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Preface 

  

This report on “High-Fidelity Damage Classification of milled rice grains using Deep 

Unsupervised Learning” is prepared under the guidance of Dr Pavan Kumar Kankar, Associate 

Professor, IIT Indore. 

Through this report, I explained the development of a deep unsupervised method Contrastive-

RC for fine-grained damage classification of milled rice grains, leveraging self-supervised 

contrastive learning technique. I have tried to explain every aspect of the method, covering the 

database used, explaining the model architecture, along with providing an in-depth analysis of 

its performance on the test images. The method Contrastive-RC not only facilitates the broader 

classification of rice grain images into six damage-based classes with well-defined features, 

but also provides a means for further subclassification providing low level control allowing for 

it to be used in multiple use cases 

I have tried to the best of my ability and knowledge to explain the content in a simplified 

manner by using illustrative diagrams and a step by step approach.  
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Abstract 

The quality evaluation of processed rice grains is an important factor in determining market 

acceptance, pricing, storage stability, processing quality, and overall consumer approval. 

Damage classification based on visual symptoms of raw rice grains allows for very effective 

quality evaluation. In the current literature, the machine vision methods are predominantly 

based on supervised machine learning which is fundamentally dependent on manual labelling. 

However, manual labelling faces issues like erroneousness, subjectiveness and overlapping 

classes. There exists no work in the current literature which presents an unsupervised approach 

to classifying rice grain damages. In this study, a deep unsupervised method Contrastive-RC 

[KM1] is developed for fine-grained damage classification of processed white rice, leveraging 

contrastive self-supervised learning technique. In particular, self-supervised contrastive 

learning (SimCLR) is used for feature representation followed by dimensionality reduction 

(UMAP) and clustering (HDBSCAN). For this, a large dataset of 20,134 high magnification 

(24 MP) images of individual rice grains spread across different damages was collected. I have 

been successful in clustering the rice grains into six main cluster based classes with well-

defined attributes. The class names along with the number of corresponding instances are: 

normal-damage (5599), chalky-discoloured (4987), discoloured (3215), half-chalky (2386), 

healthy (2061), and broken (931). Further, it is also presented how the method can be extended 

to subclassify these damages according to the user’s needs by providing a low-level control, 

enabling the method to be used in multiple use-cases. The method is fast, versatile and robust 

towards changes in messy variables like brightness, grain orientation, etc., making it ideal for 

real world use and extension to other varieties of white processed rice. Overall, this study 

presents a deep unsupervised method Contrastive-RC for fine-grained damage classification of 

processed white rice, leveraging contrastive self-supervised learning technique, which could 

be utilised as a tool for better and more objective quality assessment of the damaged rice grains 

at market and trading locations. 
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Chapter 1 - Introduction 

 

 

1.1 Background  

Rice is one of the most important food grains in the world. It is India's largest produced food 

grain crop, cultivated on approximately 34% of total cropped land in fiscal year 2021, with its 

production accounting for 42% of the country's fresh produce crop production [4]. 

Furthermore, India is the world's second-largest producer and the largest exporter of rice. In 

the recent decades, there has been a steady increase in the need for high-quality food due to 

increasing demand, knowledgeable consumers and factors like health and environmental 

concerns [2]. As a result, rice quality evaluation has become increasingly important. The 

quality evaluation of processed (or milled) rice grains is an important factor in market 

acceptability, pricing, storage stability, processing quality, and overall consumer approval [5].  

 

1.2 Damage based quality evaluation of rice 

The entire process of rice quality evaluation is complex and requires a lot of domain expertise. 

Its complexity can broadly be broken down into two parts: 1) The criterion of evaluation: 

Setting well defined attributes which can be used to mark the quality; 2) The method used: An 

ideal method would be able to evaluate the quality in a timely, cost-effective, non-destructive 

and accurate manner. In India, quality evaluation is mainly performed manually by classifying 

grains into different categories and marking the relative quality for each.  

Classification of grains into various categories allows for very effective quality evaluation. In 

general, this classification can be based on variety and/or damage. Variety-based classification 

categorises distinct rice varieties based on very generic factors such as size, shape, taste, aroma, 

kernel hardness, moisture content, or visual features such as the presence of weakened, 

infected, discoloured, or foreign objects [6]. Damage-based classification, on the other hand, 

differentiates grains based on the type of damage present in them. That is not only identifying 

the presence of a damage but also determining its type.  

In this study, the focus is on the damage classification of rice. There are a number of studies 

on rice grain damages including [7-11].  It is seen that the visual features of raw rice grains can 
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be very effectively used in damage identification and hence become key quality factors [5, 6]. 

The USDA [79] attempts to provide visual references for the common damages found in rice. 

Some of the common features used to define damages in rice grains include broken kernel, 

chalkiness, discoloration, husk layer, surface indentations, spots (watermark, insect damage, 

stain) and highly dark regions signifying heat damage. It is common for grains to occur with 

multiple symptoms. These are demonstrated in Fig. 1 and can have a significant impact on the 

market value of rice [89, 98, 6].   

 

 

Figure 1: Rice grains with different types of damages. Commonly used visual symptoms to identify damages in processed rice 

are broken kernel, chalkiness, discoloration, husk layer, surface indentations, spots (watermark, insect damage, stain) and 

highly dark regions signifying heat damage. It is common for grains to contain multiple damages.  

 

 

1.3 Quality evaluation of rice in India 

In India, the common practices to evaluate rice quality work on the basis of the number of 

damages present in them. Instead of separating rice into different damages, there is a limit set 

on the percentage of each damage present in the rice stock. When rough rice is milled, it yields 

both head rice and a variety of by-products, including brokens, brewers, bran, mill feed, and 

hulls. In terms of revenue, head rice is the most significant. It refers to the grains with length 

more than 75% of that of an unbroken grain. Red rice, weed seeds, damaged kernels, off-colour, 
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chalky, and other sorts of rice kernels are among the quality parameters that grades aim to 

quantify.  

According to the official inspection criteria (CNS, 1995) [12], the top grade of rice must contain 

over 75 % sound kernels, not more than 4 % dead kernels, not more than 3 % chalky kernels, 

and not more than 3.7 % total of damaged, broken, off–type kernels, and paddy (rough rice). 

As per circular issued by FCI, Category ‘A’ (upto 3% damaged grain and upto 3% discoloured 

grain), Category ‘B’ (above 3% upto 4% damaged grain and above 3% upto 5% discoloured 

grain), and Category ‘C’ (above 4% upto 5% damaged grain and above 5% upto 7% 

discoloured grain) are all fit for human consumption. Rice stocks with more than 5% damaged 

grains must be regarded as Non-Issuable Stock, which is unsuitable for human consumption. 

These stocks further categorised as: 1. Fit for cattle feed, 2. Fit for poultry feed, 3. Fit for 

industrial use, 4. Fit for manure, 5. Fit for dumping [14]. Damaged grains that are broken, 

cracked, attacked by fungi or insects, etc. without nutritional value, still could be used as 

suitable alternative sources for economically and environmentally bioethanol production [16]. 

Also, the Government of India has launched Ethanol Blended Petrol Programme (EBP 

Programme) and has scaled up blending targets from 5% to 10%. 

Since the quality as well as the price of a batch of rice is dependent on the percentage of 

damaged grains present in it, and different damage types have different values, it becomes 

critical to identify each damage type with exact numbers. In the literature, the word “damage” 

is used with different meanings. Some refer to chalky, discoloured and broken grains separately 

from damaged grains. Others include them in the damaged grains category. In this study, we 

present six damage based classes in processed white rice: healthy, broken, half-chalky, chalky-

discoloured, discoloured and normal-damage. All classes apart from the healthy class are 

considered to be damage classes. We refer to the term “damaged” as being inferior from the 

healthy grain; having some kind of defect. This inferiority is shown in terms of market value 

as the grains in the five damage classes all have lesser market values compared to that of grains 

in the healthy class.  
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1.4 Research Gap  

Damage-based classification would typically be performed to classify different grains of a 

single variety. This can be used to identify the different types of damages present in any rice 

stock, and to further segregate them according to the various market needs. However, in India, 

rice quality is mostly measured manually by experienced personnel which is time consuming, 

expensive and error-prone. Lab tests are a reliable alternative but it is more expensive, time-

consuming, and difficult to set.  

As quality inspection based on damage classification can be performed very effectively using 

visual symptoms, Machine Vision (MV) becomes an ideal approach to its solution. Machine 

vision provides an automated, non-destructive, and cost-effective way of determining the grain 

quality based on the visual symptoms [5, 19, 20]. The industry standard state-of-the-art Sortex 

machines [18] which are used for rice segregation are based on machine vision systems. 

Although, they are extremely expensive and have limited functionality, in that they sort the 

grains into healthy versus damaged without quantifying the type and the degree of damage, 

making them unsuitable for further grain separation. Other very commonly used systems 

include Flatbed scanners [17], which are highly dependent on the algorithm used for 

classification.  

Recently, computer vision methods based on machine learning [21] and in particular deep 

learning algorithms have become very popular in the field of agriculture [22, 23], and have 

found application in rice categorisation as well. There has been a considerable development in 

the classification of rice using machine vision-based systems as reviewed in Section 2.1 in 

detail. However, the methods in the existing literature have been constrained in one way or 

another in their approaches. Most of the methods have focused on variety classification rather 

than damage classification [28-30, 36-40, 47]. Some have attempted to classify rice into 

different grades based on shape and size alone [25, 26]. The machine learning methods used 

have been mostly supervised and the labelled classes have been fairly trivial to separate, with 

well-defined boundaries between them easily evident to the human eye [28, 29, 30]. Same was 

observed in [31] and [41] which attempted damage classification into (cracked, chalky, 

damaged and spotted) and (broken, chalky, red-spotted and black-spotted) classes, 

respectively. Since there is a clear separation between such classes, the features used to 

distinguish are much easier to extract and hence the classification can be performed with 

smaller datasets (< 500 samples per class) and lower resolution images. Further, manual 
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labelling is straightforward in such cases. However, in this study a fine-grained damage 

classification is attempted, in which features are complex and there exists the problem of 

overlapping classes as demonstrated in this study. This poses a more difficult problem and 

requires a large size representative dataset which captures all the different types of grains you 

can find in processed rice. In this study, we prepared a dataset of 20,134 images of single 

kernels of white processed rice spread across various damages. 

 

Figure 2. Problem Background 

 

The current methods in the literature are predominantly based on supervised machine learning, 

which is fundamentally dependent on the labelling provided. However, in damage 

classification of rice, manual labelling as discussed, faces issues like subjectiveness, 

erroneousness and overlapping damages. Further supervised machine learning is task specific, 

which acts as a constraint when a model on one problem needs to be extended to another where 

a different set of labels are used. Thus, this poses an excellent problem for unsupervised 

machine learning. Unsupervised machine learning is the field of machine learning which learns 

patterns from unlabelled data. A very commonly used unsupervised technique is called 

Clustering [51], which attempts to find the natural groupings in a dataset based on the similarity 

and dissimilarity between its data points. There exists no work in the current literature which 

presents an unsupervised approach to classifying rice grain damages.  
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1.5 Main Contributions 

In this study, an unsupervised deep learning based method for a fine grained damage 

classification of rice is developed. In particular, this study addresses the two main concerns of: 

P1) Problems faced in manual labelling such as subjectiveness, erroneousness, overlapping 

damages, etc; P2) Task specific nature of a supervised machine learning algorithm which limits 

its usage to different scenarios. 

The main contributions of this study are summarised as follows: 

1)   Development of a large dataset (20,134 images) of high magnification 24 Megapixel 

(6000 x 4000 pixels) images of individual rice grains (processed white rice) spread 

across different damages. In particular, BPT 5204 variety was used, which was 

collected from the rejected pile of a double colour Sortex machine (Milltec). The 

dataset very much stands as a representative for most varieties of processed white 

rice. 

2) Use of a completely unsupervised (without any manual labelling) approach to 

classify the rice damages. This addresses point P1 and helps approach this problem 

without any preconceived notion of any particular groupings. In particular, 

contrastive self-supervised learning (subfield of deep unsupervised learning) is used 

to learn the representation of images. These feature representations learned are 

further reduced to two dimensions enabling much easier visual analysis. Finally, a 

clustering algorithm is implemented. 

3)  Success in clustering the rice grains into six main classes based on different 

damages, with establishing valid visual inspection parameters reasoning the 

clustering. Further, it is also discussed how the method can be extended to 

subclassify these damages according to the user’s needs by providing a low-level 

control. This way it has been tried to address point P1 and P2 both. 

To sum it up, in this study is presented a fine-grained damage classification method for quality 

evaluation of processed white rice based on deep unsupervised learning. 
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Chapter 2 - Related Work 

 

2.1 Machine Vision for classification of rice grains 

A typical machine vision system for food quality evaluation would follow five steps: Image 

Acquisition, Pre-processing, Segmentation, Feature Extraction, Classification [24]. Several 

past efforts have been made to classify rice using machine vision systems. These classifications 

have been based on a number of criteria. Grading of rice based on different size and shape [15] 

of the grains has been very common. For instance [25] classified long, short, slender, bold and 

round grades of rice based on variations in kernel size and shape. They applied a multi-class 

Support Vector Machine (SVM) on a dataset of 800 kernels. [26] classified rice grains into 

three grades; full, half and broken, using aspect ratio calculations. Over 1000 grains samples 

were used for each class. [27] used flatbed scanners to detect the number of broken kernels 

using image analysis. 

A lot of the literature has been focussed on variety based classification. [28] classified different 

varieties in the Philippines; using variations in shape and size. [29] used colour and 

morphological features to classify rice into common rice, glutinous rice, rough rice, brown rice. 

In the literature, Supervised Machine Learning [21] based methods in particular Support Vector 

Machines [25, 31] have been commonly used for tasks with trivial feature extraction. [30] 

classified rice into three rice varieties (baldo, osmancik, yasemin) and broken using various 

machine learning models like Naive Bayes and Random Forest.  

With the advent of deep learning [32], there has been a significant shift from classical machine 

learning to convolutional neural networks in a lot of computer vision applications [33-35]. [36] 

applied support vector machines (SVMs) and artificial neural networks (ANN) on a dataset of 

600 images (90 test images) to categorise rice grains into three kinds; Ponni, Basmati, Brown. 

The ANN performed better with an accuracy of 93.34% compared to 92.2% of SVM. [37] 

demonstrated the efficacy of CNNs in feature extraction, which enabled the classification of 

rice grains of three different varieties (Japonica, Glutinous, and Indica) using a dataset of 3819 

images (2854 calibration and 965 for validation) with an accuracy of 99.52%. Further, [38-40, 

47] all have focused on variety classification and that using deep learning methods. 
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There have been fewer attempts in damage classification of processed rice grains. Those few 

include the work of [41] who classified rice grains into four classes (broken, chalky, red-

spotted, and black-spot) using a dataset of 200 images (40 for algorithm development and 160 

for its assessment). [31] classified the flawed red indica rice kernels (different from milled rice) 

into four classes, namely, cracked, chalky, damaged, and spotted, with an overall accuracy of 

96.4%. The damaged rice kernels in the images were detected using a support vector machine 

(SVM) classifier. Another SVM performed the grey-level segmentation, which was 

subsequently used to extract the chalky areas. Damaged and spotted areas on the rice kernels 

were identified using edge detection and morphological methods such as dilation and 

morphological closing. The overall accuracy achieved was 96.4%. [101] used a deep CNN 

architecture EfficientNet to classify white rice into healthy, discoloured, broken, half-chalky, 

full-chalky, chalky-discoloured, and normal-damage. [42] developed an automated inspection 

system to classify brown rice into healthy, cracked, chalky, immature, dead, damaged, and 

broken classes, which were prepared artificially in a lab. [49] classified grains into four 

categories based on stress cracks. [50] tried to separate pecky kernels from healthy ones and 

further classified the pecky kernels into four categories based on size and location of damaged 

region. Some other similar attempts on damage classification other than rice grains include [43, 

44] for wheat, [45] for triticale and [46] for corn. To our report, there has been no attempt at 

classification of rice damages in an unsupervised way. 

 

2.2 Clustering of images 

This study has been approached in a completely unsupervised way, with the initial goal to 

cluster the 20,134 images of rice into broader damage groups. Clustering [51] is an important 

data analysis tool, which attempts to find the natural groupings in a dataset (set of ‘data points’) 

based on their similarity and dissimilarity. Clustering as a concept is well studied in statistics 

and machine learning [66]. Datasets can be of numeric, textual or image-based.  

It is found that clustering images is more challenging as compared to other forms of data, in 

particular due to the “curse of high dimensionality” [67]. Note that in the study, image 

clustering is referred to clustering with individual images as data points and is not to be 

confused with image segmentation [68] where individual pixels of an image are clustered. Most 

of the current research on image clustering is focussed on pixel wise segmentation and not 
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clustering with images as the data points. [69] provides a survey on image analysis through 

clustering. The basis of image clustering is how one measures the similarity among images 

(data points) and the discrepancy between semantic clusters.  

Image Clustering typically follows two steps: 1) Feature Representation of images; 2) 

Implementation of a clustering algorithm [54, 65]. Since, directly clustering the high 

dimensional images is very challenging, the most important part becomes to design appropriate 

lower dimensional representations/features for the images. In this study, our aim was not only 

to cluster images into different damage but also be able to analyse various intra cluster patterns 

and possible sub clusters. For this, as shown in this study, it was necessary to be able to visualise 

the clusters and hence the need of two-dimensional embeddings of images. Thus, the approach 

as taken by us was a three-step approach: 1) Feature Representation of images; 2) Two 

dimensional embeddings via dimensionality reduction; 3) Visual Analysis of clusters. 

Most of the present literature on feature representation of unlabelled image data focusses on 

manual feature extraction. For unlabelled data, features can’t be extracted by training a Deep-

CNN on a supervised task, as it requires labelled data. For feature extraction of rice grain 

images, the classical approaches [25, 31, 41, 42] use manual feature extraction based on factors 

like dimensions, contours, colours, shape and chalkiness. Methods like HOG [58], SIFT [59], 

are also used for general feature extraction. However, these features are not that robust and 

may lose representations from messy variables (e.g., background, rotation, brightness).  

Recently, deep unsupervised representation learning has been widely explored in Computer 

Vision to learn informative feature representations of images. It aims to map samples/images 

into semantically meaningful representations without human annotations, which can facilitate 

various down-stream tasks, such as object detection, classification and clustering. These 

representations are found to be quite robust and can be made invariant to variables like 

brightness, orientation, etc. Recent advances in contrastive self-supervised learning [70] 

approaches for computer vision like SimCLR [60], SimSiam [61] and SwAV [76] have opened 

up new opportunities for learning visual representations without manual annotations. In natural 

image classification, these approaches provide comparable results to those obtained using 

supervised learning. Following its success in computer vision, this strategy has been adopted 

in several applications in other research fields including clustering of mass spectrometry 

imaging data [62], scRNA-seq data [63] and geo-located datasets [64].  
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In this study, a contrastive self-supervised learning approach based on [60] is used for learning 

the feature representation (128 dimensional) of images, followed by dimensionality reduction 

and clustering. 

 

Chapter 3 - Materials and Methods 

 

3.1 Data Acquisition  

 

3.1.1 Sample Collection  

The rice variety BPT 5204 was adopted in this study. It is a medium-sized grain that is mostly 

farmed in the states of Andhra Pradesh, Telangana, Karnataka, and parts of Madhya Pradesh, 

Bihar, and Uttar Pradesh. Rskissan Foods (India) Private Limited, Mirzapur, Uttar Pradesh, 

contributed to this research by allowing rice grain samples to be obtained from the rejection 

pile of a double colour Sortex machine (Milltec) for the 2019 growing season. A total of 16000 

rice grains were collected, spread across various types of damages including ‘healthy’ grains. 

High magnification images of 24 MP (Megapixels) were taken for each grain. For some, both 

sides of the grains were covered, and a total of 20,134 coloured images of individual grain 

kernels were acquired as a data set. 

3.1.2 Imaging System 

The computer vision system used in the study consists of an LED light source for illumination 

because of its benefits such as long life, energy-efficient, and no heat or UV emissions. To 

produce high-resolution (6000 x 4000 pixels) and high-magnification (3.9 m/pixel) images of 

rice kernels, a mirrorless camera (Alpha5100, Sony) with a complementary metal-oxide-

semiconductor (CMOS) sensor and paired with a microscopic zoom lens (Zoom6000, Navitar) 

was utilised (The resolution mentioned is in height x width format). A zoom lens (Navitar) 

which gives us the working distance of 10 cm with 4.5x magnification so that we can easily 

pick and place the rice grain and get the most amount of rice in the image, a computer system 

(i5-9500 CPU @ 3.00GHz, Dell OptiPlex 3070) and software (Sony, Imaging Edge Desktop). 

As shown in Fig. 3, the camera is installed on a vertical platform. A 3-axis stage is positioned 

beneath the camera, on which rice grains are laid over a blue background, to capture the image. 
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The complete setup is contained in a rectangular box with a black inside coating to eliminate 

stray reflections, as well as an LED panel and high-efficiency diffuser on its sides, to provide 

a clean image. The camera is attached to the PC and is operated by software to shoot and save 

photographs without disturbing the setup, as shown by the red dotted line. The camera is 

attached to the PC and is operated by software to shoot and save photographs without disturbing 

the setup, as shown by the red dotted line. 

 

 

Figure 3. Schematic representation of the image acquisition system 

 

3.2 Dataset Details 

 

The dataset contains a total of 20,134 images of individual rice kernels. All the images are in 

RGB format with a resolution of 6000 × 4000 (height × width) pixels i.e., 24 MP 

(Megapixels). In this study, for training the SimCLR model, the images were resized to 75 × 

50 pixels. This was in order to be able to conduct feasible experiments, considering factors 

like the computer memory available, training time, etc. Although the final method uses 75 x 

50 resolution images, the acquisition of high resolution (24MP) images was really helpful and 

much needed in the overall analysis of the clusters. It helped in understanding the distribution 

of various regions in the clusters by analysing the corresponding images. This proved to be 
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difficult when dealing with images of lower resolution (75 × 50), since in the study we focus 

on a finer classification of damages and the features are very complex. 

 

3.3 The Contrastive-RC Method 

 

The method used in this study is divided into three phases. To avoid confusion, it is 

collectively referred to as Contrastive-RC i.e., short for contrastive rice classification. Its 

three phases are as follows: 1) Representation Learning: A convolutional neural network (the 

‘encoder’) learns a 128-dimensional vector representation for each image through a 

contrastive self-supervised representation training phase; 2) Dimensionality Reduction: A 

dimensionality reduction technique UMAP is used to reduce the dimensions of these 

embeddings from 128 to 2, which are then plotted on a 2D plane. Each point in the 2D plot 

represents a distinct rice grain (image); 3) Cluster Analysis: The final two-dimensional 

embeddings are then clustered using HDBSCAN and analysed for further 

patterns/subclusters. Fig. 4 shows a schematic representation of the method after training. 

 

 

Figure 4. A schematic representation of the method Contrastive-RC after training: 1) All the images are passed through a 

trained convolutional neural network (the ‘encoder’) to represent the images as 128 dimensional vectors. The encoder is 

trained using a contrastive self-supervised representation learning phase; 2) A dimensionality reduction technique UMAP is 

used to reduce the dimensions of these embeddings from 128 to 2; 3) The 2D embeddings are then plotted and clustered using 

HDBSCAN. 
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3.3.1 Feature Representation Learning using SimCLR 

Contrastive self-supervised learning [70] is a technique used for representations learning, that 

aims to map data into semantically meaningful representations; The goal of contrastive 

representation learning is to learn such an embedding space in which semantically similar 

sample pairs of data points stay close to each other while dissimilar ones are far apart. The 

technique has found widespread application in the field of computer vision for learning 

representations (embeddings) for unlabelled images. It is an unsupervised method which uses 

self-supervision and creates pseudo labels for itself, to learn the representations which can then 

be used for other downstream tasks like classification, clustering, segmentation, etc. These 

representations can facilitate various down-stream tasks, such as object detection, classification 

and clustering. Contrastive self-supervised learning has produced state-of-the-art results in 

semi-supervised and unsupervised settings [71, 72]. 

On a high level, it tries to learn lower dimensional representation of images that are invariant 

to image augmentations [73]. It does this by pulling augmented versions of the same image 

(positive pair) closer while pushing the augmented versions of different images (negative pair) 

farther from each other. The whole idea of augmentation is to create two versions of the same 

image, such that the versions are different in appearance but have not lost their true semantic 

meaning. This is what the model tries to learn. In this study, the architecture used is based on 

SimCLR [60] which stands for “A Simple Framework for Contrastive Learning of Visual 

Representations”. It has produced state-of-the-art results on many tasks. The method (Fig. 5), 

as novel and powerful it is, is fairly trivial to understand. 
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Figure 5. Schematic representation of the SimCLR method used for learning visual representations of the rice images in phase 

1. The feature representations ℎᵢ and ℎⱼ are the ones finally used for the clustering task.  

 

The steps involved in the algorithm implementation are explained below. Afterwards, the same are 

summarized mathematically in Algorithm 1.  

 

1. Firstly, batches of randomly selected images are drawn from the image dataset 𝐷. These batches 

are fed into the model one by one. For each batch, the first step is to create a pair of different 

augmented versions 𝑥′ᵢ and 𝑥′ⱼ of each image 𝑥 in it, through an augmentation function 𝑇. Here 

𝑥′ᵢ = t(𝑥) and 𝑥′ⱼ = t′(𝑥) where t′, t ~  𝑇. 

2. All the augmented image pairs are passed through a deep convolutional neural network (‘the 

encoder’) f(·) which encodes them into lower dimensional vector representations. Here, ℎᵢ = 

f(𝑥′ᵢ) and ℎⱼ = f(𝑥′ⱼ) where f(·) represents the global averaged output of the last convolutional 

layer before the fully connected layers start. These representations ℎᵢ and ℎⱼ are the ones which 

are used after training for the downstream tasks (clustering in our case).   

3. The encoded representations ℎᵢ and ℎⱼ of the image pairs are then passed through a nonlinear 

projection head g(·) which is a simple neural network of two dense layers (128 dimensions 

each) with a relu activation in between. It produces the vectors 𝑧ᵢ and 𝑧ⱼ for each pair of images. 

Here, 𝑧ᵢ = g(ℎᵢ) = 𝑊(2)𝜎(𝑊(1)ℎᵢ) where 𝜎 represents the non-linear relu function and 

𝑊(1), 𝑊(2) represent the weight matrix of the first and second dense layer respectively. The 

vectors ℎ and 𝑧 are 128 dimensional long. The projection head is added as it proves to increase 

the representation quality of the layer before it (ℎᵢ and ℎⱼ). The projected embeddings are finally 

used by the model to optimise its parameters. It tries to bring closer the embeddings for the 
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augmented versions of the same image and push farther apart the embeddings coming from 

augmented versions of different images.  

4. This is achieved by minimising a loss function called “NT-Xent loss” (Normalised 

Temperature-Scaled Cross-Entropy Loss) which is based on cosine similarity between the 

embedding pairs. Say a batch of 𝑁 images are fed to the model to produce 2𝑁 projected vectors 

(𝑁 pairs of 𝑧ᵢ, 𝑧ⱼ). Let sim (𝑧ᵢ, 𝑧ⱼ) = 𝑧ᵢ𝑇𝑧ⱼ / ||𝑧ᵢ|| ||𝑧ⱼ|| represent the cosine similarity between 𝑧ᵢ 

and 𝑧ⱼ, then the loss function for a positive pair of examples (i, j) is defined by Eq.3, where т is 

an adjustable temperature parameter allowing to scale the inputs and widen the cosine similarity 

range. The final loss function Eq.2 is the average of losses over all the points. This loss function 

is then minimised by updating the parameters of f and g using gradient descent with Adam 

optimiser [75].  

5. Finally, the model f is retrieved for feature representation, and g is discarded.  

  

Algorithm 1: SimCLR’s main learning algorithm 
 

𝑰𝒏𝒑𝒖𝒕 ∶ 𝐷, 𝑇, 𝑁, т, 𝑓, 𝑔 

𝒇𝒐𝒓 𝑏𝑎𝑡𝑐ℎ 𝐵 ∈ 𝐷 𝑠. 𝑡 𝐵 = {𝑥𝑘}𝑘=1
𝑁  

𝒇𝒐𝒓 𝑘 ∈  {1, … … 𝑁} 

𝑥2𝑘−1
′ = 𝑡(𝑥𝑘) & 𝑥2𝑘

′ = 𝑡′(𝑥𝑘) 

ℎ2𝑘−1 = 𝑓(𝑥2𝑘−1
′ ) & ℎ2𝑘 = 𝑓(𝑥2𝑘

′ ) 

𝑧2𝑘−1 = 𝑔(ℎ2𝑘−1) & 𝑧2𝑘 = 𝑔(ℎ2𝑘) 

𝒇𝒐𝒓 𝑖 ∈ {1, … … 2𝑁} and 𝑗 ∈ {1, … … 2𝑁} 

 𝑠𝑖𝑚(𝑖, 𝑗) = 𝑧𝑖
𝑇𝑧𝑗 ∕ ‖𝑧𝑖‖‖𝑧𝑗‖                                         (1) 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝐿 =
1

2𝑁
∑ [𝑙(2𝑘 − 1, 2𝑘) + 𝑙(2𝑘, 2𝑘 − 1)]

𝑁

𝑘=1
    (2) 

𝑏𝑦 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑓 & 𝑔 

𝒘𝒉𝒆𝒓𝒆 𝑙(𝑖, 𝑗) = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑖,𝑗)/т)

∑ 1|𝑘≠𝑖|

2𝑁

𝑘=1
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑖,𝑘)/т)

                      (3) 

𝒓𝒆𝒕𝒖𝒓𝒏 𝑓 

 

 

 

There are a bunch of hyperparameters that can be tuned to improve the model’s performance. These 

include the batch size, number of epochs and the temperature т. Further, the augmentation layer 𝑇, and 

the architecture of the encoder f(·) are also variables which needs to be set accordingly. Here, batch size 

becomes a more important parameter than usual since (loosely speaking) the objective can be 

interpreted as a classification over a batch of images. In the paper [60], larger batch sizes (8192) and 

longer training (1000 epochs) have produced better results. Scaling up of the encoder also has proven 

to increase the performance. Hence, in our study there was a trade-off between using a larger 

architecture and a larger batch size dude to memory limitations. After a lot of experimentations, 

MobileNetV3 [74] was chosen as the encoder with a batch size of 2048. A detailed discussion on the 

hyperparameter tuning is provided in section 4.2.  
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3.3.2 Augmentation Layer (T) in SimCLR 

The augmentation layer is a very important part of the whole model since it provides the basis 

of what the model tries to learn. The augmented versions of an image are supposed to be created 

in a way such that although different in appearance, the true semantic meaning of the images 

remain the same i.e., in essence one is able to tell that they come from a similar distribution. 

For example, changing the shape, size and orientation of a discoloured grain will not change 

the fact that it is discoloured. It is shown that stronger data augmentations boost the 

performance significantly [60, 61, 76].  

The augmentation pipeline used in the model is shown in Fig. 6. As a pre-processing step, the 

images first undergo rescaling of pixels by a factor of 1/255 in order to normalise the data. 

Then random flipping is used in both horizontal and vertical directions. Random rotation is 

performed in either direction with a maximum angle of rotation being 18 degrees.  

The most important part of the augmentation pipeline was cropping and brightness alteration. 

As discussed before, the augmentations had to be performed carefully such that the real 

meaning of the images don’t change. For instance, a large increase in brightness can make a 

healthy grain seem like its chalky, or too small of an image crop may lose the part of the grain 

that is damaged hence defeating the whole purpose. Keeping these heuristics in mind, the types 

of augmentation were chosen. Both cropping and brightness alteration were performed 

randomly. For cropping, a parameter min_area was used which signified the minimum fraction 

of area that needs to preserved in the image after cropping. Cropping was performed with the 

help of random translation and random zoom. This also brought a relative change in height and 

width of the grain which ensured that our model could be robust to aspect ratio changes. For 

adjusting brightness, a brightness factor alpha was used which represented the max amount by 

which the brightness was increased (or decreased) i.e., the maximum value which was added 

(or subtracted) to the image pixels (after rescaling). Both the parameters min_area and alpha 

underwent considerable tuning (as discussed in section 4.2) and were finally set to 0.6 and 0.4 

respectively. 
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Figure 6. Augmentation Pipeline 

Feature representations can also be learned in a supervised setting (labels available), however 

that is through training on hard coded labels. For example, the CNN model would be instructed 

to encode ‘mildly’ discoloured grains same as ‘strongly’ discoloured grains, or to encode 

‘slightly’ broken grains same as ‘largely’ broken grains. Thus, although the method may work 

well to separate the damages, it may not be able to capture the real essence of the images as a 

whole. SimCLR, on the other hand, learns representation in a highly intuitive way that is not 

limited by hard coded labels and has the ability to capture diverse patterns. By training on an 

infinite number of pseudo labels, it captures the true semantic meaning of all the image's 

attributes. As a result, it is not constrained by a specific scenario and may capture many more 

significant representations than are invariant to such data augmentations. 

 

3.3.3 Dimensionality Reduction and Clustering 

The representations learnt from the SimCLR model are 128 dimensional long. These can be 

clustered directly; however, it is not possible to visualise 128 dimensional points and hence 

their analysis becomes difficult. Thus, the dimensions were reduced from 128 to 2 (phase 2). 

This way, the embeddings could be plotted in 2D space and analyse the results visually in a 

much more intuitive way. For this, a dimensionality reduction technique UMAP [77] was used. 

It is much faster as compared to other techniques like PCA (Principal Component Analysis) 

and TSNE [87] still producing high quality results and was very suitable for experimentation 

purposes. For instance, it is ~ 45 times faster than TSNE on the 784-dim MNIST dataset [100]. 

UMAP tries to learn the manifold structure of the data and create a low dimensional embedding 

that preserves the essential topological structure of that manifold.  
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The important parameters include min_dist and n_neighbors. The parameter min_dist signifies 

how closely the data points are packed in the lower dimension. It is the minimum distance apart 

the points are allowed to be in a lower dimensional space. Further n_neighbors signifies the 

size of the local neighbourhood to consider for each point when attempting to map the points 

to lower dimensions, and is an important parameter in balancing the local vs global structure. 

It is advised to try multiple values for both these parameters and choose the ones around which 

stable embeddings are realised. Finally, the 2D embeddings are clustered using HDBSCAN 

[65] (phase 3), a hierarchical density-based clustering algorithm. The important parameters 

include min_cluster_size and min_samples. The parameter min_cluster_size refers to the least 

number of points needed for a grouping to be called a cluster, whereas min_samples refers to 

the minimum number neighbours to a core point.   

 

 

 

Chapter 4 - Experiments 

 

4.1 Experimental Setup 

All experiments were carried out in the Google cloud environment using a 64-bit Debian 

GNU/Linux operating system powered by an Intel (R) Xeon (R) CPU @ 2.20 GHz and 26 GB 

RAM, with NVIDIA Tesla P100 containing 16 GB memory. All the code is implemented in 

Python. Keras [80] with Tensorflow [81] backend was used for the implementation of SimCLR 

model. Official python libraries of UMAP [82] and HDBCAN [83] were used for their 

respective implementations.  

4.2 Hyperparameter Tuning and Selection Criterion 

The study, as previously stated, was conducted in three phases. Each phase has its own set of 

hyperparameters that need to be tuned to get the desired results. The first two phases were the 

most important in terms of tuning; phase 3 required minimal tuning. Phase 1, or representation 

learning phase, consisted of hyperparameters such as the num_epochs (number of epochs), 

batch size, temperature, and (min_area, alpha) from the augmentation layer. Phase 2, in which 

the 128-dimensional representation vectors were embedded in 2D space, included the 

hyperparameters min_dist and n_neighbors. The hyperparameters for phase 3 (Clustering) 
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comprised min_cluster_size and min_samples. Hence, the hyperparameters were separated into 

three sets.  

Tuning in both phase 1 and 2 was performed based on visual analysis of the 2D embeddings. 

Although phase 1 was independent of phase 2, it was tuned by feeding its outputs (128-D 

feature representations) through the second phase and examining the clusters/groupings in the 

2D embeddings. The main idea was to select the hyperparameters which could give the best 

clustering; well separated groups of points in the 2D space. 

 Metrics like silhouette score and calinski-harabasz index [97] were not used for clustering 

evaluation as these metrics depend on the performance of the clustering algorithm and the 

labels provided by it. And it was found to be quite difficult to fit the clustering algorithm on 

every instance so as to provide the optimal labelling. Since the clustering were observed in two 

dimensions, visual analysis proved to be a highly effective approach to evaluate the results. 

The basis of selection was dependent on how well separated the clusters were. Further, the 

points corresponding to each cluster were analysed to provide proper justification for the 

separation. Possible subclusters in a cluster gave the indication of possibility of further 

separation, which also was a considerable factor in determining further experimentations and 

selections.    

Many experiments were carried out using various combinations of all the hyperparameters. The 

most important ones were the num_epochs and the augmentation parameters (min_area, alpha). 

We first tuned the other hyperparameters to keep them constant for further experiments. The 

second phase hyperparameters min_dist and n_neighbors were the easiest to configure. The 

optimal values were chosen as those around which stable embeddings were realised. The values 

of 0.001 and 50 respectively were found to be optimal. These values were found to be 

independent of the hyperparameters used in the first phase and were kept constant for all the 

subsequent experimentations. 

In the first phase, batch size was one of the important parameters and suggested to be kept at 

larger values [60]. Through experimentations, a batch size of 2048 was found to be optimal. 

One disadvantage of using larger batch size was that it restricted us in the encoder model size, 

which also shown to perform better when larger in size. Hence, MobileNetV3 was chosen 

which is one of the smallest CNNs in the literature and still compares in performance with the 

larger state-of-the-art models. The optimal temperature  was found to be. For the augmentation 



20 

layer, min_area and alpha were tuned. The set of values tried were {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

and {0.0, 0.1, 0.2, 0.3, 0.5 0.4} respectively. The most optimal values for both were found to 

be 0.6 and 0.4 respectively.  

The parameter num_epochs was not that straightforward to set and a wide range had to be tried 

for each set of hyperparameters. In general, the models were trained for 300 epochs, or until 

they achieved a contrastive accuracy greater than 99.5 percent, while also checkpointing 

(storing) the intermediate versions. Contrastive accuracy is a self-supervised metric that 

represents the proportion of cases in which the image's representation is more similar to that of 

its differently augmented version than to that of any other image in the current batch. This was 

only used as a guideline for when to end training and did not provide a way to choose the ideal 

epoch. For each epoch, the saved models were used and the corresponding clusters were 

observed to find the best epoch. Typically, it was found to be between 100 and 200. The most 

optimal clustering achieved is shown in Fig. 7. The corresponding hyperparameter values were 

184 for num_epochs, 2048 for batch size, 0.1 for temperature, (0.6, 0.4) for (min_area, alpha), 

0.001 for min_dist, 77 for n_neighbors, 3 for min_samples and 500 for min_cluster_size. 

For the experiments, out of the total 20,134 images, 19330 were kept for training and the rest 

804 as test sets. The purpose of the test set was to ensure that the model did not overfit to the 

training data and could generalise to previously unseen data. Since there was no proper metric 

used, the evaluation on test was also done visually; For each test embedding, it was checked 

whether it belonged to the right cluster and whether the images corresponding to its 

neighbourhood points were similar to it or not. The test set was also utilised to evaluate the 

model's performance under different scenarios like grain rotation, translation, brightness 

change, etc.  

Chapter 5 - Results and Discussion 

The study was based on a large number of experimentations and simultaneous analysis of the 

2D embeddings. The most optimal clustering was selected to be as shown in Fig. 7. In section 

4.2, the methodology for selecting the right clustering was discussed. In this section, a detailed 

analysis of the final clustering is presented. Section 5.1 presents a broader analysis on 

properties of each cluster and how they are supported by the literature. On the basis of the 

clustering achieved, a total six damage-based classes (including the healthy class) are 
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presented. Section 5.2 presents an analysis of the method Contrastive-RC. We discuss its 

robustness towards changes in messy variables like brightness, grain orientation, etc. and its 

versatility for various use cases. Finally, in section 5.3, we present a more in-depth analysis of 

each cluster/class by examining different regions in each cluster. We also discuss the possible 

extension of the method for further subclassification. 

 

 

Figure 7. Left: Raw 2D embeddings of all the training images (total 19330). Middle: Results after clustering with HDBSCAN. 

Right: Clustered 2D embeddings after removing noise points (total 19179) 

 

The final clustering can be seen in Fig. 7. It should be noted that each point (x, y) in the scatter 

plot represents a unique rice grain (image). As stated previously, out of the total 20,134 images, 

19330 were kept for training and the rest 804 as test sets. The leftmost plot in Fig. 7 depicts the 

raw 2D embeddings of 19330 (training) images, which were obtained as outputs of phase 2. 

These were clustered using HDBSCAN and the results are shown in the middle plot. A total of 

six clusters are observed. HDBSCAN is a density-based algorithm that, in addition to assigning 

points to each cluster, also assigns some points to be “noise” points i.e., the isolated points that 

do not belong to any cluster. These are marked with grey colour in the middle plot. There were 

only 151 points which were marked as noise. For easier analysis, these were removed and the 

rest 19179 points are shown in the right most plot.  

 

5.1 Inter Cluster Analysis 

For each cluster the corresponding points/images were analysed. Here, the need for high 

magnification images was realised as the details in the images were very intricate, especially 
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for understanding different regions within each cluster. Each cluster was found to have a well-

defined set of properties and was assigned a separate class name. Fig. 8 depicts the final 

clustering along with the class names and identifier for each cluster. The identifiers are the 

abbreviations of the class names assigned to them. Note that for the rest of the study, the grains 

of each cluster are referred to by the corresponding class name. The figure also shows a few 

image examples from each cluster. The number of points/images for each class in descending 

order are: 5599 for normal-damage, 4987 for chalky-discoloured, 3215 for discoloured, 2386 

for half-chalky, 2061 for healthy, and 931 for broken.  

 

Figure 8. Final Clustering along with the class names and identifiers assigned to each cluster. A total of six clusters are 

observed. The identifiers are abbreviations of class names: ‘H’ for healthy, ‘HC’ for half-chalky, ‘B’ for broken, ‘CD’ for 

chalky-discoloured, ‘D’ for discoloured, and ‘ND’ for normal-damage. Along side are attached a few examples from each 

cluster.  The three examples shown for normal damage class correspond to watermark, heat, and pin damage respectively 

from left to right.  

 

Cluster H: “Healthy” class 

The images corresponding to cluster H signify “healthy” grains. These grains are characterised 

by their clear translucent nature and have no type of surface damage. Further, most of the grains 

(>95%) were found to be full-sized. These are considered to be the highest grade of grains as 

translucent nature of the endosperm is a highly desirable characteristic and consumers pay a 

premium price for it [88]. 
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Cluster B: “Broken” 

The cluster B contains broken grains. Broken grains are generated as a result of internal stresses 

that are generated during or after the milling process, which causes the healthy grains to break 

down into tiny fragments. The grains in the cluster differ in sizes and can also come along with 

various damages. Literature shows that identification of broken rice and its size are an 

important factor in rice grading. Head rice recovery (HRR) is a commonly used attribute 

associated with broken kernels. It is defined as the proportion of paddy rice that retains 75% of 

its length after milling. It is a key rice grading attribute that has a significant impact on the rice 

market prices: higher the HRR; higher is the market value of milled rice [85, 86]. The broken 

grains can further be separated into second heads (larger sized broken), screenings (smaller 

sized broken) and brewers (very small sized broken) according to the market needs [87, 95]. 

Typically speaking, the broken grains without any other damage are the only ones used for 

human consumption. Damaged broken grains are considered unfit for human consumption and 

used primarily either as poultry feed or as a raw material for bio-ethanol production, etc. 

  

Cluster HC: “Half-Chalky” 

Chalkiness [98] is a well-known attribute in rice grains. Chalky grains contain opaque white or 

chalk-like regions. The degree of chalkiness for these grains is defined as the fraction of area 

that is covered by the chalky region. In cluster HC, chalky rice grains were observed but with 

lower degree of chalkiness; either the chalkiness was mild or if prominent (completely opaque) 

then it only covered a part of the grain and not the whole. In most of the grains, about half of 

the total surface area was observed to be chalky and hence they are termed as half-chalky. 

  

Cluster CD: “Chalky Discoloured” 

The grains of cluster CD are characterised by two prominent features namely chalkiness and 

discoloration (yellowish or brownish). Majority of the grains possessed chalkiness along with 

discoloration. The ones without (or very mild) discoloration had the full region covered in 

chalkiness. A few grains containing unremoved layers of husk were also observed in this 

cluster. 
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Literature shows that chalkiness is an important factor in rice grading. It is mostly associated 

with low quality of rice, which has a negative effect on the market price [88, 89, 98]. Chalkiness 

is negatively correlated to HRR i.e., HRR decreases with increased chalkiness [90]. Higher the 

degree of chalkiness, lower the market acceptability [88]. Thus, half-chalky grains would more 

readily be used for consumption in higher grades of rice than the chalky-discoloured ones. 

Attempts have been made to define and subclassify chalky grains but there is no consensus. 

Some classify grains as chalky only when more than 50 % of it is chalky [91]. The IRRI defined 

a scoring system from scale 0-5, 0 standing for no chalkiness and 5 standing for chalkiness 

greater than 80% [89]. 

  

Cluster D: “Discoloured” 

The grains in cluster D were observed to only contain discolorations (brownish or yellowish), 

and were not identified with any kind of chalkiness or other damages. The degree of 

discoloration varied across grains. Some grains were observed to have very mild layers of husk 

along with the discolouration. Grain discoloration can occur in unsafe storage conditions and 

have a major impact on the market value [5]. 

  

Cluster ND: “Normal Damage” (Pin, heat, watermark) 

Cluster ND grains were observed to contain three types of damages: pin, heat and watermark. 

Most of the grains were characterised by what we term as pin damage. These are characterised 

by ovular shaped indentations on the surface mainly caused by insects. The indentations range 

in size and colour (black, brown, white). Watermark damages are present in the form of water 

stains/spots on the grains. The third kind of damage found was heat damage. These grains are 

characterised by dark black regions seemingly burnt due to excess heat during processing. 

These kinds of grains are unfit for human consumption and typically used for other purposes 

like bio-ethanol production, poultry feed etc. 

5.2 Analysis of the method Contrastive-RC 
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This section presents an analysis of the method used and how it is able to capture semantic 

representations of the rice images. As discussed previously, SimCLR is not bounded by hard 

coded labels and tries to capture a more general and meaningful representation of the images 

as compared to the ones in a supervised setting; SimCLR embeds semantically similar images 

near each other in the embedding space. Further, UMAP is able to reduce the dimensionality 

with also preserving the local and the global structure. On analysis of the predictions on test 

images, no overfitting was observed and the predictions were observed to be accurate; every 

test image was embedded in the space surrounded by semantically similar training images. Fig. 

9 shows the distribution of the test embeddings as predicted by the model. Fig. 10 shows three 

examples of test images (normal, half-chalky, and discoloured) and the corresponding five 

nearest training images in the embedding space. The visual similarity is evident between them. 

Further, the specific augmentations used in the model have made it particularly robust to 

changes in brightness and grain geometry. We altered the brightness for images in the 

validation set and noticed how the embeddings of the original and altered version varied. It was 

observed that in most cases, the embeddings of both were very similar to each other meaning 

that the embeddings were very close in the 2D space. In the cases where embeddings were not 

similar, they were still observed to be in the same cluster. In particular, for alteration in 

brightness by factors of 0.1, 0.2, and 0.3, the percentage of the total altered versions (804) that 

were predicted to be in the same cluster as the original image were 95.77%, 88.43% and 

80.22%. Furthermore, the method was robust to change in grain geometry: vertical and 

horizontal orientation, rotation, size, aspect ratio and position of the grain on the image. Fig. 

11 shows three examples of test images and corresponding five randomly augmented versions. 

Below each image, is their embedding as produced by the model in the 2D space. Notice how 

the embeddings of all the augmented versions are very close the original image 

  

Thus, it demonstrates the robustness of the method towards messy variables like brightness, 

orientation, etc., which are very commonly observed in real world scenarios. Further, notice 

that in the augmentation layer, the way cropping is performed, it also changes the aspect ratio 

of the images and in turn the rice grain. This makes the model robust to change in grain size 

and its aspect ratio i.e., the model will not be affected by changes in grain size and aspect 

ratio: longer, shorter, fatter and thinner version of the same type of grain will be embedded 

very similarly to each other. This allows the model to be easily extended to other varieties of 
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processed white rice. As far as the inference time of the model is concerned, the model is 

considerably fast, particularly when images are fed in batches. For batches of size 1, 64, 256, 

1024, 2048, 4096 and 8192, the average prediction times were 2.11 s, 2.25 s, 2.40 s, 3.57 s, 

5.53 s, 11.67 s, and 26.20 s respectively. The corresponding frequencies are 0.47, 28, 106, 

286, 370, 351, 312 images per second. Here ‘s’ is the unit in seconds and the time is the 

average taken over 1000 iterations. This includes the time from feeding the images to the 

model to the final class predictions. Hence, the model is able to process 370 images per 

second for a batch size of 2048, hence making it very suitable for real world application 

where fast processing is needed and images. 

 

Figure 9. Embeddings of the test images (804) as predicted by the model 
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0

 

Figure 10. Test images and corresponding five nearest neighbours in the embedding space. The five nearest neighbours to a 

test point signify the five closest points to it. The ‘closeness’ is measured by the Euclidian distance between them. Here the 

nearest neighbours are taken from the training set. 
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Figure 11. Test images (left most) and their corresponding augmented versions. Below each image is its 2D embedding as 

predicted by the model. 

 

 

5.3 Intra Cluster Analysis 

The ability of the SimCLR model to embed semantically similar images closer to each other in 

the 2D spaces allows for possible sub clustering. The images in different regions of each cluster 

were observed and very meaningful and information rich patterns in the distributions were 

found. Mostly, it was observed that there were no clear demarcations/boundaries as the 

distribution for each cluster was continuous in nature. For instance, discoloured grains did not 

have a further demarcation between say strongly discoloured and mildly discoloured because 
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there was no proper boundary to distinguish one from another; there was a continuous 

movement of grains from mild to strong discolouration. Fig. 12 shows different regions for 

each cluster and the corresponding grains. Each image is marked with the type of damage and 

the region it belongs to. For instance, ‘CD4’ corresponds to a chalky-discoloured grain 

belonging to the 4th region as marked in the cluster for chalky-discoloured. Further from now 

on, for each damage, region 1 is referred to as r1, region 2 as r2 and so on. 
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Figure 12. Examples of grains in each cluster spread across different regions. Each row represents a separate class and the 

corresponding grains. The cluster for each class is separated in different regions marked with numbers. Each image is marked 

with the class and the region it belongs to. For instance, ‘CD4’ corresponds to a chalky-discoloured grain belonging to the 

4th region as marked in the cluster for chalky-discoloured class. 
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Starting with the cluster for discoloured damage, it is observed that r1 contains highly 

discoloured grains and as we move from r1 to r4, there is a continuous decrease in the 

discolouration, with grains in the r4 region being the least discoloured. This was irrespective 

of the path taken i.e., discolouration decreased along each of the paths 1-2-3-4, 1-7-8-4 and 1-

6-5-4. It is also seen that as we move towards r4, chalkiness (very subtle) is being introduced. 

This is not noticeable near r1 but only becomes noticeable near r8. A considerable number of 

discoloured grains were also observed to contain a layer of husk. This was evident near r2 and 

r3, where grains contained a significant layer of husk. Note that these layers of husk were not 

present on their own but along with discolouration. Grains having very mild layers of husk and 

no discolouration (or other damage) were a part of the healthy class. Further, the grains near r5 

and r6 had some characteristics similar to normal-damage; some grains were found with small 

spots or very mild surface indentations. Notice how r4 is closer to the chalky-discoloured 

cluster (Fig. 8) and is characterised with some chalkiness, and how r5 and r6 are closer to the 

normal-damage cluster (Fig. 8) with similar properties. This is very intuitive and tells how not 

only the local, but also the global structure is preserved. 

                                                                                                                           

In the half-chalky class, grains near r1 had a lower degree of chalkiness and shifted more 

towards the healthy class. Moving towards r3 and r4, the degree of chalkiness increased. Grains 

near r2 also had a higher degree of chalkiness along with mild layers of husk. In the chalky-

discoloured cluster, r1, r2 and r3 were predominantly found to contain grains with very high 

degree of chalkiness and almost no discoloration. Moving lower-right, towards r4, r5 and r6, 

discolouration started appearing. r5 had a higher degree of discoloration while r6 started having 

characteristics similar to that of heat and pin damage. 

  

Normal-damage class had the largest number of grains and the most variations. Majority of the 

grains were found to contain pin damage. Sole watermark and heat damage were comparatively 

less in number. Pin damage dominated the middle and the lower regions of the cluster. Region 

r1 contained pin damaged grains with small sized dark indentations. Moving downwards from 

r1 to r3, grains were found to be more damaged i.e., with darker and larger indentations. 

Regions r3 contained the grains with the most damage. These were found to be very dark 

coloured and contained a mix of heat and pin damage. As we moved upwards, the intensity of 
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the colour started decreasing. Larger sized indentations were still found but with paler colour 

(r4 and r5). Also, watermark damages started to appear (r5), becoming more prominent around 

r6. In the upper regions, the right side (r6 and r7) was dominated by watermark damages. The 

left side (r6) had more pin damages but these were very mild in nature; smaller indentations in 

very pale in colour. The regions in the middle (r10, r9, r11) were found to contain transitioning 

properties. 

  

Coming to broken damage, the lowermost regions (r1 and r2) were found to contain translucent 

broken grains without any other damage. On moving upwards, mild discolorations appeared, 

some in the form of husk (r3). Upper left region r4 had grains with a higher degree of damage 

with discolouration and indentations. Upper Right regions (r5, r6, r7) had grains with 

chalkiness, with its degree increasing as we moved upwards.  Healthy grains had the least 

number of variations. These grains were found to be very consistent. Similar to broken, the 

lower regions had the most purity in terms of translucency and absence of any other damage. 

Leftmost regions (r7, r8) were also found to be very pure. r3 and r4 were found to contain very 

mild layers of husk or indentations almost not visible to the human eye. The grains in the 

regions r4 were found to contain more noticeable indentation. The uppermost regions r5 and 

r6 contained grains with very slight chalkiness. 

  

Thus, the analysis showed how the method contrastive-rc is able to produce semantically 

meaningful 2D representations with preserving the local as well as the global structure of the 

image data. The properties of the grains in the various regions of each cluster were explored 

and it can be seen how intricate the features are separating various regions. These features are 

very difficult to analyse manually using low dimensional images, thus higher dimensional 

images were required for manual analysis. However, the method is able to produce such 

information rich representations with images having a comparatively much lower resolution of 

75 x 50 pixels. Further, although the clusters were decently separated, overlaps in damages 

could still be observed on the borders. For instance, in discoloured damage, the grains in r4 

(D4) showed mild chalkiness hence overlapping with the half-chalky and chalky-discoloured 

class; In chalky-discoloured, grains in r6 (CD6) showed symptoms similar to that of heat 

damage in the normal-damage class; In half-chalky, grains near r4 (HC4) showed higher 
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degrees of chalkiness thus overlapping with the higher degree chalky grains in the chalky-

discoloured class. Such overlaps are very difficult to identify manually and hence the task of 

manual labelling becomes very difficult. Further, manual labelling also requires domain 

knowledge to select the right features and identify the number of classes to separate the grains 

into. Thus, it highlights how our method is able to tackle all these issues and produce the 

desirable results.  

  

Although, in each cluster no distinct sub clustering is observed because of the continuous nature 

of distribution, the different regions can be identified as smaller meaningful groupings showing 

a well defined set of properties. Many of these regions differ from each other on the basis of 

degree of damage. Regions in discoloured category can be seen to differ on the basis of the 

amount of discolouration. Regions in half-chalky and chalky-discoloured differed on the basis 

of degree of chalkiness. In normal-damage, regions were separated on the basis of size and 

colour. This allows for further subclassification of each damage. Now, since subclassification 

can be very problem specific and user based, thus there are no hard boundaries proposed for 

the same. The method contrastive-rc allows for the subclassification to be according to the 

user’s needs and understanding. For any cluster, different regions can be marked according to 

how the user wants to classify that particular region’s grains. For instance, in the discoloured 

cluster, if the user wants grains within a particular amount of discolouration to be counted as 

“good quality”, then those regions can be separately marked as “good quality” under the user’s 

supervision; The other regions will be marked as “poor quality”.  Further, in normal-damage, 

if a user wants to mark grains with very mild damage (light colour and small size) to be fit for 

human consumption, then the method allows for the same. The method hence provides a very 

low-level control for the user allowing a more diverse classification which can be used in 

multiple scenarios for the classification of rice. This is something which is very difficult to 

achieve using some classical feature extraction techniques or supervised learning approaches 

since those algorithms are fundamentally developed to suit a specific task and hence are 

constrained in that manner.  
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Chapter 6 - Conclusion and Final Remarks 

 

The following key conclusions can be drawn from this study: 

1)     A large dataset (20,134 images) is developed of high magnification 24 Megapixel 

(6000 x 4000 pixels) images of individual rice grains (processed white rice) spread 

across different damages. 

2)   A deep unsupervised method Contrastive-RC is developed for fine-grained damage 

classification of processed white rice, leveraging contrastive self-supervised 

learning techniques. Extensive experimental analysis was performed to achieve the 

desired clustering of the 19330 rice grain images, illustrating the importance of the 

data augmentation strategy and hyperparameter selection. 

3)    A total of six classes are presented corresponding to each cluster i.e., one Healthy 

class and five damage classes namely Broken, Half-chalky, Chalky-discoloured, 

Discoloured, and Normal-damage. Our analysis showed how each of the classes 

possess distinct well-defined visual properties separating them from each other. 

Furthermore, it was shown how each type differs in quality and hence in market 

value, thus showcasing the need for their separation. 

4)  It is shown how the method Contrastive-RC is able to produce meaningful and 

information rich 2D embeddings from comparatively lower resolution (75 x 50) 

images. Our analysis showed that the method is robust towards variations in 

brightness and grain geometry (size, orientation, aspect ratio, rotation), thus making 

its extension to other varieties very feasible. The method is also fast with the ability 

to process 370 grain images per second making it feasible for real-world use cases 

where lower latency is required. 

5)  An extensive analysis of the different regions in each cluster showed that the method 

is able to preserve the local as well as the global structure of the image data. It was 

shown how different regions inside each cluster can be identified as smaller 

meaningful groupings, often separated on the basis of the degree of damage. And 
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how this allows for a user-supervised subclassification, which can be used in 

multiple use cases, providing very low level control for various tasks. 

The method Contrastive-RC not only facilitates the broader classification of rice grain images 

into six damage-based classes but also provides a means for further subclassification providing 

low level control allowing for it to be used in multiple use cases.  

The future scope of this project would be to extend the algorithm to be able to work on images 

taken by mobile cameras as a proof of concept. Further, to design an end-to-end machine that 

can leverage the computer vision algorithm developed to provide real time quality evaluation 

and sorting of food grains based on various types.    
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