtbBK4ncFBSU-Hq2rNBB7kA
https://l.messenger.com/l.php?u=https%3A%2F%2Fwww.digitalocean.com%2Fcommunity%2Ftutorials%2Fa-guide-to-time-series-forecasting-with-arima-in-python-3&h=ATMQcdwD0Uf2z36Zowh1ycBqZ-iKj9x2J5TRRCJ0IWC41q06gs2zef3sSHFlIPJfJXbSzKzGTuAe-9Q4EZHG8zXglbjWuy5OdmX1711NXTS90dhDtbBK4ncFBSU-Hq2rNBB7kA
https://l.messenger.com/l.php?u=https%3A%2F%2Fwww.slideshare.net%2F21_venkat%2Farima-26196965&h=ATMQcdwD0Uf2z36Zowh1ycBqZ-iKj9x2J5TRRCJ0IWC41q06gs2zef3sSHFlIPJfJXbSzKzGTuAe-9Q4EZHG8zXglbjWuy5OdmX1711NXTS90dhDtbBK4ncFBSU-Hq2rNBB7kA
http://siteresources.worldbank.org/DEC/Resources/Hevia_ARMA_estimation
http://siteresources.worldbank.org/DEC/Resources/Hevia_ARMA_estimation.pdf
http://wiki.secondlife.com/wiki/LSL_Protocol/RestrainedLoveAPI
http://www.firestormviewer.org/
http://www.statsmodels.org/stable/index.html
http://www.numpy.org/

Appendix A

llParticleSystem Parameter Sheet

A description of all the parameter that can be passed to llparticlesystem inside
secondlife script.

Rule /
Value

Constant

Rule

Paramete

r

Description Value

System Behavior

PSYS_PART_FLAGS integer flags Various flags controlling the

behavior of the particle system. The

value may be specified as an integer

in decimal or hex format, or by

ORing together (using the |
operator) one or more of the

following flag constants:

0

V

a

l

u

e

s

PSYS_PART_BOUNCE_MASK When set, specifies particles will

bounce off a plane at the region Z

height of the emitter. On "bounce",

each particle reverses velocity and

angle. This only works for particles

above the plane falling down on it.

0x004

PSYS_PART_EMISSIVE_MASK When set, particles are full-bright

and are unaffected by global lighting

(sunlight). Otherwise, particles will

be lit depending on the current

global lighting conditions. Note that

point lights do illuminate

non-emissive particles.

0x100

PSYS_PART_FOLLOW_SRC_MA

SK

When set, particles move relative to

the position of the emitter.

Otherwise, particle position and

movement are unaffected by the

position/movement of the emitter.

0x010

http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/w/index.php?title=Hexadecimal&action=edit&redlink=1
http://wiki.secondlife.com/wiki/Viewer_coordinate_frames#Region

This flag disables the

PSYS_SRC_BURST_RADIUS rule.

PSYS_PART_FOLLOW_VELOCIT

Y_MASK

When set, particles rotate to orient

their "top" towards the direction of

movement or emission. Otherwise,

particles are oriented vertically as

their textures would appear (top of

texture at top, left at left).

0x020

PSYS_PART_INTERP_COLOR_

MASK

When set, particle color and alpha

transition from their START settings

to their END settings during the

particle's lifetime. The transition is a

smooth interpolation.

0x001

PSYS_PART_INTERP_SCALE_M

ASK

When set, particle size/scale

transitions from its START setting to

its END setting during the particle's

lifetime.

0x002

PSYS_PART_RIBBON_MASK Joins a stream of particles together

into a continuous strip. Particle

textures are stretched (or squeezed)

to join their right edges to their

predecessor's left. Ribbon 'width' is
controlled by the 'x' values of start

and end scale. (The 'y' values are

ignored. The distance between

particles controls the 'length' of each

ribbon segment). Unlike other

particle effects, ribbon segments are

not rendered facing the viewer's

camera. The Z axis of each new

particle mimics the Z axis of the

emitter prim. Ribbon segments will

not render if they have no 'length' -
this happens when particles move

only 'up' or 'down' the local Z-axis of

their emitter prim.

PSYS_PART_FOLLOW_VELOCITY_MA

SK has no effect on ribbons. For a

simple ribbon effect, try using the

DROP pattern, TEXTURE_BLANK,

ACCEL and/or WIND.

0x400

PSYS_PART_TARGET_LINEAR_

MASK

When set, emitted particles move in

a straight evenly-spaced line

towards the target specified by the

PSYS_SRC_TARGET_KEY rule. This

option ignores all Non-DROP

patterns and their dependent

attributes (radius, burst speeds,

angles, and omega).

PSYS_SRC_ACCEL and

0x080

PSYS_PART_WIND_MASK are

ignored as well. Using

PSYS_PART_BOUNCE_MASK while

the target is 'below' the emitter will

cause the linear particle stream to

deflect upwards, terminating above

the target.

PSYS_PART_TARGET_POS_MA

SK

When set, emitted particles change

course during their lifetime,

attempting to move towards the

target specified by the

PSYS_SRC_TARGET_KEY rule by the

time they expire. Note that if no

target is specified, the target moves

out of range, or an invalid target is
specified, the particles target the

prim itself.

0x040

PSYS_PART_WIND_MASK When set, particle movement is
affected by the wind. It is applied as

a secondary force on the particles.

0x008

PSYS_PART_BEAM_MASK (unimplemented) mask but in the

enum

0x200

LL_PART_HUD Used by the viewer to keep HUD and

World particle sources separate.

0x4000

0000

LL_PART_DEAD_MASK Removes particles, not compatible

with any other PSYS_PART_*_MASK

0x8000

0000

System Presentation

PSYS_SRC_PATTERN integer pattern Specifies the general emission

pattern.

9

V

a

l

u

e

s

PSYS_SRC_PATTERN_EXPLOD

E

Sprays particles outwards in a

spherical area. The Initial velocity of

each particle is determined by

PSYS_SRC_BURST_SPEED_MIN and

PSYS_SRC_BURST_SPEED_MAX.

The EXPLODE pattern ignores the

ANGLE parameters.

0x02

PSYS_SRC_PATTERN_ANGLE_

CONE

Sprays particles outwards in a

spherical, sub-spherical, conical or

ring shaped area, as defined by the

ANGLE parameters

PSYS_SRC_ANGLE_BEGIN and

PSYS_SRC_ANGLE_END. The

ANGLE_CONE pattern can be used

0x08

http://wiki.secondlife.com/wiki/LlWind
http://wiki.secondlife.com/wiki/Integer

to imitate the EXPLODE pattern by

explicitly setting

PSYS_SRC_ANGLE_BEGIN to

0.00000 and

PSYS_SRC_ANGLE_END to 3.14159

(or PI) (or vice versa).

PSYS_SRC_PATTERN_ANGLE Sprays particles outward in a flat

circular, semi-circular, arc or ray

shaped areas, as defined by

PSYS_SRC_ANGLE_BEGIN and

PSYS_SRC_ANGLE_END. The

circular pattern radiates outwards

around the prim's local X axis line.

0x04

PSYS_SRC_PATTERN_DROP Creates particles with no initial

velocity. The DROP pattern will

override any values given for

PSYS_SRC_BURST_RADIUS,

PSYS_SRC_BURST_SPEED_MIN, and

PSYS_SRC_BURST_SPEED_MAX,

setting each to 0.00000. (All

patterns will behave like the DROP

pattern, if RADIUS, SPEED_MIN and

SPEED_MAX are explicitly set to

0.0000.)

0x01

PSYS_SRC_PATTERN_ANGLE_

CONE_EMPTY

(incomplete implementation) acts

the same as the

PSYS_SRC_PATTERN_DROP pattern,

it is believed that the original

intention for this pattern was to

invert the effect of the ANGLE

parameters, making them delineate

an area where particles were NOT to

be sprayed. (effectively the inverse

or opposite of the behavior of the

ANGLE_CONE pattern).

0x10

PSYS_SRC_BURST_RAD

IUS

float radius Specifies the distance from the

emitter where particles will be

created. This rule is ignored when

the

PSYS_PART_FOLLOW_SRC_MASK

flag is set. A test in

http://forums-archive.secondlife.co

m/327/f5/226722/1.html indicates

that the maximum value is 50.00

16

http://wiki.secondlife.com/wiki/Float
http://forums-archive.secondlife.com/327/f5/226722/1.html
http://forums-archive.secondlife.com/327/f5/226722/1.html

PSYS_SRC_ANGLE_BEG

IN

float angle_begin Specifies a half angle, in radians, of

a circular or spherical "dimple" or

conic section (starting from the

emitter facing) within which

particles will NOT be emitted. Valid

values are the same as for

PSYS_SRC_ANGLE_END, though the

effects are reversed accordingly. If
the pattern is
PSYS_SRC_PATTERN_ANGLE, the

presentation is a 2D flat circular

section. If
PSYS_SRC_PATTERN_ANGLE_CONE

or

PSYS_SRC_PATTERN_ANGLE_CONE

_EMPTY is used, the presentation is
a 3D spherical section. Note that the

value of this parameter and

PSYS_SRC_ANGLE_END are

internally re-ordered such that this

parameter gets the smaller of the

two values.

22

PSYS_SRC_ANGLE_END float angle_end Specifies a half angle, in radians, of

a circular or spherical "dimple" or

conic section (starting from the

emitter facing) within which

particles WILL be emitted. Valid

values are 0.0, which will result in

particles being emitted in a straight

line in the direction of the emitter

facing, to PI, which will result in

particles being emitted in a full

circular or spherical arc around the

emitter, not including the "dimple"

or conic section defined by

PSYS_SRC_ANGLE_BEGIN. If the

pattern is
PSYS_SRC_PATTERN_ANGLE, the

presentation is a 2D flat circular

section. If
PSYS_SRC_PATTERN_ANGLE_CONE

or

PSYS_SRC_PATTERN_ANGLE_CONE

_EMPTY is used, the presentation is
a 3D spherical section. Note that the

value of this parameter and

PSYS_SRC_ANGLE_BEGIN are

internally re-ordered such that this

parameter gets the larger of the two

values.

23

PSYS_SRC_INNERANGL

E

float angle_inner DEPRECATED: Use

PSYS_SRC_ANGLE_BEGIN

instead. Works similar to its
replacement rule, except the edge of

the section is aligned with the

10

http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/PI
http://wiki.secondlife.com/wiki/Float

emitter facing, rather than its
center.

PSYS_SRC_OUTERANGL

E

float angle_outer DEPRECATED: Use

PSYS_SRC_ANGLE_END instead.

Works similar to its replacement

rule, except the edge of the section

is aligned with the emitter facing,

rather than the section's center.

11

PSYS_SRC_TARGET_KE

Y

key target Specifies the key of a target object,

prim, or agent towards which the

particles will change course and

move (if
PSYS_PART_TARGET_POS_MASK is
specified) or will move in a straight

line (if
PSYS_PART_TARGET_LINEAR_MASK

is specified). They will attempt to

end up at the geometric center of

the target at the end of their

lifetime. Requires the

PSYS_PART_TARGET_POS_MASK or

PSYS_PART_TARGET_LINEAR_MASK

flag be set. caveat 4

20

Particle Appearance

PSYS_PART_START_CO

LOR

vector color_start A vector specifying the color of the

particles upon emission.

1

PSYS_PART_END_COLO

R

vector color_end A vector specifying the color the

particles transition to during their

lifetime. Only used if the

PSYS_PART_INTERP_COLOR_MASK

flag is set.

3

PSYS_PART_START_ALP

HA

float alpha_start Specifies the alpha of the particles

upon emission. Valid values are in

the range 0.0 to 1.0. Lower values

are more transparent; higher ones

are more opaque.

2

PSYS_PART_END_ALPH

A

float alpha_end Specifies the alpha the particles

transition to during their lifetime.

Only used if the

PSYS_PART_INTERP_COLOR_MASK

flag is set. Valid values are the same

as PSYS_PART_START_ALPHA.

4

http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/LlParticleSystem#Caveats
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/wiki/Color
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/wiki/Color
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Alpha
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Alpha

PSYS_PART_START_SC

ALE

vector scale_start Specifies the scale or size of the

particles upon emission. Valid values

for each direction are 0.03125 to

4.0, in meters. The actual particle

size is always a multiple of 0.03125.

Smaller changes don't have any

effect. Since particles are essentially

2D sprites, the Z component of the

vector is ignored and can be set to

0.0.

5

PSYS_PART_END_SCAL

E

vector scale_end Specifies the scale or size the

particles transition to during their

lifetime. Only used if the

PSYS_PART_INTERP_SCALE_MASK

flag is set. Valid values are the same

as PSYS_PART_START_SCALE.

6

PSYS_SRC_TEXTURE string texture Specifies the name of a texture in

the emitter prim's inventory to use

for each particle. Alternatively, you

may specify an asset key UUID for a

texture. If using llLinkParticleSystem

and texture is not a UUID, texture

must be in the emitter prim (not

necessarily with the script).

12

PSYS_PART_START_GL

OW

float glow_start Specifies the glow of the particles

upon emission. Valid values are in

the range of 0.0 (no glow) to 1.0

(full glow).

26

PSYS_PART_END_GLO

W

float glow_end Specifies the glow that the particles

transition to during their lifetime.

Valid values are the same as

PSYS_PART_START_GLOW.

27

Particle Blending

Note: The particle system blend parameters wrap directly to OpenGL's glBlendFunc. Detailed

documentation for glBlendFunc, including formulas, can be found in the official glBlendFunc

documentation

PSYS_PART_BLEND_FU

NC_SOURCE

integer bf_source Specifies how blending function uses

the incoming particle's color and

alpha information to produce the

rendered result. Defaults to

PSYS_PART_BF_SOURCE_ALPHA.

24

http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/w/index.php?title=Scale&action=edit&redlink=1
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/w/index.php?title=Scale&action=edit&redlink=1
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/UUID
http://wiki.secondlife.com/wiki/LlLinkParticleSystem
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Float
http://www.opengl.org/sdk/docs/man/html/glBlendFunc.xhtml
http://www.opengl.org/sdk/docs/man/html/glBlendFunc.xhtml
http://wiki.secondlife.com/wiki/Integer

PSYS_PART_BLEND_FU

NC_DEST

integer bf_dest Specifies how blending function uses

the current framebuffer's color and

alpha information to produce the

rendered result. Defaults to

PSYS_PART_BF_ONE_MINUS_SOUR

CE_ALPHA. To make particles blend

with the background in a less

opaque and more luminescent way

use PSYS_PART_BF_ONE for dest

and the default for source. Most

other blending combinations will

render the invisible/alpha portion of

your particle texture, unless the

invisible area of your texture is all

black (or, in some cases, unless it is
all white).

25

V

a

l

u

e

s

PSYS_PART_BF_ONE Do not scale the source or

destination RGBA values.

0x0

PSYS_PART_BF_ZERO Zero out the source or destination

RGBA values.

0x1

PSYS_PART_BF_DEST_COLOR Scale the RGBA values by the RGBA

values of the destination.

0x2

PSYS_PART_BF_SOURCE_COL

OR

Scale the RGBA values by the RGBA

values of the particle source.

0x3

PSYS_PART_BF_ONE_MINUS_

DEST_COLOR

Scale the RGBA values by the

inverted RGBA values of the

destination.

0x4

PSYS_PART_BF_ONE_MINUS_

SOURCE_COLOR

Scale the RGBA values by the

inverted RGBA values of the particle

source.

0x5

PSYS_PART_BF_SOURCE_ALP

HA

Scale the RGBA values by the alpha

values of the particle source.

0x7

PSYS_PART_BF_ONE_MINUS_

SOURCE_ALPHA

Scale the RGBA values by the

inverted alpha values of the particle

source.

0x9

Particle Flow

http://wiki.secondlife.com/wiki/Integer

PSYS_SRC_MAX_AGE float

duration_system

Specifies the length of time, in

seconds, that the emitter will

operate upon coming into view

range (if the particle system is
already set) or upon execution of

this function (if already in view

range). Upon expiration, no more

particles will be emitted, except as

specified above. Zero will give the

particle system an infinite duration.

(caveat 1)

19

PSYS_PART_MAX_AGE float

duration_particle

Specifies the lifetime of each particle

emitted, in seconds. Maximum is
30.0 seconds. During this time, the

particle will appear, change

appearance and move according to

the parameters specified in the

other sections, and then disappear.

7

PSYS_SRC_BURST_RAT

E

float burst_sleep Specifies the time interval, in

seconds, between "bursts" of

particles being emitted. Specifying a

value of 0.0 will cause the emission

of particles as fast as the viewer can

do so.

13

PSYS_SRC_BURST_PAR

T_COUNT

integerburst_parti

cle_count

Specifies the number of particles

emitted in each "burst".

15

Particle Motion

PSYS_SRC_ACCEL vector

acceleration

Specifies a directional acceleration

vector applied to each particle as it
is emitted, in meters per second

squared. Valid values are 0.0 to

100.0 for each direction both

positive and negative, as region

coordinates.

8

PSYS_SRC_OMEGA vector omega Sets how far to rotate the "pattern"

after each particle burst. (Burst

frequency is set with

PSYS_SRC_BURST_RATE.) Omega

values are approximately 'radians

per burst' around the prim's global

(not local) X,Y,Z axes. For precise

and predictable pattern rotation,

rotate the prim instead of using

PSYS_SRC_OMEGA. Omega has no

visible effect on drop, explode and

certain specific angle and angle cone

patterns, depending on prim

orientation. Pattern rotation can be

21

http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/LlParticleSystem#Caveats
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/wiki/Viewer_coordinate_frames#Region
http://wiki.secondlife.com/wiki/Vector

used with prim orientation and

llTargetOmega() but won't produce

consistent results. (caveat 2 and

caveat 3)

PSYS_SRC_BURST_SPE

ED_MIN

float speed_min Specifies the minimum value of a

random range of values which is
selected for each particle in a burst

as its initial speed upon emission, in

meters per second. Note that the

value of this parameter and

PSYS_SRC_BURST_SPEED_MAX are

internally re-ordered such that this

parameter gets the smaller of the

two values.

17

PSYS_SRC_BURST_SPE

ED_MAX

float speed_max Specifies the maximum value of a

random range of values which is
selected for each particle in a burst

as its initial speed upon emission, in

meters per second. Note that the

value of this parameter and

PSYS_SRC_BURST_SPEED_MIN are

internally re-ordered such that this

parameter gets the larger of the two

values.

18

http://wiki.secondlife.com/wiki/LlParticleSystem#Caveats
http://wiki.secondlife.com/wiki/LlParticleSystem#Caveats
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Float

Appendix B

A description of all the syntax or command that can be used under the
RestrainedLoveAPI library.

Viewer Control
■ Allow/prevent changing some debug settings : @setdebug=<y/n>

Implemented in v1.16

When prevented, the user is unable to change some viewer debug settings (Advanced

> Debug Settings). As most debug settings are either useless or critical to the user's

experience, a whitelist approach is taken : only a few debug settings are locked, the

others are always available and untouched.

■ Force change a debug setting : @setdebug_<setting>:<value>=force

(*)

Implemented in v1.16

Forces the viewer to change a particular debug setting and set it to <value>. This

command is actually a package of many sub-commands, that are regrouped under

"@setdebug_...", for instance "@setdebug_avatarsex:0=force",

"@setdebug_renderresolutiondivisor:64=force" etc.

The debug settings that can be changed are :

■ AvatarSex (0 : Female, 1 : Male) : gender of the avatar at creation.

■ RenderResolutionDivisor (1 -> ...) : "blurriness" of the screen. Combined

to clever @setenv commands, can simulate nice effects. Note:

renderresolutiondivisor is a Windlight only option (Basic Shaders must be

enabled in graphics preferences) and as such, is not available in

v1.19.0.5 or older viewers.

■ Get the value of a debug setting :

@getdebug_<setting>=<channel_number>

Implemented in v1.16

Makes the viewer automatically answer the value of a debug setting, immediately on

the chat channel number <channel_number> that the script can listen to. Always use

a positive integer. Remember that regular viewers do not answer anything at all so

remove the listener after a timeout. The answer is the value that has been set with the

<setting> part of the matching @setdebug command, or by hand.

The debug settings that can be changed are :

■ AvatarSex (0 : Female, 1 : Male) : gender of the avatar at creation.

■ RenderResolutionDivisor (1 -> ...) : "blurriness" of the screen. Combined

to clever @setenv commands, can simulate nice effects. Note:

renderresolutiondivisor is a Windlight only option (Basic Shaders must be

enabled in graphics preferences) and as such, is not available in

v1.19.0.5 or older viewers.

■ RestrainedLoveForbidGiveToRLV (0/1) : When set to 1, the RLV does not

put temporary folders (folders which name begins with '~') directly into

the "#RLV" folder, but under "Inventory" instead.

■ RestrainedLoveNoSetEnv (0/1) : When set to 1, @setenv commands are

ignored.

■ WindLightUseAtmosShaders (0/1) : When set to 1, Windlight

atmospheric shaders are enabled.

■ Allow/prevent changing the environment settings : @setenv=<y/n>

Implemented in v1.14

When prevented, the user is unable to change the viewer environment settings (World

> Environment Settings > Sunrise/Midday/Sunset/Midnight/Revert to region

default/Environment editor are all locked out).

■ Force change an environment setting :

@setenv_<setting>:<value>=force (*)

Implemented in v1.14

Forces the viewer to change a particular environment setting (time of day or

Windlight) and set it to <value>. This command is actually a package of many

sub-commands, that are regrouped under "@setenv_...", for instance

"@setenv_daytime:0.5=force", "@setenv_bluehorizonr:0.21=force" etc.

This command (like any other "force" command) is silently discarded if the

corresponding restriction has been set, here "@setenv", but in this case the restriction

is ignored if the change is issued from the object that has created it. In other words, a

collar can restrict environment changes, yet force a change by itself, while another

object could not do it until the collar lifts the restriction.

Although a range is specified for every value, no check is made in the viewer so a

script can do what the UI can't do, for interesting effects. Use at your own risk,

though. The ranges indicated here are merely the ones available on the sliders on the

Environment Editor, for reference.

Each particular sub-command works as follows (the names are chosen to be as close

to the Windlight panels of the viewer as possible) :

@setenv_XXX:

<value>=force

where XXX is...

<value>

range

Sets...

daytime 0.0-1.0

and <0

Time of day (sunrise:0.25, midday:0.567,

sunset:0.75, midnight:0.0, set back to region

default:<0). Attention, resets all other Windlight

parameters

preset String A Preset environment, e.g. Gelatto, Foggy.

Attention, loading a Preset is heavy on the

viewer and can slow it down for a short while,

don't do it every second

ambientr 0.0-1.0 Ambient light, Red channel

ambientg 0.0-1.0 Ambient light, Green channel

ambientb 0.0-1.0 Ambient light, Blue channel

ambienti 0.0-1.0 Ambient light, Intensity

bluedensityr 0.0-1.0 Blue Density, Red channel

bluedensityg 0.0-1.0 Blue Density, Green channel

bluedensityb 0.0-1.0 Blue Density, Blue channel

bluedensityi 0.0-1.0 Blue Density, Intensity

bluehorizonr 0.0-1.0 Blue Horizon, Red channel

bluehorizong 0.0-1.0 Blue Horizon, Green channel

bluehorizonb 0.0-1.0 Blue Horizon, Blue channel

bluehorizoni 0.0-1.0 Blue Horizon, Intensity

cloudcolorr 0.0-1.0 Cloud color, Red channel

cloudcolorg 0.0-1.0 Cloud color, Green channel

cloudcolorb 0.0-1.0 Cloud color, Blue channel

cloudcolori 0.0-1.0 Cloud color, Intensity

cloudcoverage 0.0-1.0 Cloud coverage

cloudx 0.0-1.0 Cloud offset X

cloudy 0.0-1.0 Cloud offset Y

cloudd 0.0-1.0 Cloud density

clouddetailx 0.0-1.0 Cloud detail X

clouddetaily 0.0-1.0 Cloud detail Y

clouddetaild 0.0-1.0 Cloud detail density

cloudscale 0.0-1.0 Cloud scale

cloudscrollx 0.0-1.0 Cloud scroll X

cloudscrolly 0.0-1.0 Cloud scroll Y

densitymultiplier 0.0-0.9 Density multiplier of the fog

distancemultiplie

r

0.0-100.

0

Distance multiplier of the fog

eastangle 0.0-1.0 Position of the east, 0.0 is normal

hazedensity 0.0-1.0 Density of the haze

hazehorizon 0.0-1.0 Haze at the horizon

maxaltitude 0.0-4000

.0

Maximum altitude of the fog

scenegamma 0.0-10.0 Overall gamma, 1.0 is normal

starbrightness 0.0-2.0 Brightness of the stars

sunglowfocus 0.0-0.5 Focus of the glow of the sun

sunglowsize 1.0-2.0 Size of the glow of the sun

sunmooncolorr 0.0-1.0 Sun and moon, Red channel

sunmooncolorg 0.0-1.0 Sun and moon, Green channel

sunmooncolorb 0.0-1.0 Sun and moon, Blue channel

sunmooncolori 0.0-1.0 Sun and moon, Intensity

sunmoonposition 0.0-1.0 Position of the sun/moon, different from "daytime",

use this to set the apparent sunlight after

loading a Preset

Note: from the above settings, only the "daytime" one is supported by v1.19.0 (or

older) viewers implementing RestrainedLove v1.14 and later. The other settings are

ignored. This is because these viewers do not implement the Windlight renderer.

■ Get the value of an environment setting :

@getenv_<setting>=<channel_number>

Implemented in v1.15

Makes the viewer automatically answer the value of an environment setting,

immediately on the chat channel number <channel_number> that the script can listen

to. Always use a positive integer. Remember that regular viewers do not answer

anything at all so remove the listener after a timeout. The answer is the value that has

been set with the <setting> part of the matching @setenv command, or by hand. See

the table hereabove for a list of settings.

Note: only @getenv_daytime is supported by v1.19.0 (or older, i.e. non Windlight)

viewers implementing RestrainedLove v1.15 and later.

