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Preface 

 

This project on “Automated Classification of Focal and Non-focal EEG Signals using 

Fourier-Bessel Series Expansion” is prepared under the supervision of Dr. Ram Bilas 

Pachori and Dr. M. Tanveer. 

An entirely novel and unprecedented method was theorized and implemented for the two 

class classification problem of focal and non-focal electroencephalogram (EEG) signals. 

In this classification problem we have involved various steps such as computation of 

difference of bivariate EEG signals, signal decomposition, features extraction and 

classification using a binary classifier.  

This project comprehensively explains the entire implementation of the method in a step-

by-step manner. The difference of bivariate EEG signals increase the discrimination 

between two class of focal and non-focal EEG signals. Fourier-Bessel series expansion 

technique is used to decompose these difference EEG signals. In the features extraction 

process, we have computed 17 different features for classification purpose. Support 

vector machine (SVM) is used for the classification of focal and non-focal EEG signals 

along with its least square formulation. The proposed method shows a maximum 

classification accuracy of 84.25%. The automated detection system can also be 

implemented for successful clinical purpose for the classification of focal and non-focal 

EEG signals.   
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Abstract 

 

In this project, we have proposed a new method for automated classification of 

focal and non-focal electroencephalogram (EEG) signals. The dataset used in our 

work contains bivariate EEG signals of both focal and non-focal classes. These 

signals are first employed to compute the difference of bivariate EEG signals. The 

difference of bivariate EEG signals is computed to increase the discrimination 

between focal and non-focal classes.  

The difference of bivariate signals is decomposed using Fourier-Bessel series 

expansion. The coefficients from this decomposition process are further 

segmented into 5 parts. These 5 small segments of the Fourier- Bessel series 

coefficients are considered for the features extraction process in which 17 different 

features are computed.  

The extracted features from focal and non-focal EEG signals are used for 

classification. The binary classifiers such as support vector machine (SVM) and 

least square support vector machine (LS-SVM) along with various kernel functions 

such as linear, polynomial, and radial basis function (RBF) have been implemented 

in our work for the comparison of obtained classification accuracies. A 10-fold 

cross-validation method is used to verify the performance of the classifiers in term 

of accuracy.  
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Chapter 1. Introduction 

 

The human body relies on the electrical signals that are generated in the brain 

for the entirety of its functions. Abnormal neuronal activity in the brain results 

in epileptic seizure and occurrence of at least one such seizure may results in 

epilepsy [1]. Generalized epilepsy is the one where the whole part of the brain is 

affected and the other one is partial or focal epilepsy which involves localized 

epileptic discharge [2].  Epilepsy is the most common neurological disorder and 

more than 50 million patients are suffering from its worldwide [3]. Seizures 

involved with focal epilepsy cannot be controlled with medications and the 

only way to cure is to locate the focal epileptogenic area and surgically remove 

it [4].  

 

The electroencephalogram (EEG) signals measure the electrical activity of the 

brain. The EEG signals can be recorded in two manners, the first one is scalp 

and another one is intracranial EEG recordings [5]. Generally, intracranial EEG 

recording is used for the purpose of locating the focal epileptogenic zone [6]. 

Various computer-aided detection techniques have been developed to 

understand the dynamics based on the EEG signals and the techniques 

employed in these methods involve advanced signal processing methods and 

they are useful for the localization of the epileptogenic focal area of the brain 

[7-15]. In the literature, average sample entropies and average variance of 

instantaneous frequencies features computed from intrinsic mode functions 

(IMFs) extracted by empirical mode decomposition (EMD) have been fed to 

least square support vector machine (LS-SVM) classifier with radial basis 

function (RBF) kernel. A classification accuracy of 85% has been achieved by 

this method for the focal and non-focal EEG signals [14]. In another work [15], 

average entropy features like Shannon wavelet, fuzzy, Tsallis wavelet, Renyi 

wavelet associated with EMD has yielded a classification accuracy of 87% on 50 

EEG signals database. In [13], the EMD is being associated with log-energy 
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entropy feature and the usage of K-nearest neighbor (KNN) classifier has 

resulted in a classification accuracy of 89.4% on 3750 EEG signals database. In 

another work [7], the empirical wavelet transform (EWT) has been deployed to 

decompose both focal and non-focal EEG signals into rhythms then the areas 

obtained from the reconstructed phase space plot of rhythms corresponding to 

different central tendency measures are used as features with LS-SVM classifier. 

The obtained classification accuracies are 90% and 82.53% for 50 and 750 focal 

and non-focal EEG signals, respectively. The decision support system based on 

Tunable-Q wavelet transform (TQWT) method has been proposed in [9] which 

resulted in a classification accuracy of 95% for full dataset. 

The discrimination between focal and non-focal EEG signals is a difficult and 

time consuming task by visual inspection. Thus, a signal decomposition 

method is imperative to effective study of these EEG signals and classifies them. 

In this work, the main focus is to propose a new methodology for automated 

classification of focal and non-focal EEG signals using Fourier-Bessel series 

expansion. The Fourier-Bessel (FB) series coefficients of bivariate EEG signal is 

further segmented into 5 parts for the features extraction process and 17 

distinguishing features are computed. These features are used for the 

classification of focal and non-focal EEG signals using two classifiers namely 

SVM and LS-SVM.   

The methodology used in our work is entirely unprecedented and has been 

used for the first time for binary classification of EEG signals. The different 

steps involved in the project can be understood through the block diagram 

sequentially. 
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Figure 1.1. Block diagram of the proposed method. 
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Chapter 2. Methodology 

 

The entire methodology of our work is divided into four major sections. Section 

2.1 provides the database description and signal processing that has to be done 

before performing signal decomposition. Section 2.2 explains the signal 

decomposition method implemented in our work. The decomposition of 

bivariate EEG signals is followed by the extraction of features, which is 

explained in section 2.3. The last but a vital component of our methodology 

involves implementation of binary classifiers for training and testing of these 

EEG signals based on the features extracted. The different classifiers used in our 

work have been explained in sub-sections 2.4.1 and 2.4.2. 

 

 

2.1. Dataset Description 

 

The dataset used in our work is obtained from (www.dtic.upf.edu/ralph/sc/) 

which is a publicly available database consisting of two-channel intracranial 

EEG recordings of five patients suffering from drug-resistant focal epilepsy. 

This dataset consists of bivariate (x and y) EEG signals. Each bivariate EEG 

signal has 10,240 samples with a sampling frequency of 512 Hz [16]. Figures 2.1 

and 2.2 illustrate the x and y time series of focal EEG signals, Figures 2.3 and 2.4 

illustrate the x and y time series of non-focal EEG signals. 

In this work, we have used 400 focal and 400 non-focal bivariate EEG signals 

for the classification purpose. To increase the discrimination between these 

bivariate EEG signals, an efficient technique is to compute the difference (x-y) 

of bivariate (x and y) from focal and non-focal EEG signals as suggested by [9, 

13]. Figures 2.5 and 2.6 represent the difference (x-y) time series of focal and 

non-focal EEG signals respectively. 
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Figure 2.1.  x-time series of focal EEG signal. 

 

 

Figure 2.2. y-time series of focal EEG signal. 

 



9 | P a g e  
  

 

   

Figure 2.3. x-time series of non-focal EEG signal. 

 

 

 

 

Figure 2.4. y-time series of non-focal EEG signal. 
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Figure 2.5. Difference (x-y) time series of focal EEG signals 

 

 

 

Figure 2.6. Difference (x-y) time series of non-focal EEG signals 
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2.2. Fourier-Bessel Series Expansion 

 

Decaying and aperiodic Bessel functions form the basis for the Fourier-Bessel 

series expansion. The zero-order Fourier-Bessel series expansion of any 

discrete-time signal x(n) over an interval [0,N] can be written as [17], 

 ( )   ∑   

 

    

  (
   

 
)  

 

The coefficients Cm are calculated as, 
 

     
 ∫   ( )  (

   

 
)  

 

 

     (  )  
, 

 
 

where J0(.) and J1(.) represent the zero-order and first-order Bessel functions 

respectively and (λm ; m = 1, 2….M ) are the roots of J0(λ)=0. 

The FB series coefficients Cm are unique for a given signal, similarly as the 

Fourier series coefficients are unique for a given signal. However, unlike the 

sinusoidal basis functions in the Fourier series, the Bessel functions decay over 

time. This feature of the Bessel functions makes the FB series expansion 

suitable for non-stationary signals [18, 19, 20]. 

Thus, the obtained difference time series of EEG signals is subjected to FB 

series expansion to decompose the signal. In our work, first 500 samples of each 

difference time series EEG signal were considered and FB coefficients were 

computed corresponding to these 500 samples.  

 

2.3. Feature Extraction 

 

Feature extraction is the most important step involved in the discrimination 

process of focal and non-focal bivariate EEG signals. The coefficients obtained 

from FB decomposition are large in number. Therefore, there is the need to 
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derive efficient features from these coefficients that can be used to accurately 

distinguish between the two EEG signal classes. In our work, for each signal, we 

have derived 17 distinguishing features from decomposed series spectrum. 

These computed features, depending on class being focal or non-focal, uniquely 

define the characteristics of the spectrum for each class.  

These 17 features were selected after extensively experimenting within a large 

group of theoretical features, as these were able to most distinctly differentiate 

between the two signal classes. 

The coefficients of decomposed bivariate EEG signals were segmented into five 

smaller parts of equal length. The length of each part was computed 

experimentally with a length of approximately 60 samples yielding the most 

efficient features in such a way that first segment consists of (1-60) samples, 

second segment consists of (61-120) samples, third segment consists of (121-180) 

samples, fourth segment consists of (121-180) samples, fifth segment consists of 

(181-240) samples. Features such as first segment peak, second segment peak, 

third segment peak, fourth segment peak, fifth segment peak and local first 

peak index, local second peak index, local third peak index, local fourth peak 

index, local fifth peak index were computed where the first five features 

represent the coefficient of peak value in the five respective segments and the 

latter five represent the corresponding local indices of the above peaks.  

Further, the whole spectrum is considered for computation of more features 

such as least squared error, first absolute peak, second absolute peak, third 

absolute peak and first absolute peak index, second absolute peak index, third 

absolute peak index where the absolute peaks correspond to first, second and 

third absolute maximum values of FB coefficients and the absolute peak indices 

correspond to the indices of these absolute maximums. It is to be noted here 

that the absolute peak indices are measured from the start of the spectrum in 

this case. These features are used as input arguments to a binary classifier. 

Depending on these features, the classifier classifies the signals as focal or non-

focal.  
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2.4  Binary Classification 

 

The techniques used in binary classification are explained in the following subsections. 

2.4.1 Support Vector Machine 

 

Support vector machine (SVM) is a binary classifier that works on the principle 

of supervised learning. For a given dataset with each example marked with the 

respective class out of the two, an SVM algorithm creates a training model by 

generating a decision boundary on to a higher dimensional hyper-plane. SVM 

maps the training examples as points in space, creating a decision boundary 

such that it has a maximum separation with all the training points, and there is 

a clear and wide gap between the points corresponding to the two classes.  

The basic form of SVM classifier can be expressed as  [21, 22] 

 ( )      (∑     (    )   )

 

   

 

where a, βi, K(x, xi) represent the bias, Lagrange multipliers, kernel function 

respectively. 

2.4.2 Least Square Support Vector Machine 

 

The Least square support vector machine (LS-SVM) is a least squares 

formulation of the SVM classifier. For two-class classification problem in SVM 

classifier, the discrimination function can be written as follows [23, 24]: 

 ( )      (∑     (    )    )

 

   

 

where ui, xi, αi, b, and K(x, xi) represent the ith input vector, ith output vector, 

Lagrange multiplier, bias, and kernel function, respectively. 
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In this work, we have used the following kernel function together with LS-SVM 

classifier, which can be expressed as follows: 

1. Linear kernel  [22] 

K(x , xi) = xi
T x 

2. Polynomial kernel of degree ‘d’  [22] 

K(x , xi) = (1 + xi
T x)d     where ‘d’ is the order of the polynomial. 

3. RBF kernel  [22] 

K(x , xi) = exp(-||x – xi||
2/σ2)      where ‘σ’ is the RBF kernel parameter. 

In our work, we have used SVM classifier and its least squares formulation 

which is LS-SVM classifier. SVM was implemented with RBF kernel, whereas 

LS-SVM was implemented with linear, polynomial and RBF kernels. 
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Chapter 3. Results and Discussion 

 

Decomposition of EEG signals using FB series expansion yields the coefficients 

whose spectrum can be represented by Figures 3.1 and 3.2 respectively for focal 

and non-focal EEG signals.  

 

 

Figure 3.1. Fourier Bessel series spectrum of a difference focal EEG signal 

 

 

Figure 3.2. Fourier Bessel series spectrum of a difference non-focal EEG signal. 
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With SVM, RBF kernel was used, whereas with LS-SVM, linear and polynomial 

kernels were also used along with RBF kernel. Also, training of the classifiers 

was done using 10-fold cross-validation. 

Generally, training of classifiers using the concept of 10-fold cross-validation 

involves dividing the training dataset into 10 equal parts. Out of the 10 parts, 9 

parts are chosen for the training of classifier while the remaining dataset part is 

chosen for testing on the trained classifier [25]. The classification accuracy is 

noted. 

In our work, this process is continued for nine more iterations where the 

dataset part for testing is changed, and training dataset is chosen as the rest of 

the nine parts. The accuracy is noted for each iteration. The final accuracy is 

the mean of all the accuracies obtained.  

Through our methodology, maximum binary classification accuracy was 

obtained using RBF kernel in LS-SVM, while the least accuracy was obtained 

using linear kernel. With RBF kernel, most optimum values of σ2 and γ which 

yielded the best accuracy were 6.2 and 8 respectively. With polynomial kernel, 

the best accuracy was obtained for a kernel of degree 3. With linear kernel, the 

most optimum value of γ was 0.32.  

Further, accuracies obtained from classification using SVM and LS-SVM were 

compared. The maximum classification accuracy obtained using our 

methodology was 84.25%. Thus, our work and methodology provides a good 

alternative among other proposed methods for distinguishing focal and non-

focal EEG signals. The classification accuracies obtained are summarized in the 

table below.  
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Table 3.1. Comparison of classification accuracies for different classifiers with 

400 focal and 400 non-focal EEG signals dataset. 

Also, training and testing was done using datasets of size 100, 200, 500 and 800 

with equal number of focal and non-focal signals. The results are illustrated in 

the figure below. 

Figure 3.3. Maximum classification accuracies compared for different dataset 

sizes consisting of focal and non-focal bivariate EEG signals. FE represents focal 

EEG and NFE represents non-focal EEG signals. 

  

 

Classifier Accuracy 

SVM        RBF Kernel                                  76.74% 

     

LS-SVM 

RBF Kernel 84.25% 

Polynomial Kernel 
78.4% 

Linear Kernel 73.5% 

70.00%

72.00%

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

50 FE - 50 NFE 100 FE - 100 NFE 250 FE - 250 NFE 400 FE - 400 NFE

Maximum Accuracy 

Maximum Accuracy
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Chapter 4. Conclusion 

 

In our work, we used Fourier-Bessel series expansion as a method of signal 

decomposition. Features were extracted from the spectrum of these coefficients, 

which were used in the training and testing of classifiers.  

With the two classifiers implemented, results came out better with LS-SVM 

using RBF kernel. Efficient classification of EEG signals into focal and non-focal 

category would result in an ease of finding epileptic region of the brain. This 

would in turn mean, more accurate detection with less time.  

With a maximum classification accuracy of 84.25%, our methodology proves to 

be good alternative among other approaches for efficient detection of focal and 

non-focal EEG signals.  

In the future, we are planning to continue this work, will be introducing new 

mathematical features with the objective to increase the classification accuracy. 

Also, a new more efficient classifier will be implemented with these features to 

further increase the accuracy. 
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