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PREFACE 
 

This report on “Heterogeneous Multi-Agent Search using Reinforcement 

Learning” is prepared under the guidance of Dr. Chandresh Kumar Maurya and 

Dr. Guillaume Adrien Sartoretti. 

Through this report, I have attempted to explain the process and design of an 

algorithm for searching for static targets in an unknown environment, using a team 

of heterogeneous robots having different motion and sensing capabilities. This 

report also describes the benefits of employing reinforcement learning to distribute 

the agents efficiently and minimize searching time, compared to conventional 

approaches toward multi-agent searching. 

Through this thesis, efforts have been made to present the methodology, results and 

conclusions of the study in a lucid and comprehensible manner. Figures, graphs 

and tables have been included to make the content more illustrative. 
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Abstract 
 

 

The dynamic and unpredictable nature of our world makes it difficult to design one autonomous 

robot that can efficiently adapt to all circumstances. Therefore, it makes sense to implement 

heterogeneous multi-robot systems to be able to solve complex tasks. The aim of this project is 

to search for targets in an unknown environment, using a team of heterogeneous agents/robots 

having different motion and sensing capabilities, employing reinforcement learning to distribute 

the agents efficiently and minimize searching time. The intuition behind heterogeneous search is 

considering different sensor capabilities, we want to find an online area decomposition to guide 

agents to search efficiently, finding how and where to go without many optimizations. A 

literature review of relevant work reveals that a majority of the current methods for multi-agent 

searching are either about homogeneous agents or using the same policy, under the same action 

space. There are very few papers describing heterogeneous multi-agent searching, and even those 

that do focus more on improving communication or other aspects. However, it is clear that 

heterogeneous multi-agent searching is an important emerging field and with the help of 

reinforcement learning, has the potential to lead to state-of-the-art performance on complicated 

tasks. For this project, we start with a model of ergodic search using homogeneous agents, then 

try to represent the ground truth, assuming perfect sensors and perfect data fusion, by applying 

concepts similar to CNNs. We then add heterogeneous sensors and decompose the map 

optimally (i.e., find which areas are best searched by which agent), and then gradually add 

uncertainty and reward-based trajectory optimization (i.e. reinforcement learning) while 

balancing exploration and exploitation. The applications of heterogeneous multi-agent searching 

range from agriculture to search & rescue. Future work in the field includes trying to use 

distributions other than the Gaussian distribution to represent more complicated sensors, and 

optimizing paths with fewer iterations. 

 

Keywords: Multi-robot searching, Heterogeneous,  Map decomposition, Reinforcement 

learning, Exploration & exploitation
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Nomenclature & Abbreviations 
 

 

 

Nomenclature/ 
Abbreviation 

Description 

ML Machine Learning 

RL Reinforcement Learning 

MAS / MRS Multi-agent Search / Multi-robot Search 

MADRL Multi-agent deep reinforcement learning 

MDP Markov decision process 

GP Gaussian process 

FFT Fast Fourier Transform 

TD Temporal difference (learning) 

KL divergence Kullback-Liebler divergence 

DP Dynamic programming 

CNN Convolutional neural network 

UAV / UGV Unmanned Aerial Vehicle or Unmanned Ground Vehicle 
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Chapter 1 
 

Introduction 
 

 

With the rapid development of affordable robots with embedded sensing and computation 

capabilities, we are quickly approaching a point at which real-life applications will involve the 

deployment of hundreds, if not thousands, of robots. Among these applications, significant 

research effort has been devoted to multi-agent search, where deploying numerous agents can 

greatly improve the time-efficiency and robustness of search. Motivated by such problems, this 

project considers the deployment of heterogeneous robots in time-critical scenarios, where search 

can be improved by combining the different motion and sensing capabilities of the agents. 

1.1 Background 

The widespread use of intelligent agents such as robots, unmanned ground vehicles (UGVs) and 

unmanned aerial vehicles (UAVs) - owing to advancements in their capabilities as well as new 

control, perception, and estimation algorithms - in a variety of applications ranging from rescue 

to security to transportation to medicine has necessitated automated information processing and 

exploitation. An important class of problems in these intelligent systems is the detection and 

locating of objects of interest using intelligent search agents, known as search problems [1]. 

There are different classes of search problems. In terms of the targets being searched, there may 

be a single or multiple targets. The targets may be stationary or moving. In terms of number of 

search agents, there are single-agent or multi-agent search problems. The agents would also have 

a variety of constraints: 

 A search agent usually has a limited amount of resources or search effort that it can 

spend, so there is a budget constraint. 

 It may have limited area of influence or sensing range, so visibility constraints which 

only allow the agent to search a subset of the search space can be considered. 

 There may also be motion constraints which restrict the agent to searching only some 

locations right after searching one location. In addition, when the agent moves from one 

location to another, a switching cost that is not negligible comparing to the search cost 

may be incurred. 
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A multi-agent system describes multiple distributed entities which take decisions autonomously 

and interact within a shared environment. Each agent seeks to accomplish an assigned goal for 

which a broad set of skills might be required to build intelligent behavior. Depending on the task, 

an intricate interplay between agents can arise such that agents start to collaborate or act 

competitively to excel opponents or achieve targets faster. Specifying intelligent behavior -  

a-priori through programming - is a tough, if not impossible, task for complex systems. 

Therefore, agents require the ability to adapt and learn over time by themselves. The most 

common framework to address learning in an interactive environment is reinforcement learning 

(RL), which describes the change of behavior through a trial-and-error approach. However, some 

conventional methods which do not rely on any form of learning do exist, and shall be detailed in 

the following sections. 

 

Using multiple mobile robots in search tasks offers a lot of benefits over single-agent searching, 

but one needs a suitable and competent motion control algorithm which is able to consider 

sensors characteristics, the uncertainty of target detection and complexity of needed maneuvers 

in order to make a multi-agent search autonomous. 

 

Many approaches have been proposed thus far to search for unknown targets using a team of 

agents. The most straightforward way to approach this problem is through geometric searching, 

which is very useful when lacking any a-priori information about the likely positions of targets 

[2], [3]. On the other hand, when such a-priori information is available, a decentralized or 

gradient-based method can be applied by exploiting the potential field that describes the likely 

target positions [4]–[7]. However, gradient-based methods like information surfing are sensitive 

to noise and can drive agents to local maxima instead of global maximum, which also reduces 

efficiency. When we want to make full use of the information and find a more optimal solution 

in a long-term way, optimization-based methods can be used [8]. Through maximizing the 

gathered information, agents can work in a more efficient way but since these methods are 

usually centralized, they lose scalability to larger teams. 

 

In this project, we seek a decentralized solution to multi-agent collaborative search where agents 
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have individual beliefs about the world and make individual decisions. However, they would still 

build a common ‘map’ of the area, enriching it with information while coordinating with each 

other, divide areas of the map to be searched by each agent, allocate tasks accordingly and 

balance exploration of new areas with exploitation of all the information about the known areas. 

Moreover, we wish to utilize heterogeneous agents, with different sensing and motion 

capabilities to search the area faster and more effectively, while also improving on the efficiency 

of the whole process. This leads us to the definition of the problem that this report is based on. 

1.2 Problem definition 

This project is based on exploiting the heterogeneity of the agents – the fact that they have 

different kinds of sensors and different motion capabilities – to search faster and more efficiently 

for targets in an area. The intuition behind heterogeneous search is considering different sensor 

capabilities, we want to find and demarcate areas that are better suited to particular agents, then 

ensure that agents spend more time in areas they’re best suited for searching. The project 

describes a real-world searching task, with a search team having heterogeneous composition and 

robustness to environmental effects (e.g., occlusions like trees for drones, noise elements like 

wind, etc.). The search operation terminates when all targets are found (or marked on the map, 

which is generated by the agents). We start with no prior information about the environment and 

conduct an initial scan by quickly scanning a large area at a time, but not in-depth. As we start 

getting demarcated areas where the probability of finding the target(s) is higher, agents with 

accurate-but-slow sensors move to these areas and resolve the areas further, while the broad-but-

fast agents continue exploration. The agents form groups to search particular areas and enrich 

information on a common map. 

 

Aim: To search for static targets in an unknown environment, using a team of heterogeneous 

robots having different motion and sensing capabilities, employing reinforcement learning to 

distribute the agents efficiently and minimize searching time. 

 

Objectives of the project:  

 Establish basic framework for heterogeneous searching 

 Represent the map with minimal error from ground truth 
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 Decompose the map optimally – optimal task allocation 

 Implement RL-based trajectory optimization 

 Show that the solution scales to large number of agents and find (approximate) 

complexity or relation of searching time to number of agents 

 

We first formulate the problem into a mathematical discretized model that is suitable to cast as a 

reinforcement learning (RL) problem. We divide the world into a two-dimensional discrete map 

making up of a number of unit cells, and each cell contains some information comprised of 

targets’ prior probability and uncertainty, target status, and agent position. The probability 

implies to the likelihood of target existence. The uncertainty represents how confident we are 

about the prior probability levels in a given area. As for the agents, we give each a local belief of 

the information and the ability to do several specific actions to move to an adjacent cell. Agents 

also have visual and sensing characteristics, and they change the environment and update their 

local beliefs accordingly. 

1.3 Related work 

The intersection of multi-agent systems and reinforcement learning holds a long record of 

active research. Survey papers on the topic [9], [10] describe in detail the various frontiers of 

research within the field and the various approaches present to tackle searching problems. Prior 

work done in this field which is relevant to the present task is detailed in the second (‘Literature 

Review’) chapter. This section is dedicated to description of the prior work done at MARMot 

Lab, NUS which is relevant to this project, and helped the project take shape. Amongst the 

several teams working at the lab, this project comes under the ‘Search’ team. Research at the lab 

on multi-agent searching is further divided into 3 lines of work as detailed in the figure on the 

next page. 

  



5  

Fig. 1.1: Branches of the multi-agent search research line at MARMot Lab, NUS 

 

Research topics under the Multi-Agent Search project at MARMot Lab NUS: 

 Heterogeneous Search (which this project is a part of) 

 Search/ Multi-agent exploration using informative path-planning 

 3D Search 

Towards multi-agent search (MAS) problem, the lab had previously investigated the scenario 

where plenty of stationary targets are searched by a group of agents with limited sensing and 

communication capabilities in a two-dimensional grid world. The MAS problem was developed 

and extended to more aspects and organized into three primary domains: 

- Heterogeneous search. A variety of team members with different capabilities conduct a 

search task, optimizing the overall search efficacy.  

- 3D search. More realistic models regarding sensors, line-of-sight, angle of view, etc. will 

be considered to prepared for real-world applications.  

- Pursuit-evasion. Targets (evaders) with moving ability will try to escape from the capture 

of the pursuers, where a cooperative strategy should be devised by both teams.  

1.4 Structure of the document 

This report document is organized in five main parts, besides this introduction chapter. 

Chapter 2 consists of the Literature Review done to establish the problem statement and develop 

the understanding of concepts pertinent to the study. 
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Chapter 3 explains the starting point of the project, ergodic search, and describes the process of 

searching and formally defines sensors, uncertainty, probability and other concepts. 

Homogeneous multi-agent searching is also described here. 

 

Chapter 4 of this thesis introduces heterogeneity and elaborates upon the various advantages and 

complications that brings to the searching task. The convolution approach adopted initially to 

solve the searching task is detailed herein, along with important steps during the project like map 

decomposition. 

 

Chapter 5 of the thesis deals with heterogeneous multi-agent searching with reward-based 

trajectory optimization, i.e., the addition of reinforcement learning to the search process. 

 

Chapter 6 is a repository of all the results and tires to succinctly describe the results of each 

approach adopted over the course of this project through graphs. 

 

Chapter 7, the final part of this thesis, draws insight from the conclusion and outlines the future 

work – already planned future work at MARMot lab, and further possible future work in various 

areas of the project – and describes the impact of the work on the task of multi-agent searching, 

all from an undergraduate student’s perspective. 
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Chapter 2 
 

Literature Review 
 

This section focuses on previous works on multi-robot search methods, as well as multi-agent 

path finding (MAPF) based on deep reinforcement learning (DRL). In this work, we are inspired 

by existing search methods and present a new method that relies on DRL to improve search 

efficiency and scalability. 

An extensive literature review was conducted, covering papers that surveyed multi-agent 

systems, and research work that described conventional or mathematical approaches to multi-

robot searching based on graphs, Voronoi partitioning and information-surfing, or special cases 

of pre-specified distribution of agents. The literature review also included papers on 

reinforcement learning based heterogeneous as well as homogeneous MA-search methods. 

Research work which give a background on MA systems, searching, motion control, 

reinforcement learning, communication, etc. was also studied and has been noted in the literature 

review document for this project. 

2.1 Multi-agent searching (MAS) – Conventional approaches 

Multi-agent search is a central robotics problem, which considers search for different kinds of 

targets and under different conditions.  

Multi-agent search is a central robotics problem that considers search for different kinds of 

targets and under different conditions. Many search strategies have been summarized in [11], 

which illustrate the underlying theory in single-agent searching for single or multiple, static or 

moving targets. Furthermore, collaborative search has been drawing researchers' interests [12]–

[16], whose methods have been relying on a variety of tools such as team-optimal, dynamic 

programming and distributed control. 

In general, there are two broad classes of search methods, depending on the availability of a 

priori information about the likely location of targets. Methods like geometric coverage are 

applicable in some situations where no information can be acquired, and agents move to cover all 

the areas of this region. 

However, more advanced collaborative search methods can exploit prior information if it is 
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available. First, the gradient-based method has been proposed in [2], [17], [18]. From the 

likelihood of targets, agents search greedily by driving agents to local information maxima. 

Masoud et al. proposed a PSO-based multi-robot cooperation method to search targets where 

they assume the target emits a signal like heat for the robot to sense it and determine a locally 

favorable direction. PSO does not use the gradient of the problem being optimized, and it does 

not guarantee an optimal solution. There are also many other decentralized search strategies. 

Chung et al. formulated a multi-agent decision-theoretic of probabilistic search problem [19] . 

Furukawa et al. [20] presented a control technique which uses recursive Bayesian filtering to 

autonomously search and track multiple targets with distributions and probabilistic motion 

models. These methods cannot be applied to real-life scenarios easily with large agent teams, and 

our work looks for scalable, decentralized multi-agent search methods to control the agents 

searching more intelligently. 

A Graph Theoretic-Based Approach for Deploying Heterogeneous Multi-agent Systems is 

detailed in [21]. This approach divides the environment and creates a graph using Voronoi 

partitioning with weights based on capabilities of every heterogeneous agent (more capable 

robot gets the more important area). Areas are marked on a common map, and the proces starts 

with no a-priori information. Hence, this work is very relevant to the present problem. However, 

because the algorithm is graph-theory based, it has its own limitations and the paper describes 

regularly spaced areas only, with strictly short-range communication. 

Another recent work [22] describes a distributed terrain coverage algorithm that employs 

Voronoi partitions to divide the area of interest among the robots and then uses a single-robot 

coverage algorithm to explore each partition for potential targets. Then, it describes multi-robot 

task allocation algorithms that use the location information of discovered potential targets and 

employs either a greedy distance based strategy, or an opportunistic strategy (stochastic queueing 

based model) to allocate tasks among the robots while attempting to minimize the time (energy) 

expended by the robots to perform the tasks. 

[23] presents a decentralized ergodic control policy for time-varying area coverage problems for 

multiple agents with nonlinear dynamics. Ergodic control allows the specification of 

distributions as objectives for area coverage problems for nonlinear robotic systems as a closed-

form controller. The paper derives a variation to the ergodic control policy that can be used with 

consensus to enable a fully decentralized multi-agent control policy. 
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[24] addresses the problem of coordinating and controlling multiple robots for the detection of 

multiple dynamic anomalies in the environment. They propose a combined approach for 

effective exploration under uncertainty, anomaly tracking, and autonomous on-line allocation of 

agents. Robots explore the work area maintaining the history of the sensed areas to reduce 

redundancy and to allow for full-map coverage. When an anomaly is detected, a robot 

autonomously determines how to either track the anomaly or to continue the exploration of the 

environment, depending on the size of the anomaly, which is estimated by the length of the 

perimeter of the enclosing polygon. 

Multi-Agent Path Finding (MAPF) is an NP-hard (non-deterministic polynomial) problem even 

when approximating optimal solutions. Here we want to emphasize the decentralized learning 

MAPF planner where agents learn their own policy and can easily implement multi-agent 

systems. Some DRL-based MAPF decentralized planners show great potential in solving the 

MAPF problem. For example, Sartoretti et al. [25] proposed pathfinding via reinforcement and 

imitation multi-agent learning (PRIMAL), a new framework for decentralized, reactive MAPF. 

They showed that PRIMAL worked well in low obstacle densities situations, which combined 

the advantages of distributed reinforcement learning and imitation learning. As we want to solve 

the multi-agent search problem in a decentralized way, such distributed learning-based 

approaches seem like a good starting point for us to base this work upon. 

2.2 Heterogeneous MAS 

This section describes the unique perspectives, advantages and challenges that heterogeneous 

agents bring to the MAS problem. [26] provides a methodology for an autonomous two-

dimensional search using multiple unmanned search agents. The proposed methodology relies on 

an accurate calculation of target occurrence probability distribution based on the initial estimated 

target distribution and continuous action of spatial variant search agent sensors. The core of the 

autonomous search process is a high-level motion control for multiple search agents which 

utilizes the probabilistic model of target occurrence via Heat Equation Driven Area Coverage 

(HEDAC) method. This centralized motion control algorithm is tailored for handling a group of 

search agents which are heterogeneous in both motion and sensing characteristics. The motion of 

agents is directed by the gradient of the potential field which provides near- ergodic exploration 

of the search space. 



11  

This paper by [27] develops a multi-agent heterogeneous search approach that leverages the 

sensing and motion capabilities of different agents to improve search performance (i.e., decrease 

search time and increase coverage efficiency). It draws on recent work on ergodic coverage 

approaches for homogeneous teams, in which the agents' search pathways are tuned so that they 

spend time in regions proportional to the predicted likelihood of finding targets while still 

covering the entire domain, balancing exploration with exploitation. This work presents a new 

strategy for extending ergodic coverage to groups of heterogeneous agents with different sensing 

and mobility capabilities. Methods for efficiently assigning available agents to distinct regions of 

the domain and optimally matching the agents' capabilities to the scale at which information 

needs to be looked for in these regions are examined. 

2.3 Reinforcement learning (RL) based Heterogeneous MAS 

 

Fig 2.1: Reinforcement learning paradigm 

Image Source: “What is Reinforcement Learning?” - mathworks.com 

Link: https://in.mathworks.com/help/reinforcement-learning/ug/what-is-reinforcement-learning.html 

 

Reinforcement Learning tackles the subject of how an autonomous agent may learn to pick and 
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conduct optimal actions to attain its goals based on its present environment. It accomplishes this 

by modelling the learning task as a Markov Decision Process (MDP). Every action taken by the 

agent causes a change in the environment, which might be either good or unwanted, as reflected 

by the reward the agent gains at every step. The agent gradually learns the behavior of the 

environment through repeated interactions, and then adapts and optimizes its own actions to 

maximize desirability and achieve the goal, i.e., earn maximum possible reward. The advances in 

reinforcement learning have recorded sublime success in various domains. Although the multi-

agent domain has been overshadowed by its single-agent counterpart during this progress, multi-

agent reinforcement learning gains rapid traction, and the latest accomplishments address 

problems with real-world complexity. We start with a preliminary survey of heterogeneous 

multi-agent systems and consult three survey papers.  

[9] surveys recent contributions, highlights current state-of-the-art methods on existing multi-

agent robotic searching systems and identifies their limitations, remaining challenges, and 

possible future directions. The paper gives special emphasis on challenges of MAS sub-fields 

like task decomposition, coalition formation, task allocation, perception, and multi-agent 

planning and control. However, the survey does not cover credit assignment / reward distribution 

among agents, consensus or agent agreement under different circumstances, containment control 

(which is a type of consensus in leader-follower models), communication protocols and efficient 

information exchange strategies and hardware design. 

[10] provides an overview of the current developments in the field of multi-agent deep RL. The 

paper analyzes the structure of training schemes that are applied to train multiple agents. The 

authors have considered the emergent patterns of agent behavior in cooperative, competitive and 

mixed scenarios. The paper systematically enumerates challenges that exclusively arise in the 

multi-agent domain and reviews methods that are leveraged to cope with these challenges. 

[28] provides a review of multi-robot systems supporting Search & Rescue   (SAR) operations, 

with system-level considerations and focusing on the algorithmic perspectives for multi-robot 

coordination and perception. This survey paper covers heterogeneous SAR robots in different 

environments, active perception in multi-robot systems, while giving two complementary points 

of view from the multi-agent perception and control perspectives. It presents a literature review 

of multi-robot systems (MRS) for SAR operations with a focus on coordination and perception 

algorithms and, specifically, how these two perspectives can be bridged through different active 
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perception approaches. 

 

Fig 2.2(a): System level perspective of multi-robot search & rescue systems 

 

 

Fig 2.2(b): Algorithmic perspective of multi-robot search & rescue systems 

 

Images source: Queralta, J. P., Taipalmaa, J., Pullinen, B. C., Sarker, V. K., Gia, T. N., Tenhunen, H., Gabbouj, 

M., Raitoharju, J., & Westerlund, T. (2020). Collaborative multi-robot search and rescue: Planning, 

coordination, perception, and active vision. IEEE Access, 8, 191617–191643. 

https://doi.org/10.1109/ACCESS.2020.3030190 

 
 

Apart from these survey papers, several other papers that describe RL based heterogeneous 

multi-agent search methods were studied.  

[29] presents an actor-critic algorithm that allows a team of heterogeneous agents to learn 

decentralized control policies for covering an unknown environment. They augment a multi-

agent actor-critic architecture with a new state encoding structure and triplet learning loss to 

support heterogeneous agent learning. This paper is relevant because the topic is very close to 

that of the present work, and the simulation environment used in this paper includes real-world 

environmental factors such as turbulence, delayed communication, and agent loss, to train teams 

of agents and probe their robustness and flexibility to such disturbances. 

[30] deals with cooperative multi-agent exploration. Exploration is critical for good results in 

deep reinforcement learning. However, existing multi-agent deep reinforcement learning 
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algorithms still use mostly noise-based techniques. Very recently, exploration methods that 

consider cooperation among multiple agents have been developed. However, existing methods 

suffer from a common challenge: agents struggle to identify states that are worth exploring, and 

hardly coordinate exploration efforts toward those states. To address this shortcoming, in this 

paper, the authors propose cooperative multi-agent exploration (CMAE): agents share a common 

goal while exploring. The goal is selected from multiple projected state spaces via a normalized 

entropy-based technique. Then, agents are trained to reach this goal in a coordinated manner. 

[31]–[33] also provide important insights into the field of multi-agent reinforcement learning. 
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Chapter 3 
 

Heterogeneous sensor capabilities 
 

“A variety of team members with different capabilities conduct a search task, optimizing the 

overall search efficacy by synergistically leveraging/combining their individual strengths.” 

 

A majority of the current methods investigated in the literature review are either about 

homogeneous agents or using the same policy, under the same action space. There are very few 

papers describing heterogeneous multi-agent searching, and many of those focus more on 

improving communication, etc. However, it is clear from the literature that heterogeneous multi-

agent searching is an important emerging field and with the help of reinforcement learning, has 

the potential to lead to state-of-the-art performance on complicated tasks. In some scenarios, 

heterogeneous agents may help accelerate the search process by a huge margin. For example, 

ground vehicles may move slower but can be equipped with much more accurate sensors 

whereas UAVs are faster but vague in image resolution. Together, they can decompose a map 

(i.e., find which regions of the map are suited for searching by which agents) much faster, and 

thereby arrive closer to the ground truth faster. The intuition behind heterogeneous search is 

considering different sensor capabilities, and we want to find an online or predefined area 

decomposition to guide agents to search efficiently on how and where to put their sensor on 

without many optimizations. 

Some work studied during the literature review proposed heterogeneous search methods 

according to frequency like [27], they decomposed a given domain based on high or low 

frequency and assign these areas to different types of agents. But in this approach, the 

information may get distorted because of the FFT and its inverse process, sensor capability may 

also be hard to tune to find the optimal solution. Therefore, we want to find a method that could 

apply the same decomposition idea to the spatial domain and remain the same accuracy of the 

maps, which also easy to tune the parameters because the sensor property can be easier to define 

in the spatial domain. 

“Ergodic Search” project, which had been done previously at CMU’s Biorobotics lab in 

collaboration with MARMot Lab, NUS, was chosen as the starting point for the current project. 
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This approach relied on an a-priori information distribution, representing the likelihood of 

finding a target at any point over the search domain, to guide the search. By optimizing over 

parameters that describe the search paths, the ergodic metric drove agents to spend time in areas 

of the domain in proportion to the a-priori likelihood of finding targets in these areas, while still 

covering the whole domain, thus balancing exploration and exploitation. The code for this 

project was available, but written entirely using MATLAB. So, the preliminary step for the 

current project was to convert this codebase to python, which was the preferred language for 

future work due to its rich library of modules and general ease of use. Once that was completed, 

the next move was to make the agents start exploration from an empty prior.  

The simplest case of “heterogeneous” agents, i.e., 2 distinct agents searching an area, is the task 

for the upcoming section. We have defined 2 sensors and describe the fusion of their data to get 

closer to ground truth. 

3.1 Sensor characteristic definition 

In this section, we define some simple sensors, where a Gaussian distribution can suitably 

represent the sensor capability. The sensor footprint is represented as a Gaussian distribution 

because a camera's center captured images containing more details; inversely, more distortions in the 

edge of images.  

 

Fig. 3.1: Figure denoting a sensor with an 8x8 unit cell footprint, with maximum detail at the center (4,4) and 

uncertainty increasing radially outward from this point. 

 

The size and variance of the distribution could be tuned to represent the accuracy and area 

property of the sensor. If the sensor is spike-like, that means it might be a beam sensor and has 
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great accuracy in the center. Similarly, a larger and smoother curve denotes higher variance and 

lower accuracy, and could be a camera-based sensor for example. Each sensor is denoted by one 

Gaussian Process (GP) and has its own kernel, and we want to optimize the trajectories of the 

agents to reduce searching time. Kernel here refers to the same thing as a kernel in convolution 

operation, i.e., a matrix of values covering a small portion of the actual data matrix. Each sensor 

is basically giving a Gaussian distribution over its sensing area, which is being used as the 

convolution matrix for the CNN. 

 

Fig. 3.2: 3 kinds of sensors described using graphs 

 

These three graphs above each represent a sensor. The middle one has a sharp peak which 

denotes that it has high accuracy at the center but a lower area of coverage (e.g. a beam sensor). 

The one on the right is a gradual curve and denotes that it has a high coverage but lower 

accuracy (e.g. camera). 

3.2 Sensor Data fusion using Gaussian processes 

Through decomposing the map into different areas based on heterogeneity, we want to guide 

agents to search more efficiently. Accurate sensor better suits for exploitation whereas larger 

sensor is good at coverage and exploration. By decomposition, we hope to combine the 

advantages for different sensor and speed up the convergence of agents’ belief. For this, it is 

necessary to be able to fuse the data from two sensors in a sensible and coherent manner, so that 

it can give better information about the area. Merging GPs by taking mean, weighted average, 

incorporating a smoothing factor and Kalman Filtering were tested, to improve the data fusion 

and get closer to ground truth.  
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A simple mean implies taking the mean of all the measurements taken at the same spatial 

position by each agent. 

A weighted average was taken on the following basis: 

If info_pred[i] denotes the measurement of the i’th agent at some fixed point in the 

spatial domain, say (x0, y0), then 

𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] =
𝑖𝑛𝑓𝑜_𝑝𝑟𝑒𝑑[𝑖]

𝑠𝑢𝑚(𝑖𝑛𝑓𝑜_𝑝𝑟𝑒𝑑[𝑖])
  

 

Below are images of two kinds of sensors. One is an accurate sensor, that can only scan a small 

area at a time. It reduces the uncertainty in that area by a large amount, but since its sensing 

range is small, so is the footprint it leaves and therefore, the uncertainty in the parts it does not 

visit remains high. Taking a mean at every spatial point for all the measurements the agent has 

done, we can create our ‘map’. This is denoted below by GP mean. The closer this map is to the 

groud truth, the better our agent is doing. The ground truth is given in the first image as the 

background, on which the trajectory of the agent is superimposed. The yellow areas in the 

ground truth map are areas where the probability of finding a target is high, while the blue areas 

are low-probability regions. Thus, the groud truth is basically a probabilty map which we want to 

recreate. 

 

Fir. 3.3(a): Accurate sensor: 3.3.1 denotes the trajectory taken by the agent, superimposed on the ground truth 

(actual situation); 3.3.2 shows the uncertainty map when the agent is at the given position after taking the shown 

trajectory; 3.3.3 shows the output map by the agent. 

 

Since this agent is accurate, it needs a longer time and more number of measurements (larger 

number of sampling points) to build an image of the map. But, the image it finally builds is close 

to the ground truth. 
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Fig. 3.3(b): Large-area sensor: 3.3.1 denotes the trajectory taken by the agent, superimposed on the ground truth 

(actual situation); 3.3.2 shows the uncertainty map when the agent is at the given position after taking the shown 

trajectory; 3.3.3 shows the output map by the agent. 

 

Since this agent is sensing a large area at a time but is not as accurate as the one above, it needs a 

much shorter time and fewer sampling points to build an image of the map. But, the image it 

builds is not as close to the ground truth as the accurate sensor. Do note, however, that the map is 

generated much faster here, and uncertainty is lowered in a large area of the map very quickly. 

 

The world map and agent sensing footprint can be discerned visually from the following figure: 

 

Fig. 3.4: World map & agent sensing footprint 

 

For a larger world, agents should cover more areas to find the targets. Agents need to learn how to 

work collaboratively in different world sizes.   
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3.3 Probability and Uncertainty maps 

These two maps are prior information maps we defined to help agents locate the possible 

positions of targets. We randomize these maps at the beginning of each episode. 

We want to use a multimodal map with several local maxima to represent the information, so we 

create a map containing several Gaussian distributions. Considering the world size 𝑛 in the 

previous section, we add 𝑚 (𝑚 ∈ [16,32]) Gaussian distributions into the map. For each 

distribution, the value in each cell of the discrete map can be calculated as equation below: 

 

where μ𝑋𝑚 and μ𝑌𝑚 are the mean of the distribution and reflect the position of the maximum in this 

distribution. ρ𝑚 is a correlation between X and Y; σ𝑋𝑚2 and σ𝑌𝑚2 express the area of the 

distribution. Then we sum all the distributions and maps the probability in each cell to the range [0,1] 

as 

 

And the uncertainty map is created in the same way as the probability map: 

 

The resulting probability map might still contain areas with near-zero levels, which we would 

like to avoid to encourage exploring the whole domain. Thus we also add an option to set a 

minimum value of probability with η ∈ [0,1] to every cell. This is what we term a "baseline" of 

probability. For example, if the baseline value 𝜂=0.1, then each cell will have at least a 10% 

probability to contain a target. An example image of probability and uncertainty maps can be 

found on the next page. 
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Fig. 3.5: Sample probability and uncertainty maps 
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Chapter 4 
 

Heterogeneous Multi-Agent search using CNN 

approach 
 

When a group of heterogeneous agents vary in sensor capabilities, detection accuracy, moving 

speed, we want to take this heterogeneity into account when we distribute/allocate the tasks. 

There are several methods of distributing tasks and dividing the area of the map to be searched 

by each agent: 

 Fourier transform: only in frequency domain (very brief overview given below, beyond 

the scope of this project) 

 Voronoi diagram: only in spatial domain (brief overview given below, part of previous 

work at MARMot Lab, Nus but not a part of this project) 

 Considering methods in both spatial domain and frequency domain: 

o Convolutional kernel (which will be elaborated in this section) 

o Wavelet transform 

4.1 Fourier transform 

Some new detail elements are introduced to the map as a result of the Fourier transform. The 

spatial information in the two maps is not included. The spatial information is basically being 

converted to a different domain and then interpreted. Sensor specifications are not taken into 

account. 

4.2 Voronoi partitioning 

Voronoi partitioning refers to the partitioning of a plane with n points into convex polygons such 

that each polygon contains exactly one generating point and every point in a given polygon is 

closer to its generating point than to any other. Here, our generating point will be the starting 

position of an agent. 



25  

 

Fig. 4.1: Voronoi partitioning 

 

A decentralized multi-agent search system always suffers from the unbalanced workload 

problem, which means the total workload hasn’t been divided equally. For one multi-agent 

system, the perfect balanced workload leads to the highest working efficiency. However, 

balancing the workload for the multi-agent searching system is not easy. It can be influenced by 

multiple factors, like the target region and the initial locations of the drones. Hence, the area is 

decomposed into several sub-regions by Voronoi Diagram and forces the agents to work in their 

own sub-regions. This works well for homogeneous agents with perfect sensors, but falls apart 

when heterogeneity and uncertainty are introduced. 

4.3 Spatial Map decomposition (based on Gaussian processes) 

Gaussian processes are a powerful tool in the machine learning toolbox. They allow us to make 

predictions about our data by incorporating prior knowledge. Their most obvious area of 

application is fitting a function to the data. This is called regression and is used in various fields 

like robotics or time series forecasting. [34] 

We adapted the idea of wavelet transform and convolutional neural networks. Through the 

predefined sensor capability, we can define it as a kernel which no longer needs to be trained to 

extract information from the static prior of the domain and get a responsible map of the different 

types of sensor. That is, for a highly accurate sensor, it will extract more information from the 

high probability area, which means it better suits for detailed exploitation, in contrast, the larger 

smoother kernel will extract area that is better for coverage and exploration. Thus, the model will 

decompose the map into 2 separate areas, each suited to be searched by a particular agent. An 
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example of the responsible map can be found in the figure below. The middle image represents 

the sensor type and the last image shows the velocity that best suits that area. 

 
 

Fig 4.2:  4.2.1 shows ground truth; 4.2.2 shows decomposed map with marked regions (responsible map); 4.2.3 

shows velocities in each region, i.e., which regions should be covered quickly and which ones require detailed 

search. 

 

The figures below denote some results with two distinct sensors. Our goal is to get closest to the 

ground truth map within a time budget by leveraging the heterogeneity of the agents’ 

capabilities.  

 

Fig. 4.3: Results with 2 distinct sensors 

 

The map labeled ‘ground truth’ shows the actual probabilities of finding targets in the region and 

the dots on those maps are sampling points with the color denoting which sensor sampled which 

point. The map on the right titled ‘predict mean’ shows our prediction after the agents have 

sampled all these points. The goal here was just to cover the area as fast as possible and predict 

the result. We can see a visible difference between the prediction and the ground truth and 
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sampling points are seen to be random. 

  

  

Fig. 4.4(a): Map decomposition search; Fig. 4.4(b): Decomposed map areas 

 

Here, the goal was to decompose the map & then search, and the prediction can be seen to be 

markedly closer to the ground truth. The decomposed map is shown alongside, with yellow being 

the region to be searched by one sensor and purple being the region to be searched by another. 

The yellow region has low probability of finding target(s), so it must be searched by the sensor 

with wide coverage area, fast scanning speed but lower accuracy. The purple region on the other 

hand has high probability of finding targets, so must be searched by the slow moving but 

accurate sensor. Sampling points are in specific regions for each sensor – it can be seen that each 

agent is sampling within the areas marked in the decomposition map alongside. 

 

In summary, through a convolution operation, we extract the weight for different sensors and 

create a responsible map to represent priority of these sensor in different area. 
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Fig. 4.5: Map decomposition results 

 

4.4 Technical details of the model 

 The model uses Kullback-Liebler divergence for map-decomposition testing, and cross-

entropy as loss function. 

 We also make use of Gaussian process regression (GPR) from sklearn.gaussian_process, 

which is based on an algorithm by Rasmussen and Williams. In addition to standard 

scikit-learn estimator API, GPR allows prediction without prior fitting & enables easier 

selection of hyperparameters. 

 The ‘kernel’ of each sensor is the same as a convolutional neural network (CNN) kernel, 

and we are presently using a customized CNN for map decomposition. The matrix of 

observations of each sensor is convolved with a constantly-updating map, with 

appropriate weights for the process.  

 Each sensor is basically giving a Gaussian distribution over its sensing area, which is 

being used as the convolution matrix for the CNN. 

 If a sensor takes multiple measurements for a particular point with varied uncertainty, we 

apply a weighted average as described in the previous section. 

 

In the figure alongside, we can see 4 

maps. 

Top left: information map, predicted 

by combining the maps of both the 

sensors 

Top right: responsible map / 

decomposition map for sensor types 

Bottom left: predictions for the area 

searched by the accurate sensor 

Bottom right: predictions for the area 

searched by the broad sensor 
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4.5 Scalability testing and scope for improvement 

 

So far, we have only been dealing with 2 distinct sensors. However, the same model can be 

scaled to several sensors simply by changing one input parameter – the number of agents of each 

type. Tests have been done for 2 fast and 2 slow agents, 4 fast and 8 slow agents and 16 fast and 

16 slow agents. Provided that the area to be searched is large enough, it is observed that the 

efficiency increases and time to decompose the map and search each area decreases as the 

number of agents increases. 

However, too many agents, especially of the fast but low-accuracy type, actually lead to a lower 

efficiency of the search process. In our tested cases, for a 64x64 or 128x128 map, 4 fast and 8 

slow but accurate agents led to the best performance. Even though finding the optimal 

combination of agents is not the goal of this project, it is certainly an area for future work. 

To prove the idea of the efficiency of the method, we have applied an optimization-based 

method, ergodic search. By cutting the prior into pieces and assigning them to different sensors, 

with less optimization iteration, we might be able to achieve the same or better performance as 

ergodic search. Secondly, this method needs to be generalized so that we can adapt the sensor 

capability and changing probabilistic information map and do online guidance of heterogeneous 

agents. Thirdly, implementing learning methods into our problem to replace the parts like how to 

generate the responsible map from the features we get will lead to better overall performance and 

a more ‘self-learning’ model. 
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Chapter 5 
 

Heterogeneous Multi-agent search with reinforcement 

learning 
 

The situation here is described below. These are the outcomes of the CNN based approach and 

now the task is to implement reward-based trajectory optimization for the agents. We now 

consider a realistic scenario. There are two types of agents - unmanned aerial vehicles (UAVs) 

and unmanned aerial vehicles (UGVs). UAVs have the advantages of their high maneuverability, 

which suits the tasks such as domain coverage, area surveillance. However, sensors like cameras, 

thermal imagers may produce inaccurate data at a high altitude. UGVs, on the other hand, can 

compensate for the weaknesses of UAVs by measuring from a close distance.  

Exploration scenario: 

 Agents start from an empty prior. 

 The size of high information area varies a lot. 

 Heterogeneous agents search this domain, and the objective is to decrease the searching 

time by coordination among agents. 

 

Goal: Get an accurate belief of the map while using less measurement by pushing specific agents 

to specific areas. 

 

Searching procedure:  

1. Two heterogeneous agent start from random locations.  

2. One moves faster and is equipped with a lager fuzzy sensor; another one is slower and 

equipped with small accurate sensor. 

3. During search, agents take measurements and build belief. 

4. We fuse the beliefs of these two agents and calculate where a specific agent better suits. 

5. Redo step 3-4 until all targets are marked on the map. 
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5.1 Implementing reward structure 

In order to implement reward-based trajectory optimization, i.e., add in reinforcement learning to 

our searching process, the way the trajectory of an agent is evaluated needs to be changed. A cost 

is associated with every trajectory step, and consequently every path that an agent takes. This 

cost is associated with: 

 the position of the agent 

 the region of the decomposed map that the agent is currently in 

 the GP that the sensor has 

 the type of agent 

 the measurement at that point 

 whether the agent is within the boundaries of the world 

 

We implement a region reward for the agent first. The agent gets a positive reward if it is in the 

area of the map it is best suited to search, and a negative reward if it is in the area another agent 

is better suited to search. This reward also depends on the region boundaries. 

A measurement or sample reward is added based on which point is sampled. If the 

measurement at that point leads to a higher probability, or lowers the uncertainty significantly in 

the map, than it gets a positive reward. Otherwise, it will get a negative reward. 

We implement a map-boundary penalty. If any agent goes out of bounds of the world, then it will 

be penalized. 

 

This reward is obtained at each step. We store this reward and find the sum of the rewards 

obtained throughout a particular trajectory to get the value function for that trajectory. The goal 

is to obtain maximum final reward (i.e. sum of all rewards at all steps), as in every reinforcement 

learning algorithm. Temporal difference learning is the reinforcement learning algorithm 

implemented to do this. Below is a short description of TD learning. 

5.2 Temporal Difference Learning 

TD Learning combines the ideas of Monte Carlo methods with those of dynamic programming 

(DP). Like Monte Carlo methods, TD methods can learn directly from raw experience without a 

model of the environment’s dynamics. Like DP, TD methods update estimates based in part on 
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other learned estimates, without waiting for a final outcome. Hence, the next position the agent 

should go to in its current trajectory can be evaluated based on the immediate outcomes, without 

waiting for the whole trajectory to finish. This leads to faster updates at every step and 

implements an online trajectory planning of sorts. 

5.3 Interactive Tool to see Map Resolution in Real Time 

 

Fig. 5.1: GUI for visualizing map resolution 

 

Using TKinter, a visual tool was made where clicking on different places on the map is like 

sampling of those points by an agent, and results in the prediction being changed after each click. 

The figure shows the result after 15 clicks on some points chosen by the user (randomly chosen 

by me in this case). It also shows the KL divergence of the current situation and the kernel size 

of the sensor. Noise here is the inherent noise in any sensor and can be changed by tweaking the 

number. This leads to more distorted or clearer maps, based on what the user inputs. 
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Chapter 6 
 

Results & Discussion 
 

The results obtained from each of the sections have been listed with the conclusions in the 

following sections. 

6.1. Map Decomposition 

 

Fig. 6.1: Searching process 

 

The trajectories of the agents are visible in the first figure labelled ‘Ground Truth’. The ground 

truth is given in the first image as the background, on which the trajectory of the agent is 

superimposed.The second figure shows the sampled points and how our prediction has evolved 

as more points have been sampled. The map decomposition gets better as the agents move and 

the final result is visible in the figure titled ‘Responsible map’. The variance of the entire region 

goes down as more points are sampled, as seen in the figure titled ‘Predict var’. 
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Fig. 6.2: Exploration process 

 

A similar analysis is visible for the exploration process, where the map is not decomposed. 

Comparing the sampling points, we can see that agents are focusing on the areas they are better 

suited to search when we carry out map decomposition. With sufficient time, both will converge 

to the ground truth. But, the decomposition search would converge faster than just exploration. 

6.2. Heterogeneous RL-based search & decomposition results 

The figure on the next page shows the results of heterogeneous agents searching for targets with 

map decomposition, having 2 fast agents and 2 slow but accurate ones. With an RL-based 

strategy guiding the agents’ trajectories, the map decomposition is sharper and faster. However, 

note that the central area with a higher probability of finding the targets given more attention by 

both the types of agents, especially the accurate sensor agents. This is because the reward there is 

so high compared to surrounding areas that it inhibits exploration of other areas to an extent and 

instead makes the agents focus on searching that area further. Also, since the accurate agent 

decreases uncertainty in the areas it samples by a large amount and is constantly focused on the 

higher probability area, its rewards and the trajectory they lead to seem to be dominating the end 

result. Still, it is a fact that dispersed faraway points with high probability of finding a target are 
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tough to be searched by a multi-agent system like this one and the model is doing well on the 

central part, so it is a positive result. 

 

Fig. 6.3: Heterogeneous Decomposition Results 

 

6.3. Heterogeneous agents task allocation 

This section shows how the agents are allocating tasks on the map and the overall way the map 

will be searched by combining these tasks. 

 

Different tasks have requirements for a specific agent. The areas covered by an agent while 

completing a task may overlap with those covered by another agent. Below we can see three 

agents undertaking three different tasks, and the areas covered by the three of them overlap to 

cover the whole map. The separate maps for each agent (red, green and blue) also show the 

trajectories each agent took while searching that area, superimposed on the ground truths for 

each task. The maps in the lower row are the predictions by each agent. The maps on the right 

are a combination of the 3 individual maps. Hence, the rightmost one in the top row denotes the 

ground truth while the one below it denotes the prediction. 
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Fig. 6.4(a): Task allocation - Trial 1 

 

 

Fig. 6.4(b): Task allocation - Trial 2 
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Chapter 7 
 

Conclusion & Scope for Future Work 
 

This project was attempted with an objective of creating a method for using heterogeneous teams 

of agents to search an area for targets, and was part of a larger project at MARMot lab, NUS. 

With the guidance and help from my partner, a Ph. D student at the lab, the project was able to 

reach completion, and will be further explored and utilized in the larger parent project. A 

thorough literature review has been the bedrock for this project. Since Heterogeneous searching 

is still a nascent field compared to its Homogeneous counterpart, this project will benefit future 

researchers and students. 

From an undergraduate student’s point of view, this project helped to acquire knowledge regarding 

robotics, searching procedures and the field of reinforcement learning, at the same time giving a 

firsthand experience of the steps involved in the research methodology while getting acquainted 

with the variety of software utilized. Various Python modules, along with MATLAB and ROS to 

some extent have been used in this project. 

 

Heterogeneous Multi-Agent Search is a very active research field, and is deployable in various 

scenarios, and we have already documented papers detailing its use in: 

• Agriculture 

• Search and rescue operations 

• Searching in hazardous environments 

• Military applications like detection of landmines 

• Aerial scanning 

Search and rescue (SAR) operations, for example, can take significant advantage from 

supporting or fully independent autonomous robots and multi-robot systems. These can aid in 

mapping and situational assessment, monitoring and surveillance, establishing communication 

networks, or searching for victims. 
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There are several major areas with a huge potential of future investigation in this project. 

 

Starting with things specific to the project and some technicalities,  

 GP may not be the best way to simulate accurate or inaccurate sensor measurements, 

because more results always improve the GP prediction. But in most scenarios in search 

and rescue, staying in the right place is more important. A different distribution in place 

of the Gaussian, or a totally different approach might help to improve this part. 

 Agents tend to gather, which means further tuning of the cost function may be required. 

Data-driven method can also improve the performance when we want to decompose the 

area for more types of agents, where learning could make a big difference. 

 

In a more general sense,  

 The RL method used here is quite basic, so this is an area where significant improvement 

can be achieved. 

 Teams of agents can be used, which opens the door to a host of possibilities based on 

agent coordination, task allocation, hierarchy of the agents and team structure.  

 Coalition formation has not been explored. 

 In a real world scenario, hardware considerations and communication comes into play. 

Here, we have assumed perfect communication among the robots and full availability of 

all information globally. If constraints in any of these fields are present, then the problem 

becomes more complicated. 
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