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Abstract

Tungsten inert gas (TIG) welding has been extensively utilized for wire arc additive

manufacturing (WAAM) applications. The presented work investigates the formed arc

characteristics for different electrode geometry to enhance the overall process

efficiency. The electrode sharpening angle was varied at 30°, 60°, 90°, and 107°.

COMSOL plasma module has been utilized for the computation of temperature field,

arc pressure, heat flux, and current density variation in arc column. The simulated

model was then used to study the influence of input current from 100A to 200A. It was

observed that an increase in electrode sharpen angle increases the arc concentration to

a narrow area, whereas the increase in arc input current widens the concentration zone

at the anode. An experimental study performed at different currents and recorded

high-speed arc imaging also confirms the same. It typically follows the gaussian

distribution. However, the magnitude of the temperature field, arc pressure, heat flux,

and current density varies in arc columns. The volumetric distribution of these

properties was higher near the cathode or electrode for a higher electrode angle and

was found to be a good choice for WAAM.
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v velocity (m/s)
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Chapter1: Introduction

Tungsten Inert Gas Welding (TIG), also known as GAS Tungsten Arc Welding

(GTAW), is an electric arc welding process that creates fusion energy between the

workpiece and the tungsten electrode using an electric arc. An inert shielding gas

shields the electrode, the arc, and the weld pool from the damaging effects of the

ambient air during the welding process. A gas nozzle directs the shielding gas to the

welding zone, where it replaces atmospheric air. Argon is the most widely utilized

shielding gas due to its inexpensive cost. TIG welding differs from MIG/MAG and

MMA welding in that the electrode is not consumed.

figure 1 figure 2
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The numerical simulation's complexity stems from the close relationship between

numerous phenomena engaged in the process. Over a wide temperature range of 300 K

to over 20,000 K, the heating Joule effect creates a thermal plasma comprising

electrons, ions, and neutral species. The workpiece is then heated on the upper surface

by arc-plasma conduction and electron flow.

Because of its many advantages, the TIG welding technique has a wide range of

applications. It provides good protection of the weld pool by an inert shielding gas, no

need for post-weld treatment because no slag or spatter is created, and concentrated

heating of the workpiece, among others. TIG welding is commonly used in industries

that require high-quality welding, such as the chemical industry, nuclear industry,

petrochemical industry, offshore industry, combined heat and power plants, food

industry, and so on.

Many numerical models have been developed for GTAW But most of them take only

one part of the welding process either anode, cathode, or plasma arc resulting in some

boundary conditions which don’t mimic the real situation. The right way to understand

this arc behavior is to consider all three model parts. Taking this into consideration, a

mathematical model is developed in [1].

In the present work, the model ( present in [1], which is taking all three parts cathode,

anode, and plasma into consideration ) is simulated in COMSOL, then used to study

the influence of current and shape of the electrode’s tip on heat flux, temperature and

pressure. We have taken three current values 100A, 150A, and 200A for each

electrode. Simulation has been done on four king Tungsten Electrode tip shapes.
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This thesis is organized as follows: Chapter 2. describes the methodology taken to

approach the objectives. Sections 2.1 and 2.2 detail the model's mathematical and

simulated definition respectively. Section 2.3 deals with the observation that we got

from the simulation of the model and shows the variation of temperature, heat-flux,

current density, and pressure with respect to different electrode sharpening angles and

input current. Section 2.4 deals with the experimental observations that we have

captured while conducting the experiment. It displays some images of TIG arc with

different electrode sharpening angles and input currents. Chapter 3. discusses the

observation and tries to extract some interesting results from work done. Chapter 4.

concludes the work done in this project and discusses the scope for work to be done in

the future.
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Chapter 2: Methodology

2.1 Mathematical Model Definition:

Mathematical modeling is the process of attempting to mathematically define a

nonmathematical situation, phenomenon, and its interactions, as well as discovering

mathematical patterns within these situations and phenomena. The widest and most

liberal definition of mathematical modeling is this one. It includes the steps of

discovering relationships, doing mathematical analyses, obtaining results, and

reinterpreting the model. For GTAW, many numerical models have been constructed.

However, most of them only use one portion of the welding process, such as anode,

cathode, or plasma arc, resulting in boundary conditions that aren't realistic.

Considering all three model pieces is the best method to comprehend this arc behavior.

Taking this into consideration, a mathematical model is developed in [1].

For the mathematical formulation of the multiphysics issue, the following assumptions

are taken into account::

1. The research is limited to spot GTAW and uses an axisymmetric coordinate

system.

2. Metal vapors have no effect on plasma characteristics since the arc column is

believed to be at Local Thermodynamic Equilibrium (LTE)..

3. Molten metal and gas plasma are both incompressible..
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2.1.1 Equations:

In the plasma and anode domains, the velocity and pressure fields are estimated, and

the temperature field is determined in the three zones using the conservation equations,

as follows:

(1) Conservation of mass

(2) Conservation of momentum

(3) Conservation of energy

In the anode and cathode regions, the volumetric heat source is the Joule effect

whereas in the arc plasma region the enthalpies flux and radiation losses are added

25



Calculating the current density j and the magnetic flux B is required to determine the

electromagnetic forces and the Joule effect in both the arc plasma and the workpiece.

As a function of the electric potential V and the magnetic potential vector A, the linked

current continuity and magnetic potential equations are determined as follows:

The current density, electric field, and magnetic flux are then calculated from V and A

as follows:

26



2.1.2 Model Diagram:

figure 3: Computational domain (dimensions in mm)
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2.2.3 Boundary Conditions:

Table 2: Boundary Conditions
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2.2 Simulation Model Definition:

This model is based on work presented in Ref. 1. In Ref. 1 The authors develop a

complex model that includes the description of the weld pool under the action of a

pulsed arc. This work only simulates the plasma and the transfer of heat and currents in

the metals neglecting the weld pool, and a DC excitation is used. These simplifications

allow a model that solves fast and can be used to understand fundamental physical

effects and to use as initial conditions for a time-dependent model.

The model is solved using a stationary study. Multiple values of current are set at the

cathode and the bottom plate is grounded for different cases. In the gap between the

electrodes, an argon plasma arc is created that heats the metal electrodes and

surrounding gas. A shielding flow is added along with the cathode.

Software Used: COMSOL MULTIPHYSICS, version- 6.0

2.2.1  Parameters

Name Expression Description

I0 100[A] /  150[A]  / 200[A] Current

J0 -I0/(pi*(1.6[mm])^2) Normal Current density

U0 3[m/s] Inlet velocity

Table 3: Parameters of Model
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2.2.2  Geometry

figure 4:the Geometry

Note: In this geometry, only the shape of the electrode tip is modified for different

cases, the rest is the same for all cases.

2.2.3  Materials

figure 5: Materials
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Material Area

Argon (mat1) Domain 2

Steel AISI 4340 (mat2) Domain 1

Tungsten (mat3) Domain 3

Table 4: Materials

2.2.4  Electric Currents

Equations

Conditions

FE, DE Ground V=0

AB Normal Current Density Jn = J0

Table 5: Condition for electric currents
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2.2.5. Magnetic Fields

Equations

2.2.6. Heat Transfer In Fluids

Equations

Conditions

Domain 1,2,3 Initial Value T = 300K

Domain 1,2 Volume Reference Temp T ref = 300K

AB, BC,CD Boundary T0 = 300K

DE,EF Heat Flux h=200 W/(m2.K)

GD, HB Boundary Heat Source Qb=-0.4*sigma_const*T^4

Table 6: Condition for  heat transfer
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2.2.7. Laminar Flow

Equations

Conditions

BK Inlet Velocity U=U0

Table 7: Condition for laminar flow
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2.3 Observation From Simulation:

This work investigates the formed TIG arc characteristics for different electrode

geometry to enhance the overall process efficiency. The electrode sharpening angle

was varied at 30°, 60°, 90°, and 107°. COMSOL plasma module has been utilized for

the computation of temperature field, arc pressure, heat flux, and current density

variation in arc column. The influence of input current from 100A to 200A was then

investigated using the simulated model.

figure 6

2.3.1  30° Electrode Sharpening Angle

Here we are going to see variations in temperature, current density, pressure, and heat

flux at 100A, 150A, and  200A for the electrode sharpening angle of 30 degrees.
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Figs 7, 8, and 9 show the temperature profile for different input currents 100A,150A,

and 200A respectively for the electrode sharpening angle of 30°. From these figures, it

is observed that increasing the input current widens the concentration zone of

temperature at the anode.

Fig 7: Temperature Profile at 100A Fig 8: Temperature Profile at 150A

Fig 9: Temperature Profile at 200A
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Figure 10: Radial evolution of Temperature at the center of the anode and cathode

Figure 11: Radial evolution of Pressure at the center of the anode and cathode
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Figure 12: Radial evolution of HeatFlux magnitude at the center of the anode and cathode

Figure 13: Radial evolution of Current Density at the center of anode and cathode

37



The radial evolution of temperature, pressure, heat flux, and current density at the

center of cathode and anode for the different input currents are shown in Fig 10,11,12,

and 13 respectively.   An increment in the input current increases all these properties at

every point. From the figure, it can be seen that all of these properties are typically

following gaussian distribution.

Input Current 100A 150A 200A

Max Temperature 13917 K 15260 K 16834 K

Max Pressure 138 Pa 335 Pa 619 Pa

Max HeatFlux 1.46E+08  W/m2 2.23E+08 W/m2 2.98E+08 W/m2

Max Current
Density

1.51E+08  A/m2 1.93 E+08 A/m2 2.34E+08 A/m2

Table 8: Parameters at 30 degrees

2.3.2  60° Electrode Sharpening Angle

Figs 14, 15 and 16 show the temperature profile for different input currents 100A,

150A, 200A respectively for the electrode sharpening angle of 60°. From these figures,

it is again observed that increasing the input current widens the concentration zone of

temperature at the anode.
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Fig 14: Temperature Profile at 100A Fig 15: Temperature Profile at 150A

Fig 16: Temperature Profile at 200A

The radial evolution of temperature, pressure, heat flux, and current density at the

center of the cathode and anode for the different input currents are shown in Fig

17,18,19, and 20 respectively.   An increment in the input current increases all these

properties at every point. From the figure, it can be seen that all of these properties are

typically following gaussian distribution.

39



Figure 17:: Radial evolution of Temperature at the center of the anode and cathode

Figure 18: Radial evolution of Pressure at the center of the anode and cathode
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Figure 19: Radial evolution of heat flux at the center of the anode and cathode

Figure 20: Radial evolution of Current Density at the center of the anode and cathode
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Input Current 100A 150A 200A

Max Temperature 13019 K 13637 K 14458 K

Max Pressure 77 Pa 149 Pa 274 Pa

Max HeatFlux 13428311 W/m2 20561396 W/m2 3.97E+07 W/m2

Max Current
Density

15659279 A/m2 20526947 A/m2 27763394 A/m2

Table 9: Parameters at 60 degrees

2.3.3  90° Electrode Sharpening Angle

Figs 21, 22 and 23 show the temperature profile for different input currents 100A,

150A, 200A respectively for the electrode sharpening angle of 90°. From these figures,

it is again observed that increasing the input current widens the concentration zone of

temperature at the anode.

Fig 21: Temperature Profile at 100A                         Fig 22:: Temperature Profile at 150A
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Fig 23: Temperature Profile at 200A

The radial evolution of temperature, pressure, heat flux, and current density at the

center of the cathode and anode for the different input currents are shown in Fig

24,25,26, and 27 respectively. From the figure, it can be seen that all of these properties

are typically following gaussian distribution.

Figure 24: Radial evolution of Temperature at the center of the anode and cathode
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Figure 25: Radial evolution of Pressure at the center of the anode and cathode

Figure 26: Radial evolution of HeatFlux at the center of the anode and cathode
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Figure 27: Radial evolution of Current Density at the center of the anode and cathode

Input Current 100A 150A 200A

Max Temperature 12552 K 13273 K 14087 K

Max Pressure 53 Pa 105 Pa 192  Pa

Max HeatFlux 5918005 W/m2 7916295 W/m2 15277662 W/m2

Max Current
Density

7123980 A/m2 9916961 A/m2 1.36E+07 A/m2

Table 10: Parameters at 90 degrees
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2.3.4  107° Electrode Sharpening Angle

Figs 28, 29 and 30 show the temperature profile for different input currents 100A,

150A, 200A respectively for the electrode sharpening angle of 107°. From these

figures, it is again observed that increasing the input current widens the concentration

zone of temperature at the anode.

Fig 28: Temperature Profile at 100A                                 Fig 29: Temperature Profile at 150A

Fig 30: Temperature Profile at 200A
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Figure 31: Radial evolution of Temperature  at the center of the anode and cathode

Figure 32: Radial evolution of Pressure at the center of the anode and cathode
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Figure 33: Radial evolution of HeatFlux at the center of the anode and cathode

Figure 34: Radial evolution of Current Density at the center of anode and cathode
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The radial evolution of temperature, pressure, heat flux, and current density at the

center of cathode and anode for the different input currents are shown in Fig x,y,z, and

w respectively. From the figure, it can be seen that all of these properties are typically

following gaussian distribution.

Input Current 100A 150A 200A

Max Temperature 13894 K 14688 K 14609 K

Max Pressure 90 Pa 162 Pa 204 Pa

Max HeatFlux 12700721 W/m2 17158570 W/m2 14461822 W/m2

Max Current
Density

11523853 A/m2 13798444 A/m2 1.32E+07 A/m2

Table 11: Parameters at 107degree
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2.4 Experiment:

The setup used in the experiment is developed in-house, with 4-axis CNC. It was

driven by hybrid servo motors(3-70 kg-cm torque) with RHINO motion controls

drivers.

2.4.1 Experimental Setup

The setup shown in fig. x has one CNC setup consisting of 3 linear axes and an

electrode attached to a TIG torch, one load controller. These axes of CNC are

controlled by mach3 CNC software.

50



Figure 35: Experimental setup

2.4.2 Mach3 CNC Software

Mach3 CNC software is used to control the CNC setup. RNR Universal USB Motion

Circuit board is designed for Mach3 software. This Circuit Board supports up to 4-axes

control. The programming in software was done in standard ‘G’ and ‘M’ coding. The

USB interface of the circuit board is suitable for any laptop, desktop, or tablet PC.

Figure 36 .’ Mach3 Control Board                                  Figure 37 .’ Mach3 Control Software

2.4.3  Observations

Below Figures show the TIG arc profile for different input currents 100A, 150A, and

200A  at different sharpening angles of 90,67, and 50 degrees respectively
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1.) at 90° sharpening angle

figure 38: 100A figure 39: 150A                               figure 40: 200A

2.) at 67° sharpening angle

figure 41: 100A figure 42: 150A                           figure 43: 200A

3.) at 50° sharpening angle

figure 44: 100A figure 45: 150A                               figure 46: 200A
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Chapter3: Results and Discussion

We have done simulation and experimentation for the different electrode sharpening

angles at different current inputs 100A, 150A, and 200A. Figure 45 and 46 show the

temperature profile (simulation) at a 60-degree sharpening angle and experimental arc

at a 67-degree sharpening angle with 100A, 150A, and 200A current input respectively.

Figure 47: temperature profile at 100A, 150A, and 200A respectively at 60-degree sharpening angle

Figure 48: temperature profile at 100A, 150A, and 200A respectively at 67-degree sharpening angle
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From the arc temperature profiles (simulation ), It is observed that the increase in input

current widens the concentration zone at the anode. Experiment results also confirm

the same

The Figures shown in section 2.3 show the radial evolution of temperature, Pressure,

Heat Flux, and current density at the center of the cathode and anode for different

electrode sharpening angles of 30, 60, 90, and 107different input currents values 100A,

150A, and 200A. From there It is observed that temperature, pressure, heat flux, and

current density all of these are typically following Gaussian distribution

Figures x show the heat flux variation across arc length at different electrode

sharpening angles and 150A input current

Figure 49: the heat flux variation across arc length at different electrode sharpening angles and 150A input

current
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More the % Area for any graph more will be the concentration of graphs in a narrower

area. From figure x, it can be seen that the % area is more in the case of 30 degrees in

comparison to 60 and 90-degree sharpening angles. As we are increasing the

sharpening angle, % the area is decreasing which means less concentration in narrow

areas.

For the Better process efficiency in WAAM application, we required a more uniform

distribution compared to intense distribution which is achieved at a higher sharpening

angle according to our results from simulations and experiments.
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Chapter4: Conclusion and Future Scope

4.1 Conclusion

Simulations and Experimental investigation of the effect of electrode shape and Input

current load on the Tig arc behavior are presented in this work. These parameters have

significant impacts on arc properties:

1. The increase in arc input current widens the concentration zone at the anode.

2. Temperature, Heat Flux, pressure, and current density all of these properties

typically follow the Gaussian distribution.

3. An increase in electrode sharpen angle increases the arc concentration to a

narrow area and vice versa

4.2 Future Scope:

The scope of the work that can be done in the future to improve the WAAM process

efficiency using the shape of electrode:

a. Experiment could be conducted with more variation in sharpening angle with

wire feeding.

b. An increase in electrode sharpening angle increases the uniform distribution of

energy, This need to be tested from the experiment.

c. In the present work, only the electrode tip shape was changed and the electrode

itself was in a cylindrical shape. The simulation could be done for more

electrode shapes like rectangular, triangular, etc.
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