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Abstract 

 

Surface quality evaluation of pre-processed rice grains is a key factor in 

determining their market acceptance, storage stability, processing quality, and 

the overall customer approval. On one end the conventional methods of surface 

quality evaluation are time-intensive, subjective, and inconsistent. On the other 

end, the current methods are limited to either sorting of healthy rice grains from 

the damaged ones, without classifying the latter, or focusing on segregating the 

different types of rice. A detailed classification of damage in milled rice grains 

has been largely unexplored due to the lack of an extensive labelled image 

dataset and the application of advanced CNN models thereon; that enables 

quick, accurate, and precise classification by excelling at end-to-end tasks, 

minimizing pre-processing, and eliminating the need for manual feature 

extraction. In this study, a machine vision system is developed to first construct 

a dataset of 8048 high-magnification (4.5 x) images of damaged rice refractions, 

that are obtained through the on-field collection. The dataset spans across seven 

damage classes, namely, healthy, full chalky, chalky discolored, half chalky, 

broken, discolored, and normal damage. Subsequently, five different state-of-

the-art memory efficient Deep-CNN models, namely, EfficientNet-B0, ResNet-

50, InceptionV3, MobileNetV2, and MobileNetV3 are adopted and fine-tuned 

to enable damage classification of milled rice grains. Experimental results show 

that the EfficientNet-B0 is the best performing model in terms of the accuracy, 

average recall, precision, and F1-score. It achieves an individual class accuracy 

of 98.33%, 96.51%, 95.45%, 100%, 100%, 99.26%, and 98.72% for healthy, 

full chalky, chalky discolored, half chalky, broken, discolored, and normal 

damage class respectively. The EfficientNet-B0 architecture achieves an overall 

classification accuracy of 98.37 % with a significantly reduced model size (47 

MB) and a small prediction time of 0.122 s and can sub-classify the chalky class 

further into 3 different classes i.e., full chalky, half chalky, and chalky 

discolored. Overall, this study demonstrates the Deep CNN architectures 

applied to a high-magnification image dataset enables the classification of 

damaged rice grains with high accuracy, which could be utilized as a tool for 
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better and more objective quality assessment of the damaged rice grains at 

market and trading locations. 

Keywords: Rice Quality, Deep Convolutional Neural Networks (DCNN), 

EfficientNet, High-magnification image, Deep learning, Machine learning.   
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Chapter 1 

 

Introduction and Literature Review 

Rice is India’s most important staple crop. It was planted on approximately 44 

million hectares (27.16% of the global area) to generate an all-time high of 121 

million tonnes (23.96% of global output) with a record average productivity of 

4100 kg/ha (Area, 2021) in the financial year 2020. As the demand for high-

quality, nutritious food grains grows with the increasing population, the need 

for a fast, reliable, and objective quality evaluation of food grains has become 

increasingly important. Surface quality of pre-processed food grains is a 

significant element in market acceptability, storage stability, processing quality, 

and overall consumer approval. Quality control of food grains is a complex and 

time-consuming process. At one end, the conventional practices of quality 

evaluation involve manual inspection by experienced personal, which is time-

consuming, expensive, and inaccurate because of the human decision making 

in identifying quality factors such as appearance, taste, nutritional content, and 

texture, and therefore, are inconsistent, subjective, and slow (Patel, et al., 2012).  

Another option for reliable quality evaluation is to conduct a lab test. However, 

this method is expensive, time-consuming, and highly dependent on the testing 

time and availability of labs in a nearby location. Other methods of quality 

evaluation such as the flatbed scanners depend on the image resolution (dpi), 

which is generally low, and therefore, results in a low accuracy (Paliwal, et al., 

2003). On the other end, the state-of-the-art Sortex machines (Pearson, 2010) 

are extremely expensive and have limited functionality i.e., they sort the grains 

into healthy versus damaged without quantifying the degree of damage, and 

hence, unsuitable for sorting the grains into different classes based on the type 

of damage or its severity. 

Since this quality inspection can be very effectively done by visual symptoms, 

it poses a very suitable task for the field of Machine vision (MV). Machine 

vision provides an automated, non-destructive, and cost-effective way of 

ascertaining the grain quality based on the visual symptoms (Rehman, et al.,  
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2019; Du and Sun, 2006; Chen, et al., 2002). A typical computer vision system 

for food classification involves feature extraction from the images by 

identifying different patterns in each class and building classification algorithms 

on top of them for quality evaluation. Therefore, several past efforts have 

focused on grain quality assessment using machine vision systems (Paliwal, et 

al., 2003; Wan, et al., 2002; Payman, et al., 2018; Kaur, H. and Singh B., 2013; 

Chen, et al., 2019; AKI, O., Güllü, A. and Uçar, E., 2015; Majumdar, S., and D. 

S. Jayas., 1999; Vithu and Moses, 2016).  

For instance, Wan et al. (Wan, et al., 2002) developed an automated inspection 

system to classify brown rice into healthy, cracked, chalky, immature, dead, 

damaged, and broken classes, which were prepared artificially in a lab. 

Although they have achieved a good processing speed of 1200 kernels per 

minute. Accuracy varies from 87.1% to 99.6% for different classes. Whereas 

the present work classifies milled rice damages that were present naturally. 

Payman et al. (Payman, et al., 2018) developed a heuristic-based MV system to 

classify rice grains into four classes (broken, chalky, red-spotted, and black-

spot) using a dataset of 200 images (40 for algorithm development and 160 for 

its assessment). The traditional approaches use image processing and manual 

feature extraction focusing majorly on machine learning since it has proven to 

be extremely effective. For instance, Kaur and Singh (Kaur, H. and Singh B., 

2013) classified four different grades of rice with an accuracy of 86%. They 

applied a multi-class Support Vector Machine (SVM) on a dataset of 800 

images, extracting features such as shape and chalkiness.  

Chen et al. (Chen, et al., 2019) classified the flawed red indica rice kernels 

(different from milled rice) into four classes, namely, cracked, chalky, damaged, 

and spotted. The damaged rice kernels in the images were detected using a 

support vector machine (SVM) classifier. Another SVM performed the grey-

level segmentation, which was subsequently used to extract the chalky areas. 

Damaged and spotted areas on the rice kernels were identified using edge 

detection and morphological methods such as dilation and morphological 

closing. The overall accuracy achieved was 96.4%. Aki et al. (Aki, Ozan &  
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Güllü, Aydın & Uçar, Erdem, 2015) developed a machine learning model using 

PLS-DA (partial least squares discriminant analysis) and SVM to achieve an 

accuracy of 91% for classifying the rice samples.  

However, a key drawback with the conventional methods used in these studies 

is that they require manual feature extraction, which is highly domain-specific, 

tedious, time-consuming, and error-prone. With deep learning (LeCun, et al., 

2015), the image-based automated recognition technology, in particular, the 

Deep Convolutional Neural Networks (CNNs) have found applications in many 

areas of computer vision (Applications of Deep Convolutional Neural Network 

in Computer Vision, 2022; Voulodimos, et al., 2018; Wu, et al., 2017; Li, et al., 

2021). They have produced state-of-the-art results in the current research field 

on many well recognized datasets (Cires¸an, 2012; Lee, 2014) and winning 

different object recognition challenges (Krizhevsky, et al., 2017; Russakovsky, 

et al., 2015; Szegedy, 2014). Deep CNNs manage to represent the raw data with 

multiple levels of abstraction, which enables them to extract the relevant 

features from the input automatically and translate from one domain to another, 

thereby, eliminating the need for image processing and manual feature 

extraction (LeCun, et al., 2015; Sampaio, P.S., et al. “Identification of Rice 

Flour Types with Near Infrared Spectroscopy Associated with PLS-DA and 

SVM Methods.” European Food Research and Technology, vol. 246, no. 3, 

Mar., 2020).  

There has been noticeable development in the application of deep learning-

based methods for rice categorization. Ibrahim, et al. (Ibrahim, et al., 2020) 

applied support vector machines (SVMs) and artificial neural networks (ANN) 

on a dataset of 600 images (90 test images) to categorize rice grains into three 

kinds. The ANN performed better with an accuracy of 93.34% compared to 

92.2% of SVM. Lin et al. (Lin, et al., 2017) demonstrated the efficacy of CNNs 

in feature extraction, which enabled the classification of rice grains of different  
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varieties using a dataset of 3819 images (2854 calibration and 965 for 

validation) with an accuracy of 99.52%. Aukkapinyo et al. (Aukkapinyo, K., et 

al. “Localization and Classification of Rice-Grain Images Using Region 

Proposals Based Convolutional Neural Network.” International Journal of 

Automation and Computing, vol. 17, no. 2, Apr., 2020) used a pre-trained 

RCNN model (on COCO dataset) with data augmentation to detect and classify 

rice grains into five types of Thai rice. I. Chatnuntawech et al. (Chatnuntawech, 

et al., 1805) utilized a hyperspectral imaging technology to simultaneously 

collect complementary spatial and spectral information of rice seeds. This 

collected spatio-spectral data is then utilized to identify rice types using a deep 

CNN. Two datasets were used - paddy (1656 datacubes) and processed (1392 

datacubes). The CNN suggested in the article was ResNet-B. For the paddy rice 

dataset, the suggested approach achieved 91.09% mean classification accuracy 

compared to 79.23% obtained using SVM with both spatial and spectral 

information.   

Despite the prior efforts that have demonstrated the classification of rice grains, 

it has been limited to segregating different grain types instead of classifying the 

different types of surface damages in rice grains. Identification of surface 

damage in rice grains and their subsequent classification would be key factor in 

determining the market price of damaged rice, which is particularly important 

for the Govt. of India’s Ethanol Blended Petrol (EBP) program. Since damaged 

rice is one of the key raw material for bio-ethanol production it quality 

evaluation is of paramount importance in deciding its market price based on the 

damage type and severity (Miglani, A. et al., 2014,2015,2016,2017) 

in these prior studies, either the image dataset is small (the largest reported 

dataset has 3819 images (Lin, et al., 2017)), or the image magnification is low 

(maximum reported resolution is 21 µm/ pixel (Lin, et al., 2018)), meaning that 

the information per pixel is limited. Furthermore, the image datasets used in 

these studies involve various classes of rice grains that are noticeably different, 

and therefore, easy to identify and sort (Payman, et al., 2018; Chen, et al., 2019; 

Ibrahim, et al., 2020; Lin, et al., 2017; Aukkapinyo, K., et al. “Localization and  
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Classification of Rice-Grain Images Using Region ProposalsBased 

Convolutional Neural Network.” International Journal of Automation and 

Computing, vol. 17, no. 2, Apr., 2020; Chatnuntawech, et al., 1805). However, 

in practice, the dataset is complex and involves an overlap between different 

classes, as is demonstrated in this study. 

A past few studies where damage classification is addressed (Payman, et al., 

2018; Kaur, H. and Singh B. “Classification and Grading Rice Using Multi-

Class SVM”. International Journal of Scientific and Research Publications, 

Volume 3, Issue 4, April 2013; Chen, et al., 2019) have been based on the 

classical manual feature extraction-based modelling. Existing literature lacks a 

high-magnification large image dataset of different surface damages in milled 

rice (Payman, et al., 2018; Kaur, H. and Singh B. “Classification and Grading 

Rice Using Multi-Class SVM”. International Journal of Scientific and Research 

Publications, Volume 3, Issue 4, April 2013; Wee, et al., 2009; Putri, et al., 

2015;Yao, xxxx), and the application of advanced deep CNN models thereon to 

enable a detailed classification of damage in milled rice grains is unexplored.  

In most of the relevant literature involving Deep CNNs, traditional state-of-the-

art CNNs like VGGNet (Simonyan and Zisserman, 2015) and ResNets (He, 

2015) are used, which have been quite popular for image classification. These 

models have extensively been used for the classification of food grains as well. 

They can be applied with transfer learning (Weiss, et al., 2016) or can be trained 

fully, given the dataset is large. They can achieve good accuracy and very well 

translate to our problem. However, it is observed that they can be quite bulky 

with a huge number of parameters leading to a large model size and high 

inference time. This is not suitable when you need real-time identification of 

rice grains where factors like time, model size, and power consumption also 

play a big role. The use of lightweight networks, with lesser size and low 

inference time, is also unexplored in this field.  
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Objectives and Scope 

A primary goal of this study is to develop a high-magnification image dataset 

spread across seven different types of damages, namely, healthy, broken, 

normal damage, discolored, full chalky, half chalky, and chalky discolored. 

Subsequently, apply the state-of-the-art CNN architectures to enable damage 

classification of rice grains with high accuracy. Further a comparative study on 

the performance of lightweight CNNs (MobileNetV2 (Sandler, 2019), 

MobileNetV3 (Howard, et al., 1905), EfficientNet (Tan and Le, 2020)) along 

with traditional CNNs (ResNet-50 (He, 2015) and InceptionV3 (Szegedy, et al., 

2016)) is presented. 

The organization of the thesis is as follows: 

Chapter 1: Introduction and Literature Review: This chapter discusses the 

previous studies along with their research gaps and thus sets the motivation for 

carrying out this research work. 

Chapter 2: Materials and methods: This chapter discusses damage in rice 

grains, and how the dataset has been acquired. It also talks about the CNN 

models that have been used in this study along with the data augmentation 

technique. 

Chapter 3: Experiments: It talks about pre-processing, training, and 

performance metrics. 

Chapter 4: Results and Discussions: It talks about how the best model is 

chosen based on some parameters, and then it discusses the error analysis 

through a confusion matrix. 

Chapter 5: Conclusion and Future scope: This chapter gives the concluding 

remarks for this study by mentioning the key conclusions followed by the future 

scope. 
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Materials and methods 

A typical machine vision system for food quality evaluation would follow five 

steps (as shown in Fig. 2.1): Image Acquisition, Pre-processing, Segmentation, 

Feature Extraction, Classification (Mery, et al., 2013). Since CNN-based 

models have been used in this study, it has eliminated the need for segmentation 

and feature extraction. Thus, the proposed machine vision system for the 

classification of rice grains consists of three steps: Image Acquisition, Pre-

processing, and Classification. This is shown in Fig. 2.1. 

2.1. Data acquisition 

Building the database of damaged rice grains is the most crucial step in this 

study.  Therefore, grains were collected and sorted on the field in preparation 

for constructing the database. Next, an in-house image database with 8048 

images divided across 7 categories has been created using the imaging system. 

2.1.1. Sample collection 

Rskissan Foods (India) Private Limited, Mirzapur, Uttar Pradesh, assisted this 

study by permitting to obtain the rice grain samples (BPT 5204 variety) from 

the pile of rejection of a double color sortex machine (Milltec) for the 2019 

growing year. The BPT 5204 is a medium-sized grain, mainly grown in Andhra 

Pradesh, Telangana, Karnataka, and some of the regions of Madhya Pradesh, 

Bihar, and Uttar Pradesh. The identification of different types of damages in 

rice grains is based on USDA visual reference manuals (Rice | Agricultural 

Marketing Service. https://www.ams.usda.gov/book/rice. Accessed 7 May 

2021), and the Government of India Department of Food and Public 

Distribution (Refractions in Raw Parboiled Rice | Storage Research | Divisions 

| Department of Food and Public Distribution, Government of India. 

https://dfpd.gov.in/refractions-in-raw.htm. Accessed 7 May., 2021). Based on 

this, 8000 rice grains have been collected (including damaged, healthy and 

broken). A total of 8048 (for some grains, images are taken for both front and 

backside) color images of individual grain kernels were acquired as a dataset. 
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Fig 2.1: A flowchart showing the methodology. 

2.1.2. Imaging system 

Our computer vision system consists of an LED light source for illumination 

because of its benefits such as long life, energy-efficient, and no heat or UV 

emissions. 
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A mirrorless camera (Alpha 5100, Sony) with a complementary metal–

oxidesemiconductor (CMOS) sensor and coupled with a microscopic zoom lens 

(Zoom 6000, Navitar) is used to obtain high-resolution (6000 × 4000 pixels), 

high-magnification (3.9 µm/pixel) images of rice kernels (The resolution 

mentioned is in height × width format). A zoom lens (Navitar) which gives us 

the working distance of 10 cm with 4.5x magnification so that we can easily 

pick and place the rice grain and get the most amount of rice in the image, a 

computer system (i5-9500 CPU @ 3.00 GHz, Dell OptiPlex 3070) and software 

(Sony, Imaging Edge Desktop). 

The camera is mounted on a vertical stand, as illustrated in Fig. 2.2. To get the 

image, a 3-axis stage is positioned underneath the camera, on which rice grains 

are placed over a blue background. To get a clear image, the entire arrangement 

is enclosed in a rectangular box with a black inside coating to prevent stray 

reflections, as well as an LED panel and high-efficiency diffuser on its sides. 

As demonstrated by the red dotted line, the camera is connected to the PC and 

is managed by software to take and store images without disrupting the setup. 

2.2. Dataset details 

The dataset contains a total of 8048 images. The images have been labelled into 

seven categories, with the class names and their distribution as follows: healthy 

(1208), broken (1041), normal damage (1576), full chalky (883), chalky 

discolored (1107), half chalky (861), discolored (1372). The labelling has been 

done manually through visual symptoms/features, which are explained in detail 

in section 2.3.1. All the images are in RGB format with a size of 6000 × 4000 

pixels i.e., a resolution of 24 MP (Megapixels). Although the size of the images 

has been reduced to 300 × 200 for the deep learning models, the acquisition of 

images with such a high resolution of 24 MP was necessary, since it helped in 

manual detection of features, and hence labelling. This proved to be difficult 

when dealing with images of lower resolution (like 300 × 200). This is because 

this study focuses on the fine-grained classification of damages, where feature 

detection and manual labelling for each class is not very trivial i.e. the features  
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separating each class are not simple to identify. 

 

Fig 2.2: A schematic diagram of an image acquisition system. 
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2.2.1. Damage in rice grains 

Milled rice grains are classified into seven categories: healthy, broken, normal 

damage, full chalky, half chalky, chalky discolored, and discolored. Healthy 

grains have not been damaged on the surface. Broken grains have a similar 

appearance to healthy grains, but they are broken. This may occur either after 

milling or during the milling process, when internal stress is generated in the 

healthy grains, causing them to shatter into tiny fragments. Heat-damaged 

grains have a black area, pin damaged grains have an indentation on the surface 

and are produced by insects, and watermark damaged grains have a brown 

circular ring and are caused by water or other means. Heat damaged, pin 

damaged, and watermark damaged grains are all included in the normal damage 

class. Chalky grains have a white color, are opaque, and are brittle. Chalkiness 

is produced by inadequate starch build-up during the grain filling process. 

Chalky grains were then divided into three groups based on how they appeared 

on the outside. They are termed complete chalky if the chalkiness covering the 

surface area is 90 percent or more; otherwise, they are classed as half chalky. 

Chalky discolored grains may be completely chalky or half chalky, but they will 

always have some discoloration, which varies in intensity from grain to grain. 

Paddy grains that have been exposed to damp conditions before drying and 

milling have a yellowish or brownish colored surface, consequently, these kinds 

of grains are termed discolored grains. The real damaged grain pictures, as well 

as their schematic, are shown in Fig. 2.3 to obtain a good idea of various sorts 

of damages found in rice grains. Some representative images of each damage 

type are shown in the appendix section. 

In the present study, a 4.5x microscope is used to examine all the damaged 

grains, as well as broken and healthy grains in individuals, and take 

photographs. All the chalky classes have similarities among them. Chalky 

discolored has a dark husk spot and normal damage has a dark color spot. 

Sometimes healthy class has very light chalkiness in a small region which may 

conflict with half chalky. Light watermark damage that is included in normal 
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Fig 2.3: (1) Healthy, (2) Broken, (3) Normal damage, (4) Full chalky, (5) 

Chalky discolored, (6) Half chalky, (7) Discolored. 
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damage, may conflict with discolored class. The above discussion is based on 

observation and thus it makes the dataset complex. 

2.3. Convolutional neural networks 

Convolutional Neural Networks (Lecun et al., 1998; Nebauer, 1998; LeCun et 

al., 2010) are deep learning algorithms, specifically designed to work on 

images. They attempt to automatically extract the relevant features from an 

image by learning the spatial and temporal dependencies through the application 

of relevant filters. A filter is a square matrix with learnable parameters (weights 

and biases), which is used to capture a specific feature from the input image by 

convolving with the input feature map to produce an output feature map. In 

particular, for an input feature map of size (n × n × c), a (k × k) size kernel will 

perform these convolutions at each (k × k) patch and produce an output feature 

map of size (n + 1-k, n + 1-k, 1). The depth of each filter is set equal to the depth 

of the input map. The number of filters used decides the depth of the output 

feature map. A simple ConvNet is a sequence of layers connected through 

differentiable functions, to enable learning through backpropagation. Three 

main types of layers are used to build ConvNet architectures, namely, 

Convolutional Layer, Pooling Layer, and Fully Connected Layer. The 

convolutional layer tries to extract the important features from the image 

through the convolution operations containing multiple filters, where each tries 

to capture a different feature. The pooling layer (D. Cires¸an, U. Meier, J. Masci, 

L. M. Gambardella, and J. Schmidhuber, “Flexible, high performance 

convolutional neural networks for image classification,” in Proc. of 22nd Intl. 

Joint Conf. on Artificial Intelligence, 2011; Scherer et al., 2010) is used to down 

sample the feature map. In max pooling, the maximum value is calculated from 

the patch of each input feature map depending on the kernel size. It helps in 

learning complex invariances such as the scale and rotational invariance. 

Further, the fully connected layers are used to connect all the input features to 

the output categories. Fig.2.4 depicts a typical CNN with an input image size of 

300 × 200 × 3 and the corresponding feature map sizes. The convolutions shown 

are with the padding ‘same’, which pads the input feature map to ensure that the  



 

15 
 

Materials and methods 

 

Fig 2.4: Architecture of a Standard Convolutional Neural Network with 

dimensions. 
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output is of the same resolution as the input. Strides represent the number of 

steps the filter takes before moving onto the next patch of the input map. Finally, 

the output feature map of size 9 × 6 × 128 is flattened and connected with a fully 

connected layer of 128 neurons, which further connects with the output layer of 

7 neurons with the SoftMax activation. 

Since the introduction of AlexNet (Krizhevsky, et al., 2017), winning the 

ImageNet challenge: ILSVRC (Russakovsky, et al., 2015) in 2012, there has 

been significant development in the field of Computer Vision using Deep 

CNNs. Several models have been proposed since then. The state-of-the-art 

models include VGGNet (Simonyan and Zisserman, 2015) and Inception 

(Szegedy, 2014) in 2014, ResNets (He, 2015) in 2015 and DenseNets (Huang, 

2018) in 2016. Over the years, the general trend has been to make deeper, more 

complex networks, and scaling up baseline ConvNets to achieve better 

accuracy: ResNets have been developed from ResNet-18 with 18 layers to 

ResNet-200 with 200 layers. Similarly, different versions of Inception 

(Szegedy, et al., 2016; Ioffe and Szegedy, 2015) and DenseNets have been 

proposed. However, it was observed that constructing deeper networks may 

increase accuracy but a lot of times, these models compromise on other factors 

like inference time, size of the model, and operations count. Over the past few 

years, there has been a lot of emphasis on developing fast and efficient 

lightweight architectures for usage in embedded and mobile devices. In 2017, a 

family of models called MobileNets (Sandler, 2019; Howard, et al., 1905) was 

developed with a focus on Mobile Applications. In 2018, NasNet (Zoph, 2018) 

was introduced, which aimed towards searching for optimal CNN architecture 

using reinforcement learning. Both these networks compared to state-of-the-art 

algorithms, with far fewer parameters and became the go-to networks for mobile 

applications. In 2019, a family of models named EfficientNets (Tan and Le, 

2020) was introduced. The authors of the paper came up with an ingenious idea 

to efficiently scale CNN architectures using compound scaling, which lets you 

scale the network’s depth, width, and input resolution together. These models  
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achieved state-of-the-art performance with far lesser parameters and are rapidly 

replacing ResNet as the backbone of choice for many Computer Vision Tasks. 

In this study, the performance of 5 state-of-the-art-CNN models (ResNet-50, 

InceptionV3, MobileNetV2, MobileNetV3, and EfficientNet) are compared on 

different metrics as mentioned in Section 3.4. 

2.3.1. ResNet-50 and Inception V3 

ResNet50 (He, 2015) won the ILSVRC-2015 competition in 2015. The 

architecture was specifically designed for tackling the accuracy degradation 

problem on increasing the depth of the CNNs. One reason attributed to this was 

the presence of multiple non-linear layers being unable to learn the identity 

mappings. ResNet introduced the skip connections (as shown in Fig. 2.5) in 

which the input feature map was added to the output feature map after a few 

weight layers. Hence, the output H(x) = F(x) + x. The stacked weight layers 

trying to fit another mapping: F(x) = H(x) – x, such that, even if in an extreme 

case, identity mapping was optimal, the residual can always be pushed to zero. 

ResNet50 is an architecture based on many such stacked residual units. For each 

residual function F, three stacked layers are used as shown in Fig. 2.5. 1x1 

convolutions are used to reduce and increase the dimensions. This creates a 

bottleneck 3 × 3 layer with smaller input/output dimensions. 

 

Fig 2.5: (Left) a residual building block with skip connection (Right) a 

“bottleneck” building block for ResNet-50. 
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Inception V3 (Szegedy, et al., 2016) developed by Google, which was the third 

release in the series of Inception networks, was the first Runner Up in the 

ILSVRC-2015 competition. Fig. 2.6 depicts one of the inception modules used 

in the architecture, which is built on top of the previous versions v2 and v3 

(Szegedy, 2014; Ioffe and Szegedy, 2015). Firstly, the convolutions with 

varying kernel sizes are performed altogether for the previous input to extract 

more variety of features and stacked together again at the output. 1 × 1 

convolutions are used for reducing the dimensions of the feature maps. This 

helps in reducing the computation time due to fewer convolution operations to 

be performed in the subsequent layers. Further, Batch Normalization is used 

from v2, where all the images are normalized using the batch statistics after a 

layer; as shown in equation below, where x represents the inputs to be 

normalized over a batch of size m. 

Input: Values of x over a mini-batch: B = {𝑥1…m};    

Parameters to be learned: γ, β 

Output: { yi =  BNγ, β (xi)} 

𝜇𝐵 ←
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1                          // mini-batch mean 

𝜎𝐵
2 ←

1

𝑚
∑ (𝑥𝑖 − 𝜇𝐵)2𝑚

𝑖=1
         // mini-batch variance  

𝑥̂𝑖 ←
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

                               // normalize 

yi ← 𝛾𝑥̂𝑖 + 𝛽 ≡ BNγ, β (xi)     // scale and shift 

 

Further, Inception v3 introduced the idea of factorizing convolutions to reduce 

the number of parameters without decreasing the network efficiency. The main 

idea was to factor the larger filters (e.g., 5 × 5 or 7 × 7) into multiple smaller 

ones (3 × 3 or 1 × 1), which can perform equally well in capturing the relevant 

information with the smaller size of the parameters. 
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Fig 2.6: Inception Module with the factorization of 5 x 5 convolutions into 3 x 

3 ones. 

2.3.2. MobileNet and EfficientNet 

Building deeper networks and scaling up of baseline ConvNets have worked 

well for achieving good accuracy but mostly at the cost of larger numbers of 

parameters and an increase in inference time. All this time, people used various 

techniques for scaling and there wasn’t a uniform and more structured way for 

the same. The goal was to achieve maximum possible accuracy while using as 

few FLOPS (floating-point operations per second) as possible. In 2020, Tan and 

Le (Tan and Le, 2020) proposed the idea of compound scaling, which gave rise 

to a family of models called the EfficientNet. The authors of the paper show 

that the EfficientNet models outperform all previous models both in terms of 

the number of parameters and accuracy when applied to the ImageNet dataset. 

EfficientNet achieves such results by scaling depth, width, and resolution 

uniformly while scaling down the model. In compound scaling, all the three 

dimensions of a network: the network’s depth, width, and input resolution are 

systematically scaled together rather than conventional single-dimension 

scaling. For this they use a compound coefficient φ to uniformly scale network 

width, depth, and resolution in a principled way:  
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depth: d = αφ 

width: w = βφ 

resolution: r = γφ       (2.1)              

s.t. α·β2·γ2  ≈ 2 and, α ≥ 1, β ≥ 1, γ ≥ 1 (Tan and Le, 2020) 

where α, β, γ are constants that can be determined by a small grid search. 

Intuitively, φ is a user-specified coefficient that controls how many more 

resources are available for model scaling, while α, β, γ specify how to assign 

these extra resources to network width, depth, and resolution respectively. 

Notably, the FLOPS (floating-point operations per second) of a regular 

convolution op is proportional to d, w 2, r 2, i.e., doubling network depth will 

double FLOPS, but doubling network width or resolution will increase FLOPS 

by four times. Since convolution ops usually dominate the computation cost in 

ConvNets, scaling a ConvNet with equation 2.1 will approximately increase 

total FLOPS by (α·β2·γ2) φ. In paper Tan and Le, 2020, they constraint α·β2·γ2  

≈ 2  such that for any new φ, the total FLOPS will approximately increase by 2 

φ. By using these equations and fixing φ = 1, the best values for EfficienNet-B0 

were found to be α = 1.2, β = 1.1 and γ = 1.15. 

For finding the baseline network, MnasNet (Tan, et al., 1807) is used as the 

Neural Architecture Search. The same search space is used and the main 

building block is the inverted bottleneck MBConv, first introduced in the 

MobileNet module (Howard, 2017), to which they add squeezeand-excitation 

optimization as well. In the paper, the EfficientNet-B0 is used since it is the 

most compact of all the models with only 4 million parameters and provides a 

good compromise between computation resources and accuracy. The schematic 

representation of EfficientNet-B0 is shown in Fig. 2.7. In the figure, GAP stands 

for Global Average Pooling and FC for Fully Connected Layer. The “Conv” 

blocks in the diagram stand for simple normal convolutions followed by batch 

normalization and swish activation. Note that the shapes of the feature maps in 

the figure are for an input image of size 300 × 200. However, in the training  
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process, rescaled images are randomized (under data augmentation) before 

entering the model, thus these shapes change accordingly. The final feature 

vector of dimension 1280 remains constant, before applying softmax. Fig. 2.8 

shows an illustration of the MBConv6 block. As seen in MobileNets (Sandler, 

2019), the main ideas of the network included depth-wise separable 

convolutions, inverted residual connections, and linear bottlenecks. On top of 

this, a squeeze and excitation block have been added as well. 

Fig 2.7: Schematic representation of EfficientNet-B0. 
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Fig 2.8: Illustration of MBConv6 block. SE (Squeeze Excitation), BN (Batch 

Normalization), DWConv (Depthwise convolution) 

Depthwise separable convolution refers to depthwise convolution followed by 

a pointwise convolution. The first depthwise convolution performs channel-

wise spatial convolutions, where a single convolutional filter is applied for each 

input channel. Pointwise convolution is 1× 1 convolution to change the 

dimension of the feature map. The depthwise convolution proves to reduce the 

computational time considerably as compared to normal convolutions. The 

reduction in computation comes out to be equal to = 1/N +1/Dk2 where N 

represents the number of output channels and Dk, the feature map size. Fig. 2.9 

illustrates this by taking an example of an input feature map of size 6x6x3 

convolved to produce an output feature map of size 4x4x5. 

The two other concepts, taken from MobileNetV2 include inverted residuals 

and linear bottleneck. Residual blocks use a skip connection to connect the 

beginning and end of a convolutional block, which has shown to be quite 

successful in constructing deeper networks. In the original residual blocks, skip 
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Fig 2.9: Represents normal convolution and depthwise separable convolution. 

connections exist between the wider parts of the network, whereas 

MobileNetV2 follows the opposite approach. It first widens the network using 

1x1 convolution, followed by a 3x3 depthwise convolution. After, another 1x1 

convolution squeezes the network to match the initial number of channels (Fig. 

2.10). Hence, skip connections exist between the narrow parts of the network. 

The idea behind the expansion was to have a computationally rich region where 

feature extraction can take place. Depthwise convolution makes this possible 

since it greatly reduces the number of parameters. This is followed by 

contraction to make the final output of lower size for memory efficiency. In 

practice, the inverted residual block has far fewer parameters than the residual 

block. The other concept was linear bottlenecks, where the last convolution of 

a residual block has a linear output before being added to the initial activations. 

According to the authors of MobileNetV2, the ReLU activation function, which  
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is widely used in CNN architectures, does not perform well with inverted 

residual blocks since it discards values less than zero. Hence the network used 

linear activations, which produced a better performance for the bottleneck 

channels. Additionally, the network uses Swish activation: (Tan and Le, 2020) 

𝑓𝑠𝑤𝑖𝑠ℎ(𝑥)  =  𝑥 / (1 +  𝑒−𝛽𝑥)   (2.2) 

here, 𝛽 >=  0 is a parameter that can be learned during the model training. For 

𝛽 = 0, the function turns into a scaled linear function 𝑓(𝑥) = 𝑥/2, whereas for 

𝛽 → ∞, behaves more like a smooth ReLU function. Further, the concept of 

Squeeze and Excitation (SE) Block, improved the performance of the model. 

The SE block gives different weightage to each channel of its input feature map 

instead of treating them equally. The output shape of the SE block is of shape 

(1 x 1 x channels), specifying the weightage for each channel which can be 

learned during training. 

2.4 Data Augmentation 

Data Augmentation has been shown to produce promising ways to increase the 

accuracy of classification tasks, by increasing the desired invariance and 

robustness properties. In this work, extensive data augmentation has been used 

to increase the amount of training data without the need to acquire more data. 

A separate pipeline was constructed for data augmentation. In this pipeline, 

images undergo random transformations before being fed to the main model. 

Random flipping is used in both horizontal and vertical directions. Then the 

images are shifted randomly in the horizontal and vertical space. The maximum 

amount of shift was set to 5% for the vertical and 10% for the horizontal. Images 

are then rotated by a maximum amount of 0.025x2π radians or 9 degrees in 

either direction. On top of this, the shape of the images was also altered by an 

amount of 10% for both height and width. Fig. 2.11 shows the various data 

augmentation operations that have been performed on a half chalky rice grain. 
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Fig 2.10: Representation of residual connection. 
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Fig 2.11: Representative images of half chalky with various data augmentation 

techniques applied to it. 
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Experiments 

3.1. Experimental setup 

All the experimental studies have been conducted in Google cloud environment 

on a 64-bit Debian GNU/Linux operating system running on Intel (R) Xeon (R) 

CPU @ 2.20 GHz and 26 GB RAM with NVIDIA Tesla P100 having 16 GB 

memory. All the code is implemented in Python. Keras framework Keras, 2021 

with the Tensorflow (TensorFlow, https://www.tensorflow.org/. Accessed 11 

Sept., 2021) backend was used for the proposed method. 

3.2. Pre-processing 

The total dataset of 8048 images is randomly split into train, validation, and test 

sets using stratified sampling without replacement, by 70%, 20%, and 10% 

respectively. The training dataset has the distribution of classes as follows: 

healthy (845), broken (729), normal damage (1103), full chalky (619), chalky 

discolored (775), half chalky (602), discolored (960). 

The training data is imbalanced and data imbalance (Chawla, et al., 2004) has 

proven to be a problem in training deep learning models, making them biased 

towards the majority class. To tackle this, random oversampling has been used 

without replacement, making the number of points in all classes equal 1103. 

Finally, after oversampling, 7721 train images, 1618 validation images, and 797 

test images were obtained. In the study, all the images are first resized to 300 × 

200 pixels to reduce the training time of the models and be able to conduct 

feasible experiments. As part of pre-processing, these images first go through 

the data augmentation pipeline as mentioned in Section 2.4. Then, the pixel 

values of the images are rescaled by a factor of 1/255. 

3.3. Training 

All the models used in the study were pre-trained on the ImageNet 

(Russakovsky, et al., 2015) dataset. The pre-trained weights were only used as 

initializations and all the networks were trained fully on data used in this study.  
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The last fully-connected layer in each network was changed from 1000 to 7 

since the images were being classified into seven categories. SoftMax activation 

was used in the final layer. The models were trained with categorical cross-

entropy as the loss using the Adam Optimizer (Kingma and Ba, 2017). The 

parameters for the optimizer except the learning rate were set to the default ones 

as mentioned in the Keras documentation: β1 = 0.9, β2 = 0.999, ε = 10–7. The 

batch size was set to 32 unless it did not fit into memory in which case it was 

reduced to 16. For every model, dropout was used before the last layer. The 

dropout rate used was 0.3 for ResNet50, and 0.2 for InceptionV2, MobileNetV2 

and MobileNetV3. For EfficientNet, a drop-connect rate of 0.45 was used. The 

initial learning was set to 0.0001. The learning rate and the dropout rates were 

optimized using the validation set. On top of this we used a learning rate 

scheduler as well: For the first 10 epochs the learning rate was kept constant 

and then after the 10th epoch, it followed a step decay schedule, i.e. the learning 

rate reduced by a factor every epoch. The factor was set to e-0.1 which rounds to 

0.905. All the models were run for a maximum of 50 epochs. Early stopping 

was also used, monitoring validation score, with the patience of 25 epochs. 

Finally, for each model, the best epoch was selected as the one with the lowest 

validation loss. The corresponding instance of the model was taken to be the 

best instance and used for the final evaluation on the test set. 

3.4. Performance metrics 

A key objective of the study is to identify a model which can classify the surface 

damages in milled rice grains with a high accuracy, in a fast and cost-efficient 

manner. Since this is a multi-class classification task, as far as the correctness 

is concerned, the metrics used to compare the performance of different models 

are cross-entropy (loss function), accuracy, macro-averaged precision (Pr), 

macro-averaged recall (Re), and macro-averaged F1-score (F1). Accuracy 

represents the ratio of correctly classified images to the total number of images. 

Precision, Recall, and F1-score for each class have been described in equations 

(3.1) to (3.6) using the indices such as True Positive (TP), False Positive (FP), 

and False Negative (FN). Here, TP for a class k i.e., TP(k) represents the total  
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number of images correctly classified as class k. FN(k) gives the number of 

misclassified images belonging to class k. FP(k) gives the number of 

misclassified images predicted to be in class k. Precision (𝑃𝑟) is defined as the 

number of true positives over the number of true positives plus the number of 

false positives and is represented by equation 3.1. Recall (𝑅𝑒) is defined as the 

number of true positives over the number of true positives plus the number of 

false negatives and is represented by equation 3.2. F1-score is defined as the 

harmonic mean of precision and recall and is represented by equation 3.3. The 

macro-averages of metrics represent the average of all these metrics calculated 

over all the classes. The macro-averages of Precision, Recall, and F1-score have 

been described in equations 3.4, 3.5 and 3.6 respectively. A detailed discussion 

on these metrics can be found in Sokolova, et al. (Sokolova and Lapalme, 2009). 

Scikit-learn library (Scikit-Learn: Machine Learning in Python — Scikit-Learn 

1.0.2 Documentation. https://scikit-learn.org/stable/. Accessed 27 Jan., 2022) 

has been used for the metric implementations. Besides these, the model size, 

number of parameters, and the average time for prediction are also compared 

for practical feasibility. Further, a confusion matrix with precision and recall for 

each class is presented for the best performing model. 

𝑃𝑟(𝑘) =
𝑇𝑃(𝑘)

𝑇𝑃(𝑘)+𝐹𝑃(𝑘)
                                          (3.1)      

𝑅𝑒(𝑘) =
𝑇𝑃(𝑘)

𝑇𝑃(𝑘) + 𝐹𝑁(𝑘)
                                 (3.2) 

𝐹1(𝑘) =
2 𝑃𝑟(𝑘) .  𝑅𝑒(𝑘)

Pr(𝑘) + 𝑅𝑒(𝑘)
                                (3.3) 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 𝑃𝑟 =
1

N
∑ 𝑃𝑟(𝑘)                         (3.4)

𝑁

𝑘=1

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 𝑅𝑒 =
1

N
∑ 𝑅𝑒(𝑘)                         (3.5)

𝑁

𝑘=1
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1

N
∑ 𝐹1(𝑘)                         (3.6)

𝑁

𝑘=1
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Results and Discussion 

This section discusses the results of the experiments conducted in detail. First, 

a comparison of all the models is presented based on metrics discussed in 

section 3.4. Further, an error analysis section is presented discussing the 

misclassified images as well as the images which were predicted with very low 

confidence. 

4.1. Comparison of methods 

In comparison to accuracy, loss is not a percentage. It represents the total 

number of mistakes/errors committed for every example in the training or 

validation set. The performance of the model is determined by the loss, which 

is calculated on the training and validation set. A deep learning model's 

performance on the validation set is measured using a metric called validation 

loss. The validation set is a part of the data set aside to check the model’s 

performance. After every epoch, the validation loss is also measured. This 

indicates whether or not the model needs additional fine-tuning or 

modifications. A learning curve plot for the validation loss is employed to do 

this. Ideally, one would anticipate a decrease in loss after each, or several 

iterations. 

A model's accuracy is often assessed after its parameters have been learned, 

fixed, and no further learning is occurring. Then the test sets are passed to the 

model. After comparing to the actual targets, the number of errors the model 

makes are reported. The rate of misclassification is then determined. For 

instance, if there are 100 test samples and the model properly classifies 95 of 

them, then its accuracy is 95%. 

As discussed before, all the models were trained for a maximum of 50 epochs. 

Fig. 4.1 and Fig. 4.2 show the graph of validation loss and validation accuracy 

w.r.t the epoch for various models.  
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Fig 4.1: Graph of validation loss for different models. 

ResNet-50 suffers from a couple of peaks because of a higher initial learning 

rate, but it becomes flat as the number of epochs increases. In case of validation 

loss, the enlarged view clearly shows that EfficientNet has minimum loss 

among all the models, followed by ResNet. In the case of validation accuracy, 

ResNet50 is having the highest accuracy, closely followed by EfficientNet. 

Further, all the metrics are reported on the test dataset containing 797 total 

images. Fig. 4.3 lists accuracy, macro- averaged precision, macro-averaged 

recall, and macro-averaged F1-score for all the five models used. The chart 

clearly represents the case where the best value was obtained for the respective 

performance criteria. As seen in Fig. 4.3, every model was able to achieve an 

accuracy of over 97.37%, which was quite decent given the complexity of the 

task. EfficientNet models outperform all previous models both in terms of the 

number of parameters and accuracy when applied to the ImageNet dataset. The  
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Fig 4.2: Graph of validation accuracy for different models. 

same can be seen in present work, the best performing model out of all of them 

was EfficientNet-B0, and that too in all respects. The next best model was 

ResNet50, which achieved the same accuracy of 98.37% as EfficientNet but 

could not match it in all the other metrics. MobileNetV2, MobileNetV3 and 

InceptionV3 performed decently with 97.62%, 97.37%, and 97.62% as their 

respective accuracies. MobileNetV3 had the lowest accuracy of them all. 

Fig. 4.4 compares the models in terms of the model size, number of parameters, 

and average inference time. The inference time reported is the time taken by the 

model for prediction, averaged over 1000 iterations. For inference time we 

disabled GPU support and it was measured on CPU. MobileNetV2 is the most 

compact model of them all with 2.3 M parameters and model size of 26 MB. 

After that, MobileNetV3 and EfficientNet have very similar model sizes of 49 

MB and 47 MB respectively. The model size increases considerably when we 

move to the last two models: 250 MB for InceptionV3 and 270 MB for 

ResNet50. ResNet50 is 5.74 times larger than EfficientNet in size. As far as  
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inference time is concerned, MobileNetV2 and MobileNetV3 performed the 

best with 0.093 s and 0.098 s respectively. For EfficientNet, the inference time 

came out to 0.122 s. ResNet50 had the slowest time of 0.227 s.  

Fig 4.3:  Model comparison based on some parameters. 

So, in terms of compactness and inference time, MobileNetV2 performed the 

best. EfficientNet is not far off and has a compact size of 47 MB comparable to 

MobileNetV3 and a decent inference time as well. ResNet50 proved to be very 

bulky with the highest inference time. So overall in terms of performance on the 

classification task, EfficientNet was the best performing model with ResNet50 

as the next best. Then in terms of model compactness and inference time, the 

best model was MobileNetV2, but it was compromised in terms of performance. 

And the study aimed to find an efficient, more compact, and faster model 

without any compromise on accuracy. Comparing EfficientNet with ResNet, 

both having similar accuracy, we see that although they have the same accuracy, 

EfficientNet has better precision, recall, f1-score, and cross-entropy loss. Then 

it’s 5.74 times smaller than ResNet in terms of size. And it’s almost twice as 

fast as ResNet. Thus, out of all the models we find EfficientNet to be the best 

performing one and being efficient at the same time. 
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Fig 4.4: Model comparison based on other parameters. 
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In this study, the image resolution was fixed at 300 × 200. This number was 

determined experimentally through optimization by considering the trade-off 

between the improvement in performance versus an increase in the 

training/inference time. Models trained on images of lower resolution (<300 × 

200) compromise accuracy, while the higher resolution images increase the 

inference time without a noticeable improvement in accuracy. One reason for 

this may be the overlapping damages in a single grain: there were always a few 

grains that the models could not predict accurately due to multiple damages 

existing in a single grain, each in prominence. As far as the confusion matrix 

for lower resolution images is concerned, the degradation in performance was 

mainly observed for the chalky classes i.e., full chalky, half chalky, and chalky 

discolored. The higher resolution images also took much longer to train and 

were not feasible for further experimentations as already the scope of 

improvement on the current dataset was very low. Hence, the shape 300 × 200 

was chosen as it provided the best performance and enabled the conduction of 

feasible experiments. 

4.2. Error analysis 

 

Fig 4.5: Precision and Recall values for each class. 
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This section presents the error analysis on the predictions made by the best 

performing model i.e., EfficientNet-B0. The confusion matrix is presented in 

Fig. 4.6 that provides an overview of all the class predictions. The true labels 

are marked on the vertical axes and the predicted labels on the horizontal axes, 

which were used to calculate the precision and recall values for the individual 

classes. Fig. 4.5 compares the precision and recall values for each class. The 

recall values of individual classes signify the individual class accuracy. The 

recall for a class k represents the proportion of images that the model captured 

(or classified) correctly out of all the images that belonged to class k. Whereas, 

precision for a class k is the proportion of the correctly classified images out of 

all the images that the model predicted to be in class k. It can be seen that full 

chalky and chalky discolored had the least accuracy (or recall) of 96.51% and 

95.45% respectively. Half-chalky and broken had a perfect accuracy of 100%. 

Healthy, discolored, and normal damaged categories had an accuracy of 

98.33%, 99.26%, and 98.72% respectively. 

With regards to the precision values, half chalky had the lowest precision of 

95.55%. This means that out of the misclassified points, a large proportion was 

classified as half chalky. Broken had a perfect precision of 100%, meaning that 

none of the other categories of grains were misclassified as healthy or broken. 

The Deep CNN models that were trained; all use a SoftMax activation in the 

last layer. The SoftMax layer provides a probability distribution over all the 

classes and represents the confidence with which the model makes the 

prediction for each class. Table 1 shows the number of points that the model 

predicts for each class with confidence greater than a particular threshold. For 

instance, in the second row, for chalky discolored damage, 105 predictions were 

correct out of a total of 108 total predictions. Then the number of images 

classified as chalky discolored with a confidence > 0.75 was 105. Similarly, for 

thresholds 0.9, 0.95, and 0.99, the number of predicted images with confidence 

> threshold is 101, 96, and 85. It is observed that most of the images were 

predicted with a confidence of > 0.75. 
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Fig 4.6: Confusion matrix for the test image dataset. 

Further, as we increase the threshold, it is observed that the number of 

predictions reduce in number. This is expected because an increase in threshold 

demands more confidence from the model in its prediction. However, this is not 

uniform across all the damages. In broken, healthy, pin-damage, and discolored, 

the reduction in number is comparatively lesser i.e., the model is still able to 

predict a high percentage of images with a confidence > 0.99. However, in full-

chalky, half-chalky, and chalkydiscolored the proportion of predictions with 

confidence > 0.99 are 84.5%, 78.9%, and 78.7%. This shows that the model is 

not as confident when predicting the chalky classes as it is in other ones. 

Classifying various kinds of damages in rice is a tough job, there are borderline 

instances that are not simple to detect manually and anticipate the type of  
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damage, and these borderline cases are often misclassified. Chalky discolored 

may be misclassified with full chalky, half chalky, and normal damage. When 

discoloration is extremely light then it can be misclassified as full chalky or half 

chalky (Fig. 4.7-g), depending upon the kind of damage. Chalky discolored 

grains which are having darker patches are misclassified with normal damage 

(Fig. 4.7-b, c). Discolored grains which are having very little chalkiness but 

can’t be seen by the human eye may be misclassified as chalky discolored. Full 

chalky may be misclassified with chalky discolored (Fig. 4.7-e) and half chalky 

(Fig. 4.7-a) for borderline instances. Half chalky may be misclassified with 

chalky discolored and full chalky. Healthy grains which are exhibiting very little 

chalkiness in a limited area may be misclassified as half chalky (Fig. 4.7-h). 

Normal damaged grains which are having a tiny area of damage on chalky 

discolored may be misclassified as chalky discolored (Fig. 4.7-d) and if the 

same occurs with discolored then it can be misclassified as discolored grains 

(Fig. 4.7-f). This explanation is validated by the help of the confusion matrix, 

where the diagonal elements indicate the correctly recognized grains and other 

numbers in that row indicate misclassified grains. For a given cell, true class is 

stated on the y-axis, and predicted class is mentioned on the x-axis. For 

EfficientNet-B0, the Confusion Matrix for the predictions on the test set is 

shown in Fig. 4.6.  
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Table 1: The number of images predicted for each damage with different 

confidence thresholds. Here “P” represents the output softmax activation for 

that particular damage class and signifies the confidence with which the model 

makes the prediction. 

 

 

 

 

 

 

 

 

 

 

Predicted 

Damage 

Total 

predictions 

Correct 

predictions 

P > 

0.75 

P > 

0.9 

P > 

0.95 

P > 

0.99 

Proportion 

of 

predictions 

with P > 

0.99 

Broken 103 103 102 102 102 101 98.1 

Chalky 

discolored 
108 105 105 101 96 85 78.7 

Discolored 137 135 132 131 131 127 92.7 

Full 

chalky 
84 83 81 78 76 71 84.5 

Half 

chalky 
90 86 88 83 81 71 78.9 

Healthy 119 118 119 118 117 116 97.5 

Normal 

damage 
156 154 156 155 153 148 94.9 
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Fig 4.7: Misclassified images marked with the region of interest. FC (Full 

Chalky), HC (Half Chalky), CD (Chalky Discolored), ND (Normal Damage), 

D (Discolored). 
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Conclusion and Future scope 

Due to an unprecedented increase in the production of food grains to meet an 

ever-growing population, it is imperative to have a grain quality assessment tool 

that offers fast, reliable, and objective decision-making while being cost-

effective. Therefore, a significant effort has been directed for developing 

machine vision systems (MVs), however, these efforts have been primarily 

focused on either sorting the healthy grains from the damaged ones or 

differentiating the rice grains based on their type. While from a point-of-view 

of nutrition, the focus remains on detecting and segregating healthy rice grains, 

in developing countries such as India the damaged rice grains constitute a 

significant amount. In this context, the use and distribution of damaged rice 

grains remain unstructured due to a lack of quality-assessment tools that can 

ascertain their market acceptability and quality with high accuracy. To this end, 

this study demonstrates the application of Deep CNN models that are fine-tuned 

to enable the classification of damage in rice grains with high accuracy. The 

following key conclusions can be drawn from this study: 

1. A machine vision system is developed to create an in-house database of 

8048 high-magnification (4.5 x) images of milled rice grains that are 

damaged and spread across seven damage types, namely, healthy, broken, 

full chalky, half chalky, chalky discolored, discolored, and normal damage.  

2. The state-of-the-art Deep-learning based CNN algorithms, namely, 

EfficientNet-B0, ResNet-50, InceptionV3, MobileNetV2, and 

MobileNetV3 are fine-tuned and applied on the image dataset to enable 

damage classification across the seven classes. The performance of these 

five algorithms is compared in terms of recall, F1-score, precision, and their 

size and prediction time. It is demonstrated that EfficientNet-B0 is the best 

performing algorithm which provides an overall classification accuracy of 

98.37 %, and the individual class accuracies of 96.51%, 95.45%, 100%,  
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100%, 98.33%, 99.26%, and 98.72% for normal damage full chalky, chalky 

discolored, half chalky, broken, healthy, discolored and normal damage, 

respectively. 

3. The image dataset being a real dataset is reasonably complex due to the 

possibility of occurrence of more than one damage on a single rice grain, 

which complicates the process of damage classification. For instance, in half 

chalky class, the region with chalkiness varies from 10% to 90%, while in 

the chalky discolored grains, the discoloration intensity and its location vary 

from one grain to another. Similarly, in the normal damage class, the region 

with heat damage varies from 10% to 90%, while pin damage and 

watermark damages that fall under normal damage may conflict with the 

discolored damage class. 

4. Despite the complexity of the dataset, the tuned EfficientNet-B0 model 

achieves a high overall classification accuracy of 98.37% at a nominally 

small model size of 47 MB and a prediction time of 0.122s. This 

demonstrates the resilience and fidelity of the model for damage 

classification, as well as the quality of the constructed image dataset.  

5. The EfficientNet-B0 model can successfully categorize the chalky damage 

further into three subcategories i.e., half chalky, full chalky, and chalky 

discolored. 

In most places, the quality of milled rice grains is being determined by trained 

personnel, but this is slow and inconsistent. In some places, flatbed scanners are 

used to predict the quality, but they don't give high fidelity results. Moreover, 

the conventional methods used nowadays are not enough to identify and 

quantify each damage type. Since the quality evaluation of rice grains is based 

on visuals of surface characteristics, it becomes a very good problem to solve 

through a machine vision system. To date, not a simple machine vision system 

has been used in a practical application for determining the rice quality, be it in 

terms of size, shape, length, or damage. This study can be used in the practical 

application of machine vision systems based on supervised learning, which can  
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be helpful in determining the quality and deciding its market value at different 

rice trading locations. The following work can be done as an extension of this 

study: 

• To date, no one has used unsupervised learning to classify rice damages. So 

one can try using unsupervised learning to make clusters of these damages 

based on similarity and then classify them as supervised learning takes a lot 

of time and effort to create this labelled data.  

• One can further sub-classify the normal damage class and hence it can help 

to decide its market value based on damage severity. 

• A quality assessment product can be made that can sort some handful of 

grain samples and give a clear understanding of that particular lot. 
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Fig 5.1: Classification chart of milled rice based on different damage types. 
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Class 1: Healthy 

 

Class 2: Broken 



 

58 
 

 

 

Class 3: Discolored 
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Class 4: Full chalky 

 

Class 5: Half chalky 
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Class 6: Chalky discolored 

 

 

 

Class 7: Normal damage 
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Basic CNN architecture: 

CNNs are a subclass of Deep Neural Networks that are frequently used for 

visual image analysis. CNNs can identify and categorise certain characteristics 

from images. The CNN is made up of three different kinds of layers: 

convolutional, pooling, and fully connected (FC) layers. A CNN architecture is 

created when these layers are layered. The dropout layer and the activation 

function, which are detailed below, are two additional crucial factors in addition 

to these three layers. 

1. Convolutional Layer 

This is the first layer, applied to extract the different characteristics from the 

input images. Convolution is a mathematical process that is carried out at this 

layer between the input image and a filter of a specific size, mxm. The dot 

product is obtained between the filter and the input image's components with 

regard to the filter's size by sliding the filter over the input image (mxm). The 

result is known as the feature map, and it provides details about the image, 

including its corners and edges. This feature map is later supplied to further 

layers to teach them more features from the input image. 

2. Pooling Layer 

A Pooling Layer often comes after a Convolutional Layer. Its main goal is to 

lower the convolved feature map's size in order to save on computational 

expenses. This is done individually on each feature map and by reducing the 

links between layers. There are several sorts of pooling operations, depending 

on the mechanism applied. The greatest component in Max Pooling is obtained 

from the feature map. The average of the components in a predetermined sized 

Image portion is determined via average pooling. Sum Pooling computes the 

total sum of the components in the designated section. Typically, the Pooling 

Layer acts as a link between the FC Layer and the Convolutional Layer. 

3. Fully Connected Layer 

To link the neurons between two layers, the Fully Connected (FC) layer, which 

also includes weights and biases, is utilised. These layers make up the final few 

levels of a CNN architecture and are often positioned before the output layer. 
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This process flattens the input image from the preceding layers and feeds it to 

the FC layer. The flattened vector is then sent through a few additional FC 

layers, where the standard operations on mathematical functions happen. The 

classification procedure starts to take place at this point. 

4. Dropout 

Normally, overfitting in the training dataset might result from all features being 

linked to the FC layer. When a given model performs so well on training data 

that it has a detrimental effect on the model's performance when applied to fresh 

data, this is known as overfitting. To solve this issue, a dropout layer is used, in 

which a small number of neurons are removed from the neural network during 

training, reducing the size of the model. A dropout of 0.3 causes 30% of the 

nodes in the neural network to be randomly removed. 

5. Activation Functions 

The activation function is one of the most crucial elements of the CNN model. 

They are employed to discover and approximate any type of continuous and 

complicated link between network variables. In layman's terms, it determines 

which model information should shoot ahead and which should not at the 

network's end. The network gains nonlinearity as a result. The ReLU, Softmax, 

tanH, and Sigmoid functions are a few examples of regularly used activation 

functions. Each of these operations has a particular use. Sigmoid and softmax 

functions are recommended for a CNN model for binary classification, while 

softmax is typically employed for multi-class classification. 

 

 


