

ASSESSMENT OF DATA AND INTERFACING

OF SERVICE-ORIENTED SYSTEM WITH

SENSORS

Ph.D. Thesis

By

ROBIN SINGH BHADORIA

(Roll No. 1301201005)

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JANUARY 2018

ASSESSMENT OF DATA AND INTERFACING

OF SERVICE-ORIENTED SYSTEM WITH

SENSORS

A THESIS

Submitted in partial fulfillment of the

requirement for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

ROBIN SINGH BHADORIA

(Roll No. 1301201005)

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JANUARY 2018

ACKNOWLEDGEMENTS

First of all, I would like to thank the ultimate source of energy, the nature, for blessing and

motivate me to pursue my research work. Then, I would like to thank my supervisor,

Prof. Narendra S. Chaudhari, for his valuable guidance, encouragement, and direction throughout

my thesis work. It is my great honor and pleasure to work under the esteemed guidance of

Prof. Narendra S. Chaudhari. I would like to express my gratitude towards my co-supervisor,

Dr. Amod C. Umarikar and sincerely thanks for kind leading suggestions to complete my research

work.

I would also like to show my heartfelt obligations towards my PSPC committee members,

Dr. Aruna Tiwari and Dr. Ram Bilas Pachori for their interesting discussions and suggestions

towards my research work. Also, I extends my deep regard to Dr. Kapil Ahuja, for his support

and great help during my research work at IIT Indore. I would like to pay my sincere thanks to

Head of the Department, Dr. Surya Prakash for his support. Overall, I like to thank to everyone

who has helped me to conduct my research at IIT Indore.

I would like to express my gratefulness to Prof. Geetam S. Tomar, Director, Machine Intelligence

Research (MIR) Lab, Gwalior, India who had sponsored me for having my PhD Programme at

IIT Indore.

Whatever little I have achieved in my life, the credit goes to my lovely family members: my

parents, my grandparents, my wife and my brother whom I take great pride in dedicating this

thesis. They have always been a source of inspiration for me and have kept trust and faith in

whatever I did.

Finally, I would like to thank all the academic and non-academic staff members of IIT Indore

who have made my stay easy at IIT Indore.

Robin Singh Bhadoria

Dedicated to My Beloved Family

i

 Contents

ABSTRACT…………………………………………………………………………………….iii

LIST OF FIGURES…………………………………………………………………………….iv

LIST OF TABLES……………………………………………………………………………...vi

ACRONYMS……………………………………………………………………………………vii

Chapter 1: Introduction………………………………………………………………………….1

1.1 Overview for Service-Oriented Systems…………………………………………………........2

1.1.1 Opportunity with ESB…………………………………………………………………....3

1.1.2 ESB as Vibrant Middleware Solution…………………………………………………....4

1.1.3 Foundation Principle for ESB…………………………………………………………....6

1.2 Wireless Sensor Networks and its feasibility ………………………………………………....9

1.2.1 Evolution of Sensor Data over the Web………………………………………………...10

1.2.2 Sensor Data Processing over the web…………………………………………………..12

1.3 Research Problem Description ………………………………………………..………...…...13

1.4 Motivation……………………………………………………………………………………15

1.5 Organization of the Thesis …………………………………………………………………..16

Chapter 2: Review and Literature Survey………………………………………………….....18

2.1 ESB Features & Analogy …………………………………………………………................18

2.2 Comparison of Exiting ESBs ……………………………………………………………..…24

2.2.1 Criteria for comparison…………………………………………………………………29

2.3 Literature Survey for Sensor Web Interfacing……………………………………………….32

2.4. Extensive Survey for Sensor and Service-Oriented System Models ……………………….36

2.5 Discussion……………………………………………………………………………………39

Chapter 3: Design and Architectural Framework for Enterprise Service Bus……………..40

3.1 Design and Architectural Framework…..40

3.1.1 Essential Design principles for ESB…………………………………………………....40

3.1.2 Centric view of ESB………………………………………………………………........43

3.1.3 What does ESB actually comprises…………………………………………………….47

3. 2 Message Routing Functionality in ESB……………………………………………………..51

3.2.1 Classification for Message Routing…………………………………………………….54

3.3 Threat, Prevention& Gap with ESB………………………………………………………….59

3.4 Discussion……………………………………………………………………………………62

Chapter 4: Mathematical Prototype for Sensor Web Integration in Service-Oriented

System…………………………………………………………………………………………...64

4.1 Streaming Data for Sensor Web Integration…………………………………………………64

4.2 Architectural Service Modeling ……………………………………………………………..68

4.2.1. Semantic Specifications………………………………………………………………..68

4.3 Formal Architectural Semantic for Sensor Data……………………………………………..69

4.3.1. Global Resources Configuration……………………………………………………….69

4.3.2 Service Execution configuration………………………………………………………..70

4.3.3. Execution State………………………………………………………………………....73

4.3.4 Execution Route………………………………………………………………………...74

ii

4.4 Service Interaction Semantic……………………………………………………………...75

4.4.1 Interaction Signatures…………………………………………………………………...75

4.4.2 Signature Interpretation…………………………………………………………………76

4.4.3 Interaction Protocol……………………………………………………………….…….77

4.4.4 Communication Connector……………………………………………………………...78

4.5 Service Semantic for Sensor Data Updation………………………………………………79

4.5.1 Semantics for Service Container……………………………………………………..80

4.6 Results & Analysis for Service Semantics ……………………………………………….82

4.7 Discussion…………………………………………………………………………………88

Chapter 5: An Emphatic Sensor Data Handling using Enterprise Service Bus………...89

5.1 Sensor Network Information……………………………………………………………...89

5.2 Architectural Design for Intelligent Sensor Network (IntSeN) using ESB……………….92

5.2.1 Mote Connections in Wireless Sensor Network………………………………………...95

5.2.2 ESB Mediation Level…………………………………………………………………...96

5.2.3 Back-end Processing Level……………………………………………………………..97

5.2.4 End-User Level…………………………………………………………………………98

5.3 Result & Evaluation for Proposed Intelligent Sensor Network (IntSeN) ………………..99

5.3.1 Density Threshold …………………………………………………………………….100

5.3.2 Time Tolerance ……………………………………………………………………….102

5.3.3 Type Classification...………………………………………………………………….106

5.3.4 Density Threshold…..108

5.4 Stabilized Sensor Data Accessibility using “IntSeN” Android App…………………….111

5.5 Discussion………………………………………………………………………………..114

Chapter 6: Conclusions and Scope for Future Work …………………...........................116

6.1 Conclusions……………………………………………………………………………...116

6.2 Future Research Scope…………………………………………………………………..118

REFERENCES …………………………………………………………..............................119

LIST OF PUBLICATIONS……………………………………...137

iii

Abstract

Data is a key factor in delivering service across the networks. It is an important aspect in handling

service interaction which governed by instructions to facilitate legacy application like wireless

sensor network. Such data is generally produced in passes and it is used as interaction parameters

for the communication between two parties. This integration between multiple service applications

could be strengthened by adopting efficient and effective mechanism for these web services. The

Enterprise Service Bus (ESB) satisfies all the rules for handling these web services and it also

extends the feature for service-oriented architecture (SOA) like routing, protocol transformation,

mediation support for existing IT assets and many more.

ESB is middleware framework that helps in designing and developing web services through

which software intermediary could be possible. This could also be best solution for handling data

from sensors and provide underlying support for protocol conversion between gateway and cloud.

ESB is a kind of depletion layer that efficiently handles various overheads during communication.

This thesis investigates the detailed issues about ESB and its implication with different mediation

solution. This also includes essential design principles, architectural framework, routing

functionalities, and survey for existing ESBs available in the market.

This thesis also presents the detailed mathematical formulation that derives the relationship

between multiple services (also termed as service components) for handling data through common

and shared platform of ESB. Data from various sensors is collected through gateway and it need to

check for noise/error before storing such data to global repository. Such noise/error in data may

arise due to sudden voltage fluctuation, lose connection, short circuit and link breakage problems.

This fluctuation in the data value creates unstable, discontinuity and noisy and need to be stabilize

before storing.

This thesis advises an “Intelligent Sensor Network” (IntSeN) methodology which is multi-

level architecture for handling sensor data and filter data on the basis of delay, density, type and

value threshold. Sensed data may contain noise or error due to environmental hindrances or

voltage fluctuations that must be reduced for stabilizing an overall system. Such methodology

reduces the relatively error by more than 50 % that occurred during sensing process.

iv

LIST OF FIGURES

Figure 1.1: Positioning of ESB in Relation to Service Components and Infrastructural

Resources………………………………………………………………………..5

Figure 1.2: Relationship of Infrastructural Resources and Web Service Consumers with ESB as

middleware……………………………………………………….......................7

Figure 1.3: Scenario for Wireless Sensor Networks…………………………………………...10

Figure 2.1: Systematic Flowchart of Literature Work for Sensor Data Assessment

………………………………………...33

Figure 2.2: Systematic Flowchart of Literature Work for Handling Sensor Data with

Interfacing of Service-Oriented System ………………………………............37

Figure 3.1: ESB Infrastructural Concept………………………………………………………41

Figure 3.2: Service Stack in ESB……………………………………………………………....43

Figure 3.3: Inside View of ESB………………………………………………………………..47

Figure 3.4: Message Routing in ESB…………………………………………………………..53

Figure 3.5: Content-Based Routing Mechanism……………………………………………….55

Figure 3.6: Pattern-Based Routing Mechanism………………………………………………..55

Figure 3.7: Dynamic Routing Mechanism in ESB…………………………………………….57

Figure 4.1: Sensor Data Streaming over Local and Cloud Server……………………………..65

Figure 4.2: Interaction Pattern Service for Insurance Company..72

Figure 4.3: Service Flow Semantic for update Sensor Data…………………………………..79

Figure 4.4: Global Service Configuration for Multiple Instances……………………………..83

Figure 4.5: Service Interaction for Multiple Instances………………………………………...84

Figure 4.6: Service Execution for Multiple Instances……….………………………………...85

Figure 4.7: Accuracy Index for Multiple Instances………….………………………………...86

Figure 4.8: Time Incurred for Multiple Instances…………….……………………………….87

v

Figure 5.1: General percept for Information Handling using ESB…………………………....90

Figure 5.2: Sequence diagram for Information handling through ESB……………………….91

Figure 5.3: Proposed Architectural framework for Intelligent Sensor Network (IntSeN)…….94

Figure 5.4 Service Workflow between Sensor Network and ESB……………………………98

Figure 5.5: Pressure Sensor Data (Volume)………………………………………………….101

Figure 5.6 Temperature delay sensory data…………………………………………………..104

Figure 5.7 Temperature sensory data types…………………………………………………..107

Figure 5.8. Temperature sensory data (value)………………………………………………..109

Figure 5.9. Main Dashboard for “IntSeN” Android App…………………………………….111

Figure 5.10. Choice for sensor selection for two different Campus at IIT Indore…………...112

Figure 5.11.Pressure Data for North Campus at IIT Indore………………………………….113

vi

LIST OF TABLES

Table 2.1: Shows Monitoring Framework, comparative issue and Integration of SOA with

ESB…………………………………………………………………………….19

Table 2.2: Shows Capacity, Planning and Testing with Existing ESB………………………...21

Table 2.3: Presents Security, Policy, audit and logging facility for ESB……………………...22

Table 2.4: Routing, Protocol Transformation and Pattern Recognition in ESB……………….23

Table 2.5: Market overview, handling and control management for available set of ESBs…...28

Table 2.6: Comparison criteria for existing ESBs in the market………………………………31

Table 4.1: Transition Axiom and Rule for Service Flow………………………………………80

Table 5.1: Pressure Sensor Data (Volume)…………………………………………………..101

Table 5.2: Temperature Sensor Data (Delay)………………………………………………...105

Table 5.3: Temperature Sensor Data (Type)………………………………………………….107

Table 5.4: Temperature Sensor Data (Value)………………………………………………...110

Table 5.5: Relative error of filtered data……………………………………………………...114

vii

ACRONYMS

XML: Extensible Markup Language

JMS: Java Messaging Service

TIBCO: The Information Bus Company

EAI: Enterprise Application

JMX: Java Management Extension

WSN: Wireless Sensor Network

SOA: Service-Oriented Architecture

ESB: Enterprise Service Bus

J2EE Connector Architecture (JCA)

J2EE: Java to Enterprise Edition

HTTP: Hyper Text Transport Protocol

SOAP: Simple Access Object Protocol

FTP: File Transfer Protocol

QoS: Quality of Service

EIP: Enterprise Integration Pattern

SE: Service Engine

IntSeN: Intelligent Sensor Network

BPM: Business Process Management

JDBC: Java Data Base Connector

OGC: Open Geospatial Consortium

SWE: Sensor Web Enablement

viii

SDK: software Development Kit

IoT: Internet of Things

BPMS: Business Process Management System

DoS: Denial of Service

SLA: Service Level Agreement

B2B: Business to Business

1

Chapter 1

Introduction

In an era of rapidly changing technology, there is a demand for service

integration of different application domains that share various IT assets

within and outside organization. A consequence of this change in demand

is highlighted in [3, 22] which are as follows:

¬ If an organization expands its business, then it requires restriction-

free environment for its business.

¬ Changing demand of market needs elastic, scalable and compliant

system architecture.

¬ Complete utilization of existing IT assets.

¬ Compliance with maintenance, reconfiguration, and reusability of

system services.

In the context of issues highlighted above, a service-oriented system

would be an appropriated solution for layered architecture to service

integration, reusability, and scalability to multiple services. Due to the

distributed behavior of such systems, it has no region boundaries i.e.

services from different domains can interact with each other

independently. It also supports multiple data formats that help in service

interaction and increases the agility and accessibility for the overall system

[18]. Such systems could dynamically handle simultaneous requests from

different clients through multiple interfaces (provided endpoints). It

actually supports all the aspects of Service-Oriented Architecture (SOA)

that includes resource sharing, message handling, translation, data

transformation, protocol conversion, service versioning, and adopting all

service integration methodologies expressed in SOA [2, 5].

2

1.1 Overview for Service-Oriented Systems

Service-orientation is a methodology to software system that is prevalent

fashion for development and deployment of web services. It offers the

features like platform independence, standardization of protocol, well-

defined interfaces, and support loosely coupled services. The primary

motives for adopting service orientation are interoperability and

reusability. Such systems require a lot of effort in processing and handling

somewhat more implementation ethics than simple SOA based systems.

This introduces a new concept called - ‘Integration Suite’ that provides

extension to the features of SOA and explores architectural benefits of

distributed and flexible framework. This framework is most adopted by

Enterprise Service Bus (ESB) that works in distributed kind of manner to

facilitated services across the network. ESB sometimes work like a central

hub, but with distributed agent. These features make ESB as more

demanding and adorable service-oriented solution for SOA systems [48].

The word “Enterprise Service Bus” was first introduced by Roy W.

Schulte from Gartner Group in 2002. In June 2004, David Chappell wrote

a book -The Enterprise Service Bus, which briefs about the several aspects

for service-oriented based systems. In 1987 Teknekron Corporation, USA

project with Goldman Sachs first introduced “The Information Bus (TIB)”,

which defined integration and delivery of market information like stock

quotes, news and other financial figures.

In 1997, Vivek Ranadivé founded a company named TIBCO (stands for

The Information Bus COmpany), which provided service, especially, other

than financial sector and released TIBCO Active Enterprise suite. But

there is a great demand in the industry as well as business for acceptance

of ESB with SOA system as new challenges [16, 35].

3

1.1.1 Opportunity with ESB

ESB is best in-class to integrate, develop, deploy and manage multiple

services on the common platform. ESB is ordered to perform and deploy

services with SOA technology with followings:

 To moderate cost issues

 To speed-up IT implementations

 To reduce IT complexity

Organizations can align its business with the use of appropriate ESB

selection in a specific domain of services and reuse multiple applications

through web services [18]. ESB also enables developers to provide a rich,

integrated and interactive development environment to build federated

services. This inclusion of ESB improves the rapid development of

integration logic, which does not require detailed knowledge about J2EE

or Java. ESB supports virtualization and handling features that execute

and extend the core functionalities of SOA. ESB could be adopted due to

following reasons:

 Easy-to-use mediation proficiency

 Extensive connectivity with existing IT assets

 Integrated framework for development & deployment

 Improve manageability via single point of control

 Better flexibility to its existing systems

 Ability to extend user’s environment

 Improved performance & optimized networks

 Maximized business ability & adaptations

 Secure and dynamic routing for its messages

 API adaptable to know enterprise pattern

 Implement and execute the virtualization without revealing identity

& location

4

ESB is typical infrastructure in software engineering area. It provides

the support for services, security handling, and monitoring the quality of

service. It has been analyzed that concept of ESB is to connect various

service components together i.e. service containers. It is a good option for

building platform in enterprise integration, as it protects and hides

transport protocols information. It has the capability to transport messages

or data more securely. It also used to integrate several services from

hybrid and homogeneous systems as a common solution for middleware.

ESB also improves the architectural benefit associated with an enterprise

solution for service integration and well-organized service handling. By

adopting ESB as their business solutions, one can reduce the risk that

involved the data management issues and resultant would automatically

increase the Return on Investment (RoI) .

1.1.2 ESB as Vibrant Middleware Solution

ESB is middleware mediator that supports transport protocol conversion,

message content, and format between multiple services from the different

domain of applications. Web service actually deployed through service

components, called service containers, which utilize the resource instance.

The ESB framework is designed to transmit information and routing

between multiple service applications. The idea of ESB is related to;

Enterprise Application Integration (EAI) and Service Oriented

Architecture (SOA). It also envisioned the perception of service

integration as federated solution as shown in Figure 1.1. In traditional

practices, service integration is achieved by point to point reconciliation.

The individual platform is designed to support each one of new

application with existing platform. This is an extremely clumsy

methodology and has to be replaced with the federated solution of service

orchestration on a common and shared platform. Service container

5

communicates with each other by sending a message and these messages

need to be routed through the well-known path. ESB is efficient in

delivering such messages through well-known and dynamic routing

algorithms. ESB also act as message-based distributed integration

middleware that provides interaction in distributed manner and builds a

sophisticated, secure and reliable meditation [54].

Figure 1.1: Positioning of ESB in Relation to Service Components and

Infrastructural Resources

ESB is designed to nurture integration methodology and handles

resource provisioning between multiple service containers by supporting

web services communication protocols. These containers are usually

dynamic and plug-in to ESB. The self-measurement principle of ESB in

monitoring and diagnose concurrent system resources would make more

adorable efficiency in delivering services across networks. This efficiency

could depend on multiple parameters that may influence the performance

of any SOA based system. These parameters must be diagnosed and

formed Quality of Service (QoS) on which any ESB may rely. This must

understand the dynamic need of any enterprise application and have to be

adaptable with ESB. It means that applications have to pursue some rule to

6

adapt to these new necessities. It should possess the QoS-aware

monitoring of different parameters depending on the particular application

[57].

ESB supports data formats of the specific message and these formats are

provided by each ESB manufacturer via Enterprise Integration Patterns

(EIP). During the communication between multiple services from different

domains through messaging, ESB helps in recognizing these message

formats through known EIPs. ESB also provide appropriated path to route

these messages to avail right service [12].

1.1.3 Foundation Principle for ESB

There are a several unique perspectives on what core functionalities for

an ESB depends on. The rundown on which ESB performance and

evaluation reply are important. Service provider plays a vital role in

delivering these functionalities and must be committed in its service client

as shown in Figure 1.2. A message itself is a piece of data or some kind of

data structure that contains the information related to string, byte array, a

record or an object. The message specifies the event occurrence between

its sender and corresponding receiver that command message and

document message [11, 14].

a. Transport protocol conversion: ESB helps in adaptability and

understanding the underlying communication protocol that governs

by that particular application service. This feature of ESB provides

the connectivity with old legacy systems to new modern

computing systems [7].

7

Figure 1.2: Relationship of Infrastructural Resources and Web Service

Consumers with ESB as middleware

8

b. Mediation and Message transformation: This functionality

provides translate of message format between communication

service components that is necessary to deliver federated service of

different systems on a common platform. This also supports

inbound and outbound protocol transformation [4].

c. Message routing: This is one of the most striking feature in ESB

that changes the mood of market and business to shift their

commerce through ESB. It enables the service provider to send its

message to designated path [13].

d. Message enhancement: This feature enables the service provider

to put additional or missing information of data needed at the time

of communication. It not only improves the communication

overheads, but also categorizes demand needed at the time of

resource access. This could best be possible with help of EIPs that

have been provided by every ESB manufacturer [58].

e. Security Aspect: With this functionality in ESB, it could enable

the service providers to handle different security parameters which

are directly associated with validation an authentication check. It

also verifies the web service for its integrity, confidentiality, and

availability through WS-security protocol. The information

associated with the interaction of multiple services are protected

bound so that any malicious party would not able to access such

information [60].

f. Monitoring and management: This feature enables the service

provider to improve the efficiency and flexibility by providing

monitoring tool via ESB console (Console is IDE which is

different for different ESB). This is best supported by Java

9

Management Extension (JMX). There are different monitoring tool

that supported by particular ESB which could detect mediation and

message flow along with the trace of client patterns in the desired

transaction [6].

g. Direct proxy: This feature has the capability to transfer received

messages into specific type service that could help in building

federated service. Several ESB products have been fitted with

service proxy capabilities. Such capabilities make easier to

integrate (federate) multiple systems in SOA [59].

It is important to note that ESB manufacturer should provide guidelines

in the form of policy that must follow by their clients/customers for best

manageability, accessibility, and observability. However, such policies

need large consideration of ESB manufacturer that governs the data and

facts which are propagated from lower layer to higher layer of SOA

reference architecture [61]. Several experts are doing their research to find

the quality perspective for ESB and could benefit society in best available

ESBs selection (commercial as well as open-source). Determining the

service interaction methodology is a significant architectural decision for

experts as well as researcher. It could affect the overall performance for

implementing web service across networks [52]. So, simulation of these

available ESBs is important to segregate QoS based parameter which

includes: received and sent messages, time of execution, overall bytes

utilized, message counts, memory utilization etc.

1.2 Wireless Sensor Networks and its feasibility

Wireless Sensor Network (WSN) is an autonomous collection of devices

that are interconnected via wireless media. It comprises various spatially

distributed devices which monitor the environmental parameters like

temperature, light, humidity, and various oxide gases. Such WSN system

includes ‘a gateway’ that provides a platform for common sharing and

10

forwarding captured information or data. This scenario is well depicted in

Figure 1.3. The governing protocols and standards for such sensor-based

networks depends on the application that is required for implementing the

system and it may include 2.4 GHz radios based transreceiver (IEEE

802.15.4 or IEEE 802.11) that usually follow 900 MHz band frequency.

Figure 1.3: Scenario for Wireless Sensor Networks

All captured data is being forwarded through the gateway to destinated

repository. Such repositories could be local as well global where all

captured/sensed data is kept. So, the role of the gateway as an interface, is

important in terms of handling data in more sophisticated manner.

Gateways are designed to support flexibility and reusability of services

and enable ESB to unleash with business processes migration. It also

supports in delivering highly integrated infrastructure for controlling this

deployment environmental parameters as shown in Figure 1.3. Such

gateway could support in data streaming applications like video data

streaming.

1.2.1 Evolution of Sensor Data over the Web

At NASA laboratory, the conceptualization of Sensor data over the Web

started in the year 1997 when Kevin Delin first coined this perception. He

has also defined a wireless system as distributed, intra-connected, and

11

communicable sensor clusters. These sensors are also installed to capture

various events for environmental features like temperature, pressure, light

etc. Kevin also pointed out the significance of these systems as “macro-

instrument for synchronized sensing”. This project was successful in

implementing monitoring of the environment. This idea was implemented

in NASA’s Jet Propulsion Labs that could help in the battlefield

surveillance purpose and later on, this concept was conceived by several

applications. Thus, this integration of sensor with the web gives new hope

to sensor network system which not only making sensor device intelligent

but also enables the system to establish a connection with a neighboring

device for exchanging data. Such system potentially shared the relevant

information with cluster sensor device over data acquisition. This acquired

information is collected and could be accessible by this web integration.

The integration of two different technologies could make the system more

sophisticated and efficient in delivering services across the network. This

could be achieved by mean of competent middleware technology which

supports the sensor data more conveniently over the web. The efficient

way of handling sensor data could explore growing possibilities for our

technology researcher and practitioner as discussed in [96].

For improvement in sensor and the web integration, Open Geospatial

Consortium (OGC) was formed in 2001 that does the specification and

open standards development for sensor web integration. This organization

also supports rendering the geospatial services which significantly

developed the standardization for a sensor device in combination with the

web. OGC worked for recognition of sensor networks over the web and

made an active and special working group that does standardization of

sensor web interoperability issues. This working group is named as Sensor

Web Enablement (SWE). It deals with open specifications and

characterization of the sensor network with web services. This SWE

working group primarily dedicated for standardization for sensor data

12

discovery, acquisition, monitoring, and event recognition. These features

are well nurtured and presented in Service-Oriented Architecture (SOA) in

which data is modeled using open standards and specifications. It also

involves the data encodings that describe the capabilities which include

data types, its mode, and phase of activation using web services.

1.2.2 Sensor Data Processing over the web

In environmental monitoring, sensor plays an important role in capturing

and sensing the different parameters. It could be possible by using the

different variations of sensors which scattered in different geospatial

locations. This captured information is stored with help of "data logger”

which is a hardware device that accountable for receiving sensed data (raw

form) from proximity sensors. This involves the interchange data using

analog to digital converter. Such inter-conversion of data is recorded into

data logger on local memory until it is forwarded to a central

computational unit through the well-defined gateway. The manufacturing

company for such data logger offers enterprise built-in applications

software (SDK) to monitor the captured data at a central computational

unit. This information could be beneficial in controlling and managing

deployed sensor devices at different geospatial locations. With the help of

these Software development kits (SDKs), clients could also access and

execute sensor data information at their end. It could be available via the

web interface which could be customized according to client’s needs. The

collected raw data is analyzed and pre-processed using data cleaning

techniques before making it available to client access. This information is

extracted from a large set of collected and sensed data. This feature would

rely on the monitoring service that assures the quality control for sensed

data. Such cleaned data could be available to the data science research

community group for developing standardized and open source

specification in sensor web enablement [66].

13

Once data is stored in its corresponding repository (cloud storage), it must

be recognized by its data format and style. This could be more specified

by the "Not only SQL (NoSQL)" conceptualization in which data could be

in structured, semi-structured and unstructured format or structure.

1.3 Research Problem Description

The more realistic problem associated with assessment of data in legacy

systems like wireless sensor network. The data created by machine

devices is increasing day by day. A large number of embedded devices

have been deployed altogether to monitor environmental parameters.

Though, such monitoring capabilities are affected by fundamental

necessities to mollify specific needs. These necessities are depending on

scattered devices (sensor motes) at different geographical locations [114].

The major hurdle in implementing these environmental parameters is

interoperability between sensors and client data format which is usually

executed by licensed software (for sensor devices). Such data format and

style have a specific privilege of access for sensor data via well-designed

data portal. Limited access to these datasets make difficulties in analyzes.

Researcher/experts could not able to determine significant relationships.

To lean this gap of accessibility in the dataset, systems must be designed

in such manner that it assists the sensor data in an organized way by

adopting open source software. These open-source based software help in

recognizing data patterns and formats. These data patterns help in service

integration of different domain of applications and resolve the issue of

interoperability. It also provides the information that could be useful to

business enterprise, research organization, and policy makers for any

particular field of industry [66].

14

This interoperability has a vital role in playing dynamic data acquisition

from sensor motes. It enables the system with the capability to exchange

set of data or information. Such information could be benefited for

protocol transformation and inter-information exchange with efficient use

of middleware technology. This middleware technology not only rendered

its information into classified manner but also assured its delivery to the

corresponding client. The absence of interoperability in sensor

applications could mislead the system efficiency and limits its access to

real-time simulation. Hence, there has to be some common and share

platform which provides a mediator to handle all these data management.

Middleware technology leads this gap and support interoperability by

providing known set of integration patterns that help in recognizing

different data style and structure. This is imperative to note that the sensor

community could not be away from the use of ambient middleware

technology that provides assured delivery and capture of sensor data

across the network. These systems must be designed with standardized

mediation technology that makes sensor network’s data more sophisticated

and accessible.

Secondly, the most important problem is of noise/error in the data

received during sensing the environmental parameters. This may cause the

interruptions in the communication while storing the data at the desired

repository (cloud servers). As cloud storage is ‘pay-per-use’ policy and

governs the charges for its storage, so one needs to keep non-redundant,

clean and filtered data over the cloud. This would save the charge for extra

storage as well as cleaned data could assess for a specific application.

The overall goal for this thesis is to lean the gap between handling,

storage, and filtration of captured data from different sensor nodes. This

would also offer better and more sophisticated organization of data.

15

1.4 Motivation

The captured data from different sensors is a key factor in delivering

services across the network. The sensed data need to be forwarded to the

global repository like cloud where it could be accessed by different users.

Secondly, noise/error in such captured sensor data occurred while sensing

of an environmental parameter and this cause due to hindrances or

fluctuation in the sensing mode. If such data is stored at repository where

duplicate and noisy data is kept, then it may create a situation of

malfunctioning and wrong information prediction. Basically, such

repository is kept at the global level at some cloud storage and it needs

clean and stabilize data which is free from all hindrances or noise in the

data. As cloud storage is ‘pay-per-use’ policy and governs the charges for

its storage, so it needs to keep non-redundant, clean and filtered data over

cloud. This would save the charge for extra storage as well as cleaned data

could assess for a specific application. This gap between handling,

storage, and filtration onto captured data from sensor networks motive us

to investigate and analyze the performance metric on mentioned title.

This sensed data is generally passed to the global repository and before

restoring it at the cloud, such data need to be cleaned and filtered. It needs

serious monitoring and assessment of communication between sensor

motes (devices) that involves the integration of multiple services for

handling and monitoring of such data. It also demands sophisticated

system that strengthens this overall process and guarantees its successful

delivery to associated client side where client actually rises a request for

its access. This situation could be best controlled by adopting ESB which

is a middleware framework that helps in designing and developing web

services. It is a kind of depletion layer that efficiently handles various

communication overheads and interaction between multiple services. The

specific business applications which are complex, dynamic and highly

computational, requires a lot of effort in processing and somewhat more

16

implementation than simple SOA. ESB introduces a new concept called -

‘Integration Suite’ that provides various integration methodologies which

would be discussed in detail in Chapter 3. The need for sensor web

interfacing could be modeled by this ESB for effective routing and

protocol conversion of captured data from different sensor motes. This

would improve scalability, usability, a flexibility of sensor data in multiple

stages where sensed data need to take care before storing to cloud.

1.5 Organization of Thesis

The rest of the thesis is organized as follows: Chapter 2 briefs about the

background and related work in regards to enterprise computation and its

association with wireless sensor network (WSN). It also detailed analysis

and comparison of existing ESB products in the market from companies

like IBM, Microsoft, Fiorano, Oracle service bus, WSO2, Sonic ESB.

Chapter 3 explains about architecture framework for ESB with its core

principle for designing. Further, it highlights the importance of service

stack with regard to delivering services in ESB. It also presents a

comprehensive architecture view for ESB and what ESB actually

comprises. It illustrates the concept of message routing and mechanisms

associated with message transformation. It also presents a brief discussion

on the classification of routing techniques.

Chapter 4 describes the importance of an architectural semantic for

service-oriented computing that starts with the characteristics of software

systems that have been recognized with sharing and utilization of

resources. Chapter 5 gives the insight for integration of wireless sensor

network and enterprise service bus. In this chapter, we proposes “an

intelligent sensor network (IntSeN)” prototype which is multi-level for

handling information from sensor motes and making the overall system as

17

stable by removing noise or errors from sensed data. Lastly, Chapter 6

concludes the thesis with the finding of this research work and the future

scope.

18

Chapter 2

Review and Literature Survey

Recent years have noticed with fast change in the market for ESB

technology and its associated integration software. The business

organizations are choosing mediation support for their architecture

enhancement [4]. ESB as a mediator agent supports in interconnectivity

for multiple services i.e. Service Orchestration. Such communication is

usually based on exchanging messages between the two parties which

allows an ESB to receive messages from different clients as a request.

This request could be processed in accordance with designated service

point (usually end-point in ESB) to facilitate service integration. ESB

provides varieties of interfaces or endpoints for different channels to

support interaction between multiple services that incorporates several

types of IT resources as discussed in [2, 17].

2.1 ESB Features & Analogy

ESB can be termed as a middleware that supports the integration and

communication between multiple services. To deliver, ease and fast

services through ESB, software service quality and features must be rapid

enough to handle the demand of business. Open source, agility, and

scalability are major challenges in setting up the enterprise software needs.

To gear up with these challenges, one must be committed to open

standards and interoperability to proprietary solutions. Open source

software could be a better solution to avoid the vendors’ features lock-in

and temporary availability. It also helps in resolving the issue for

application integration and support more sophisticated and fast deployable

paradigm over the different range of environments.

19

Table 2.1 presents the different work done by different authors in

analyzing ESB. Initially, ESB framework used as Enterprise Application

Integration (EAI) and that grows towards the large scale integration as

discussed in [15]. Such integration also supports with other application

domains like Persistent Computing System (PCS), Multi-Agent System

(MAS), and Heterogeneous Systems etc. This framework could federate

lightweight client services with heavyweight computing services on the

common platform. Service orchestration could be possible in such

environment with RESTful gateway [42]. Knowledge management

techniques like ontology had been adopted in enterprise solutions in [44].

Table 2.1: Shows Monitoring Framework, comparative issue and

Integration of SOA with ESB

Reference
Monitoring

Framework

Comparative

Point
Integration with SOA Comment

Sixto Ortiz Jr. (2007)

Talk about basic

building structure

for ESB as EAI and

its origin in mid-

1980’s

Does not made

any comparison,

just presented

roadblock for

service bus

Show importance of SOA and

its integration with

standardized web-services like

XML for data description;

HTTP for message transfer;

SOAP for message exchange;

WSDL for service description

and UDDI protocol for

discovering & publishing

services

Talk about

advantage of

ESB over

application

integration

approach

Jiangiang Hu et. al.

(2008)

Does not talk about

Monitoring

framework in ESB

No Comparison
Discuss about “ESBsoa”

Methodology, but not unified

adapter mechanism

Also restrict

availability &

Scalability

Deng Bo et. al. (2008)

Explain Event

driven architecture

for Complex Event

Processing

Service selection

made on basis of

greatest

“benefit/Cost”

ratio

Discuss ESB Technology with

SOA and event driven

architecture

Proposed

algorithm for

event

selection,

aggregation

and Greedy

service

Jianwei Yin et al.

(2009)

Present

“JTangSynergy”

which is

dependable ESB

framework

Design system

architecture for

Chinese

Healthcare

Service

Integration

Focusing on Service Integration

using pluggable platform

This

proposed

system

support

service

recovery by

dynamic

service

20

replacement

module

(DSRM)

Gang Li et. al. (2012)

Discuss Hub Model

in EAI for large

scale integration

Compare ESB

functionality with

Soft System Bus,

which is main

component of

Persistent

Computing

System (PCS)

Present ESB as infrastructure

for integrated and flexible end-

to-end SOA

Present ESB

as Message

Passing

Engine

MarekPsiuk et. al.

(2012)

Introduced ESB

Meta Model

(EMM) with

monitoring

framework

architecture

Comparison

made on message

model, topology

model and

measuring task

Discuss ESB based framework

for SOA system

This

proposed

model gather

data related to

ESB entities

like Message

transmission,

Topology

discovery

mechanism,

Message flow

etc.

Keshi et. al. (2014)

Integrated

framework based

on Ontology and

ESB

Build model for

Heterogeneous

Systems

Implement SOA based ESB for

enterprise knowledge

management

Discuss about

Ontology

Structure of

System

Integration

OndřejHarcuba et.

al. (2015)

Presents framework

that integrate light

weight client with

heavy weight ESB

Introduced
“REST based

ESB gateway

(REG)”

Extends the idea of integrating

Multi Agent System (MAS)

and SOA using RESTful

service architecture

Discuss

Ontology-

based

model for

semantic

representation

for

information

Table 2.2 shows the comparative analysis on how different authors have

discussed different perspectives of capacity, planning and experimental

simulation in ESB. This table points out the keen issues related to high-

performance computing techniques. Testing is a very crucial issue in ESB

that could be used in the phase of capacity planning as discussed in [3].

Event driven architecture could also be combined with SOA system via

ESB. Relational algebra could improve efficiencies in an event processing

based system in [26]. Scalability and load handling issues could be

performed with direct proxy, content proxy and transformation proxy.

This experiments on three ESB products- Mule, WSO2, and Apache

21

ServiceMix in [19]. Parallel application bus could be introduced with ESB

based architecture to improve multiple services processing as discussed in

[43].

Table 2.2: Shows Capacity, Planning and Testing with Existing ESB

Reference
Capacity &

Testing
Simulation

High Computing

Techniques
Comment

Ken Ueno &

Michiaki

Tatsubori (2006)

Test on

different ESB

related to

costing,

mediation and

performance

issues

Experiment for

web services with

no ESB, ESB

Without

mediation, ESB

with mediation

Discuss about Ultra-

light service and

capacity testing

techniques under

high load to

determine its

maximum

performance

Good

Analytics for

Planning &

Testing issues

Deng Bo et. al.

(2008)

Test and

selection that

service yield

higher benefit

per cost ratio

Experiment on

service instance

for all associative

event processing

services

Absence of

Relational algebra

based event stream

processing engine in

existing ESB

Presented

good analysis

for complex

event

processing

system

Sanjay P. Ahuja

et. al. (2011)

Test scalability

& Load

handling with

Direct Proxy,

Content Based

Routing Proxy

and

Transformation

Routing Proxy

Scenario

Simulated results

on ESB like -

Mule, WSO2 and

Apache

ServiceMix

Explain core

functionality of ESB

w.r.t. virtualization,

mediation and

content based

routing.

Also,

presented

subjective

assessment on

parameter like

API,

Installation,

Ease of

development,

online support

for these 3

ESBs

MarekPsiuk et. al.

(2012)

Involves

testing

topologies that

support in

service

containers

using JBI

different

versions

Experiment made

on ServiceMix,

OpenESB and

JSR-208 ESB

products

Implemented in Java

Business Integration

(JBI) that

standardized ESB

Patterns

Discuss

Aspect

Oriented

Programming

(AOP) that

support

modularity

&service

orchestration

RidhaBenosman

et. al. (2013)

Demonstrate

Massively

Parallel

Application

Bus (MPAB),

which is ESB

oriented

architecture

Discuss operation

mode of P-

Instructions

Shows the

functionality of

Multiplexing for

massively parallel

processing of

distributed and delay-

insensitive

application

This could be

future solution

for complex

processing like

core banking,

Big data

simulation etc.

22

Table 2.3 illustrates the security aspect of services arises with ESB. Also,

justifies the protocol specification that is related with WS-security based

authentication, service level agreement (SLA) and encryption. It also

discusses the error and logging report presented with architecture for SOA

[31]. Presented service bus security as an essential factor of concern into

ESB architecture and calculate the error for performance modeling and its

validation. This experiment has done on BEA AquaLogic ESB product

[10]. ESB could extend the functionality of window communication

foundation to offer multiple end-points for published services. Propose the

architecture that leverages SOA methodologies in grid computing [7].The

error handling for a message along with architecture for EAI is well

discussed in [12, 21].

Table 2.3: Presents Security, Policy, audit and logging facility for ESB

Reference Security Driven Policy Preventions Comment

Jiang Ji-

chen et.

al. (2006)

Present Enterprise

Security concept using

Single-Sign-On (SSO),

Lightweight Directory

Access Protocol

(LDAP) Integration

Discuss idea of digital

signature, WS-security

based

Authentication and

encryption in ESB

Establish SLA / SLO

based on event and

performance

Brief about

Architecture for

ESB

Yan Liu

et. al.

(2007)

Provide Service Bus

Security as High level

ESB Architecture

Discuss Service Level

Agreement (SLA)

alerts including

message security,

authorization,

authentication

Calculates error of

performance

modeling and

validation

Present case

study for Loan

Application use

Mule, BEA

AquaLogic

Service Bus

(ASB)

Jiangiang

Hu et. al.

(2008)

Discuss SOAP security

framework in business

Integration

Discuss Policy and its

definitions in service

adaptation at service

layer

Define security

authentication at –

Channel Layer,

Service Layer of

SOA based EAI

environment

Discuss

transport

adaption,

service adaption

and common

services in SOA

based ESB

Alaa M.

Riad et.

al. (2010)

Explained security

aspects for SOA based

grid computing

HTTP transport and

WS- specifications,

Proposed SOA based

Grid computing

ReliableSession

and TransactionFlow

protocols

Discuss

Windows

Communication

Foundation

(WCF)as a

message-based

architecture

Jieming Define Security as core Use open standards Discuss 02 models - Present ESB as

23

Wu and

Xiaoli

Tao

(2010)

functionality of ESB like HTTP(S) to JMS,

FTP to a file batch,

and

SMTP to TCP

Java

Authentication and

Authorization

Service(JAAS)and

Acegi Security

validate

connective

Route

Transform

Table 2.4 demonstrates the routing aspect that had been covered by several

authors. Every business organization that deals in ESB products provide

its own API called as enterprise integration patterns (EIP). This EIP

supports in recognizing message format from other application service

domains. Routing is a core feature for ESB that could propagate the

message to its destination. To federate routing, MOM (message oriented

model) is introduced that is based on event-driven architecture (EDA) and

SOA [16]. Different Dynamic Reliable Service Routing methodologies

have been proposed by different authors like - Dynamic Routing in

Enterprise Service Bus (DRESR), Efficient & Reliable Dynamic Service

Routing (ERDSR) [23, 24, and 25].

Table 2.4: Routing, Protocol Transformation and Pattern Recognition in

ESB

Reference Service Routing Enterprise Pattern
Message

Transformation
Comment

Martin

Breest

(2007)

Discuss message

routing facility via

MOM and its

techniques-

itinerary based

routing, and

content based

routing

Promise to construct

robust and scalable

SOA with MOM

Introduced

“Message

Oriented

Middleware

(MOM)” that act

as mediation

Brief about

service container

and discussed

how ESB

endpoint is

similar to servlet

in J2EE; service

orchestration

using BPEL

XiaoyingBai

et al. (2007)

Proposed Dynamic

Reconfigurable

ESB Service

Routing (DRESR)

Includes Instance

Routing Path (IRP)

with combination of

Abstract Routing Table

(ART) and Abstract

Rout Path (ARP)

Routing

strengthen and

assured message

delivery and help

in protocol

conversion.

Implement D-

Mule, open source

ESB

Does runtime

service testing by

dynamic service

selection

Bin Wu

et.al. (2008)

Improved Dynamic

Reliable Service

Explained 04 routing

Improved

Message routing

Also, discuss

important reliable

24

Routing and

extended DRESR

pattern – Enricher,

Static Recipient List

(SRL), Message

Aggregator (MA),

Wire Tap (WT)

and its conversion

with Dynamic

WT

message routing

specifications

Sanjay P.

Ahuja et. al.

(2011)

Work on Content

based Routing with

scenario to Direct

Proxy, Content

Based Proxy and

Transformation

Proxy

Discuss importance of

EAI in ESB

Explained

Message

transformation as

core functionality

in ESB

Done statistical

analysis for

calculating

throughput or

mean response

time

PengXu et.

al. (2013)

Proposed Efficient

& Reliable

Dynamic Service

Routing (ERDSR)

Presents ERDSR

Pattern to improve

efficiency in ESB

message routing

Does message

processing or

transformation

Made comparison

for DRESR,

DRSR and

ERDSR

2.2 Comparison of Exiting ESBs

The available set of ESBs in the market supports SOA platform for its

execution. Every enterprise organization provides set of enterprise

integration patterns (EIP) against cross-platform support [50]. These

patterns help in determining message format and related fields in services.

ESB also supports the fundamental features like message routing,

transformation, protocol conversion and support for the dynamic

environment. This chapter discusses the different ESB products that are

available in the market.

WSO2 ESB is an open source ESB that provides better compatibility and

high performance in terms of service accessibility. This may be the finest

option in the available class of ESBs as it supports almost all features of

ESB like - Service governance, monitoring and management, virtual

environment and so on. According to eBay Inc., for online shopping, it

uses WSO2 Enterprise Service Bus for executing and processing

transactions, which is more than 1 billion per day. However, it fails to

provide proficient security metrics for authentication [39].

25

Talend* Enterprise ESB is a reliable, scalable and secure choice for

service bus for any organization. It is a non-open source and high-

performance ESB solution and supports the deployment of services in both

on-premises and over the cloud. But, it is not lightweight service bus and

this is the reason why Talend* Enterprise ESB does not perform well in

large-scale operational batch processing [46].

AdroitLogic UltraESB is lightweight service bus, which is capable of

supporting different transport and message formats. It is the first ESB,

which supports “Zero-Copy proxy” messaging with non-blocking

input/output capabilities. It has the ability to dynamically load or reload

deployment service units. But, it does not support service composition

well. It used WS-Security for configuring service to limited extents.

UltraESB provides weak compatibility with cloud network [40].

Mule ESB is an open source and lightweight service bus based on Java

Messaging Service (JMS) and responds quickly. It easily establishes a

connection and enables apps to exchange messaging data. However, Mule

ESB does not provide service governance and security metrics. Mule ESB

could be a moderate option for using a service bus for delivering services

with medium performance [27].

Apache Synapse ESB is open source, lightweight, and high-performance

service bus. It also provides deploying services as Apache Synapse server

instances. It helps in monitoring and governance of services across the

network. It also implements complex routing scenario with conditions like

non-blocking HTTP/S transports for fast-mode of interactions. But,

Apache Synapse ESB does not support composition of service

components, called module. It offers minimum security authentication. It

may result in weak federation with cloud network [49].

26

Red Hat JBoss Fuse is open source ESB, which is based on Apache

ServiceMix integration platform that supports Java Business

Integration (JBI) and Open Service Gateway initiative (OSGi)

specification. Red Hat Inc. took over FuseSource from Progress Software

Corporation in June 2012. Fuse ESB was renamed as JBoss Fuse. It is

robust SOA infrastructure that delivers standardized methodology, server

and tools to integrate service integration with complex applications. It

supports medium performance and limited security metrics [45].

TIBCO’s ActiveMatrix® Service Bus is lightweight, non-open source and

high-performance ESB, which helps in organizing services by routing and

transforming data formats and transport protocols. It allows fast

development, nearly zero coding & low maintenance. It also manages

secure communication between services and application system. It could

be a good option for the commercial organization to adopt this ESB as

architectural infrastructure [35].

IBM Websphere is a Java centered ESB that supports strong integration

for web-based services. It is more competent, reliable, secure, and high-

performance ESB. It also non-open source, permits high availability and

robust failure capability to application servers. IBM facilitates with its

own graphical editor, which has drag and drop functionality for

developing mediation flows. It also helps in reducing costs with fast and

flexible application service integration. This could be a better option for

the commercial organization [37].

Window Azure Bus is mainly used for cloud-based services architectural

platform. It is a non-open source and high-performance ESB that can also

be deployed on-premise. Several services are maintained by Microsoft

Corp. through Windows Azure data centers, located across the world. It

provides better service governance, monitoring, and security management

http://en.wikipedia.org/wiki/JBI

27

policy rules in handling services to facilitate its client. This could also be a

good opportunity to the commercial enterprise [36].

Sonic ESB connects, mediates and controls services through its own

interface environment. It is pure proprietary ESB that permits fast and

secure communications with transactional failover recovery. It also

provides reusability among service components in SOA system. It handles

deployment service via Sonic Workbench Run Framework. It consists of

different API and communications logics that are necessary to debug any

errors in service integration [30].

Fiorano ESB is a JMS messaging-based ESB that manage communication

interactions between multiple services. It helps in reducing complexity and

increase flexibility by re-using service modules. It is a non-open source,

reliable and high-performance ESB. There are various commercial

products by Fiorano Inc. (USA) available in the market like Fiorano SOA,

Fiorano Cloud, and FioranoMQ, Fiorano API Management etc., which

extends different features of SOA [9].

Oracle ESB is commercial, flexible and high-performance ESB. It allows

open standards to establish, transform, and route business data between

multiple services. It enables governance and monitoring of business audit

log data without influence on current services. It supports service

orchestration with flexible integration between multiple services. It

provides the secure channel for communication via routing messages in

ESB with limited functionality [47]

Table 2.5 presents the information into concrete form along with

additional data of control and process management of ESB product. Here,

Market strategy specifies the current punch line from that particular

business organization to attract its customers towards ESB product.

28

Table 2.5: Market overview, handling and control management for

available set of ESBs

Reference Market Strategy
Control

Management

Process

Handling
Comment

Oracle®

www.oracle.com

Robust, scalable,

flexible,

Adapters/Transport

Module

Message Tracking,

Load Balancing,

Message Throttling

(No. of

Message/time)

Support stateless

message flows,

secure

configuration

Discuss about

architectural

behavior of ESB

WSO2 ESB

www.wso2.com

Fault tolerant

mediations, priority-

based routing, service

chaining

Governance Registry,

WS-Security, LDAP,

Kerberos, OpenID,

SAML, XACML

Flexible logging

support,

Centralized

configuration

management

Does File

Processing support

TIBCO

www.tibco.com

Assimilate with any

third party

technology, Do more

faster and spend less

Business Events

deployment, Memory

object management

Reduce

complexity,

enrich visibility,

promote

reusability

Define ESB as

shared

superhighway for

data, messages,

and events

JBoss Fuse

www.jboss.org

Pattern based

integration

framework, fully

certified Java™ EE

platform,

OpenShift Platform-

as-a-Service (PaaS),

connectors for JDBC,

FTP/SFTP,

Dynamic

configuration

and

management,

easily deploy or

update services

Provide elastic

footprint to

integration beyond

data centers

Apache

ServiceMix

servicemix.apach

e.org

flexible, open-source

integration container,

powerful runtime

platform

OSGi-based server

runtime, RESTful

web services

BPM engine

via Activiti, full

JPA support

via Apache

OpenJPA,

ESB exclusively

powered by OSGi

Talend

ESBtalend.com/r

esource/esb

Powerful, Flexible

Open Source ESB,

Intelligent routing

and mediation

drag-and-drop

Eclipse environment,

Talend ESB

incorporates with

Apache ServiceMix

Reduced costs

than proprietary

products

Avoids foster

agility and vendor

lock-in

IBM Web Sphere

www.ibm.com/ws

esb

Dynamic

connectivity service

solution, business

agility

Service Data Objects

(SDO) and Service

Component

Architecture (SCA)

Facilitates

different

protocols like

JMS, SOAP,

J2EE Connector

Architecture

(JCA) adapters

Message Logging

and auditing

Fiorano

ESBwww.fiorano

.com

Real-time solutions

addressing, obviating

hardcoded

dependencies

Build on a Micro-

Service based

architecture, agility in

authentication,

authorization and

encryption

Message-Driven

Micro-service

Model, Supports

sophisticated

XSLT

transformations

Supports

dynamically

configurable

event-pipelines

with distributed

environment

AdroitLogicUltra Development, Support protocol like mediation logic provision for Zero-

http://www.oracle.com/
http://www.wso2.com/
http://www.tibco.com/
http://www.jboss.org/
http://www.servicemix.apache.org/
http://www.servicemix.apache.org/
http://www.talend.com/resource/esb
http://www.talend.com/resource/esb
http://www.ibm.com/wsesb
http://www.ibm.com/wsesb
http://www.fiorano.com/
http://www.fiorano.com/

29

2.2.1 Criteria for comparison

This sub-section describes several criteria for the purpose of

comparing existing ESBs in the market. Such categorization is based on

whether a particular ESB is open source or not, provides a graphical

interface to its clients, performance, flexibility and service governance.

Existing ESBs could also be compared on basis of security metric,

deployment scenario, virtual environment support, and essential feature

like message routing, transformation, protocol conversion etc. A brief

description of these criteria has been discussed below:

 Enterprise Integration Pattern is a standard set of integration

‘templates’ that have been used by software architects and

developers in designing and implementing integration based

solutions more rapidly and reliably. These patterns have been

ESB

www.adroitlogic.

org

Configurable and

Testing for dynamic

computing

XACML,

JTA XA transactions,

WebSockets,

MLLP/S,

Protocol Buffers,

JSON, AMQP, SFTP

in JVM based

on scripting

language like

JSR 223

Copy proxy

OpenESB

www.open-

esb.net

Best balance between

scalability, reliability

and ergonomic

development

Relying on standard

JBI, WSDL, BPEL,

XML,SOAP, LDAP,

REST, Task

Scheduler

Very low TCO

(Total Cost of

Ownership),

lightweight JBI

implementation

in Java.

Allows integrating

with legacy

systems. Initially,

launched by Sun

Microsystems

Petals ESB

www.petals.ow2.

org

Adaptable to large

scale infrastructures,

highly distributed

topology and

modularity

Supports

JBI (JSR 208)

industry

specification,SOAP,

BPEL, SCA, XSLT,

XSD, EIP,RMI,

CSV transformation

JBI pluggable

components,

fractal

deployment

framework

SOA based

interconnect

heterogeneous

systems

Progressive Sonic

ESB

www.progress.co

m

Continuously

Available

Architecture

(CAA),most Reliable

and Scalable JMS-

based

JAX*RS and

JAX*WS annotated

POJO model, support

for SOAP, UDDI and

WSDL

Guaranteed

message

delivery,

dynamic routing

architecture

Improved

Visibility and

Diagnostics,

manage

authentication

locally

http://www.adroitlogic.org/
http://www.adroitlogic.org/
http://www.open-esb.net/
http://www.open-esb.net/
http://www.petals.ow2.org/
http://www.petals.ow2.org/
http://www.progress.com/
http://www.progress.com/

30

provided by every IT based company to supports its clients in

service identification and accessibility [29, 41].

 Monitoring and control in ESB define analyzing situations for

service integration and message routing during its execution. ESB

controls message instance processing with mediation flow. It also

evaluates overall progress of multiple services that support the

deployment of applications.

 Deployment is a process of enabling service applications for testing

a business environment. It analyzes whether a particular business

logic executes its functionality to deliver better services.

 Supports for SOA Platform in ESB specify whether an ESB is

extending the features for SOA. It also provides support for

multiple services stack [33].

 Service Governance in ESB states how uniformly business logic

rules are applied in service lifecycle management with SOA

systems. Governance also defines policies through which clients

can access and integrate with other services. It also incorporates

security metric associated with service monitoring.

 Service composition defines the integration of service components,

called modules. It provides the interaction among these modules in

delivering services across the network. It also deals with

supporting service discovery, configuration, modeling, and

validation [8, 38].

 Cloud adapters/connectors in ESB are designed to provide

connectivity between applications like Siebel, SAP, Oracle apps

etc. It provides an interface for service components that have been

utilized in the integration process. The adapter/connector never

depends on ESB version, nor does it flow with ESB

implementation. It just simply plug-in with ESB through well-

defined connector/end-point.

31

Table 2.6: Comparison criteria for existing ESBs in the Market

Table 2.6 depicts the association between different criteria and available

set of ESB products from different companies like TIBCO Active Matrix,

Mule ESB, IBM Websphere, Apache Synapse, Oracle Enterprise Service

Bus, Windows Azure Service Bus and many other ESBs.

TIBCO

Active

Matrix

Fiorano
ESB

Mule
ESB

IBM

Web

Sphere

Apache

Synapse

Red Hat

JBoss

Fuse ESB

Sonic
ESB

WSO2
ESB

Talend
ESB

Adroit

Logic
UltraE

SB

Oracle
ESB

Window

Azure
Service

Bus

Open-source
✘ ✘ ✓ ✘ ✓ ✓ ✘ ✓ ✘ ✓ ✘ ✘

Graphical
Interface

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓

Visual

Environment
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Supports
complete SOA

Platform
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lightweight ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓ ✓

Service
Governance

✓ ✓ ✘ ✓ ✓ ✓ ✘ ✓ ✓ ✘ ✓ ✓

Service

Composition
✓ ✓ ✓ ✓ ✘ ✓ ✓ ✓ ✓ ✘ ✓ ✓

Performance High High
Medi

um
High High Medium High High High

Mediu

m
High High

Cloud Adapters
/ Connectors

✓ ✓ ✓ ✓ ✘ ✓ ✓ ✓ ✓ ✘ ✓ ✓

Management &

Security Metric

Moder

ate
Limited

Limi

ted
High Limited Limited

Moder

ate

Moder

ate
High

Moder

ate
High

Moderat

e

Enterprise

Integration

Patterns
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Monitoring &

Control
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Deployment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓

Flexibility ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Essential
features like

routing,

message

transformation,

protocol support

and mediation

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

32

2.3 Literature Survey for Sensor Web Interfacing

Many researchers and experts have brought immiscible facts for sensor

data over the web. This section extended these facts and figures associated

with detailed related work in the field of sensor and web interfacing and is

presented in the form of a flowchart in Figure 2.1.

In [99], Romero & Vernadat have discussed the various aspects for

Enterprise Information Systems (EISs) that includes its design,

networking, enterprise modeling along with its building architecture. It

also presents the service integration and interoperability issues across

different service instances. This work also discussed the integration

patterns that support in the interoperability between different applications

from different domains. It also briefs the importance of EIS in every

discipline of life that grows towards the “Internet of Everything (IoE)”.

In [100], Qiu et al. proposed IoT-enabled SHIP (Supply Hub in Industrial

Park) system that characterizes the real-time interaction with multiple

service components. It also developed the system with real-time tracking

& tracing the object with information exchange. This wok implements the

service-oriented models to handle such data. It uses XML-based data

sharing cross multiple service components.

In [101], Chang et al. discussed the business process management system

(BPMS) for mobile cloud computing. It also proposed a system that

efficient to build the solution for utilizing resources and entities (things)

across the network. It also discussed “virtual thing host” that resembles the

performance of ESB for handling communication channel across the

network. This system is built around IoT for delivering services.

33

Figure 2.1: Systematic Flowchart for Literature Work in Sensor Data

Uncertainty

In [91], Martinez et al. have modeled for virtual event sources in WSN

and also represents the collection of interconnected devices through the

internet which is federated to build IoT-based solution. It also discussed

the Constrained Application Protocol (COAP) and Resource-Oriented

34

Architecture (ROA) principles for building service integration for sensor

data. It also tried to prove that constrained sensor devices are capable of

handling composite service as well. No data assessment is done in their

proposed work.

In [103], Alena et al., (2014) briefed about the wireless architecture that

constituted around Zigbee standard. In this work, it only provides the

specifications for “space plug-and-play” that focused on a configuration of

components in the wireless networks. It extended the proposed work with

SPA-Z in which extension of SPA which offers for only wired networks.

Self-configuring architectures support for fault tolerance in the WSN. It

also discussed the Transducer Electronic Datasheets (TEDS) that

containing sensor data and its characteristics only for its associated data

format. This TEDS contain sensor data in multiple formats & style like

XML, JSON, paired-key values etc, but no study is brought for its

assessment and validation check.

In [95], Stoimenov et al. have discussed the ESB based solution for

determining vulnerability in electric power supply network for data

collection. This work presents the combination of two technologies:

Sensor Web integration and GIS for predicting the fault in the

transmission supply. “GinisSense” architecture is extended into this

research work for implementing the ESB based solution. It also enables

the collected data which is coupling from GIS and processed with rule-

based business logic engine.

In [105], Castillejo et al. have presented the solution for guaranteed

interoperability between different environments that build to form service-

oriented semantic middleware. Such middleware solutions are compelled

to provide integration between various service components. This

implemented system collects all sensor data at developer’s side which may

35

be using devices like smartphones, computers, Pas and tablets and process

at a central repository for its distributed access. This work also focused on

context-aware services that create real-time IoT-based simulation software

for sportsmen.

In [106], Rocchini, et al. discussed the classification of aerial photographs

or satellite sensor images collected for deriving ecosystem-related

mapping. This situation usually leads to uncertainty in the remote sensing

tools and results in poor data acquisition. This work also presented with

detail review for uncertainty occurred with ecosystems but no focused is

observed for handling data with noise or error.

In [107], Medjahed et al. proposed the tele-monitoring system which was

a multimodal platform for handling sensor data and provides tightly

controlled datasets for elderly physiological and behavioral information. A

data fusion algorithm is discussed in this work that followed fuzzy logic

for controlling rules for medical recommendations. This work does not

discuss the assessment of data that may incur with some noise/error.

In [109] Sánchezet al, (2009) explained the genetic fuzzy based algorithm

for designing a system which provides data sets that represent information

related to “linguistic granules”. This work also presented with

consequence data which is used by genetic learning for dealing with fuzzy

dataset. Authors also focused on knowledge-based regressive fuzzy sets

for non-standard data. No data assessment and evaluation for noise/error is

observed in this work.

In [112], Benz, et al. presented the strategy for analyzing the combination

methods for implementing the expert knowledge system using fuzzy

concept and proposed data acquisition from remote sensing to GIS. No

data assessment and evaluation for noise/error is observed in this work.

36

In [113], Mauris et al. discussed the uncertainty in physical sensors by a

probabilistic approach and proposed a fuzzy model for data acquisition in

physical sensors using transformation. This approach is old and no longer

helpful in collecting real-time data. This work does not discuss the

assessment of data that may incur with noise/error.

2.4. Extensive Survey for Sensor and Service-Oriented System Models

This section discusses related works in the field of sensor web interfacing

and how data is carried from sensor mote to desire repository (local or

cloud). It is important to note that whenever data is directly stored in the

repository, it includes several unwanted information which may contain

noise or error. Such information need to be cleaned and filtered before

storing it to the local/global repository. Figure 2.2 shows the flowchart for

mentioned survey and literature review.

In [98], S. de Deugd et al. discussed the monitoring and controlling

features for the environment and that implemented through interfaces for

different sensor devices. This work proposed a Service-Oriented Device

Architecture “SODA” that leverages standards from a device as well as IT

assets. But, this paper does not discuss any interoperability issues related

to sensor data and no observation is noticed for handling issue with noise

in the sensor data.

37

Figure 2.2: Systematic Flowchart of Literature Work for Handling Sensor

Data with Interfacing of Service-Oriented System

38

In [84], O. Alhabashneh et al. presented information seeking and retrieval

method for systems that would able to provide context-aware information

to its clients through enterprise information system. This work controls the

data over the web through well-organized manner using fuzzy tolerance

but fails to collect data in more realistic and accurate fashion.

In [83], Leguay et al. discussed the high-end network expedients and

resource-constrained sensors by adopting SOA designs. This leads to the

spontaneous triggering of tracking actions by a Linux-powered network

camera and of alarms and video streams near a control room.

In [85], G.F. Anastasi et al. proposed middleware “SensorsMW” for

sensor data monitoring using SOA. The proposed architecture in this work

discussed the gathering measurement for sensor data related to physical

quantity only but does not focused on an issue related to its quality

assessment parameters like delay, type, and volume.

In [88], proposed a “RESTful” architecture which is presented with

lightweight web server and JSON as a data format over Web. This work

does not provide assessment and validation of sensor is carried out in this

work that may lead to high relative error in the captured data. Both

functionalities are presented with lightweight web server and JSON as a

data format over Web.

In [91], N. L. Martínez et al. proposed a middleware architecture “nSOM”

which is based on event-driven functioning for handling sensor data and

monitors the interoperability for different service components. This

proposed system is robust and agile for deploying capabilities for web

services but no focus is made for data assessment and may lead to error in

sensed data.

39

In [92], X. Su et al. explained the problem of dispersed fuzzy filter scheme

for a course of sensor networks defined by discrete-time T-S fuzzy

schemes with time-varying interruptions and several probabilistic packet

losses. This work does not focus on cleaning and filtration of data before

storing over the cloud.

In [94], W.T. Lee proposed a business process model and notation

(BPMN) for organizing activity of Multiple-Domain Matrix (MDM) and

Design Structure Matrix (DSM) based model “BPMN-MDM” that analyze

the processed data in WSN but does not focus on assessment and relative

error in captured sensor data.

2.5 Discussion

The system should be flexible and high-performance based on different

features of ESB. It should allow an open standards to establish, transform,

and route business data between multiple services. It must govern the agile

business audit that supports service orchestration for the multiple services.

It should provide the secure channel for communication via a potential

message/data routing.

The above mentioned art of the review states the importance of service-

oriented systems with analysis of sensor data. The sensor data must be

assessed and analyzed before storing over cloud as it may incur with some

deficiencies like noise/error in captured data. The discussed models

present the limited conceptualization for assessment of sensor data and

this motivates us to propose an “Intelligent Sensor Network (IntSeN)”.

Our proposed “IntSeN” model presents broad view for analyzing sensor

data on different parameters like delay, time, type and volume – so that

more realistic and accurate data could be available for monitoring the

actual environmental parameters.

40

Chapter3

Design and Architectural Framework for

Enterprise Service Bus (ESB)

3.1. Design and Architectural Framework

ESB is a software framework that manages service and its integration with

other services on a common platform. It also provides necessary

infrastructure support to implement message routing, protocol translation,

and message transformation. It also federates services from legacy

application domain and provides the loose coupling between them. With

ESB, one can design develop, deploy, and monitor services at runtime.

This improves the concept of re-usability in ESB [53].

3.1.1 Essential Design Principles for ESB

Recent years have noticed a fast change in the market for ESB technology

and its associated integration software. Business organizations are

choosing mediation support for their architecture enhancement [4]. ESB

act as a mediator that supports in interoperability, interconnectivity, and

scalability of multiple services. ESB handles the message interaction

through messages between multiple services. The relationship between

service requesters, providers and ESB is well depicted below in Figure

3.1.

41

Figure 3.1: ESB Infrastructural Concept

The support for a variety of mediation allows an ESB to fulfill two core

principles:

(1) Service virtualization

(2) Aspect-oriented connectivity

(1) Service Virtualization defines the capability of ESB to support

virtually – the transmission protocol, interaction pattern,

interface for communication and most importantly its identity

during complete service interaction [7].

 Transmission Protocol: It enables ESB to process

incoming request messages and transforms into the

most compatible format with other service requesters. It

sends and receives messages through various transport

layer protocols like HTTP(S), SOAP, and JMS etc.

 Interaction Pattern: This allows ESB to support

different patterns that help in recognizing message

formats, and service integration. The ESB act as a

mediator between the service provider and its

associated client. This feature is also helpful in

42

communication between two or more different ESBs

together [41].

 Environment Interface: This permit ESB to

incorporate service requesters and providers with the

different interface in communication. It is also known

as “end-point” in ESB. It also enables multiple

interfaces to provide accessibility through different end-

point within ESB. For example, service client and

provider should not use identical interface in accessing

a particular service.

 Reconcilable Identities: During communication,

service requesters need not know its identity (like its

address). It is the responsibility of ESB to manage such

information (identities) for every service requester. In

this way, any service requester can be served by any

service provider at any time over the internet.

(2) Aspect-oriented Connectivity defines the connectivity issue

that has always been a crucial matter in establishing

communication between multiple services for SOA Systems

[54]. The problem of unavailability of services may result in

Distributed Denial of Service (DoS) and such issue could be

avoided by adopting ESB as mediation solution. This also

involves issues related to connectivity, logging and auditing of

services, service validation &security, service handling &

management. Such issues must be kept in mind while

designing framework for any ESB [14].

43

3.1.2 Centric view of ESB

For Business demand in the modern era of computing, ESB could help in

establishing measures for desirable solutions that also forms the business

agility and robustness in delivering services across the network. These

business service must be governed and monitored for better performance

and it could be delivered with aid of well define service stack [56]. The

service stack is set of services in service reference architecture that

extends the features of simple SOA. It is well depicted in Figure 3.2.

Figure 3.2: Service Stack in ESB

(a) Service Stack

ESB provides several services like– interactive services,

Orchestration & Business process service, data information service,

application, service, accessibility services, and service governance

[13]. Such services within the ESB framework are labeled as services

stack, which helps in execution and layout of different forms of

44

services. It also provides the compatible and sophisticated

development environment to service requesters for achieving on-

demand services [20]. These services are as follows:

 Interactive Services: Such services provide essential

features in delivering IT functionality associated in the

interaction among services. These services support the

mediation in communication for better accessibility.

 Orchestration & Business Process Service: Service

orchestration defines as coordination between multiple

services and described as a single aggregated unit to

facilitate interaction among different services. These

services also provide the control capabilities to manage

workflow and integration.

 Data Information Service: Such services federate, replicate

and transform information from different data sources. It

also provides the necessary supports in message

transformation, whenever it is invoked by some service

requester.

 Application Service: It allows the implementation of core

business functional logic that is accessible within the

particular business organization. Such services are actually

executed and invoked by service requesters and also

support other service components in service architectural

framework.

 Accessibility Service: It provides support in making

services available to requesters. ESB act as a mediator in

45

allowing such services that are delivered via SOA. It also

helps in incorporating service with its associated data.

Accessibility to the particular services governs the security

policy associated with its service provider.

 Service Governance: It provides a monitoring to the

content associated with service. It also helps to cost,

planning and configuring for on-demand rental services. It

guaranteed the accessibility for particular service and its

scope. It provides the guideline for preparing Service Level

Agreements (SLA).

(b) Secure & IT Management service

Security and management services are placed as a separate entity

with ESB service stack. Since IT related services have solution wise

scope and it requires better active coordination and cooperation with

other service components. Security of a service is defined as

preventing and protecting access to a particular service in a specific

domain. Restriction on service can be limited i.e. not all requesters

have the same permission to access the same service. Accessibility to

particular services would be preferred on basis of policy associated

with a service contract. ESB does the authorization in delivering

services that can be configured to get an access. For example, web

services can be spoofed and can conceal using certain fraudulent

methods that used client’s information. To prevent from such stealing,

developers use WS-Security which is an extension to SOAP [32, 33].

(c) Development Environment service

These services help in building integration logic and connectivity

issue. Equally, such services support ESB into services’ discovery,

46

registration, and publishing (in regards to service registry). With this

environment, service can also be model, edit, and test and packed for

deployment [16, 31]. It also allows the modification of service

metadata to influence dynamic behavior of a service.

(d) Deployment Service

Deployment is the process of enabling the service application into

testing or business environment. It tests the services before publishing

it to constraint business environment. Further, it also binds these

modules as a standard application package for deployment [13]. It also

resolves the issues related to capacity, planning, testing, service

hosting, service dependencies and service versioning compatibility.

(e) Modeling & Component Service

A Service component is a piece of service which helps in

implementing some business logic via interfaces or endpoints in ESB.

Components may interact or request other components for

communication purpose; this is called as service references. It

federates multiple components associated with particular service to

implement loose coupling which expected to be independently

deployed for particular services. These components are plug-in and

plug-out with ESB [44]. It also supports the assembling of services

into a group called modules. These modules actually provide complete

integration solution and are well defined in Service Component

Architecture (SCA). These modules work independently and do not

affect the behavior of other modules [27].

Service Modeling is a concept of organizing services to fulfill the

demand for service requester. It also helps in improving interaction

47

between services. It does support the functionality like routing,

transformation, and handling of messages [32]. It provides support for

route discovery, validation, and transmission priorities. It logs the

monitored data for interaction between services. For example, Service

qualifiers define the quality of service that describes a set of

communication characteristics needed by a service application.

3.1.3 What does ESB actually comprises?

ESB promises to build a decentralized architectural framework that

supports several services into a unit called service bus. This integration of

services defines a platform for serving requests from multiple requesters

simultaneously. ESB is not an only architectural framework, but also

provide highly versatile and distributed behavior [32]. Figure 1.3

illustrates actual inside conceptualization of ESB.

Figure 3.3: Inside View of ESB

48

(a) Service Repository

The service Repository (also known as service registry) manages

the metadata that store important information related to services at the

centrally located repository. It is used to encourage reusability and

prevent duplication of service. The reuse of service components is a

prime contributing factor to reducing cost and time as compared to

other simple SOA based solutions. It also supports in task related to

the scope of services and policy describing service level agreements

[28]. The above Figure 3.3 depicts the position of a service registry.

(b) Policy based Secure Messaging

It supports in message interaction and communication in ESB. If a

message from higher or lower layer arrives, then there must be

validation checks on its access for authentication purpose. It uses

digital signature and web service security-based authentication for

better and secured messaging in ESB. It also involves authenticating

users and access control on resources [17, 31].

(c) Communication protocol

This allows the conversion of protocols required by multiple

services during communication. ESB supports various communication

protocol associated with application layer like HTTP, FTP, REST,

SOAP, DCOM, RFC etc. These protocols are used for establishing a

connection between the service requester and provider. It also supports

the necessary feature for translation of message format, which is not

compatible either to the service requester or to provider [33, 34].

49

(d) Service Discovery

Service discovery is a part, where implemented/published service

can be discovered through the service registry. This phase is used by

service requester to discover implemented service. It has been

observed that services face the problem of service versioning during its

discovery. Service Versioning is defining as an incompatibility in

recognizing service format that may not be identified by the

underlying protocol [33]. The reason behind this incompatibility is

unidentified message format. For example: Consider a situation in

which the service provider is using version 2.0 of the particular service

and that service is being requested by particular requester `A`, but

requester `A` does not able to recognize the service version (non-

compatible). So, there is a problem of Service versioning. In this case,

ESB can be used to make transformations from an unidentified version

to a known compatible version with the help of service registry.

(e) Mediation flows

The word meditation means negotiation that is conducted by some

impartial party in resolving differences. To support service

availability, connectivity and virtualization - mediation flow play an

important role. It also helps in understanding and providing

compatibility for messaging between multiple services. It monitors the

workflow and processes the received messages from a requester and

then forwarded to the particular service provider. Mediation varies its

performance from a single interaction to multiple interactions of

services in regards to reusability of services. It also uses distinct

patterns of a message to its processing, also known mediation patterns.

ESB uses several ready-made mediation patterns for service discovery

[19].

50

(f) Messaging in Service Bus

ESB must support messaging through interaction between multiple

services. This could help in improve availability, reliability, and

flexibility related issues among services in ESB. Messaging has three

important aspects related to routing, transformation, and heterogeneity

as discussed below [16].

 Message routing: Routing provides the shortest path to deliver

messages across the network. It also supports different routing

transport protocols like E-mail (POP/SMTP), FTP, JMS, HTTP(S),

WS-Reliable Messaging. When a message contains insufficient

information, then it is difficult to route it. At this time, such

message must be enriched with some additional information

through service registry which maintains overall content gathering

related to routing.

 Message Transformation: It involves the services that aggregate or

enrich the XML payload of messages. It supports both XML and

Non-XML data transformation that follows dynamic service

selection to transform message payload based on its header

content. For such transformation facilities, it utilizes XML

standards such as Extensible Stylesheet Language Transformations

(XSLT). It does support XML-based cache for retrieving the

previously sent message [55].

 Message Heterogeneity: It supports multiple messaging services to

maintain its workflow like synchronous & asynchronous, publish

& subscribe service etc. It also provides different message formats

like SOAP, JSON, XML, JMS headers, Message Format Language

(MFL). Heterogeneity in the message also provides Mix and Match

51

messaging services with WS reliable to unreliable messaging

service.

(g) Monitoring & Logging facility for Messaging

Monitoring is defined as analyzing the message content during

service integration at runtime. A service provider can also monitor the

content for service and gather all kind of managerial associated with

messaging like auditing, logging and error reporting [6]. It also

prepares the statistics for messaging and its payload. It provides the

real-time observation and dynamic resource loading which includes

the logs and alerts that could be scanned and recorded at the

organizational level.

3. 2. Message Routing Functionality in ESB

ESB primarily focuses on message routing, transformation, and its

handling. It also ensures the necessary infrastructure support for reliable

routing of messages between multiple services [11]. Traditional

communication via ESB usually follows a rule-based mechanism for

processing and configuration of messages. This technique does not

provide mechanisms for dynamic routing of messages. However, there

exist a lot of work in literature that extends this basic functionality through

the use of Abstract Routing Path (ARP) and Abstract Routing Table

(ART). A good discussion on such approaches is available in [23]. The

work done in [24] is further adding the method that allowing dynamic

reconfigurable routing and extends the functionality to support dynamic

routing mechanism. The limitations of ESB could be overcome by

allowing dynamic message routing, in which routing path is computed

during at runtime.

52

In literature, there are two broad categories for reliable message routing:

(1) Web-based Service Reliability: It is an SOAP-based protocol for

exchanging messages with assured delivery without its duplicity

[52]. It uses an independent protocol that allows the messages to be

exchanged between multiple services. Further, it provides

interoperability in Web services for SOAP binding [1].

(2) Routing Pattern: It defines the message routing pattern in

supporting service composition. However, such routing mechanism

maintains static routes only and a list of alternate routes has to be

provided well in advance. This mechanism also provides the

solution in which method is directly applicable to the service

platforms and integration tools like- TIBCO, IBM WebSphere,

ServiceMix, Mule, Sonic ESB and etc. [41].

The generic functionality for ESB architecture is made up of four parts:

 Message Mechanism: It is the core functionality of ESB that

provides handling of messages between multiple services. It also

allows the services to interact with another existing service on a

common shared platform of ESB.

 Message Transformation: It involves the conversion of a message

to a particular format that can be understood by both

communicating service parties. It also provides a layer of

abstraction to make components as platform independent.

 Routing Mechanism: This process prevents the loss of messages

and guaranteed its delivery. It also helps in providing a reliable

53

route for navigating message from its clients to the appropriate

service provider.

 Message Container: It is the actual entity which carried the data

and its associated information during communication in which

services are actually deployed. It also hosts the service to receive

messages from other containers.

The messaging functionality associated with ESB could help in

forwarding and be accepting the messages from service requesters. Such

mechanism has been adopted by work in [23, 25]. Figure 3.4 pasteurizes

the routing mechanism with help of ART and ARP along with business

logic processing engine.

Figure 3.4: Message Routing in ESB

ARP is used to store paths for routing the messages and also provide to

route maps to different abstract routers for service client and its associated

provider’s URI (Uniform Resource Identifier). Generally, ARP identifies

the route with help of ART in terms of abstract service names. It is based

on the principle of ‘store and search’ for service names and thus,

54

determining the actual service provider. After extracting the actual

address, service provider replies with this address to service request rather

than just using a service name.

Business logic engine recognizes the potential routing path from ARP.

Then, route handler chooses the service provider at runtime and checks the

content of the routing message. Finally, route handler forwards the

message to the corresponding service provider in the route map for further

processing [23].

3.2.1 Classification for Message Routing

One of the major issues in ESB routing mechanism is dynamic path

determination. This requires the evaluation of service that must be done at

runtime to check service availability and reliability. Broadly, classification

in message routing in ESB can be categorized into following three:

(1) Content-Based Routing (CBR): It follows the message driven

routing methodology and widely accepted as an important

characteristic in message handling. In CBR, a path is identified by

considering message content and that based on set of calculations

for predicting route. Such criteria includes message type & its

value. This category of routing mechanism involves the practice

for enriching the requester’s message header with a destination

address. Figure 3.5 displays CBR mechanism for communication

between two - Service ‘A’ and Service ‘B’ [25].

55

Figure 3.5: Content-Based Routing Mechanism

(2) Pattern-Based Routing (PBR): Services are generally retained by

containers and service composition is specified using an execution

language like BPEL. This service container is also used to define

the interoperability between multiple services for cooperation and

coordination during an interaction. However, this methodology has

a serious drawback in terms of performance, especially for

complex server applications.

Figure 3.6: Pattern-Based Routing Mechanism

56

A possible solution for above problem is Pattern-Based Routing

(PBR). Figure 3.6 illustrates the basic mechanism for PBR used in

ESB. It introduces the Application Patterns (AP) that provides

supporting in service orchestration. AP handles the messages from its

service requester and then, processes it with the help of existing

service patterns that have been provided from its service provider.

These service patterns provide necessary support for identifying

message format and its type by querying the service pattern

repository. The AP container sends this processed message to

‘Router’, which transforms it with the compatible of invoked service

provider.

(3) Dynamic Routing: This category of routing mechanism involves

the path that must not be predetermined or fixed. When any client

(service requester) demands a service access, then ESB assigned

and allocate a unique task ID to that particular requester. Now, this

task ID is assigned and inserted into the message envelope, i.e.

service/message container. This container would be plug-in with

ESB and Routing Manager navigates this message to an

appropriate service provider for handling further access. But the

path is determined at runtime only [23].

57

Figure 3.7: Dynamic Routing Mechanism in ESB

Figure 3.7 explains the dynamic message routing and its management used

in with ESB. A brief description is given below:

1. Initially, message request goes to the analyzer component for

locating the workflow. The analyzer further decides the business

requirements for this request. Then, the ‘process engine’

determines the number of possible paths or routes. This routing

path is stored into ART.

2. During execution, messages are exchanged between multiple

services and thus, ESB navigates these messages through allocated

route which defined in ART.

58

3. Each service is plug-in through end-points which are available in

ESB and engaged by the specified container to establish

communication between these services. During an interaction

between services, messages are, first, converted to an appropriate

format and then, forwarded to further processing so that it could be

easily understandable by invoked parties.

4. In next step, the container has to choose service provider at

runtime. Therefore, it requests the process engine to obtain new

route from the ART. After that, it extracts the service name from

ART and then, creates a request for to service provider assignment.

5. Each container has its local mapping table in which it contains

service names for different providers. Now, container finds the

abstract service name to map its associated candidate service

providers as mentioned in 5.1 and return with the list of candidate

service providers’ URI as shown in 5.2 step in Figure 3.7. This all

would be controlled by Routing Manager.

6. If there are multiple services for the same functionality, then it uses

specific runtime testing on each service.

7. In the evaluation step, when testing is completed, services are

analyzed based on certain predefined standards like response time,

incurred execution time etc.

8. The result of testing and its associated evaluation of particular

service is kept into historic data.

59

9. Now, the container replaces the abstract service name in ARP with

service provider’s URI and it creates the Instance Routing Path

(IRP) for handling requested service.

10. Container, then, forwards this message to next service depending

upon IRP.

11. Finally, the analyzer can change the business process by

reconfiguring ARP.

3.3 Threat, Prevention & Gap with ESB

There is no standard definition for ESB but several authorities have

termed ESB as middleware solution that supports service integration and

its interaction with other services. To deliver, ease and fast services

through ESB, software service quality and features must be rapid enough

to handle the demand of business. Open-source, agility, and scalability are

major challenges in setting up the software enterprise needs. To gear up

with such challenges, one must be committed to open standards and

interoperability from proprietary solutions. Open source software could be

a better solution to avoid the vendors’ features lock-in and temporary

availability as it also resolves the issue for integration and provided with

more sophisticated, fast and deployable paradigm for service computing.

There is no permanent solution to the problems that occurred during

service integration. While purchasing the commercial ESB solutions, it is

suggested to keep the terms and conditions made during its usage [51]. At

first, a decision must be taken whether particular ESB framework is

sufficient and meet the entire requirement of the project at a particular

organization. It is better to judge the necessity of project and which ESB

60

best overlaps the requirement and how its complexity could affect the

overall project growth.

Proprietary and open-source ESB, both are the better option depending

upon the requirement associated with software building block. Sometimes,

open source ESB performances are far better than commercial/ proprietary

ESB [29]. At some junctions, these both ESBs have similar characteristics

when compared to the computational environment of data handling like

legacy systems. Thus, it is suggested at the beginning of the project, check

the necessities and demand in ESB selection. There could be following

threats and questions that must be kept in mind by developer or

architecture designer for choosing ESB for its business:

 Manageability: Point out the overall handling and monitoring support

with ESB. Questions like GUI support for monitoring services? How

does it control the product?

 Developer Support & Guidance: On using particular ESB, How much

technical & social support provided from its development firm? How

many tutorials, articles, and videos are available? Active list or public

forums available? Support would be online or offline, onsite or offsite,

preferred communication language?

 Costing: This is a very important aspect for choosing ESB product.

This may include questionnaire - What is the total cost of ownership

(TCO) of particular ESB product? What does its maintenance cost?

What is its subsidiary products requirement costing? What are rental

charges for its cloud adapter, if required?

 SLA Terms & Conditions: Point out necessary condition and term for

the agreement made at the time of purchase of ESB product from the

61

particular organization. What would be guaranteed period for terms?

What governing policy bears? Which part of services could be on

rental basis?

 Usability: This point suggests the questions like - Which development

environment supports? How is installation carried out? How many

supporting tools are required for its installation?

 Technical Requirement: This point governs all the demand and

requirement made and it may include the question like Offered

functionality durability? Support of legacy applications?

 Flexibility: Brings questionnaire related to customization of ESB

product. How could functionalities for a particular product be set

according to own necessities?

 Extensiveness: Suggestion includes the possibilities for extension of

existing product. This may include the questions like - Is ESB product

expands to external environment? Such interface based on standards or

not? Support for external API?

 Adapter/Connectors: Check the availability, whether developing firm

of ESB provides connector/adapter for other technologies. How could

customization for own adapter be possible? Would these adapters

compatible with B2B products? Are these adapters fulfilling all the

technologies demands?

 Licensing: Shows the up-gradation and transparency measures

provided from developer firm of ESB Product. This may include –

Which kind of license methodology is used? Is ESB product is

62

upgradable for free or not? Is change in requirements, may change the

entire license plan? Is a downgrade possible?

3.4 Discussion

This chapter concluded with features of ESB in supporting and

providing facilities to services across the network. It provides the offers

handling and monitoring of service that extends the features of SOA. It

has been analyzed that concept of ESB is to connect various service

components together i.e. service containers that actually invoked in

service execution. It is a good option for building platform in enterprise

integration, as it protects and hide underlying transport protocols. It has

the capability to transport messages more securely and also used to

integrate several services from hybrid and homogeneous systems as a

common solution for middleware. ESB also improves the architectural

benefit associated with an enterprise solution for service integration and

better handling of services across the network.

The Gap with ESB discusses the issues that have been found with

extensive working beyond ESB. The specific business applications that are

complex, dynamic and highly computational, requires a lot of effort in

processing and somewhat more implementation than ESB. This introduces

a new concept called - ‘Integration Suite’. This kind of Integration

methodology not only offers all the features of ESB, but also includes the

functionality like Business Activity Monitoring, Master Data

Management, and Business Process Management (BPM). There could be

additional areas that could be explored for architectural benefits in ESB,

which starts with “Microservices Architecture”. This architecture briefs

about the distributed and flexibility in delivering services [48].

Today, APIs have become an actual mode of publicity to get famous of

your business. The new start-up has launched its API to exposing data and

63

internal business processes to compete for the market. Such APIs are

primarily exposed using REST protocol with JSON. Nowadays, REST and

JSON together resembles the combination of SOAP and XML [42]. These

APIs also help in service recognition like service version, its type, and

format. Usually, APIs are issued in the form of integration patterns that

have been provided by its manufacturing organization. ESB could better

deliver these API and help in minimizing the integration risk among

services. It would also improve the Return on Investment (RoI) by

adopting standards associated with ESB implementation.

64

Chapter 4

Mathematical Prototype for Sensor Web

Integration in Service-Oriented System

Service-oriented computing is an emerging paradigm where services are

platform-independent and computational entities that could be published,

delivered, executed and discarded based on the quality of service (QoS)

requirement [80]. It also supports the distributed, interoperable, and

integration of services on a common and shared platform of ESB. This

platform aims at developing a novel approach for extending the features of

SOA and federates the different service components to provide the

sophisticated solution for better service accessibility. This area of a

service-oriented system could be merged with legacy applications like

sensor network where sensed data could be accessed and delivered

efficiently [78, 97]. Whereas fundamental theories and methodologies

associated with data acquisition from sensor network need to address the

issues that involve the interoperability and communication overhead

between multiple services. This communication could be strengthened by

well-defined ‘link’ between correspondent ‘node’. Here, ‘node’ could be a

client or just sensor node which actually rises request for services access

and communication between them is governed by a ‘link’. The service

execution ensures the fidelity of data which is being exchanged between

multiple nodes with help of desired protocol as discussed in [64].

4.1 Streaming Data for Sensor Web Integration

The streaming of sensor data could be accessed and stored locally as well

as through the cloud server. Whenever, such data is stored at repository

through the local server, its access is limited with a specific number of

65

users. On the other hand, when such data is kept at a cloud, then its access

is vital and rapid through various distributed algorithms and techniques.

Such arrangement could be possible with different service modeling in

service-oriented systems. This scenario is well depicted in Figure 4.1 in

which sensor data is traffic through cloud infrastructure at global

resources.

Figure 4.1: Sensor Data Streaming over Local and Cloud Server

66

Evolution of sensor data over the web started in 1997 at NASA laboratory,

when Kevin A. Delin first coined this perception. He had also defined a

wireless system as distributed, intra-connected, and communicable sensor

clusters as discussed in [115]. These sensors are also installed to capture

environments with variable capabilities. Kevin also pointed out the

significance of these systems as “macro-instrument for synchronized

sensing”. This project was successful in implementing monitoring of the

environment. This idea was implemented in NASA’s Jet Propulsion Labs

that could help in the battlefield surveillance purpose and later on, this

concept was conceived by several applications. Thus, this integration of

sensor with the web gives new hope to sensor network system which not

only making sensor device intelligent but also enables the system to

establish a connection with a neighboring device for exchanging data.

Such system potentially shared the relevant information with cluster

sensor device over data acquisition [96, 115]. This acquired information is

collected and could be accessible by this web integration. The integration

of two different technologies could make the system more sophisticated

and efficient in delivering services across the network. This could be

achieved by mean of competent middleware technology which supports

the sensor data more conveniently over the web. An efficient way of

handling sensor data could explore growing possibilities for our

technology researcher and practitioner as discussed in [95].

 For improvement in sensor and the web interfacing, Open Geospatial

Consortium (OGC) was formed in 2001 that does the specification and

open standards development for sensor web integration. This organization

also supports rendering the geospatial services which significantly

developed the standardization for a sensor device in combination with the

web. OGC worked for recognition of sensor networks over the web and

made an active and special working group that does standardization of

sensor web interoperability issues. This working group is named as Sensor

67

Web Enablement (SWE). It deals with open specifications and

characterization of a sensor network with web services. This SWE

working group primarily dedicated for standardization for sensor data

discovery, acquisition, monitoring, and event recognition. These features

are well nurtured and presented in Service-Oriented Architecture (SOA) in

which data is modeled using open standards and specifications. It also

involves the data encodings that describe the capabilities which include

data types, its mode, and phase of activation using web services.

In environmental monitoring, sensor plays an important role in capturing

and sensing the different parameters. It could be possible by using

different variations of sensors which scattered in different geospatial

locations. This captured information is stored with help of "data logger”

which is a hardware device that accountable for receiving sensed data (raw

form) from the proximity sensor. This involves the interchange of data

using analog to digital converter. Such inter-conversion of data is recorded

into data logger on local memory until it is forwarded to a central

computational unit through a well-defined gateway. The manufacturing

company for such data logger offers enterprise built-in applications

software (SDK) to monitor the captured data at a central computational

unit. This information could be beneficial in controlling and managing

deployed sensor devices at different geospatial locations. With the help of

these SDKs, clients could also access and execute sensor data information

at their end. It could be available via the web interface which could be

customized according to client’s needs. Collect raw data is analyzed and

pre-processed using data cleaning techniques before making it available to

client access. This information is extracted from a large set of collect and

sensed data. This feature would rely on the monitoring service that assures

the quality control for sensed data. Such cleaned data could be available to

the data science research community group for developing standardized

and open source specification in sensor web enablement [66, 94].

68

4.2 Architectural Service Modeling

The business conversation is an important style in the engagement of

services between its clients. This could efficiently be organized through

the exchange of correlated messages [63, 72]. For example, an insurance

company client may request for a status update to his/her insurance refund.

This creates an ‘event’ that does the invocation and integration of multiple

services. This service invocation could either commit the refund or cancel

it on basis of certain predefined features. Such features are governed by

service-oriented computing and it also models the service for which

conversation is supported [62]. This concept can be conceived for sensor

data acquisition in which the following action is required to get an update:

 Interaction must be based on exchanging information within the

system for which typically event must occur. This may include

requests, reply, commit, cancel or invoke for each interaction.

 Interpretation must be done using predefined business patterns,

usually defined in term of enterprise integration patterns (EIP).

Such procedure enables the interaction between communicating

party.

 Execution must be governed by ‘state’ of service and there has to

be predefined path or route which justifies the transition of an

event from one ‘state’ to another.

 Invocation in the business conversation must be done on ‘parity’

flag basis. This flag clears the interest of different ‘Node’ whether

it wants to interact with communicating another party.

4.2.1. Semantic Specifications

Each ‘node’ is associated with other ‘node’ through well-defined ‘link’

that provide path or route to communicate with other entities. Data

associated with sensors could be exchanged through these routes and can

69

be streamed to cloud services. Service integration is independent of ‘node’

and possible through well-defined communication “connectors”. Such

connectors provide the mapping of service component at runtime and

define the features for its interactions [65, 71].

The specification of each ‘link’ also define the connectors that are

responsible for binding and coordinating of different service components

through well-known interaction protocols as defined in sections 4.3. The

service interaction associated with local and remote located cloud server

could be based on two type of communication, i.e. one-way and two-way

communication using connectors. The interpretation of such interaction is

termed as signature interpretation in service-oriented computing in which

invoked ‘node’ could exchange data (sensor data) simultaneously. Hence,

interaction protocols establish the generic cause for correlated sensor data

exchange as discussed in [69, 73].

4.3 Formal Architectural Semantic for Sensor Data

This section presents the semantic aspect of a service-oriented computing

system that does the specifications for the formal definition for sensor data

to its service interaction, interpretation, and execution. It also models the

execution of services that transform the status of service from one state to

another with underlying interaction protocol [81]. It ensures the exchange

and processing of messages (events) by invoked node in the service

composition.

4.3.1. Global Resources Configuration

Global configuration consists of sensor network which is based on tuple

for a simple node, associated link between them and parity checks that

defines the actual status of invoked parties whether it is in ready state or

70

not. This parity flag informs the communicating parties about the status of

invoked resource. Its value varies from [0……1]. So, service

configuration could be written as follow:

Cong = <Node, Link, parity>; ……..(Eq.01)

4.3.2 Service Execution configuration

This methodology discuss the exchange patterns for sensor data between

invoked parties which are typically dependent on interaction. Hence, the

concept of modeling associated with the conventional protocol of

capturing business negotiations which mostly derives from data and its

associated signature. Signature is the set of interaction names which are

utilized in some business logic to determine the event associated with

invoked Node.

A service execution configuration (EXE) involves the mutual disjoint set

of services which are partitioned into two type of communication, either

one-way or two-way. Interaction is based on this communication typology

through messaging. It includes the different integration pattern [68].

Hence, it requires that for every n , 'n Node, if (, ')n n Link, then

(, ')n nEXE ….(Eq.02)

An interaction between Nodes is always in order pairs so that it could be

directional and bi-directional. It could involve the transmitting of

messages from one-way or two-way communication model pedagogy.

Messages are forwarded through know set of Link. It is clear from the

definition that if there is not such Link exists between invoked Node, there

would be no messaging could possible between them.

71

For given two-way communication between invoked Node, set of services

could be involved through messaging. Such interaction creates an event

which is set of sequence instructions that must be followed by the service

provider as well as by service requesters as specified in Eq.02. If requester

demands any service that should be facilitated by the particular service

provider, then there must be reply event from provider’s side with positive

or cancel reply. This means that particular service could be availed or not.

Consider a case, where a reply is positive from the provider of that service

and in this case, the requester could commit that service. The requester

could invoke the service with desired actions. This session get expire

when this event completed as discussed in [64, 71].

All such interaction must be based on parity. This interaction could be

deduced with following set of instructions:

 The request-event (e)

 The reply-event (e)

 The commit-event (e)

 The cancel-event (e)

 The invoke-event (†e)

Overall interaction with any service-oriented system must follow with a

specified set of command between the service requester and its provider.

For example, an insurance company needs to register their client with

desired scheme under compensation for accidental insurance.

72

Figure 4.2: Interaction pattern service for Insurance Company

One-way communication occurred when Node sends a single message of

the request and does not get a reply from its associated service provider.

This situation could also be raised with neighboring or co-located Node.

The possible interaction patterns for two-way communication are depicted

in Figure 4.2. regClient, payAck and payRefund are three services which

are having associated set of instructed events.

Interactions are directional and event associated with requesters and

providers: for every event e two-way communication by requester ' 'r

and provider ' 's , such that set ()rJ e of events associated with e that can

be received by ' 'r , is as follows:

 If e two-way communication between requester ' 'r and provider

' 's then,

- () { }rJ e e

- †() { , , , }sJ e e e e e ….(Eq.03)

 If e one-way communication requester ' 'r and provider ' 's then,

- ()rJ e

- () { }sJ e e ….(Eq.04)

73

4.3.3. Execution State

This subsection discusses the computational behavior with services

execution configuration. This mathematical model presents the eminent

view for parties which are invoked in some events. These parties are

independent units and could perform computation associated with service

executing in parallel and therefore, it can publish as well as execute

particular events concurrently. Events are, actually, invocation of services

into some constraint which needs dedicated devotion of resources and

service itself. Such events are represented asynchronously by different

states. Once any event is sent to some party, it is being stored into some

buffer until and unless that invoked party is ready to process it [64].

Execution of event generates a sequence of states and each of which is

characterized by its associated action that acquired individual party

invocation in that particular interaction.

An execution state is defined CONGX as tuple of

, , , ,PUB DIV EXC DIS PAR ….(Eq.05)

where:

 PUB J is set of events that have been published. Its means, those

events whose session is over and does not under consideration

through any Link

 DIV J is set of event that are delivered at requester’s site. Its

means, those events which are still in a queue or under processing

to be published at requester end.

 EXC J is set of an event that is executed for consideration under

delivery at requester’s site.

 DIS J is set of an event which is not cancel by a provider at

their end and does not under any consideration so far.

 PAR is parity flag that shows the status of invoked Node

74

It adds parity flag in CONG as well as executive state for an event, so that

it assures the event occurrence with the quality of service. Whenever any

state change occurred, then there must be proper handling of such

transition. This shows that during the state transformation of event

buffering should be handed over to Link by Node with a suggestion of

Parity.

4.3.4 Execution Route

The transition of an event from one state to another could depend on Link

associated with Node [64]. There must be a path between associated Node

that represents a possible execution of events which could be published,

delivered, executed and discarded according to the situation as specified in

(Eq.05). It is important to note that Parity is always required in transition

from one state to another whose value varies from zero to one.

A route is a confined path that must be discovered by its provider ' 's in

order to support transition of event, such that transition system 0()T t

and t T ; route ' ' is starting in s like:

 A sequence of transition 1 1 2 1() ().....()i it t t t t t would be

finite and its final state has no further states.

 Empty path start and end with ' 't

Above expression could also be written and formulated with (, 1);i i

where ith transition in sequence of events and ()i is its initial state of this

transition .T

75

Axiom 1: For ' 'r Node, a requester in an interaction e two-way

communication, iff for each transition ,t t when each requester can

commit or cancel the deal/interaction which is offered by provider. It is

important to note that requester could not do both actions simultaneously–

commit and cancel the deal at same time.

Axiom 2: For ' 's Node, a provider in an interaction, i.e. e two-way

communication, iff for each transition ,t t when provider ready to

execute a committed/canceled deal, only one state would be allowed. The

provider must reply to every request whenever request rose.

4.4 Service Interaction Semantic

This section discusses the interaction patterns between multiple services

which formulate the properties based relationship either state or event

through well establish Link. These properties justify the first order logic

formula to specify the type of input & output for any services that

facilitate the event occurrence. The efficient way to deliver such services

across the computing end is ontology which sets the reason to all relations

to be included in above-mentioned properties of services. Throughout this

section, assume Cong = <Node, Link, parity>; and service execution

configuration (EXE) with an event which is set of sequence instructions

that must be followed by service provider as well as its associated

requesters [70].

4.4.1 Interaction Signatures

It defines a set of interaction properties like name and its associated

features which identify an event that occurred during service execution.

Interaction names are actually a “type” that determines the properties of a

76

particular service at an instance which derive the first order logic for K an

ontology with Type kT .

Such interaction could be fixed and variable depending on some business

logic that derives the relationship between multiple services. This section

discusses the fixed interaction patterns which depend on pair of <Name,

Prop>; where

Name is a type of finite and mutually disjoint set of interaction

identifier which determines the interaction that based on two-way

communication between requester and provider.

Prop is set of properties which depend on event-initiation and

could be expressed with < e , e e , e , †e >

With reference to [64], interaction signatures define the importance of

Node in service execution and therefore, identify the event in which Node

is invoked. Such invocation of particular Node could determine the event-

request (e) at execution time and could perform the task of publishing

that event reply (e).

4.4.2 Signature Interpretation

An interpretation is a conversion of pattern involved in communication

between multiple services at execution time. It depends on either

communication between Node is one-way or two-way. This justifies the

particular communication invoked by Node with associated signature

<Name, Prop>. It can be expressed as:

An interpretation" "i for signature is conversion of interaction

pattern for identifier name <Name>, such that:

77

 for every a Namepr Namerq, i a two-way

communication

 for every a Namesnd Namercv, i a one-way

communication

……(Eq. 06)

Here, i a is an interpretation of interaction pattern ‘a’ (such that a

Name) between service provider (PR) and requester (RQ) that must be

followed in two communication. Whereas, interpretation of interaction

pattern ‘a’ that occurred between multiple services within system which

must be followed by one-way communication. Signature interpretation

does the conversion of interaction name which is associated with service

requester and provider. This behavior of conversion provides the global

resource configuration with standard interaction names. So that, in future,

interpretation associated with different Name could be faster and easier in

aid of message exchange between multiple services.

4.4.3 Interaction Protocol

It is set of rule and regulation that must be followed in order to perform

interaction between multiple services for exchanging data and

information. Interaction protocol is similar to the communication occurred

between two nodes from a different domain of application. Interaction

signature of these two nodes plays a vital role in establishing a connection

between them. It can be expressed as:

Interaction protocol ' ' is triple , ,RQ PRsig sig ptl where sig is a

signature for requester (RQ) and provider (PR). ptl denotes the protocol

that provides the underlying rule for exchanging data and information

associated to in establishing communication as discussed in [79].

78

Such interaction protocol must be designed in keeping the reliability of

message delivery at both ends of the service provider as well as service

requester. This increases the creditability of published events and reduces

the abandon delay with associated Cong = <Node, Link, parity>. For

example: data & information exchange, format conversion and encryption

standards.

4.4.4 Communication Connector

A connector defines the interface between two Node such that {a, b

Node} and connector is triple , ,A B where , ,RQ PRsig sig ptl is an

interaction protocol, :A A Asig Node and :B B Bsig Node are signature

semantic mapping. This transaction would further need two interpretations

Ai and Bi for ANode and BNode respectively. For interpreting the interaction

protocol, it needs composition of two signatures as , ,A A B Bi i and this

composition should be converse through some business rule using

underlying support connector.

Let , ,A B be a connector for two interaction signature ANode and

BNode with interpretation Ai and Bi respectively. This satisfies the

connector rule which is tuple of , ,A Bi i iff , , ,A A B Bi i satisfies

the ' 'ip that is interaction protocol in service-oriented computing [67].

It is important to note that the equation obtained by composition with

ANode and BNode for every aNameA and bNameB are satisfied by

, ,A Bi i iff (()) (())A A B Bi a i b . The obtained equation justifies the

connector ()A a of ANode and ()B b of BNode .

79

4.5 Service Semantic for Sensor Data Updation

This section presents the analytical view for services and its associated

specification related to the service component. It also discusses the

composition of multiple services to get sensor data update using service-

oriented computing as mediation. It provides the service integration and its

interaction through messaging. This could be accomplished with aid of

service container. These containers do the actual composition of multiple

services on a common platform of ESB.

Figure 4.3: Service Flow Semantic for update Sensor Data

80

A mathematical algorithmic view for exchanging data in service-oriented

computational architecture with arbitrary state and route could express as

transition axiom and rule for service flow as shown in Figure 4.3. Let

assume some execution state ' 'S and route ' ' for service with typical

properties that for service-oriented systems, which characterize the

computational feature itself.

4.5.1 Semantics for Service Container

A service container is an actual holder for the service in which a particular

service could be installed and delivered to desired business logic through

predefined configuration. It also provides the interface to global resource

configuration that establishes a connection between given Node.

Essentially, it uses the interaction patterns to coordinate given

communication connector for a client as discussed in [70]. A service

container ' ' is comprised of followings:

 Configuration conditions based on Parity bit in a pair of <Node,

Link>.

 Business logic and protocol for which container has been assigned.

 Communication connector support that distinguished component

responsible for the interaction. It must support () ()A Bi a i b iff

signature semantic A Asig Node and B Bsig Node respectively.

Table 4.1: Transition Axiom and Rule for Service Flow

, , ,

: , , () []

In general state route S

Assignment u s S d for d D sensor dataset

81

, ,

, , () ' ()

() '() &

R R

R R R

request d S

S d d D

x x for x D x d

()

()

' '

(),

' '

R

Service Handler SOC Mediation

for each s S do

create servicecontainer

forward request d to Service provider

generateerror if not found d

(), ,

(), :

(), :

P P

P R

P R

provider d S

reply d

cancel d

(), ,

(),

[()]

P P

R

Error reported invoke d S

commit d

request d stored for future reference

Sensor data requested by client at remote location is being first handled by

service-oriented computing mediation which also acts as a service

handler. This service handler would forward the client request to a

corresponding service provider for getting the update on sensor data value

' 'd which belongs to dataset ' 'D . This phenomenon is express in Table 4.1

which shows the transition of service from one state to another. Whenever

client requests for update in sensor data, it has to be in a pair of

,state route .

The client request for sensor data ' 'd in the form of , Rrequest d and

route ' 'R justifies by which client request send its data update. This

request goes service-oriented computing mediation and further, it

82

forwarded to a corresponding service provider. Then, provider analyzed

this forwarded request regarding “sensor data update” and reply with a

pair (), Preply d . If the service provider does not find requested data ' 'd

then it reported an error and stored it at local repository with

(), Rcommit d .

4.6. Results & Analysis for Service Semantics

This section gives the results of experiments associated to service

interaction semantic which is implemented through cloud based

infrastructure. The results are compared with three different service

configurations that determine the different state on service instance [66].

However, the storage of data is quite fast over local server as compare to

cloud. The main reason behind such functionality is ‘availability of

resources’ at local level. The application is wrapped into a different set of

service called containers and these containers interact with local server in

much faster pace and response time is also rapid. Even, the connectors for

such container provides better integration of services.

The access feasibility of services is analyzed in local as well as cloud

server which determines the performance accuracy in regards to execution

in different service states. The configuration of workstation is enabled

with CPU clock speed of 3.25 GHz and 16 GB of RAM. It has been

investigated in this implementation that there would be consecutive

increase by 3% - 5% per clock speed in performance accuracy. The overall

accuracy would reach to 97.4% when two service states simultaneously

executed.

83

Figure 4.4: Global Service Configuration for Multiple Instances

Service accessibility at local server would be fast as compared to cloud-

based servers. This methodology experiments with above-mentioned

transition axiom and rules in Table 4.1. In the case of cloud-based

accessibility of services, these service instances are actual entities who

take the access grant for resources which are also virtually available.

These service instances could be with different states and events based on

their communication invocation. If any service instance is at a local server,

then its associated states and events would be less as compared to cloud

base server [76]. Available resources with that local server would be high

as compared with the cloud server. Figure 4.4 depicts the number of states,

resources and associated events in that states.

C
o

u
n

t
V

al
u

e
(m

et
ri

c)

84

Figure 4.5: Service Interaction for Multiple Instances

The service instances interact with each other through messaging with

request, reply and commit. With a local server, the number of service

interaction is less to engage its corresponding resource as depicted in

Figure 4.5. Consider the case of five instances of service, in which the

number of sent requests are more as compared with the local server

request due to its availability.

C
o

u
n

t
V

al
u

e
(m

et
ri

c)

85

Figure 4.6: Service Execution for Multiple Instances

Any service could be in the different state depending upon its invoked

event. Figure 4.6 shows the service execution in term of whether that

service is published, delivered, executed, discarded or in waiting state. The

number of service count in published, delivered and executed are same

due to the reason of its availability as local. Whereas in cases of multiple

instances, it finds different scenario depending on the number of instances.

C
o

u
n

t
V

al
u

e
(m

et
ri

c)

86

Figure 4.7: Performance Accuracy Index for Multiple Instances

The overall performance accuracy is found to be in the range of 92% to

97% approx. for the different number of instances as shown in Figure 4.7.

It also depicts the traditional fact of local and global server accessibility in

which resources that globally available would delay in access on the

comparison of local availability of resources.

P
e

rf
o

rm
an

ce
 A

cc
u

ra
cy

 (
in

 p
er

ce
n

ta
ge

)

87

Figure 4.8: Time Incurred for Multiple Instances

Time incurred in facilitating the service instances would count in seconds

at Y-axis in Figure 4.8. This result also shows the general fundamental of

accessibility of resource on basis of global and local servers. It is

interesting to note that services which are requested on the local server

need less response time as compared to cloud servers as depicted in Figure

4.1.

Ti
m

e
(i

n
 m

in
u

te
s)

88

4.7 Discussion

This chapter concludes the semantic perception for service execution in

global configuration with sensor data acquisition. This service interaction

is observed in different execution states and provides the functional and

non-functional support to sensed data through the well-known gateway.

The paradigmatic aspect of business interaction is explained well with the

help of mathematical formulations for which services interactions are

facilitated. Sensor data needs a regular update and thus, abstract semantic

for such data acquisition is required to provide global accessibility of data

through cloud-based services. This chapter investigates the accessibility

for such dataset at two different levels; one at the local level (native

server) and another at the global level (cloud servers). The discussed

mathematical formulation defines possible execution state for services

during one-way and two-way communications during service interaction.

It also provides interaction semantics that governs the invoke ‘node’ on

the basis of data exchange through well-known ‘link’ between them. The

chapter also provides the performance based analysis for services in

different states. It is important to note that services with more than three

service instances, must have better performance in terms of accessibility

and accuracy as compared with less number of service instances. The

overall performance accuracy is found to be in the range of 92% to 96%

approx. for more than five service instance. All such instances are also

compared with local access utilization in different states.

89

Chapter 5

An Emphatic Sensor Data Handling using

Enterprise Service Bus

In recent times, the era of computing has been emerged as a solution for

interfacing sensors to generate data from multiple sources like mobile

gadgets, actuators or devices. There is a serious demand to federate all as a

sensor-based intermediate system. This intermediate based system

involves the assessment and validation of data generated using sensors. It

may include the processing, checks, and filtration of sensed data.

5.1 Sensor Network Interface

A sensor is a device that senses the neighboring environmental parameters

like temperature, moisture, light and etc. Such device may interface to

generate data that associated with monitoring and assessment of the

sensor-based system. This system intermediates with service-oriented

computing for a gathering of sensed data at a specified repository. To

coordinate the functionality of sensors with service-oriented computation,

a distributed framework is used that provides interoperability, scalability,

and architectural support. ESB extends all these requirements and

facilitates multiple services for integration and interaction that delivers

better provision for sensor data. It also offers a sophisticated IDE that

supports its designer for installing and deploying services through

different service components. These service components are independent

software entity that has been created to performance designated task to

support underlying parent service. This could also help in achieving

interaction between multiple services. Such service components actually

90

engaged an available set of resources through virtualization. This ESB not

only provides the environment for its development and deployment of

multiple services but also make synchronization for its data flow during

service interaction [97].

Figure 5.1: General percept for Message Handling using ESB

The data provides during communications between multiple services could

be supported by a framework of ESB. It also provides synchronous of

messages in a reliable and flexible structure manner. This gives rise to a

loosely coupled integration of multiple services using ESB. This shows

that services can be plugged-in together in a portable and vendor-neutral

manner through ESB. This is well depicted in Figure 5.1.

ESB also supports pre-defined format of data patterns that must be

understandable by both communicating parties. The Enterprise Integration

Pattern (EIP) specifies these patterns which are provided by the

manufacturer of ESB and these patterns help in recognizing services from

a different domain of applications. Whenever any client request arrives at

Service Engine (SE), it processes the received requests and, forwarded to

its destination with appropriated route as discussed in Chapter 3. The

responsibility of route dispatcher is to forward the message to desire

91

service that is invoked in communication. Now, it is ESB which controls

the flow of data information with proper synchronization. It also maintains

the demand and access priority of an available set of resources that is

requested by different services via its component. A service component is

the entity that floats with ESB and engages the resource instance through

virtualization.

Figure 5.2: Sequence Diagram for Data Handling through ESB

92

The Service Engine (SE) process and execute the arrived client request to

generate a path that leads the message to its destination through several

steps as shown in Figure 5.2. The Service Engine (SE) through “GetData”

method generates the path with help of route dispatcher and then, it routes

this arrived message through generated path and passes the control to

ESB. Here, ESB is capable of handling services of behalf of its service

components. Moreover, these service components are itself flexible,

concise and effective to implement using EIP. ESB not only integrate

these components (service components) to facilitate between the service

provider and requester but also provide a common and shared platform to

build federated solution for improved service accessibility. It also triggers

the sequence of event that calls specified function of a particular business

application. The return call from specified business application provides

the access calls to local data center resources [19].

5.2 Proposed Architectural Design for Intelligent Sensor Network

(IntSeN) using ESB

The captured data is a crucial matter of concern for any sensor network

that provides the collection of data at a central repository (local/global)

through the well-known gateway. Such data becomes more crucial if it is

carried in distributed fashion rather than collecting as a centralized

mainframe manner. Here, ESB plays an important role in providing the

backbone to such system architecture for handling sensor data within a

particular system. It also provides the guidelines to setup strong

middleware for interfacing sensor with a service-oriented system. The

communication aspect of data handling would be assured by different

features of ESB [96].

For traditional computing system, the vendor provides different

adapters/connectors for new and upcoming technologies. These adapters

93

provide a common interface like J2EE Connector Architecture (JCA) So

that traditional computing could able to support new and upcoming

technology. The data in such system could not be filtration due to error

especially for sensor-based system in which sensed data contains noise for

a particular instance of time. This chapter focuses this inability of data

filtration that includes the clean and stabilizing of sensed data. The

primary challenges in this endeavor are to support generic framework for

accessible interface to services and to cope with heterogeneity at both

endpoints of services [102].

The problem of interoperability and accessibility could be resolved by

using ESB framework that includes the features like delivery assurance,

underlying protocol support, message routing, and much more as

discussed in Chapter 3. It also implies the improved reliability and

validation of sensed data using API available in ESB. It has a wide variety

of connector/adaptors which help in reducing the problem of heterogeneity

at both service endpoints as an interface in ESB.

The second challenge is associated with sensed data from physical devices

or sensor motes. In WSN, whenever any sensor node sends the captured

data to its corresponding neighbor node or gateway (base station), it needs

a proper connection and path to route this sensed data. In addition, data

may contain noise or error due to voltage fluctuation or loose connection

of physical devices or motes that increase the value of sensed data in an

anonymous manner. This data creates an unwanted spike in sensor value

and may lead to fake or ambiguous information. Such data must be

cleaned and filtered before storing it at cloud repository. The major issue

of data filtration and making it as stable as to store over cloud [74].

94

Figure 5.3: Proposed Architectural framework for Intelligent Sensor

Network (IntSeN)

95

Figure 5.3 elaborates the multi-level architectural framework for sensor

based system. The proposed architecture is initially divided into four

levels: Wireless Sensor Network, ESB mediation, back-end processing

and end-user.

This chapter proposes a multi-level based architectural framework for an

intelligent sensor network (IntSeN) that is capable of handling and

filtering the sensed data from multiple motes. This scenario is well

pictured in Figure 5.4 as it clearly describes an overall handling of data

from the sensor network and its storage at the cloud. The filtration of

sensed data makes the sensor network as intelligent enough which data

need to filter before storing to the cloud. This step saves the storage

memory at cloud from unnecessary noised data which is of almost no use

if it is containing noise [94].

5.2.1 Mote Connections in Wireless Sensor Network

The sensor network has gained attention in last two decades and popularly

used as a solution for environmental feature capturing like temperature,

humidity, light and much more. Usually, sensor motes are spread in the

environment randomly and it communicates with each other through well-

known routing algorithm in ad-hoc and on-demand basis. The captured

data is sent from one mote to another and finally forward to its base station

where it could be processed for further assessment. This data may contain

some noise or error in the value and this need to filter/clean before its

storage over the cloud. It could effectively be done with help of some

intermediate device like raspberry pi board which implements some

methods to clean the captured data in a moderate fashion that does not

eliminate actual value data.

96

5.2.2 ESB Mediation Level

ESB is a middleware framework that provides mediation for service

accessibility and governing architecture for an overall system. Sensor data

receives in stream form which is in continuous order one after another. So,

handling for such data is important and must guarantee its delivery. This

assurance is provided by strengthened middleware like ESB that provide

integration for multiple services over a common platform. Technically, it

could be categorized into four layers:

 Transport layer: This layer is responsible for handling data that has

been received from multiple motes through the gateway (raspberry

pi board). It uses HTTP, SOAP, FTP and JMS protocol to control

the flow of sensed data/message.

 Message format layer: This layer checks the different format for

the message as well as data from different sensor motes in which it

is received through the gateway. It also monitors whether received

message format is in JSON or simple text through SOAP protocol.

 Quality of Service (QoS) layer: This layer adheres the quality issue

with received data from sensor mote. It also validates the received

data based on criteria like delay, its type, value, and volume. It

does the identification whether data is containing noised or not.

 Mediation engine layer: This layer guarantees the connection

between sensor network layer and back-end process layer where

data need to be stored. It uses different adapters/connectors using

proxy services and endpoints available in ESB. It also an interface

between pools of service that is responsible for recognition of its

format and type.

97

5.2.3 Back-end Processing Level

This level is responsible for storing and accessing the sensed data that

have been carried from multiple sensor motes. This level is divided into

two sections:

 Storage of sensed data.

 Accessibility of sensed data.

 Whenever data is kept at corresponding repository or cloud, it needs to be

clean and filtered before storing as it may be incurred with some

unnecessary information or log. Rather than just storing all the stream data

from sensor mote, it needs to be filtered based on its format type, value

incurred, density and delay. This scenario can be categories as below:

 Business Process Management (BPM): Whenever any request

regarding data access received at BPM, it checks the authenticity

of requests and then grant the permission access to sensed data.

The overall interaction is governed by Java Messaging Exchange

(JME) [101].

 Batch Processing: Sensor data is always in streaming form and

need to be updated frequently as a service request for such

processing requires batch computation. If all requests from clients

computed into batch fashion, it requires less time and flexible

adaptability in providing latest data after cleaning and filtration job

[110].

 Dynamic Routing: This feature is one of the vibrant characteristics

of using ESB as a solution for sensor based application. It routes

the data packet to its desired location as it is facilitated with the

routing table and route path [11].

98

 Rule Engine: when any query arises from batch computation

module, then it provides the latest sensed data from existing

repository. The same functionality is maintained when data is

being captured/sensed by motes and it needs to be stored at a

repository.

5.2.4 End-User Level

This section is designed to facilitate the client/user who actually raised the

query for updated sensor data. It could be accessed through the web

interface or Android application and it could be based on the selection of

particular environmental region where sensor motes are deployed. The

interface for accessing sensor data could be customized according to

requirements.

Figure 5.4 Service Workflow between Sensor Network and ESB

Figure 5.4 shows the service workflow between sensor mote and ESB.

Initially, sensor mote sends the captured data through the gateway and this

99

data is received by transport sub-layer using HTTP and FTP protocols.

This data may contain noise/error and need to be filtered based on

parameters like data format, delay, threshold value exceeds and density

overdoes. All this process would be managed by Mediation handler and

Raspberry Pi that provide an interfacing between it. This mediation also

interacts with the repository which could be at local or global location

with upcoming sensor stream data. It stores the filter data at repository

through JDBC driver with J2EE connectors used in ESB.

Whenever any client raised a query for updated sensor data of particular

region as discussed in Section 5.4, where such sensor motes are deployed.

Such query is first received and handled by Mediation Engine, which

sends this query to route dispatcher to locate the path for repository (local

or cloud) [95]. Route dispatcher replied this query with the path to the

desired repository. With the provided path, Mediation Engine sends the

query to the repository for updated sensor data.

5.3 Result & Evaluation for Proposed Intelligent Sensor Network

(IntSeN)

The sensed data may receive several types of unwanted data which is in

the form of noise or error. Here, these data would be filtered by using

mathematical techniques to get it clean and stable data. There are various

types of data, which may not be in range. These data will be censored here

unwanted data will be removed. The censoring is done using the following

parameters:

 Density Threshold (Volume)

 Time Tolerance (Delay)

 Type Classification

 Density Threshold (Value)

100

5.3.1 Density Threshold (Pressure Volume)

In this section, the data are getting stable for volume parameter. When

sensed data is accelerated to its base station where such data is getting

over the cloud, computation logic needs to be deployed there that

instantaneous increases the volume of incoming data. This random

increase simply ignores useless data bits which are required to check its

volume parameter. This process reduces the space consumed by the

incoming sensed data and slow down the computation cycle deployed in

its base station.

Methodology:

The object of this experiment is to find stabilized data on basis of pressure

applied. In Figure 6, X axis is taken to represent time from 0 to 300

minutes and Y axis represents pressure amplitude 0-100 Pascal.

Red colour indicates “Raw pressure data” i.e., the pressure applied over a

period of time by screw-bolt-thread machine. Green indicates stabilized

output, high square green pulse width showing job is done. Green pulse is

produced only when raw pressure data values exist for some times say t

minutes (8 minutes is assumed here) between a particular threshold

interval [t, T]. In this experiment, the minimum threshold for the pressure

is taken t=21.1 and maximum threshold of T=32. So all the data below t,

are assumed as 21.1 and all data above 32 are taken as 32. For the data

(D), which belongs to the interval [t, T] as classified as follows.

,
2

,
2

t T
t D

D
t T

T D

101

Figure 5.5: Pressure Sensor Data (Volume)

Result:

When “Red Raw data” is less than a particular volume, Volume-Parameter

does not take it as a valid job. When “Red Raw data” exists for a particular

volume of 08 minutes above the threshold, it is taken as a Job. The

outcome of the stabilized data is shown in Table 5.1.

Table 5.1: Pressure Sensor Data (Volume)

Un-Stable
pressure

sensor values

Stable pressure
sensor values on
basis of pressure
density(pressure

applied for
particular time)

20.6 21.1

20.1 21.1

20.1 21.1

20.6 21.1

20.1 21.1

33 32.0

C
o

u
n

t
V

al
u

e

Time (in minutes)

102

5.3.2 Time Tolerance (Delay)

When sensed data is forwarded to some base station through a well-known

gateway, it may suffer through data link breakage and inline power

fluctuations. Due to this problems, raw sensor data contains sudden

amplitude spikes and discontinuity in data packets. This data need to be

cleaned and stabilized using tolerance limit in fuzzy theory.

Methodology:

The object of this study is to stabilize the temperature sensor value

depending upon last and first received a value which is immediately

33 32.0

31 32.0

30 32.0

27 32.0

20.1 21.1

20.1 21.1

20.6 21.1

20.1 21.1

20.1 21.1

20.1 21.1

20.6 21.1

20.1 21.1

20.1 21.1

20.1 21.1

49 32.0

53 32.0

56 32.0

54 32.0

50 32.0

45 32.0

40 32.0

36 32.0

20.1 21.1

20.1 21.1

20.1 21.1

20.1 21.1

103

before and after the data lost. This could be achieved by adopting

specified tolerance value. For, time tolerance, one range (interval) of

timings is fixed and all the data are accepted within the time range. All the

data outside the range are invalid. But, every real field, some tolerances

could be allowed. Let 1 2{ , ,...., }nI I I I
 be a finite family of fuzzy

intervals on the real line which represents the time intervals and

1 2{ , ,, }n
 be the corresponding fuzzy time tolerances. Now, the

membership values (,i j
) of intersections with time tolerance could be

found from the following formula.

,

1 , () min{ (), ()}

() min{ (), ()}
() , () min{ (), ()}

()

0 ,

i j i j

i j i j

i j i j i j i j

i j

if c c c

s s s
h otherwise if s s s

s

otherwise

Where
()i jc I I

is the core of the intersection of the intervals iI
 and jI

.

min{ (), ()}i jc c
is the minimum of the cores of the corresponding

tolerances i and j . Also,
()i js I I

 and
min{ (), ()}i js s

 are the

support of the intersection of intervals iI
 and jI

along with minimum

support of tolerances i and j respectively. ()i jh is height of the

membership value in time tolerance i and j respectively.

104

Figure 5.6 Temperature Delay Sensor Data

The object of this study is to produce average temperature value while loss

in data packets depending upon last received and first received packet

before and after the lost packet. Here, in Figure 5.6, X axis is time from 0

to 160 minutes and Y axis is temperature value in degrees 0-40 degrees.

Red indicates raw temperature data, collected over span of 160 minutes.

Temperature data packets are randomly lost due to power loss at the

sensor unit. Raw data is full of glitches and lost packets. Green indicates

stabilized output, average temperature values are calculated depending

upon last and first received data values before and after data loss. If raw

temperature values are too big in amplitude due to random glitch in line,

they are ignored while computing average.

Result:

 Final temperature values gradually increase and decrease despite of

suffering packet loss, lost data packets are recovered by calculating

average of last received and first received temp values prior and post to

C
o

u
n

t
V

al
u

e

Time (in minutes)

105

lost data packets temperature values. The outcome of the stabilized data is

shown in the Table 5.2.

Table 5.2: Temperature Sensor Data (Delay)

Un-Stable
temperature
data on basis
of Data Type
having NON-
Numeric data

Stable
temperature

data on basis of
Data Type

ignoring NON-
Numeric data

15.0 15.6

15.0 15.6

-4.0 15.6

15.0 15.6

14.0 15.6

15.0 15.6

31.0 15.7

22.0 15.7

15.0 15.7

26.0 15.7

15.0 15.7

20.0 17.0

20.1 17.0

20.0 17.8

20.0 18.6

11.0 18.6

20.0 18.6

20.1 18.6

23.0 18.6

23.0 21.0

32.0 21.0

23.0 21.0

23.1 21.0

20.0 21.0

20.1 20.0

-1.0 19.0

20.0 19.0

20.0 19.0

20.1 19.0

17.0 16.0

17.0 16.0

17.0 16.0

19.0 16.0

106

5.3.3 Type Classification

The average increase and decrease in temperature values only happens

when raw data has changed for a particular time span. Problematic

situation is created when sudden rise in temperature is observed over a

particular period. Immediate spikes are ignored due to power fluctuation

and inline signal attenuations at sensor mote. This may affects the type for

data format in which it is bound to receive ideally. It arises due to

attenuations in the sensed data and it changes the polarity for data type.

Such attenuation need to be stabilized by tapering it to threshold value.

Methodology:

In Figure 5.7, X axis is represented as a time from 0 to 275 minutes and Y

axis is represented as temperature value from 0-100 degrees. Here red

indicates raw temperature data, consisting of numeric and non-numeric

data. Temperature data is accompanied by Non-numeric ASCII characters

and DC voltage glitches. Green indicates stabilized output, average

temperature values are calculated by ignoring non-numeric data. Sudden

sign changes, random voltage glitches, and non-numeric data is constantly

ignored. The result may be concluded as final temperature values

gradually increase and decrease despite suffering non-numeric voice and

voltage glitches in line.

19.1 16.0

19.0 16.0

9.0 16.0

19.0 16.0

19.1 16.0

19.0 16.0

15.0 16.0

15.0 16.0

4.0 16.0

15.0 16.0

15.0 16.0

107

Figure 5.7 Temperature Sensor Data

Result:

The data which is not well-known could be treated as invalid and dropped.

Object of this study is to stabilize the average temperature value while

ignoring non-Numeric values. Here, raw data may be non-numeric and

negative numeric value that could completely be ignore. If data is with

threshold numeric value and suffers from sudden fall or hike, then it must

be ignored. Even, if data is numeric but with different sign after gradual

fall, would also be treated as valid. This scenario is well depicted in Table

5.3.

Table 5.3: Temperature Sensor Data (Type)

Unstable
temperature

data suffering
from sudden

data packet loss

Stable temperature
data by computing
average increase
and decrease in

values during data
packet loss

13.2 13.0

15.0 13.0

15.0 13.0

C
o

u
n

t
V

al
u

e

Time (in minutes)

108

5.3.4 Density Threshold (Value)

In general, threshold means some certain amount. A threshold is called a

fuzzy threshold if there exists non-negative real number T such that

Tu
Uu

)(if and only if VU is stable set. Here, signa values are the

membership values of data and T is set as a threshold values.

Basically, a sudden spike in temperature value appeared due to link

breakage and inline power fluctuations. This problem adds attenuations in

15.0 14.0

13.0 14.0

-4.0 14.0

15.0 14.0

26.0 14.0

26.1 14.1

14.0 14.0

15.0 14.0

15.1 14.1

61.0 14.0

61.0 14.0

11.0 14.0

11.0 10.0

10.0 8.0

10.0 8.0

8.0 6.0

8.0 6.0

9.0 6.0

-2.0 6.0

8.0 6.0

8.0 6.0

10.0 6.0

8.0 6.0

67.0 6.0

67.0 6.0

8.0 5.0

5.0 5.0

5.0 5.0

4.0 4.2

4.0 4.2

109

sensor data which could add discontinue in data packets. Such data need to

be cleaned and stabilized using tolerance limit in fuzzy theory.

Methodology:

The object of this study is to produce average temperature value while

ignoring sudden rise and fall in temperature values. X axis represents time

from 0 to 200 minutes and Y axis is represented as temperature value in

degrees 0 to 70 degrees. Red indicates raw temperature data, collected

over the span of 200 minutes as shown in Figure 5.8. Raw value consists

of Temperature data values that suddenly rise due to voltage glitches.

Green represents stabilized output, average temperature values are

calculated by ignoring sudden data peeks.

Figure 5.8. Temperature Sensor Data (Value)

Time (in minutes)

C
o

u
n

t
V

al
u

e

110

Result:

The stabilized temperature values gradually increase and decrease despite

suffering sudden spikes in temperature data. Such value only rises when

peaks cross a particular threshold for a pre-defined span. This scenario is

well depicted in Table 5.4 where unwanted data is tapered for normalize

value.

Table 5.4: Temperature Sensor Data (Value)

Un-Stable
temperature data
on basis of Data

value consisting of
random voltage

glitches and noise

Stable temperature
data on basis of Data

value above particular
threshold for a

particular Time frame

22.2 22.1

22.3 22.2

26.0 22.6

50.0 22.7

26.0 22.8

25.0 22.6

25.1 22.7

25.2 22.8

23.0 22.6

24.0 22.7

24.1 22.8

22.0 22.6

26.2 22.8

50.0 22.6

50.1 22.7

50.2 22.8

26.0 22.6

26.1 22.7

26.2 22.8

26.0 22.6

24.0 22.7

25.0 25.7

25.0 25.7

25.0 25.7

25.0 25.7

24.0 22.6

24.1 22.7

24.2 22.8

111

5.4 Stabilized Sensor Data Accessibility by “IntSeN” Android App

The sensor data which is stored in the cloud after cleaning and stabilizing

process, could be displayed using Android application. This application

provides the facility to access sensor data which comprise different

varieties of sensor like temperature, pressure, and light.

Figure 5.9. Main Dashboard for “IntSeN” Android App

22.0 22.6

22.1 22.7

50.0 22.8

26.0 22.7

26.1 22.8

22.0 22.6

22.1 22.7

22.2 22.8

44.0 22.6

23.0 22.7

23.0 22.8

112

The “IntSeN” Android App is designed to monitor environmental

parameters and tested in premises of Indian Institute of Technology (IIT)

Indore, Madhya Pradesh, India. Total 10 sensor motes are used to test the

environmental parameters and are divided into two: North & South

Campus at IIT Indore as shown in Figure 5.9.

Further, sensor data value could be accessed by selecting particular

campus area. On selection, it would provide an option for choosing a type

of sensor for display its associated value in that campus area. This

scenario is well depicted in Figure 5.10.

Figure 5.10. Choice for sensor type selection for two different Campus at

IIT Indore

113

Once a particular sensor is selected, it would fetch sensor data from cloud

where stabilized data is stored. This stabilization for sensor data does the

filtration of noise in the data and such filtered data is stored at cloud

location. This saves the unnecessary memory occupancy at cloud and is

really a cost effecting model as cloud adhere the policy of ‘pay-per-use’.

When North Campus is select and afterward, a pressure sensor is chosen

to display, then it fetch its associated data at run-time and this scenario is

shown in Figure 5.11.

Figure 5.11.Pressure Data for North Campus at IIT Indore

114

5.5 Discussion

In this filtration process, data are taken by some rule. This data may have

some error. In this section, the error has been analyzed. The well-known

relative error is defined as follows.

Re 100
Absoluteerror

lative error
TrueValue

The true values are shown in 1st column and filtered value in the 2nd

column in Table 5. If the received data is correct, then there must be an

error. In the third column, the errors have been shown. If the error is small,

then the data could be accepted. Otherwise, the data filtration may be

taken as invalid.

Table 5.5: Relative error of filtered data

In this chapter, all the data are filtered using time tolerance, threshold cut,

and category. These data are filtered using intelligent methods. But all the

filtration could be useful if the error is less. In Table 5.5, last two rows

show that the error is more than 50%.Thus these received data might be

taken invalid or the process has some difficulty.

True value Filtered value Relative error

20.6 21.1 2.4%

20.1 21.1 4.9%

33 32.0 3.03%

31 32.0 3.22%

50.0 22.6 54.8%

50.1 22.7 54.6%

115

The sensor network is a collection of multiple motes which sensed the

environmental characteristics and sends the data back to the repository

through well-known interfaces. Such integration of embedded scheme like

wireless sensor network with high-end systems like SOA system, need

better interoperability, scalability, and reliability to implement this overall

system. ESB extends the features of SOA which handles the actual data

which is forwarded from sensor motes and stores at a local or global

repository.

Sensed data may contain noise or error due to environmental hindrances

and such noise needs to be reduced for stabilizing an overall system. This

could be performed using data filtration and cleaning processes that could

be done between ESB mediation level and sensor networks mote

connection. This property makes any sensor network with an intelligent

enough that could take a decision which needs to be filtered and cleaned.

It also reduced the saving unwanted data directly to the repository (local or

cloud).

116

Chapter 6

Conclusions and Scope for Future Work

6.1 Conclusions

The main objective of this thesis is to study and assess the data from

different sensors that need to be stabilized and clean before keeping it at

the cloud. The major contributions of this thesis include:

1) This thesis primarily discusses the detailed investigation for ESB and

its core design and architectural principles, routing protocols, survey for

existing ESBs available in the market. It has been analyzed that concept

of ESB is to connect various service components together i.e. service

containers. It has the capability to route messages/data more securely as

compared to simple object access protocol (SOAP) service. ESB

improves the architectural benefit associated with an enterprise solution

for service integration and does organized service handling. By

adopting ESB as their business solutions, one can reduce the risk that

involved the data management issues and resultant would automatically

increase the RoI.

2) This thesis also explains about architecture framework for ESB with its

core principle for designing. Further, it highlights the importance of

service stack with regard to delivering services in ESB. It also presents

a comprehensive architecture view for ESB and what ESB actually

comprises. It illustrates the concept of routing and mechanisms

associated with message transformation. It also presents a brief

discussion on the classification of routing techniques.

3) The semantic for service execution is also analyzed at global

configuration with data acquisition. This details about mathematical

117

formulation which is derived from the relationship between data,

multiple services and a storage at cloud. This model is also aimed at

developing a novel approach for extending the features of SOA systems

that supports multiple service components. This communication could

be strengthened by well-defined ‘link’ between correspondents ‘Node’.

Here, ‘Node’ could be a client or just sensor node which actually rises

request for services and communication between them is governed by a

‘link’. It also investigates the accessibility of dataset for two different

levels; one at a local level (native server) and another at a global level

(cloud servers).

4) Another contribution is stabilization of sensor data and such data is

filtered using time tolerance, threshold cut, and segregation. Such data

need to be cleaned using an intelligent method that improves the sensor

data if error is detected. The sensor captured the environmental

characteristics and sends the data to the global repository through a

well-known interfaces. Such interfacing of embedded device and cloud

with high-end systems could support better interoperability, scalability,

and reliability to implement this overall service-oriented system.

5) While sensing data at sensor mote, it may suffer from severe

fluctuations that results in the sudden voltage change. It may be due to

losing connections, short circuits and link breakage problems that

fluctuate the data value at particular sensor unit. This creates unstable,

discontinuity and noisy data during capturing at sensor mote. This

thesis proposed an “intelligent sensor network (IntSeN)” which is multi-

level architecture for handling sensor data. It helps in stabilizing the

annoying spike in the sensor data using fuzzy tolerance. This saves the

unwanted data to get store at cloud server and reduce the data load.

118

6.2 Future Research Scope

In sensor application, a large number of services are integrating for data

exchange. This could be achieved through a common platform that

supports interoperability, scalability, and reusability for multiple services.

Whenever, data is transmitted from one sensor node to another, there is

always be a bit-error probability especially wireless communication. The

work done in thesis could be extended in this regard where type of error

checksum mechanism should verified based on parity bit (even or odd).

This study should also focus on power (energy) consumption at sensor

node.

Also, ESB act as a depletion layer that efficiently handles various

overheads during communication. The specific business applications that

are complex, dynamic and highly computational, requires a lot of effort in

processing and requires somewhat more than general SOA

implementation. This situation introduces a new concept called -

‘Integration Suite’ that provides various integration methodologies for

handling different domain specific applications. In future, this model

could be implemented to Internet of Things (IoT) which is more scalable,

efficient and robust for a different kind of sensing mechanism.

119

References

[1] J. Hu, F. E. Luo, J. Li, X. Tong, and G. Liao, “SOA-based

Enterprise Service Bus”, IEEE International Symposium on

Electronic Commerce and Security (ISECS), pp. 536-539,

Guangzhou City, China, 3-5 August 2008.

[2] G. Li, J. Xiao, C. Li, S. Li, and J. Chen, “A Comparative Study

between Soft System Bus and Enterprise Service Bus”, IEEE

International Conference on Computer Science and Service System

(CSSS) pp. 557-561, Nanjing, China, 11-13 August 2012.

[3] K. Ueno and M. Tatsubori, “Early Capacity Testing of an Enterprise

Service Bus”, IEEE International Conference on Web Services

(ICWS), pp. 709-716, Chicago, USA, 18-22 September 2006.

[4] M.T. Schmidt, “The Enterprise Service Bus: Making service-oriented

architecture real”, IBM Systems Journal, Vol. 44, No.4, pp. 781-797,

2005.

[5] J. Cheng, “Persistent Computing Systems as Continuously Available,

Reliable, and Secure Systems”, IEEE First International Conference

on Availability, Reliability and Security (ARES), pp. 1-8, Vienna,

Austria, 20-22 April 2006.

[6] M. Psiuk, T. Bujok, and K. Zielinski, “Enterprise Service Bus

Monitoring Framework for SOA Systems”, IEEE Transactions on

Services Computing, Vol. 5, No.3, pp. 450-466, 2012.

120

[7] A. M. Riad, A. E. Hussan, and Q. F. Hassan, “Design of SOA-based

Grid Computing with Enterprise Service Bus”, International Journal

on Advances in Information Sciences and Service Sciences, Vol. 2,

No. 1, pp. 71-82, 2010.

[8] F. Ning, D. Junhua, and G. Yan, “A Service Composition

Environment based on Enterprise Service Bus”, IEEE 11th Intl Conf

on Ubiquitous Intelligence & Computing and IEEE 11th Intl Conf on

Autonomic & Trusted Computing and IEEE 14th Intl Conf on

Scalable Computing and Communications and Its Associated

Workshops and IEEE 11th Intl Conf on Ubiquitous Intelligence &

Computing and IEEE 11th Intl Conf on Autonomic & Trusted

Computing and IEEE 14th Intl Conf on Scalable Computing and

Communications and Associated Symposia/Workshops, pp. 738-743,

09-12 December 2014.

[9] Fiorano ESB. http://www.fiorano.com/ [Accessed on 21.05.17]

[10] Y. Liu, I. Gorton, and L. Zhu, “Performance Prediction of Service-

Oriented Architecture based on an Enterprise Service bus”, 31st

Annual International Computer Software and Application

Conference, Vol. 1, pp. 327-334,Beijing, China, 24-27 July 2007.

[11] A. M. Bidgoli, and P. Nabhani, “Intelligent Conceptual Message

Routing in Enterprise Service Bus (ESB)”, World Congress in

Computer Science, Computer Engineering and Applied Computing,

pp. 1-6, Los Vegas, USA, 18-21 July 2011.

[12] J. Wu, and X. Tao, “Research of Enterprise Application Integration

Based on ESB”, 2nd International Conference on advanced

121

Computer Control (ICACC), pp. 90-93, Shenyang, China, 27-29

March 2010.

[13] G. A. Lewis, D. B. Smith, and K. Kontogiannis, “A Research

Agenda for Service-Oriented Architecture (SOA): Maintenance and

Evolution of Service-Oriented Systems”, [Master Dissertation]

Software Engineering Institute, Carnegie Mellon University, 2010.

[14] K. Zielinnski, T. Szydło, R. Szymacha, J. Kosiński, J. Kosińska,

and M. Jarzab, “Adaptive SOA Solution Stack”, IEEE Transactions

on Services Computing, Vol. 5, No.2, pp. 149-163, 2012.

[15] D. Zmuda, M. Psiuk, and K. Zieliński, “Dynamic Monitoring

Framework for the SOA Execution Environment”, Procedia

Computer Science, Vol. 1, No. 1, pp. 125-133, 2010.

[16] M. Breest “An Introduction to the Enterprise Service Bus”, 2006.

http://www.cin.ufpe.br/~in1062/intranet/bibliografia/fose-

the_enterprise_service_bus.pdf [Accessed on 21.05.17]

[17] J. Yin, H. Chen, S. Deng, and Z. Wu, “A Dependable ESB

Framework for Service Integration”, IEEE Internet Computing, Vol.

13, No. 2, pp. 26-34, 2009.

[18] C. A. Sun, E. el Khoury, and M. Aiello, “Transaction Management

in Service-Oriented Systems: Requirements and a Proposal”, IEEE

Transactions on Services Computing, Vol. 4, No. 2, pp. 167-180,

2011.

http://resources.sei.cmu.edu/library/author.cfm?authorID=3927

122

[19] S.P. Ahuja, and A. Patel, “Enterprise Service Bus: A Performance

Evaluation”, Journal of Communications and Network, Vol. 3, No. 3,

pp. 133-140, 2011.

[20] M. Chen, V.P.J. Chi, and H. C. Li, “An Enterprise Architecture

Approach to Building a Service-Oriented Enterprise”, 6th

International Conference on Service Systems and Service

Management (ICSSSM), pp.704-709, Xiamen, China, 8-10 June

2009.

[21] S. Ortiz Jr., “Getting on Board the Enterprise Service Bus”, IEEE

Computer Magazine, Vol. 40, No. 4, pp. 15-17, 2007.

[22] Aberdeen Group (USA). Enterprise Service Bus: An SOA

Middleware Foundation. 2006. www.fiorano.com/docs/aberdeen.pdf

[23] P. Xu, and W. Du, “ERDSR: Efficient and Reliable Dynamic

Service Routing in Enterprise Service Bus”, 3rd IEEE International

Conference on Intelligent System Design and Engineering

Applications (ISDEA), p. 712 – 715, Hong Kong, China, 16-18

January 2013.

[24] B. Wu, S. Liu, L. Wu, “Dynamic Reliable Service Routing in

Enterprise Service Bus”, IEEE Asia-Pacific Services Computing

Conference, pp. 349–354, Yilan, Taiwan, 09-12 December 2008.

[25] X. Bai, J. Xie, B. Chen, and S. Xiao, “DRESR: Dynamic Routing

in Enterprise Service Bus”, IEEE International conference on e-

Business Engineering (ICEBE), pp. 528–531, Hong Kong, China, 24-

26 October 2007.

123

[26] D. Bo, D. Kun, and Z. Xiaoyi, “A High Performance Enterprise

Service Bus Platform for Complex Event Processing”, 7th IEEE

International Conference on Grid and Cooperative Computing, pp.

577–582, Shenzhen, China, 24-26 October 2008.

[27] P. Brebner, “Service-Oriented Performance Modeling the MULE

Enterprise Service Bus (ESB) Loan Broker Application”, 35th IEEE

Euro micro Conference on Software Engineering and Advanced

Applications, pp. 404-411, Patras, Greece, 27-29 August2009.

[28] X. Ruzhi, B. Jin, and W. Yufei, “The Research and

Implementation of Power Application System Integration Based on

Enterprise Service Bus”, IEEE International Conference on Intelligent

Computing and Intelligent Systems (ICIS), pp. 466 – 469, Xiamen,

China, 29-31 October 2010.

[29] W. Huang, B. C. Sun, H. Zhao, and Y.S. Hu, “Enterprise Service

Bus Based on OSGi”, 22nd International Conference on Industrial

Engineering and Engineering Management, pp. 233-245, Wuhan,

China, 12-14 October 2015.

[30] Sonic: Enterprise Service Bus. http://www.aurea.com/technology-

solutions/enterprise-service-bus, 2013. [Accessed on 21.05.17]

[31] J. Ji-chen, and G. Ming, “Enterprise Service Bus and an Open

Source Implementation”, IEEE International Conference on

Management Science and Engineering (ICMSE), pp. 926 – 930, Lille,

France, 5-7 October 2006.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jiang%20Ji-chen.QT.&searchWithin=p_Author_Ids:38333901500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gao%20Ming.QT.&searchWithin=p_Author_Ids:37288014600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4094461

124

[32] IBM Research Work, Understand Enterprise Service Bus scenarios

and solutions in Service-Oriented Architecture.

https://www.ibm.com/developerworks/library/ws-esbscen/ [Accessed

on 21.05.17]

[33] IBM, “Exploring the Enterprise Service Bus: Discover how an

ESB can help you meet the requirements for your SOA solution”,

https://www.ibm.com/developerworks/library/ar-esbpat1/ [Accessed

on 21.05.17]

[34] K. J. Lin, M. Panahi, Y. Zhang, J. Zhang, and S. H. Chang,

“Building Accountability Middleware to Support Dependable SOA,

IEEE Internet Computing, Vol. 13, No. 2, pp. 16-25, 2009.

[35] TIBCO ActiveMatrix® Service Bus. http://www.tibco.co.in/

[Accessed on 21.05.17]

[36] Window Azure Bus. http://azure.microsoft.com/en-

us/services/service-bus/ [Accessed on 21.05.17]

[37] IBM Research Work. Exploring the Enterprise Service Bus: Part 4:

Federated connectivity in the enterprise.

http://www.ibm.com/developerworks/websphere/library/techarticles/0

901_flurry/0901_flurry.html [Accessed on 21.05.17]

[38] X. Tang, S. Sun, X. Yuan, and D. Chen, “Automated Web Service

Composition System on Enterprise Service Bus”, 3rd IEEE

International Conference on Secure Software Integration and

Reliability Improvement, pp. 9-13, Shanghai, China, 8-10 July 2009.

[39] WSO2 ESB. http://www.wso2.com/products/enterprise-service-

bus/ [Accessed on 21.05.17]

125

[40] Adroit Logic Ultra ESB.

http://www.adroitlogic.org/products/ultraesb.html [Accessed on

21.05.17]

[41] Integration Pattern Overview.

http://www.eaipatterns.com/eaipatterns.html [Accessed on 21.05.17]

[42] O. Harcuba, and P. Vrba, “Unified REST API for supporting the

semantic integration in the ESB-based architecture”, IEEE

International Conference on Industrial Technology (ICIT), pp. 3000-

3005, Seville, Spain, 17-19 March 2015.

[43] R. Benosman, K. Barkaoui, and Y. Albrieux, “Design and

implementation of a massively parallel ESB”, 11th International

Symposium on Programming and Systems (ISPS), pp. 89-95, Algiers,

Algeria, 22-24 April 2013.

[44] K. Shi, F. Gao, Q. Xu, and G. Xu, “Integration framework with

semantic aspect of heterogeneous system based on ontology and

ESB”, 26th Chinese Control and Decision Conference (2014 CCDC),

pp.4143-4148, Changsha, China, 31 May -02 June 2014.

[45] Red Hat JBoss ESB. http://www.jbossesb.jboss.org/ [Accessed on

21.05.17]

[46] Talend Enterprise ESB. http://www.talend.com/products/esb

[Accessed on 21.05.17]

[47] Oracle ESB. http://www.oracle.com/technetwork/middleware/

service-bus/overview /index.html [Accessed on 21.05.17]

126

[48] M. Fowler, “Micro Services Architecture - Death of Enterprise

Service Bus (ESB)”, Thought Work Incorporation, USA.

http://www.kai-waehner.de/blog/2015/01/08/micro-services-

architecture-death-enterprise-service-bus-esb/ [Accessed on 21.05.17]

[49] Apache Synapse ESB. Retrieved From: https://synapse.apache.org/

[Accessed on 21.05.17]

[50] A. Ferreira, A. Pereira, N. Rodrigues, J. Barbosa, and P. Leitao,

“Integration of an agent-based strategic planner in an enterprise

service bus ecosystem”, 13th IEEE International Conference

on Proceedings of Industrial Informatics (INDIN), pp. 1336-1341,

Cambridge, UK, 22-24 July 2015.

[51] N. RajKumar and V. Vinod, “Integrated Educational Information

Systems for Disabled Schools via a Service Bus using SOA”, Indian

Journal of Science and Technology, Vol. 8, No. 13, pp. 1-7, 2015.

[52] S. Kumari, and S. K. Rath, “Performance comparison of SOAP

and REST based Web Services for Enterprise Application

Integration”, IEEE International Conference on Advances in

Computing, Communications and Informatics (ICACCI), pp. 1656-

1660, Kochi, India 10-13 August 2015.

[53] L. González, J. L. Laborde, M. Galnares, M. Fenoglio, and R.

Ruggia, “An adaptive enterprise service bus infrastructure for service

based systems”, Springer Service-Oriented Computing (ICSOC)

Workshops, pp. 480-491, Berlin, Germany, 2-5 December 2014.

127

[54] G. Pan, L. Zhang, Z. Wu, S. Li, L. Yang, M. Lin, and Y. Shi,

“Pervasive Service Bus: Smart SOA Infrastructure for Ambient

Intelligence”, IEEE Intelligent Systems, Vol. 29, No. 4, pp. 52-60,

2014.

[55] N. Ulltveit-Moe, and V. Oleshchuk, “A novel policy-driven

reversible anonymisation scheme for XML-based services”,

Information System, Vol. 48, pp. 164-178, 2015.

[56] K. A. Alam, R. Ahmad, A. Akhunzada, M. H. N. Md Nasira, and

S. U. Khan, “Impact analysis and change propagation in service-

oriented enterprises: A systematic review”, Elsevier Information

System, Vol. 54, pp. 43-73, 2015.

[57] L. Garces-Erice, “Building an enterprise service bus for real-time

SOA: a messaging middleware stack”, 33rd Annual

International Computer Software and Applications Conference

(COMPSAC'09), Vol. 2, pp. 79-84, 2009.

[58] W. Roshen, “Enterprise service bus with USB-like universal

ports”, Ninth IEEE European Conference on Web Services

(ECOWS), pp. 177-183, Lugano, Switzerland, 14-16 September 2011.

[59] T. Hedlund, “Design and Proof-of-Concept Implementation of

Proxy-based Stream Handling for an Enterprise Service Bus”,

Institutionen för datavetenskap, [Master Dissertation] Department of

Computer and Information Science, Linköpings universitet, Sweden,

2014.

128

[60] S. Subashini, and V. Kavitha, “A survey on security issues in

service delivery models of cloud computing”, Journal of Network and

Computer Applications, Vol. 34, No. 1, pp. 1-11, 2011.

[61] L. J. Zhang, “Web Services Research for Emerging Applications:

Discoveries and Trends: Discoveries and Trends”, IGI Global, USA,

2010.

[62] J. Cámara, A. Lopes, D. Garlan, and B. Schmerl, “Adaptation

impact and environment models for architecture-based self-adaptive

systems”, Science of Computer Programming, Volume 127, pp. 50–

75, 2016.

[63] T. Klaus, J. E. Blanton, and S. C. Wingreen, “User Resistance

Behaviors and Management Strategies in IT-Enabled

Change”, Journal of Organizational and End User Computing, Vol.

27, No.1, pp. 57-76, 2015.

[64] J. L. Fiadeiro, A. Lopes, and J. Abreu, “A formal model for

service-oriented interactions”, Science of Computer

Programming, Vol. 77, No. 5, pp. 577-608, 2012.

[65] J. L. Fiadeiro, and A. Lopes, “A model for dynamic

reconfiguration in service-oriented architectures”, Software &

Systems Modeling, Vol. 12, No. 2, pp. 349-367, 2013.

[66] E. Kanagaraj, L.M. Kamarudin, A. Zakaria, R. Gunasagaran, and

A. Y. M. Shakaff, “Cloud-based remote environmental monitoring

system with distributed WSN weather stations”, IEEE conference on

SENSORS, pp. 1-4, Busan, South Korea, 1-4 November 2015.

[67] I. Sims, C. O'Leary, and P. Boolaky, “Overreliance on

Mathematical Accuracy of Computer Output: An Issue for IT

129

Educators” Journal of Organizational and End User Computing, Vol.

26, No. 3, pp. 47-64, 2014.

[68] P. T. Monteiro, E. Dumas, B. Besson, R. Mateescu, M. Page, A. T.

Freitas, and H. De Jong, “A service-oriented architecture for

integrating the modeling and formal verification of genetic regulatory

networks”, BMC bioinformatics, Vol. 10, Vol. 1, pp. 1-12, 2009.

[69] Y. Zhang, D. Zhang, M.M. Hassan, A. Alamri, and L. Peng,

“CADRE: Cloud-assisted drug recommendation service for online

pharmacies”, Mobile Networks and Applications, Vol. 20, No. 3, pp.

348-355, 2015.

[70] S. Walther, and H. Wehrheim, “On-the-fly construction of

provably correct service compositions–templates and

proofs”, Science of Computer Programming, Vol. 127, pp. 2-23,

2016.

[71] K. Liu, “Pragmatic computing–a semiotic perspective to web

services”, Springer International Conference on E-Business and

Telecommunications, pp. 3-15, Barcelona, Spain, 28-31 July 2007.

[72] B. A. Myers, S. Y. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J.

Karstens, A. Efeoglu, and D. K. Busse, “Studying the documentation

of an API for enterprise Service-Oriented Architecture”, Journal of

Organizational and End User Computing, Vol. 22, No.1, pp. 23-51,

2010.

[73] M. F. Gholami, M. Sharifi, and P. Jamshidi, “Enhancing the OPEN

Process Framework with service-oriented method fragments”,

Software & Systems Modeling, Vol. 13, No. 1, pp. 361-390, 2014.

130

[74] R. Kyusakov, J. Eliasson, J. Delsing, J. van Deventer, and J.

Gustafsson, “Integration of wireless sensor and actuator nodes with

IT infrastructure using service-oriented architecture”, IEEE

Transactions on industrial informatics, Vol. 9, No. 1, pp. 43-51, 2013.

[75] R. Qumsiyeh, and Y. K. Ng. “Enhancing web search by using

query-based clusters and multi-document summaries”, Knowledge

and Information Systems, Vol. 47, No. 2, pp. 355-380, 2016.

[76] M. S. Hossain, and G. Muhammad, “Cloud-assisted speech and

face recognition framework for health monitoring”, Mobile Networks

and Applications, Vol. 20, No. 3, pp. 391-399, 2015.

[77] X. Liu, Y. Ma, G. Huang, J. Zhao, H. Mei, and Y. Liu, “Data-

Driven Composition for Service-Oriented Situational Web

Applications”, IEEE Transactions on Services Computing, Vol. 8,

No. 1, pp. 2-16, 2015.

[78] P. Reinecke, K. Wolter, and M. Malek, “A survey on fault-models

for QoS studies of service-oriented systems”, [PhD dissertation]

Humboldt-Universit¨at zu, Berlin, Germany, 2010.

[79] S. Capelli, and P. Scandurra, “A framework for early design and

prototyping of service-oriented applications with design patterns”,

Computer Languages, Systems & Structures, Vol. 46, pp. 140-166,

2016.

[80] B. Phillips, “Information technology management practice:

impacts upon effectiveness”, Journal of Organizational and End User

Computing, Vol. 25, No. 4, pp. 50-74, 2013.

131

[81] A. Alwadain, E. Fielt, A. Korthaus, and M. Rosemann, “Empirical

insights into the development of a service-oriented enterprise

architecture”, Data & Knowledge Engineering, Vol. 105, 39-52,

2016.

[82] Organization for the Advancement of Structured Information

Standards (OASIS). https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrf [Accessed on

21.05.17]

[83] J. Leguay, M. Lopez-Ramos, K. Jean-Marie, and V. Conan, “An

efficient service oriented architecture for heterogeneous and dynamic

wireless sensor networks”, IEEE 33rd Conference on Local Computer

Networks (LCN), pp. 740-747, Montreal, Canada, 14-17 October

2008.

[84] O. Alhabashneh, R. Iqbal, F. Doctor, and A. James, “Fuzzy Rule

Based Profiling Approach For Enterprise Information Seeking and

Retrieval”, Information Sciences, Vol. 394-395, pp. 18-37, 2017.

[85] G.F. Anastasi, E. Bini, A. Romano, and G. Lipari, “A service-

oriented architecture for QoS configuration and management of

wireless sensor networks”, IEEE Conference on Emerging

Technologies and Factory Automation (ETFA), pp. 1-8, Bilbao,

Spain, 13-16 September 2010.

[86] Y. Sahni, J. Cao, and X. Liu, “MidSHM: A Middleware for WSN-

based SHM Application using Service-Oriented Architecture”, Future

Generation Computer Systems, Vol. 80, pp. 263-274, March 2018.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

132

[87] M. S. Familiar, J. F. Martínez, and L. López, “Pervasive smart

spaces and environments: a service-oriented middleware architecture

for wireless ad hoc and sensor networks”, International Journal of

Distributed Sensor Networks, pp. 1-11, 2012.

[88] T. Schär, “Adaptive RESTful Architecture for Wireless Sensor

Networks”, [Master Thesis] Pervasive & Artificial Intelligence

Research Group, University of Fribourg, Switzerland, 2013.

[89] E. K. Ozorhan, E. K. Kuban, and N. K. Cicekli, “Automated

composition of web services with the abductive event

calculus”, Information Sciences, Vol. 180, No. 19, pp. 3589-3613,

2010.

[90] G. Moritz, F. Golatowski, C. Lerche, and D. Timmermann,

“Beyond 6LoWPAN: Web services in wireless sensor

networks”, IEEE Transactions on Industrial Informatics, Vol. 9, No.

4, pp. 1795-1805, 2013.

[91] N. L. Martínez, J. F. Martínez, and V. Hernández Díaz,

“Virtualization of event sources in wireless sensor networks for the

Internet of Things”, Sensors, Vol. 14, No. 12, pp. 22737-22753, 2014.

[92] X. Su, L. Wu, and P. Shi, “Sensor networks with random link

failures: distributed filtering for T–S fuzzy systems”, IEEE

Transactions on Industrial Informatics, Vol. 9, No. 3, pp. 1739-1750,

2013.

[93] F. Zhang, Z. Zhou, Q. Liu, and W. Xu, “An intelligent service

matching method for mechanical equipment condition monitoring

133

using the fibre Bragg grating sensor network”, Enterprise Information

Systems, Vol. 11, No. 2, pp. 284-309, 2017.

[94] W. T. Lee, and S. P. Ma, “Process modeling and analysis of

service-oriented architecture–based wireless sensor network

applications using multiple-domain matrix”, International Journal of

Distributed Sensor Networks, Vol. 12, No. 11, pp. 1-15, 2016.

[95] L. Stoimenov, M. Bogdanovic, and S. Bogdanovic-Dinic, “ESB-

based sensor web integration for the prediction of electric power

supply system vulnerability”, Sensors, Vol. 13, No. 8, pp. 10623-

10658, 2013.

[96] M. Eisenhauer, P. Rosengren, and P. Antolin, “A development

platform for integrating wireless devices and sensors into ambient

intelligence systems”, IEEE 6th Annual workshop on Sensor, Mesh

and Ad Hoc Communications and Networks (SECON), pp. 1-3,

Rome, Italy, 22-26 June 2009.

[97] R. S. Alonso, D. I. Tapia, J. Bajo, Ó. García, J. F. de Paz, and J. M.

Corchado, “Implementing a hardware-embedded reactive agents

platform based on a service-oriented architecture over heterogeneous

wireless sensor networks”, Ad Hoc Networks, Vol. 11, No.1, pp.

151-166, 2013.

[98] S. de Deugd, R. Carroll, K. Kelly, B. Millett, and J. Ricker,

“SODA: Service oriented device architecture. IEEE Pervasive

Computing”, Vol. 5, No. 3, pp. 94-96, 2006.

134

[99] D. Romero, and F. Vernadat, “Enterprise information systems state

of the art: Past, present and future trends. Computers in Industry, Vol.

79, pp. 3-13. 2016.

[100] X. Qiu, H. Luo, G. Xu, R. Zhong, and G. Q. Huang, “Physical

assets and service sharing for IoT-enabled Supply Hub in Industrial

Park (SHIP)”, International Journal of Production Economics, Vol.

159, pp. 4-15, 2015.

[101] C. Chang, S. N. Srirama, and R. Buyya, “Mobile Cloud Business

Process Management System for the Internet of Things: Review,

Challenges and Blueprint”. arXiv preprint arXiv:1512.07199, 2015.

[102] M. A. Martínez-Carreras, F. J. García Jimenez, and A. F. Gómez

Skarmeta, “N.L, Enterprise Information Systems, Vol. 9, No. 4, pp.

401-435, 2015.

[103] R. Alena, J. Ossenfort, T. Stone, and J. Baldwin, “Wireless Space

Plug-and-Play Architecture (SPA-Z)”, IEEE Aerospace Conference,

pp. 1-17, Big Sky, MT, USA, 1-8 March 2014.

[104] F. Palumbo, J. Ullberg, A. Štimec, F. Furfari, L. Karlsson, and S.

Coradeschi, “Sensor network infrastructure for a home care

monitoring system”, Sensors, Vol. 14, No. 3, pp. 3833-3860, 2014.

[105] P. Castillejo, J.F. Martínez, L. López, and G. Rubio, “An internet

of things approach for managing smart services provided by wearable

devices”, International Journal of Distributed Sensor Networks, Vol.

9, Issue: 2, pp. 1-9, 2013.

135

[106] D. Rocchini, G. M. Foody, H. Nagendra, C. Ricotta, M. Anand,

K.S. He, V. Amicih, B. Kleinschmiti, M. Försteri, S. Schmidtlein and

H. Feilhauer, “Uncertainty in ecosystem mapping by remote

sensing”, Computers & Geosciences, Vol. 50, pp. 128-135, 2013.

[107] Medjahed, H., Istrate, D., Boudy, J., Baldinger, J. L., & Dorizzi, B.

“A pervasive multi-sensor data fusion for smart home healthcare

monitoring”, IEEE International Conference on Fuzzy Systems

(FUZZ), pp. 1466-1473, Taipei, Taiwan, 27-30 June 2011.

[108] W. Oyomno, P. Jäppinen, and E. Kerttula, “Privacy implications of

context-aware services”, ACM 4th International ICST conference on

communication system software and middleware, pp. 1-7, Dublin,

Ireland, 15-19 June 2009.

[109] L. Sánchez, I. Couso, and J. Casillas, “Genetic learning of fuzzy

rules based on low quality data”, Fuzzy Sets and Systems, Vol. 160,

No. 17, pp. 2524-2552, 2009.

[110] P. Jamshidi, S. Khoshnevis, R. Teimourzadegan, A.

Nikravesh, and F. Shams, “Toward automatic transformation of

enterprise business model to service model”, ICSE Workshop on

Principles of Engineering Service Oriented Systems (PESOS), pp.

70-74, Vancouver, BC, Canada, 18-19 May 2009.

[111] A. Dan, R. Johnson, and A. Arsanjani, “Information as a service:

Modeling and realization”, IEEE International workshop

on Systems development in SOA environments (SDSOA), pp. 1-6,

Minneapolis, USA, 20-26 May 2007.

136

[112] U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M.

Heynen, “Multi-resolution, object-oriented fuzzy analysis of remote

sensing data for GIS-ready information”, ISPRS Journal of

photogrammetry and remote sensing, Vol. 58, No. 3, pp. 239-258,

2004.

[113] G. Mauris, V. Lasserre, and L. Foulloy, “Fuzzy modeling of

measurement data acquired from physical sensors”, IEEE

Transactions on Instrumentation and Measurement, Vol. 49, No. 6,

pp. 1201-1205, 2000.

[114] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao “Toward efficient

and privacy-preserving computing in big data era”, IEEE

Network, Vol. 28, No. 4, pp. 46-50, 2014.

[115] K. A. Delin, “Sensor Webs in the Wild”, Wireless Sensor

Networks: A Systems Perspective, Artech House, 2005.

137

LIST OF PUBLICATIONS

Publications from thesis

Journal papers:-

1. R. S. Bhadoria, N. S. Chaudhari, G. S. Tomar, “The

Performance Metric for Enterprise Service Bus (ESB) in SOA

System: theoretical underpinnings and empirical illustrations or

information processing”, Information Systems (Elsevier), Vol.

65, pp. 158-171, 2016. {Impact Factor: 2.777}

2. R. S. Bhadoria, N. S. Chaudhari, S. Samanta, “Uncertainty in

Sensor Data Acquisition for SOA System”, Neural Computing

and Applications (Springer), February 2017.

DOI: 10.1007/s00521-017-2910-2 {Impact Factor: 2.505}

3. R. S. Bhadoria, N. S. Chaudhari, “Pragmatic Sensory Data

Semantics with Service-Oriented Computing”, Journal of

Organisational and End User Computing (IGI Global, USA),

March 2017. [Accepted] {Impact Factor: 0.759}

4. R. S. Bhadoria, N. S. Chaudhari, T. N. Vidanagama

“Analyzing the Role of Interfaces in Enterprise Service Bus: A

Middleware Epitome for Service-Oriented Systems”, Computer

Standards and Interface (Elsevier), Vol. 55, pp. 146-155,

January 2018 {Impact Factor: 1.633}

5. R. S. Bhadoria, “Performance Analysis for Enterprise Service

Bus in SOA System”, International Journal of IT business

Strategy Management, Vol. 1, No.1, 2015. {Impact Factor:

N.A.}

6. R. S. Bhadoria, N. S. Chaudhari, “An Intelligent Sensor

Network (IntSeN): A Service-Oriented System for Stabilized

Sensor Data”, IEEE Transactions on Services Computing

[Under Review] {Impact Factor: 3.520}

138

Conference papers:-

1. R. S. Bhadoria, N. S. Chaudhari, “Provisioning for Sensor Data using

Enterprise Service Bus: A Middleware Epitome”, Springer scientific

international conference on safety & security (SICC 2017), Rome,

Italy, June 2017.

2. N. Chaudhari, R. S. Bhadoria, S. Prasad , “Information Handling and

Processing using Enterprise Service Bus in Service-Oriented

Architecture System”, 7th IEEE International Conference on

Computation Intelligence & Computer Network (CICN 2016), Tehri,

Uttarakhand, India, December 2016.

Publications apart from thesis

Book Chapters:-

1. R. S. Bhadoria, “Security Architecture for Cloud Computing”, In

Handbook of Research on Securing Cloud-Based Databases with

Biometric Applications, Eds. G.C. Deka and S. Bakshi, IGI Global Inc.

(USA),pp. 47-71, 2015.

2. R. S. Bhadoria, “Performance of Enterprise Architecture in Utility

Computing”, In Handbook of Research on Emerging Research

Surrounding Power Consumption and Performance Issues in Utility

Computing, Eds. G. C. Deka, G.M. Siddesh, K. G. Srinivasa and L.M.

Patnaik , IGI Global Inc. (USA), 2015.

Conference paper:-

1. R. Yadav, R. S. Bhadoria, “Performance Analysis for Android

Runtimes Environment”, 6th IEEE International Conference on

Communication System & Network Technologies (CSNT 2015),

Gwalior, India, April 2015.

