
INVESTIGATIONS IN FUZZY
BASED LEARNING ALGORITHMS

WITH APPLICATION TO BIG DATA
CLASSIFICATION

A THESIS

submitted in partial fulfillment of the
requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

NEHA BHARILL

DISCIPLINE OF COMPUTER SCIENCE &

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

JULY 2017

! !

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis

entitled INVESTIGATIONS IN FUZZY BASED LEARNING

ALGORITHMS WITH APPLICATION TO BIG DATA

CLASSIFICATION in the partial fulfillment of the requirement for the award

of the degree of DOCTOR OF PHILOSOPHY and submitted in the

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING,

Indian Institute of Technology Indore, is an authentic record of my own

work carried out during the time period from JANUARY, 2013 to JULY, 2017

under the supervision of Dr. Aruna Tiwari, Associate Professor, Discipline of

Computer Science & Engineering, Indian Institute of Technology Indore.

The matter presented in this thesis has not been submitted by me for the

award of any other degree of this or any other institute.

Signature of the Student with date

. (NEHA BHARILL)

——————————————————————————————

This is to certify that the above statement made by the candidate is correct

to the best of my knowledge.

Signature of the Thesis Supervisor with date

. (Dr. ARUNA TIWARI)

——————————————————————————————

NEHA BHARILL has successfully given her Ph.D. Oral Examination held

on 15-01-2018.

Signature of Chairperson (OEB) Signature of External Examiner Signature of Thesis Supervisor

Date: Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2 Signature of Convener, DPGC

Date: Date: Date:

Signature of Head of Discipline

Date:

——————————————————————————————

iii

iv

Acknowledgements

I would like to take this opportunity to express my heartfelt gratitude to a

number of persons who in one or the other way contributed by making this time

as learnable, enjoyable, and bearable. At first, I would like to thank my supervi-

sor Dr. Aruna Tiwari, who was a constant source of inspiration during my work,

without her constant guidance and research directions this research work could

not be completed. Her continuous support and encouragement has motivated

me to remain streamline in my research work. I am grateful to Dr. Kapil Ahuja,

for all his extended help, support, and constructive feedback. I am also grateful

to Dr. Surya Prakash, HOD of Computer Science for his constructive feedback.

I am thankful to Dr. Ram Bilas Pachori and Dr. Surya Prakash, my research

committee member for taking out some valuable time to evaluate my progress

all these years. Their good comments and suggestions helped me to improve my

work at various stages.

I wish to thank all my colleagues, and staff from the Discipline of Computer

Science and Engineering for thier suggestions and friendship. I extend my sincere

thanks to many government bodies like DST, CSIR, MPCST apart from IIT

Indore to help me with financial support to attend international conferences,

which gave me a right platform at the right time and helped a lot to groom my

research work.

I would like to thank my family, especially my mother, father, and my hus-

band for always believing in me, for their continuous source of inspiration and

their support in my decisions. Without whom I could not have made it here. I

also want to thank my in-laws for their support and blessings.

Dated: (Neha Bharill)

v

vi

Dedicated to my parents

vii

viii

Abstract

Clustering is one of the most widely used methods for exploratory data analysis.

The need of clustering arises in many real-life problems, such as gene analysis,

image processing, text organization, community detection, disease diagnosis,

and protein categorization. Fuzzy clustering is one of the most widely used

methods to handle such real-life problems. The principle advantage of fuzzy

clustering is that the membership degrees expresses how ambiguously a data

point should belong to a cluster. However, there are many aspects of the design

of fuzzy clustering need to be addressed for improving the overall performance

of fuzzy clustering by preserving the quality of clustering to handle different

categories of data, such as Very Large (VL) and Big Data. The quality of

clustering is affected by many parameters during the clustering process. One

such parameter is the number of clusters (c), that can be determined during

clustering. Apart from this, two other parameters are the fuzzifier and the

locations of cluster centers that need to be selected appropriately for better

efficacy of fuzzy clustering. Furthermore, looking towards the current need of

clustering processes to handle VL and Big Data in real-life situations, there is

a need to model incremental and scalable clustering algorithms.

The performance improvement of fuzzy clustering has been done by propos-

ing a novel cluster validity index, which incorporates intra-cluster compactness,

inter-cluster separation, and inter-cluster overlap measures to find the optimal

number of clusters in a dataset. Further, for the appropriate selection of other

parameters of fuzzy clustering, i.e., the fuzzifier and the location of cluster cen-

ters, we proposed two variants of hybrid fuzzy clustering algorithms. Firstly,

the proposed quantum-inspired evolutionary fuzzy algorithm for data cluster-

ing, which uses quantum computing principle to explore a large search space

for an appropriate selection of a fuzzifier parameter in fuzzy clustering. Sec-

ix

ondly, the enhanced quantum-inspired evolutionary fuzzy clustering algorithm

is proposed, which explores a large search space for the appropriate selection of

all parameters of fuzzy clustering, i.e., the number of clusters, the location of

cluster centers, and the fuzzifier.

In order to handle different categories of data, such as VL and Big Data,

other novel approaches for fuzzy clustering are designed. Firstly, we proposed

an incremental clustering algorithm integrated with a supervised classification

method for processing VL datasets. The proposed method processes the VL

dataset in chunks and sequentially performs clustering of each chunk. It removes

the problem of loading the entire data in memory all at once by reducing the run-

time and shows significant improvement in classification accuracy. To handle Big

Data, scalable clustering algorithms are proposed and implemented using the

Apache Spark framework which provides an in-memory computation capability

for proceeding with faster computations on Big Data. The proposed approach

reduces run-time and space complexity. It also shows competitive results in

terms of various performance measures.

The proposed scalable clustering algorithm is applied to a real-life Big Data

Problem. For this, a massive protein database of a complex plant genome, which

is of size 80 GB, has been collected from the Directorate of Soybean Research

(DSR), Indore under the Indian Council of Agricultural Research (ICAR). The

collected protein database is used for the categorizing of protein sequences into

the respective superfamilies. This categorization helps to assist DSR scientists

in enhancing the productivity of next generation protein sequences of differ-

ent species of plant. To do this, first, a rigorous study and analysis of protein

sequences of the complex plant genome are carried out. Then, a novel feature ex-

traction approach is designed that extracts fixed-length numeric feature vectors

consisting of only six dimensions to represent a long chain of protein sequences.

This feature extraction method is applied to the real-life protein database for its

preprocessing and then the preprocessed data is passed as input to the scalable

clustering algorithm for efficient categorization of protein sequences into super-

families. The exhaustive results on this massive protein database are evaluated

in terms of various performance measures.

x

List of Publications

(A) International Journal

(i) Published

[1] N. Bharill, A. Tiwari, and A. Malviya, “Fuzzy based scalable clustering

algorithms for handling big data using apache spark,” IEEE Transactions

on Big Data, vol. 2, no. 4, pp. 339-352, 2016.

[2] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O.P. Patel, A. Tiwari, M.

Joo, W. Ding, and C.T. Lin, “A review of clustering techniques and de-

velopments,” Neurocomputing, Elsevier, vol. 267, pp. 664-681, 2017.

[3] N. Bharill, O.P. Patel, and A. Tiwari, “Quantum-inspired Evolutionary

Approach for Selection of Optimal Parameters of Fuzzy Clustering,” In-

ternational Journal of System Assurance Engineering and Management,

Springer, vol. 8, pp. 1-13, 2017.

(ii) Communicated (Under review)

[1] N. Bharill, O.P. Patel, A. Tiwari, M. Prasad, and C.T. Lin, “A generalized

enhanced quantum fuzzy approach for efficient data clustering,” IEEE

Transactions on Emerging Topics in Computational Intelligence (Revision

Submitted - Nov. 20, 2017, Current Status - Under Review).

[2] N. Bharill, A.Tiwari, A. Malviya, A. Gupta, D. Puthal, and A. Saxena,

“Fuzzy knowledge based performance analysis on big data,” Neurocomput-

ing, Elsevier (Submitted - Nov. 2, 2017, Current Status - Under Review).

[3] N. Bharill, and A. Tiwari, “Protein superfamily classification using a novel

feature extraction approach,” International Journal of Data Mining and

xi

Bioinformatics (IJDMB), Inderscience (Submitted - Aug. 8, 2017, Current

Status Under Review).

(B) Book Chapters

[1] N. Bharill and A. Tiwari, “Handling big data with fuzzy based classifi-

cation approach,” in Proc. of Third Annual World Conference on Soft

Computing, Advance Trends in Soft Computing, ser. Studies in Fuzziness

and Soft Computing, Springer International Publishing, 2014, vol. 312,

pp. 219-227.

[2] N. Bharill and A. Tiwari, “A novel technique of feature extraction based

on local and global similarity measure for protein classification,” in Proc.

of International Conference on Bioinformatics Models, Methods and Al-

gorithms, Bioinformatics, Scitepress Digital Library, 2015, vol. 1, pp.

219-224.

(C) International Conferences

[1] N. Bharill, A. Tiwari, and A. Malviya, “Fuzzy based clustering algorithms

to handle big data with implementation on apache spark,” in Proc. of 2016

Second IEEE International Conference on Big Data Computing Service

and Applications, IEEE BigDataService, IEEE, Exeter College, Oxford,

UK, March, 2016, pp. 95-104. (IEEE Computer Society Conference,

Link: http://www.big-dataservice.net/).

[2] N. Bharill, O.P. Patel, and A. Tiwari, “An enhanced quantum-inspired

evolutionary fuzzy clustering,” in Proc. of 2015 IEEE Symposium Se-

ries on Computational Intelligence, IEEE, Cape Town, South Africa, De-

cember, 2015, pp. 772 - 779 (Flagship Conference, Link: http://ieee-

ssci.org.za:8080/)

[3] O.P. Patel, N. Bharill, and A. Tiwari, “A quantum-inspired fuzzy based

evolutionary algorithm for data clustering,” in Proc. of 2015 IEEE Inter-

national Conference on Fuzzy Systems, IEEE, Istanbul, Turkey, August,

xii

2015, pp. 1 - 8 (RANK A, Link: http://202.141.161.27/ qiang/cs-conf-

ranking.htm)

[4] N. Bharill, A. Tiwari, and A. Rawat, “A novel technique of feature extrac-

tion with dual similarity measures for protein sequence classification,” in

Proc. of 2014 International Conference on Computer, Communication and

Convergence, Procedia Computer Science, Elsevier, Bhubaneswar, India,

December, 2014, vol. 48, pp. 795-801.

[5] N. Bharill and A. Tiwari, “Enhanced cluster validity index for the evalua-

tion of optimal number of clusters for fuzzy c-means algorithm,” in Proc.

of 2014 IEEE International Conference on Fuzzy Systems, IEEE World

Congress on Computational Intelligence, IEEE, Beijing, China, July, 2014,

pp. 1526 - 1533 (RANK A, Link: http://202.141.161.27/ qiang/cs-conf-

ranking.htm).

xiii

xiv

Contents

CERTIFICATE . iii

List of Figures . xx

List of Tables . xxiii

List of Algorithms . xxv

List of Abbreviations . xxv

1 Introduction 1

1.1 Motivation and Scope . 4

1.2 Objectives . 6

1.3 Contributions . 8

1.4 Organization of the Thesis . 11

2 Literature Survey 15

2.1 Basic Clustering Algorithms . 15

2.1.1 Hard Clustering . 16

2.1.2 Fuzzy Clustering . 18

2.2 Preliminaries for Cluster Validity Index 21

2.3 About Fuzzifier Parameter . 25

2.4 Deciding Other Parameters of Fuzzy Clustering Optimally . . . 26

2.5 Clustering Algorithms for Large and Very Large Data 31

2.6 Big Data Frameworks and Related Algorithms 33

2.6.1 Big Data frameworks . 34

2.6.2 Working of Apache Spark 36

2.6.3 Algorithms for Processing Big Data 39

2.7 Real-life Plant Genome Data . 40

2.8 Performance Measures . 43

2.8.1 Performance Measures for Scalable Algorithms 43

xv

CONTENTS

2.8.2 Performance Measures for Incremental Algorithm and Pro-

tein Feature Extraction Approach 46

2.9 Working with Datasets . 48

3 Cluster Validity Index 51

3.1 Introduction . 51

3.2 Proposed Novel Cluster Validity Index 52

3.2.1 Intra-cluster Compactness 52

3.2.2 Inter-cluster Separation based on Fuzzy Set 54

3.2.3 Inter-cluster Overlap Measure 55

3.2.4 Formulation of Proposed Validity Index 57

3.3 Experimental Evaluation . 59

3.3.1 Datasets and Experimental Settings 60

3.3.2 Experimental Results and Discussion 60

3.4 Summary . 67

4 Methodologies for Selection of Optimal Parameters in Fuzzy

Clustering 69

4.1 Introduction . 69

4.2 Proposed Work . 70

4.2.1 Representation of Fuzzifier and Initial Cluster Centers in

Qubits . 72

4.2.2 Observation Process . 74

4.2.3 Working of Quantum Rotational Gate 76

4.2.4 Quantum-inspired Evolutionary Fuzzy Clustering Algo-

rithm . 77

4.2.5 Enhanced Quantum-inspired Evolutionary Fuzzy Cluster-

ing Algorithm . 80

4.3 Experimental Evaluation . 82

4.3.1 Datasets and Experimental Settings 83

4.3.2 Experimental Results and Discussion 83

4.4 Summary . 94

5 Design of Incremental Clustering Algorithm as a Classifier for

Handling Very Large Data 97

xvi

CONTENTS

5.1 Introduction . 97

5.2 Preliminaries . 99

5.3 Proposed Work . 100

5.3.1 Design of Random Sampling Iterative Optimization Fuzzy

C-Means Algorithm . 101

5.3.2 Design of Classifier for RSIO-FCM Clusters 103

5.3.3 Testing of Designed Classifier 104

5.4 Experimental Evaluation . 110

5.4.1 Datasets and Experimental Settings 110

5.4.2 Experimental Results and Discussion 111

5.5 Summary . 113

6 Scalable Clustering Algorithms for Handling Big Data 115

6.1 Introduction . 115

6.2 Proposed Scalable Fuzzy Clustering Algorithms for Big Data . . 116

6.2.1 Enhanced Scalable Version of LFCM Algorithm to Handle

Big Data . 117

6.2.2 Proposed Design of a Novel SRSIO-FCM Algorithm to

Handle Big Data . 124

6.2.3 Enhanced Scalable Version of rseFCM Algorithm to Han-

dle Big Data . 126

6.3 Complexity Analysis . 127

6.4 Experimental Evaluation . 130

6.4.1 Datasets and Experimental Settings 130

6.4.2 Experimental Results and Discussion 131

6.5 Summary . 139

7 Application of Scalable Clustering Algorithm along with a Novel

Feature Extraction Approach for Classification of Protein Data141

7.1 Proposed Novel Feature Extraction Approach for Protein Classi-

fication . 143

7.1.1 Stage One: Encoding of Protein Sequences 144

7.1.2 Stage Two: Global Similarity Measure 145

7.1.3 Stage Three: Local Similarity Measure 146

7.2 Experimental Evaluation . 147

xvii

CONTENTS

7.2.1 Datasets and Experimental Settings 149

7.2.2 Experimental Results and Discussion 150

7.3 Summary . 156

8 Conclusion 159

8.1 Contributions . 159

8.2 Future Work . 163

Bibliography 163

Appendix A UCI Datasets 183

Appendix B Validation Methods 187

Appendix C Benchmark Protein Database 189

Appendix D Genome Database 191

xviii

List of Figures

2.1 A sample taxonomy of clustering algorithms. 16

2.2 Internal workflow of Apache Spark. 36

2.3 In-memory computation of Spark. 38

3.1 Two fuzzy clusters Fy and Fz with different degree of compact-

ness. 52

3.2 Two fuzzy clusters Fz and Fy shows the separation between clus-

ter centers. 55

3.3 Flow chart of proposed cluster validity index. 59

3.4 Scatter plot of datasets in two dimensional space. 61

3.5 Comparison of cluster validity indexes on IRIS dataset at m = 2.0. 62

3.6 Comparison of cluster validity indexes on WINE dataset at m = 2.0. 63

3.7 Comparison of cluster validity indexes on VEHICLE dataset at

m = 2.0. 63

3.8 Comparison of cluster validity indexes on SEED dataset at m = 2.0. 64

3.9 Comparison of cluster validity indexes on GLASS dataset at m =

2.0. 65

3.10 Comparison of cluster validity indexes on BUPA dataset at m = 2.0. 66

4.1 Comparison of the QIE-FCM algorithm with other cluster va-

lidity indexes indicating the best value of fuzzifier for different

datasets. 84

4.2 Comparison of the QIE-FCM algorithm with other cluster valid-

ity indexes in terms of the number of clusters for different datasets. 86

4.3 Scatter plot of Pima Indians Diabetes data. 89

4.4 Comparison of the EQIE-FCM algorithm with QIE-FCM algo-

rithm indicating the best value of fuzzifier for different datasets. 90

xix

LIST OF FIGURES

4.5 Performance comparison of the number of iterations taken by the

EQIE-FCM algorithm and QIE-FCM algorithm. 93

5.1 Flowchart of the RSIO-FCM clustering and its classification process.105

5.2 Graphical representation of final locations of cluster centers of

IRIS data. 107

5.3 Accuracy comparison of the rseFCM and the RSIO-FCM Algo-

rithms on benchmark VL datasets. 113

6.1 Storage space optimization for any two pairs of data points . . . 119

6.2 Workflow of SLFCM Algorithm. 120

6.3 SLFCM Algorithm implemented on Apache Spark Cluster. . . . 122

6.4 Workflow of SRSIO-FCM Algorithm. 126

6.5 Workflow of SrseFCM Algorithm. 127

6.6 Sizeup Analysis for SLFCM and SRSIO-FCM. 137

6.7 Scaleup Analysis for SLFCM and SRSIO-FCM. 138

6.8 Trade-off between performance gain versus accuracy. 138

7.1 Primary structure of five related protein sequences in a superfamily.144

7.2 The flowchart of proposed CPSF approach. 148

xx

List of Tables

1.1 Huber’s description of dataset sizes 3

2.1 Specification of parameters for LFCM. 20

2.2 Confusion matrix. 47

2.3 Information of datasets used for Big Data experimentation. . . . 49

3.1 Identification of the optimal number of clusters (c) for different

values of m ∈ [1.5, 2.5] with a step size of 0.2. 67

4.1 Parameters for qubits updation of the QIE-FCM algorithm. . . 78

4.2 Specification of parameters of QIE-FCM algorithm. 80

4.3 Parameters for qubits updation of the EQIE-FCM algorithm. . . 82

4.4 Specification of parameters of EQIE-FCM algorithm. 83

4.5 Comparison of QIE-FCM algorithm with other indexes in terms

of the best value of fuzzifier and the optimal value of number of

clusters. 88

4.6 Performance comparison with evolutionary clustering algorithms. 88

4.7 Comparison of initial cluster center locations of the EQIE-FCM

Algorithm with the QIE-FCM Algorithm. 91

4.8 Performance comparison of the EQIE-FCM algorithm with evo-

lutionary algorithms. 94

5.1 Information of IRIS data with three classes in three groups. . . 106

5.2 Membership matrix of training samples of IRIS data. 106

5.3 Final locations of cluster centers of IRIS Data. 106

5.4 Information of class membership matrix of training samples of

IRIS data. 107

5.5 Membership matrix of test samples of IRIS data. 108

xxi

LIST OF TABLES

5.6 Output class labels of test samples of IRIS data. 109

5.7 Defuzzified output class labels of test samples of IRIS data. . . . 109

5.8 Information of number of clusters taken for VL datasets 110

5.9 Comparison of the rseFCM and the RSIO-FCM Algorithms on

benchmark VL datasets. 112

6.1 Space and time complexity of Scalable Fuzzy Clustering Algorithms.128

6.2 Specification of parameters for various datasets. 131

6.3 NMI for SLFCM, SrseFCM, and SRSIO-FCM with various chunk

sizes on different datasets. 133

6.4 F-measure for SLFCM, SrseFCM, and SRSIO-FCM with various

chunk sizes on different datasets. 133

6.5 ARI for SLFCM, SrseFCM, and SRSIO-FCM with various chunk

sizes on different datasets. 134

6.6 Objective Function value for SLFCM, SrseFCM, and SRSIO-

FCM with various chunk sizes on different datasets. 135

6.7 Speedup Analysis for SLFCM and SRSIO-FCM. 136

7.1 Encoded positional representation of amino acids. 145

7.2 Global Similarity Measure of encoded protein sequences. 146

7.3 Representation of feature vector. 147

7.4 Information of the superfamilies of the benchmark protein database.149

7.5 Comparison of classification accuracies of proposed CPSF ap-

proach on several classifiers for classification of the benchmark

protein database. 151

7.6 Comparison of sensitivity and specificity of proposed CPSF ap-

proach on several classifiers for classification of the benchmark

protein database. 152

7.7 Confusion matrix of proposed CPSF approach with well-known

classifiers on the benchmark protein database with different vali-

dation methods. 153

7.8 Comparison of the number of features extracted with different

feature extraction approaches on the benchmark protein database. 154

7.9 Comparison of classification accuracies of feature extraction ap-

proaches on well-known classifiers for the benchmark protein database.154

xxii

LIST OF TABLES

7.10 Result of the proposed approaches on real-life protein database. 156

xxiii

LIST OF TABLES

xxiv

List of Algorithms

2.1 Algorithm for K-means Clustering 18

2.2 Algorithm for Literal Fuzzy C-Means (LFCM) to Iteratively

Minimize Jm(U, V
′
) . 20

2.3 Algorithm for random sampling plus extension Fuzzy C-Means

to approximately minimize Jm(U, V
′
) 33

3.1 Algorithm for Evaluation of Proposed V IDSO(c, U) Index . . 58

4.1 Algorithm for Quantum-inspired Evolutionary Fuzzy Clustering 79

4.2 Algorithm for Enhanced Quantum-inspired Evolutionary Fuzzy

Clustering . 81

5.1 Algorithm for Random Sampling Iterative Optimization Fuzzy

C-Means to Iteratively Minimize Jm(U, V
′
) 102

6.1 Algorithm for Scalable Literal Fuzzy C-Means (SLFCM) to

Iteratively Minimize Jm(U, V
′
) 119

6.2 Algorithm for Map Function (map()) 121

6.3 Algorithm for ReduceByKey Function (reduceByKey()) . . 123

6.4 Algorithm for Scalable Random Sampling with Iterative Op-

timization Fuzzy C-Means to Iteratively Minimize Jm(U, V
′
) . . 125

6.5 Algorithm for Scalable random sampling plus extension Fuzzy

C-Means to approximately minimize Jm(U, V
′
) 127

xxv

LIST OF ALGORITHMS

xxvi

List of Abbreviations

FCM Fuzzy C-Means

VL Very Large

LFCM Literal Fuzzy C-Means

spFCM single-pass Fuzzy C-Means

oFCM online Fuzzy C-Means

brFCM bit-reduced Fuzzy C-Means

RSIO-FCM Random Sampling Iterative Optimization Fuzzy C-Means

GB GigaByte

DSR Directorate of Soybean Research

ICAR Indian Council of Agricultural Research

TBs TeraBytes

QIE-FCM Quantum-inspired Evolutionary Fuzzy Clustering

EQIE-FCM Enhanced Quantum-inspired Evolutionary Fuzzy Clustering

NMI Normalized Mutual Information

ARI Adjusted Rand Index

SRSIO-FCM Scalable Random Sampling with Iterative Optimization

Fuzzy C-Means

CPU Central Processing Unit

RAM Random Access Memory

GHz GigaHertz

rseFCM random sampling plus extension Fuzzy C-Means

SLFCM Scalable Literal Fuzzy C-Means

SrseFCM Scalable random sampling plus extension Fuzzy C-Means

CPSF Co-occurrence based Probability Specific Feature Extraction

PAM Partition Around Medoids

CLARANS Clustering Large Applications based on RANdomized Search

xxvii

LIST OF ALGORITHMS

CLARA Clustering LARge Applications

BIRCH Balanced Iterative Reducing and Clustering using Hierarchies

CURE Clustering Using REpresentatives

ROCK RObust Clustering using linKs

DBSCAN Density-Based Spatial Clustering of Applications with Noise

OPTICS Ordering Points To Identify the Clustering Structure

DBCLASD Distribution Based Clustering of Large Spatial Databases

DENCLUE DENsity-based CLUstEring

STING STatistical INformation Grid

CLIQUE Clustering In QUEst

OptiGrid Optimal Grid Partitioning

EM Expectation Maximization

SOMs Self Organizing Maps

OSI Overlap and Separation Index

PBMF Pakhira-Bandhyopadhya-Maulik

PCAES Partition Coefficient and Exponential Separation

QM-FCM Quantum-Modeled Fuzzy C-Means

RQECA Real-parameter Quantum-inspired Evolutionary Clustering

Algorithm

RQIEA Real-parameter Quantum-inspired Evolutionary Algorithm

QEFCM Quadratic Entropy based Fuzzy C-Means

VGA Variable String Length Genetic Algorithm

FPSO Fuzzy Particle Swarm Optimization

PSO Particle Swarm Optimization

mrFCM multistage random Fuzzy C-Means

psFCM partition simplification Fuzzy C-Means

geFFCM generalized extensible Fast Fuzzy C-Means

HDFS Hadoop Distributed File System

RDD Resilient Distributed Datasets

YARN Yet Another Resource Negotiator

I/O Input output

API Application Program Interface

SQL Structured Query Language

SIMR Spark in MapReduce

xxviii

LIST OF ALGORITHMS

SPMD Single Program Multiple Data

MPI Message Passing Interface

SVD Singular Value Decomposition

UCI University of California, Irvine

FCMVGA Fuzzy C-Means clustering based on Variable String

Length Genetic Algorithm

PID Pima Indian Diabetes

AMOGA Adaptive Multi-objective Genetic Algorithm

RBFN Radial Basis Function Network

PCA Principal Component Analysis

SVM Support Vector Machine

NB Naive Bayes

k-NN k-Nearest Neighbors

BLTA Boolean-Like Training Algorithm

WEKA Waikato Environment for Knowledge Analysis

SD Standard Deviation

DNA Deoxyribonucleic Acid

SNP Single-nucleotide polymorphism

xxix

LIST OF ALGORITHMS

xxx

Chapter 1

Introduction

Clustering is an approach for exploratory data analysis that collects data points

into groups called clusters, such that data points lying within the same group

are more similar to each other than to the data points lying in different groups

[1–3]. The formed clusters are appropriate for the exploration of the underlying

structure of the data and the better understanding of the nature of data [4–6].

Clustering is also known as unsupervised learning and it depends on the kind

of clustering algorithm being utilized [1, 7–9]. Clustering is used in a wide

variety of applications such as gene analysis, image processing, text organization,

community detection, disease diagnosis, and protein categorization [10–15]. In

real-life situations, it’s hard to capture the underlying structure of data with

a single clustering algorithm because every dataset has a different geometrical

distribution in feature space. Also capturing the underlying structure of data

with a single clustering algorithm becomes much harder when there exists an

ambiguity in designating a data point to a particular group or cluster. Therefore,

there is an immense need to develop different clustering approaches that can

adequately capture the underlying structure of various datasets into groups.

Clustering algorithms are broadly divided into two groups: hierarchical clus-

tering and partitioning clustering [16, 17]. Hierarchical clustering algorithms

yield a complete hierarchy by decomposing a dataset into several levels of nested

partitions (clusters) represented by a dendrogram (tree), whereas the partition-

ing clustering algorithm attempts to partition the dataset into some prespecified

number of clusters, usually by optimizing an objective function. Partitioning

based clustering algorithms are broadly classified into hard (or crisp) clustering

1

and fuzzy clustering [18]. Hard clustering algorithms partition the data points

into a set of disjoint clusters or groups, where each data point belongs to only

one group. The major disadvantage of hard clustering is that it becomes in-

appropriate for real datasets in which there are no definite boundaries between

the clusters. Thus, people realized the need to handle this situation that gave

birth to fuzzy based algorithms. After the introduction of fuzzy theory by Lotfi

Zadeh [19], the problem of handling the indefinite boundaries among the clusters

became easier. Thus, this gave birth to the fuzzy clustering algorithms. A fuzzy

clustering algorithm furnishes fuzzy partitions to measure the uncertainty that

a data point belongs to two or more clusters with a partial degree of member-

ship [20]. The principle advantage of fuzzy clustering is that the membership

degrees expresses how ambiguously a data point should belong to a cluster. Fur-

thermore, these membership degrees offer a means for handling ambiguous data

appropriately [21].

Inspired by fuzzy set theory, Bezdek [22] proposed one of the most popular

and widely used fuzzy clustering algorithms known as FCM. It partitions the

collection of n data points into c fuzzy groups such that an objective function

of a dissimilarity measure is minimized. With this technique, a data point can

be grouped into more than one cluster. Thus, fuzzy clustering is very flexible in

handling uncertainty, so it helps in solving many real-life complex problems [23].

Despite the wide acceptance of FCM, it has several flaws. In standard FCM,

the selection of the weighted exponent or fuzzifier (m), the number of clusters

(c), and the set of initial cluster centers (V) play a significant role in fuzzy cluster

analysis. Moreover, FCM is very sensitive to the selection of these parameters

as they have a direct impact on the formation of final clusters [20,24–26]. These

parameters are randomly selected in FCM, due to which FCM does not guar-

antee unique clustering results and makes the iterative algorithm to fall into a

local optimal solution [26, 27]. Another major issue with the FCM is that its

run-time exponentially increases with an increase in the number of data points

in the dataset. Thus, the larger the size of a dataset, the longer the clustering

algorithm will take to produce the partitions. In addition to this, processing the

entire dataset with standard FCM becomes infeasible even in the case of large

and VL datasets.

According to Huber statistics [28], dataset are classified into various cate-

2

CHAPTER 1. INTRODUCTION

Table 1.1: Huber’s description of dataset sizes

Bytes 106 108 1010 1012 10>12

Sizes medium large huge monster VL

gories based on different sizes, as given in Table 1.1. Bezdek and Hathway [29]

added the category of VL data to this table. There are various types of fuzzy

based clustering algorithms that have been proposed to cluster VL data [29–36].

Literal schemes simply perform clustering on the entire dataset [37]. On the

contrary, extended fuzzy clustering approaches apply a clustering algorithm to

a sample of the full dataset using LFCM [36,37], and then non-iteratively extend

the sample clustering results to obtain clusters for the remaining data. Some

algorithms include their noniterative mechanisms for extension of clustering re-

sults on the remaining data, referred to as extensible algorithms [29, 32, 36].

Other leading algorithms include spFCM [33] and oFCM [38], which are incre-

mental algorithms to compute an approximate FCM solution. The brFCM [39]

algorithm uses a binning strategy for data reduction. These approaches adopt

different strategies to perform clustering of VL data. Despite the rapid devel-

opment of clustering algorithms aimed at handling VL data, there is a lack of

adoption of these techniques in the wider data mining and other application

communities dealing with Big Data problems [40, 41]. A likely reason for this

is that these algorithms are not scalable to handle Big Data [40, 41]. This pre-

vents many state-of-the-art clustering algorithms from being widely applied at

Big-Learning scales [40, 41].

There are many aspects of the design of fuzzy clustering that need to be

addressed for improving its performance to handle Big Data while preserving

the quality of clustering results. In fuzzy clustering algorithms, the number of

clusters is randomly decided by trial and error by the user for clustering of a

dataset. The problem with the random selection of the number of clusters is

that the inappropriate selection of the number of clusters is unable to capture

the underlying structure of data points accurately, and suffers from a local con-

vergence problem. Therefore, we propose a novel cluster validity index for fuzzy

clustering to identify the optimal number of clusters for different datasets. It is

observed that other soft computing methods [27,42–44] are also integrated with

fuzzy clustering to improve its overall performance. Therefore, we have investi-

3

1.1. MOTIVATION AND SCOPE

gated the use of quantum computing in fuzzy clustering and propose two novel

hybrid clustering algorithms for finding optimal parameters of fuzzy clustering

from a large search space. Furthermore, to accelerate the speed of fuzzy cluster-

ing to handle VL datasets, we propose an incremental clustering algorithm called

RSIO-FCM integrated with supervised classification mechanism. In addition to

this, we also propose scalable fuzzy based iterative clustering algorithms to han-

dle Big Data. The proposed incremental and scalable clustering algorithms are

tested on various datasets. In addition to this, to investigate the performance

of the scalable clustering algorithm on a real-life Big Data problem, a massive

protein database of complex plant genomes of size 80 GB collected from the

DSR, Indore under the ICAR for the categorization of protein sequences into

the respective superfamilies. This categorization helps to assists DSR scientists

to enhance the productivity of next generation protein sequences of different

species of plant. The productivity of next generation protein sequences can be

enhanced by making protein sequences more resistant to disease, drought, heat,

high temperature, and food allergies. To do this, first, a rigorous study and

analysis of protein sequences of complex plant genomes are carried out, and

then we propose a novel feature extraction approach that extracts fixed-length

numeric feature vectors for protein sequences for their effective categorization.

Then, the performance of the scalable clustering algorithm is investigated on a

massive protein database in terms of parameters assessing the quality of clus-

tering results. Our approaches achieve a good trade-off between the quality of

clustering results and the computational effort required to reduce run-time.

1.1 Motivation and Scope

This dissertation is a study of improving the performance of fuzzy clustering as

well as the design and analysis of fuzzy based incremental and scalable clustering

algorithms for handling VL and Big Data.

In the past few decades, cluster analysis has played a vital role in machine

learning and pattern recognition. Recently, the use of fuzzy clustering algo-

rithms is widely accepted for organizing unstructured data due to its capability

to handle uncertainty. In spite of the wide acceptance of fuzzy clustering, it

suffers from a problem of local optima due to a random selection of param-

4

CHAPTER 1. INTRODUCTION

eters such as the number of clusters, the location of cluster centers, and the

fuzzifier. Therefore, the fuzzy clustering does not guarantee unique clustering

results and thus the final clustering results may not be the optimal ones and

lead the algorithm to converge into local optimal solutions [26]. There are many

aspects of the design of a fuzzy clustering approach could be addressed, which

may lead to an improvement in the performance of fuzzy clustering. Therefore,

there is a need to explore the problem of selecting the optimal parameters of

fuzzy clustering that can prevent the algorithm to converge into local optimal

solutions.

Nowadays, Big Data has become prevalent because a vast amount of data

collected every day from various sources such as sensor network, social network-

ing sites, videos from the surveillance system, and genome projects. Mining

valuable information in the prevalent Big Data is crucial to getting an edge on

the competitive parties such as 30 billion pieces of content are shared on Face-

book every month [45]; while photo-sharing sites such as Flickr, Instagram and

Facebook are anecdotally known to possess 10s of billions of images, again taking

up TBs of storage [41]. Hence, there is a need to design incremental and scal-

able clustering approaches for handling VL and Big Data problems. To design

such a scalable clustering algorithm, big data analytics frameworks are required.

Apache Spark is one of the most widely used Big Data analytics frameworks to

make an iterative clustering algorithm scalable for handling Big Data. It is

an open source cluster computing framework, developed to optimize large-scale

interactive computation and works well for iterative algorithms by supporting

in-memory computations. The proposed scalable algorithms are designed to

handle Big Data by using the Apache Spark cluster computing framework. To

work out the usefulness of the proposed scalable algorithms on a real-life prob-

lem of Big Data, we have collected and analyzed a huge complex plant genomes

protein database and designed a novel approach for feature extraction to extract

the numeric feature vectors of fixed-length from a protein database for enhancing

its classification accuracy. Then to investigate the performance of the proposed

scalable clustering algorithms, it is tested on a huge protein database for its

efficient categorization to the respective superfamilies.

In this thesis, we investigate optimal parameters value assignment for FCM

to improve its performance. Further, investigations are done to propose a novel

5

1.2. OBJECTIVES

incremental clustering algorithm followed by a classification mechanism. The

performance of the novel incremental clustering algorithm integrated with clas-

sification approach is investigated on different benchmark datasets and mea-

sured in terms of classification accuracy and run-time. In addition to this, novel

scalable clustering algorithms are proposed to solve Big Data problems. Also,

the novel scalable clustering algorithms are tested on various benchmark Big

Datasets in terms of performance metrics related to handling Big Data. The

analytical study is also performed for scalable clustering algorithms in terms

of space and time complexity. Furthermore, the trade-off between performance

gain versus accuracy is also assessed for in-depth analysis of experimental re-

sults. In addition to this, we have evaluated the performance of the proposed

scalable algorithm on a real-life problem of Big Data. For this, we have col-

lected a massive protein database of complex plant genomes from the DSR,

Indore. Then, for the preprocessing of this large protein database, a novel fea-

ture extraction approach is proposed. The proposed feature extraction method

represents each protein sequence with a fixed length numeric feature vectors

which lead to an improvement in classification of protein sequences to the re-

spective superfamilies. Then the proposed scalable clustering algorithm is tested

on a massive protein database for the categorization of protein sequences into

respective superfamilies.

1.2 Objectives

The research work is addressed to tackle the different issues in fuzzy clustering

for improving its performance and development of an incremental clustering

algorithm for handling VL data. Further, the focus of research is to develop

scalable fuzzy clustering algorithms for efficient handling of Big Data problems.

To demonstrate the applicability of proposed scalable fuzzy clustering algorithm

on a real-life Big Data problem, the collection of complex plant genomes protein

database is done from the DSR, Indore that comprises of protein sequences of

different species of a plant. The objectives of our research work are defined as

follows:

1. To find the optimal number of clusters for fuzzy clustering we propose a

novel cluster validity index which does the following:

6

CHAPTER 1. INTRODUCTION

(a) Increase the intra-cluster compactness and inter-cluster separation and

reduce the inter-cluster overlap between fuzzy clusters.

(b) In this, all the necessary measures of cluster analysis are incorporated

to capture the underlying structure of data more accurately.

2. To find an optimal fuzzifier, we propose a QIE-FCM algorithm that has

the following features:

(a) Quantum computing is utilized in fuzzy clustering, to provide a better

characteristic of population diversity and to maintain a proper balance

between exploration and exploitation.

(b) This enables us to efficiently explore a search space and exploit the

optimal solution of fuzzifier.

3. To determine an optimal value of all the parameters of the fuzzy cluster-

ing algorithm, i.e., the initial cluster centers, the number of clusters, and

the fuzzifier, we propose an EQIE-FCM algorithm that has the following

characteristics:

(a) It utilizes quantum computing principle in fuzzy clustering process to

appropriately explore a search space and to exploit the optimal solution

of all the parameters of fuzzy clustering.

(b) Attaining the optimal solution of all the parameters that help to elim-

inate the local convergence problem.

4. To propose an incremental fuzzy based iterative clustering algorithm for

addressing VL data, that utilizes the concept of Bayes’ theorem to design

it as a classifier for the effective classification of VL data.

5. To propose and develop, scalable fuzzy based iterative clustering algo-

rithms for handling Big Data that speedup the clustering process of Big

Data by reducing the run-time and optimizing the storage space. Also,

to propose and develop an analytical formulation for space and time com-

plexity.

6. To investigate the performance of the proposed variants of fuzzy clus-

tering algorithms in comparison to other approaches on several bench-

mark datasets. The performance is evaluated in terms of optimal pa-

rameters of fuzzy clustering, accuracy, run-time, NMI [46], ARI [47, 48],

7

1.3. CONTRIBUTIONS

F-measure [45], objective function, speedup, sizeup, and scaleup [49, 50],

and the trade-off between performance gain versus accuracy, space and

time complexity.

7. To apply the proposed scalable clustering algorithms on a real-life Big

Data problem, i.e., the categorization of protein sequences of the complex

plant genomes.

8. To propose a novel algorithm for protein sequence database, which extracts

numeric feature vectors of fixed-length from a large protein database by

encoding each protein sequence and considering both the local and global

similarity measure for improving the classification performance which is

observed in terms of classification accuracy, sensitivity, specificity, and the

confusion matrix.

9. To investigate the performance of the proposed scalable clustering algo-

rithm on a large protein database for their categorization into the respec-

tive superfamilies is analyzed in terms of NMI [46], F-measure [45], and

accuracy.

1.3 Contributions

The major contributions of the work done in this field are to enhance the un-

derstanding of the underlying structure of data by forming more appropriate

clusters of data. This cluster formation is further analyzed in the larger sce-

nario for handling VL and Big Data that helps to deal with data of any size.

Thus giving a generalized means to learn the machine with any size of data.

These contributions are divided into two broad categories. Firstly, the design of

variants of fuzzy clustering algorithms for determining the optimal parameters

of fuzzy clustering. Secondly, the design of an incremental clustering algorithm

for handling VL data. Furthermore, the design of scalable fuzzy clustering algo-

rithms to handle Big Data problems. The details of the same are given below.

1. To evaluate the optimal number of clusters, a novel cluster validity index

is designed by exploiting three proposed measures defined as follows:

(a) Intra-cluster Compactness,

8

CHAPTER 1. INTRODUCTION

(b) Inter-cluster Separation based on Fuzzy set,

(c) Inter-cluster Overlap.

It determines the optimal number of clusters in such a way that the data

points present within the cluster are tightly coupled with each other, the

separation between the data points present in different clusters are higher

and it allows the minimum overlap between the data points present in

different clusters.

2. To identify the optimal weighted exponent or fuzzifier from a large search

space, a new hybrid model is proposed, referred to as the QIE-FCM. The

proposed approach utilizes the merits of both the quantum computing and

fuzzy concepts to improve the performance of fuzzy clustering by finding

its optimal parameters.

3. This work is further enhanced to find the optimal value of all the parame-

ters of fuzzy clustering, i.e., the weighted exponent, the number of clusters,

and a set of initial cluster centers. An EQIE-FCM algorithm is proposed

to efficiently utilize a large search space for the selection of optimal values

of all these parameters.

4. To handle the VL data efficiently, we propose the RSIO-FCM algorithm.

The proposed approach proceeds by partitioning the VL data into various

subsets or chunks, and then sequentially performs clustering of each subset.

The major advantage of this approach is that the clustering results of a

previous subset are utilized for the clustering of the current subset. Thus,

it ensures that the clustering of these subsets adequately covers the entire

sample space represented by VL data. Furthermore, the concept of Bayes’

theorem is utilized in the proposed clustering algorithm to design it as

an effective classifier for handling VL data. Thus, this designed classifier

improves the classification accuracy by minimizing the objective function

and it also reduces the run-time. The proposed algorithm suffers from

a limitation, that it produces highly deviated cluster centers because it

might be possible that two subsets would consist of samples belonging to

a distinct class. Due to this reason, if the cluster centers of the previous

subset are fed as an input for the clustering of the current subset, then it

9

1.3. CONTRIBUTIONS

will converge slowly and produces highly deviated cluster centers. Hence,

results in a higher number of iterations during clustering of the current

subset.

5. To overcome the limitations of RSIO-FCM and to efficiently handle Big

Data problems, a fast and scalable fuzzy based clustering algorithm is de-

signed referred to as SRSIO-FCM. It processes the Big Data by partition-

ing it into various subsets and performs parallel processing of each subset

using the Apache Spark Big Data processing framework. For this, we cre-

ate a setup of Apache Spark Cluster with 3 nodes, where each node has

the following configuration: Intel Xenon(r) CPU E5-1607 v3 @ 3.10GHz

x 4 with 32GB RAM and 2TB storage. In the proposed approach, we

eliminate the need for storing the membership matrix, which makes the

execution of the proposed algorithm faster by reducing the run-time. In

addition to this, we resolve the problem of using the highly deviated clus-

ter centers for the clustering of the current subset. Thus, it provides faster

convergence by taking fewer iterations during clustering of each subset. It

also shows a significant improvement in run-time by improving the space

and time complexity. The same is verified by experiments. For the pur-

pose of fair comparison of SRSIO-FCM, we also designed, a scalable model

of the existing LFCM algorithm and the rseFCM algorithm referred to as

SLFCM and SrseFCM. The performance of the proposed SRSIO-FCM is

evaluated in comparison with SLFCM and SrseFCM, respectively.

6. The proposed hybrid models have been tested on some standard bench-

mark datasets and compared with other state-of-the-art soft computing

approaches. The hybrid models are designed to improve the efficacy of

fuzzy clustering, and the performance of these hybrid models are evaluated

in terms of an optimal value for the number of clusters, the fuzzifier param-

eter, the initial cluster centers, and the number of iterations. One more

incremental clustering algorithm integrated with a classification mecha-

nism is proposed and the performance is evaluated on various benchmark

datasets in terms of classification accuracy and run-time. Also, the perfor-

mance of scalable clustering algorithm is assessed in terms of NMI, ARI,

F-measure, objective function, speedup, sizeup, scaleup, and the trade-off

10

CHAPTER 1. INTRODUCTION

between performance gain versus accuracy.

7. The proposed scalable fuzzy clustering algorithms are also tested on a

real-life Big Data problem, i.e., categorization of protein sequences of a

complex plant genome. For this, an exhaustive study and analysis are

carried out on the protein database collected from the DSR, Indore. Then

the preprocessing of protein sequences present in the protein database is

performed to convert these protein sequences into numeric feature vec-

tors. For this, we propose a novel feature extraction algorithm that repre-

sents a long chain of protein sequences with fixed-length numeric feature

vectors. This algorithm performs encoding of protein sequences by con-

sidering both local and global similarity of occurrences of amino acids in

protein sequences. The proposed feature extraction algorithm leads to the

reduction of the actual database file, and improvements can be observed in

terms of classification accuracy, sensitivity, specificity, and the confusion

matrix.

8. On the preprocessed form of protein database, the performance of scal-

able clustering algorithms is investigated for the categorization of protein

sequences of a complex plant genome into the respective superfamilies in

terms of NMI, F-measure, and accuracy.

1.4 Organization of the Thesis

In this thesis, investigations are done for the selection of optimal parameters

for fuzzy clustering for improving its performance and design the incremental

and scalable fuzzy clustering algorithms for handling VL and Big Data prob-

lems. For the investigation of optimal parameters of fuzzy clustering, a novel

cluster validity index is proposed by integrating intra-cluster compactness, inter-

cluster separation, and inter-cluster overlap measures and also propose the hy-

brid quantum-inspired evolutionary fuzzy clustering algorithms. Furthermore,

an incremental clustering algorithm is proposed for classification of VL data.

In addition to this, scalable fuzzy based clustering algorithms are proposed for

handling Big Data. To investigate the application of the proposed scalable

clustering algorithm for solving a real-life Big Data problem (categorization of

11

1.4. ORGANIZATION OF THE THESIS

protein sequences of a complex plant genome), a protein database of massive size

is collected from the DSR, Indore. Then, this huge protein database is prepro-

cessed by proposing a novel feature extraction approach. After this, we apply

the proposed scalable clustering algorithm on this massive protein database.

Thus, the overall work is divided into six logical sections which are organized as

follows:

Chapter 2 details the background study of the previous work undertaken in

the field of clustering. The chapter starts with the introduction of clustering

algorithms where we describe the variations of fuzzy clustering and the im-

portant parameters affecting the performance of fuzzy clustering. After that,

an overview of recent and existing cluster validity indexes and the hybrid ap-

proaches for selection of optimal parameters of fuzzy clustering are presented.

A survey of accelerated and incremental fuzzy clustering algorithms designed

for handling large and VL data are presented along with a discussion of existing

Big Data processing frameworks. A study of some feature extraction approaches

designed for protein sequences of a plant genome is also presented. Finally, the

definitions and detailed description of performance measures are presented along

with a brief overview of datasets used in the experimental study.

Chapter 3 addresses the problem of selecting the optimal number of clusters

for fuzzy clustering and presents a novel cluster validity index. The proposed

cluster validity index jointly incorporates the three measures, i.e., intra-cluster

compactness, inter-cluster separation, and inter-cluster overlap. It captures the

underlying structure of different datasets, and it is reliable in detecting the opti-

mal number of clusters. The chapter finally reports the experimental evaluation,

in which we compare our proposed cluster validity index with other cluster va-

lidity indexes from literature.

Chapter 4 presents the selection of optimal parameters of fuzzy clustering,

i.e., fuzzifier, the number of clusters, and the initial cluster centers. In this chap-

ter, we present the details of the proposed QIE-FCM algorithm. It identifies the

optimal fuzzifier and number of clusters for fuzzy clustering from a large search

space and maintains a proper balance between exploration and exploitation.

In this chapter, experimental results evaluate the usefulness of the QIE-FCM

algorithm for identifying an optimal value of the fuzzifier and the number of

clusters correctly from a large search space. Furthermore, an enhanced version

12

CHAPTER 1. INTRODUCTION

of the QIE-FCM algorithm called EQIE-FCM is proposed for the selection of

the optimal value of parameters of fuzzy clustering, i.e., the fuzzifier, the num-

ber of clusters, and the initial cluster centers from a large search space. The

EQIE-FCM algorithm eliminates a local convergence problem which occurs in

the QIE-FCM algorithm due to the random selection of initial cluster centers.

This chapter finally presents the verification of performance for the QIE-FCM

algorithm which shows its reliability in identifying the optimal value of all the

parameters correctly from a large search space. Thus it achieves a significant

reduction in the number of iterations to reach an optimal solution.

In chapter 5, we propose an incremental clustering algorithm for handling

VL data, i.e., the RSIO-FCM algorithm. This algorithm utilizes the concept

of Bayes’ theorem to design a classifier for the effective classification of VL

data. RSIO-FCM accelerates the speed of the clustering process by processing

the entire data chunk by chunk. This approach captures the whole sample

space by performing clustering on each chunk of data, and thus the clustering

result of the previous chunk is used for the processing of current chunk. The

proposed approach improves the classification accuracy and significantly reduces

the run-time. The chapter finally reports the experimental evaluation, which

compares the classification accuracy and run-time of proposed approach with

other clustering algorithm.

In chapter 6, we proposed a novel clustering algorithm for handling Big Data

called the SRSIO-FCM algorithm. It is implemented using a Big Data processing

framework called Apache Spark and tested on Apache Spark cluster for handling

Big data. This chapter presents the details on how the proposed approach scales

for Big Data in comparison with other algorithms. The chapter finally, reports

the experimental evaluation that compares our SRSIO-FCM algorithm with

other proposed scalable models, i.e., the SLFCM and the SrseFCM.

In chapter 7, the novel scalable clustering algorithm is tested on a real-

life complex plant genome (protein) data. First, the plant genome data are

thoroughly analyzed. Then, for its preprocessing, we present a novel feature ex-

traction method called the CPSF approach. The proposed approach represents

a long chain of the protein sequence with a fixed-length numeric feature vector.

The proposed feature extraction approach is designed to extract fixed-length

features corresponding to protein sequences that lead to an improvement in

13

1.4. ORGANIZATION OF THE THESIS

classification accuracy. The chapter finally presents the experimental results in

which the performance of the proposed feature extraction approach is evaluated

on various well-known classifiers and also compared with other feature extrac-

tion methods designed for protein sequence classification. The experimental

results show an improvement in the classification accuracy in comparison with

other approaches. In addition to this, the performance of the proposed scalable

clustering algorithm is evaluated on the real-life massive protein database.

Finally, in chapter 8, conclusions are drawn regarding the research results

of each of the addressed problems and the overall work in the thesis. The

contributions to the state-of-the-art of the tackled subjects are outlined, and

some future work directions are also highlighted.

14

Chapter 2

Literature Survey

This chapter discusses various clustering algorithms and issues related to those

clustering algorithms. Then, the focus of the discussion shifts to the FCM

clustering algorithm and matters related to its design. After that, we give a

detailed description of parameters related to FCM, i.e., the number of clusters

(c), the fuzzifier (m), and choosing the set of initial cluster centers (V) that

significantly affects its performance. Further, a survey of clustering algorithms

for processing VL datasets is carried out. Then, the study related to Big Data

processing frameworks is presented along with the parallel processing algorithms

for handling Big Data. A real-life Big Data problem, i.e., classification of protein

sequences of various plant genomes is analyzed, and a survey related to its

feature extraction approaches are presented. For the experimental evaluation

of the proposed algorithms, performance measures and datasets for testing are

presented.

2.1 Basic Clustering Algorithms

Clustering is one of the widely used data analysis techniques used to discover

groups and underlying structure in a set of data samples. The aim of clus-

tering is to form a grouping such that the data points belonging to the same

group are more similar to each other than those which are lying in different

groups [51,52]. Clustering has been receiving tremendous attention in many ap-

plication domains. These areas include gene analysis [53], indexing and compres-

sion [54], image analysis [55], signal processing [56], text classification [57, 58],

cyber security, and data mining [59]. Over the last five decades, many cluster-

15

2.1. BASIC CLUSTERING ALGORITHMS

ing algorithms [52, 60–62] have been developed based on various theories and

applications. A taxonomy of clustering algorithms was described by Fahad et

al. [62]. An overview of this taxonomy of clustering algorithms is presented

in Figure 2.1. In the taxonomy of clustering algorithms, many distinctions of

clustering algorithms are presented, but our focus is on the distinction of hier-

archical and partitional clustering algorithms [1, 16, 17]. Hierarchical clustering

methods yield an entire hierarchy, i.e., a nested sequence of partitions of the in-

put data. At each level of the hierarchy, there is a different number of clusters.

A partitional clustering algorithm seeks to obtain a single partition of the input

data into a fixed number of clusters, usually by optimizing an objective function.

Partitional methods produce clusters by optimizing a criterion function, defined

either locally (on a subset of the patterns) or globally (defined over all of the

patterns). Partitional methods are advantageous in applications involving large

datasets for which construction of a dendrogram is computationally prohibitive.

Partitional clustering is broadly divided into hard (or crisp) and fuzzy methods.

The details of both these categories of the algorithms are discussed below.

2.1.1 Hard Clustering

In hard clustering algorithms, each sample of the dataset must be assigned to

precisely one cluster. Hard clustering methods are based on classical set theory

and require that a sample either does or does not belong to a cluster. Hence, the

clusters in a hard partition are disjoint. A major drawback of hard clustering

Clustering Algorithm

Partitioning

-Based

Hierarchical

-Based

Density-

Based

Grid-

Based

1. K-means

2. K-mediods

3. K-modes

4. PAM

5. CLARANS

6. CLARA

7. FCM

1. BIRCH

2. CURE

3. ROCK

4. Chameleon

5. Echidna

1. DBSCAN

2. OPTICS

3. DBCLASD

4. DENCLUE

Model-

Based

1. EM

2. COBWEB

3. CLASSIT

4. SOMs

1. Wave-

Cluster

2. STING

3. CLIQUE

4. OptiGrid

Figure 2.1: A sample taxonomy of clustering algorithms.

16

CHAPTER 2. LITERATURE SURVEY

techniques is that they may lose some valuable information, such as they are

unable to capture the structure of real datasets in which there are no definite

boundaries between the clusters. Due to the loss of such vital information,

sometimes hard clustering leads to a meaningless grouping [21].

K-means clustering

The simplest algorithm of this type is the K-means algorithm with squared error

criterion [63]. However, there exist multiple variants of this algorithm [60, 61].

K-means is a distance-based partitioning algorithm [1]. The main idea is to

define a set of c clusters. The next step is to compute the distance of each

data point to the cluster and associate each data point to the nearest cluster.

The aim is to reduce the sum of squared error, represented by the square of the

Euclidean distance between each data point and its closest respective cluster

center [1, 18, 61]. The value of the sum of squared error for a partition is given

as follows:

J(X, V) =
c∑

j=1

n∑
i=1

||xi − vj||2 (2.1)

where J is the sum of the squared error, X is a dataset consisting of n data

points, and each data point consists of d dimensions, such thatX = {x1, x2, .., xn} ∈

Rd×n. The initial cluster centers are represented by a set V = {v1, v2, ..., vc} ∈

Rd×c such that a set V consists of c clusters and cluster center of cth cluster is

denoted by vc which consists of d dimensions, and ||xi − vj||2 is the euclidean

distance measure between a ith data point xi and the jth cluster center vj. The

objective function J is an indicator of the distance of the n data points from c

cluster centers. Finding the set of cluster centers that minimizes J is an NP-hard

problem [64]. Here, an initial set of cluster centers is required for the compu-

tation of Eq. (2.1). There exist several initialization strategies [1], the most

common approach is to randomly select few data points to provide the initial

positions of the cluster centers [18]. The K-means clustering terminates if the

difference between successive values of J does not exceed a user-defined value.

Algorithm 2.1 is composed of the following steps, defined as follows [1, 18]:

17

2.1. BASIC CLUSTERING ALGORITHMS

Algorithm 2.1 Algorithm for K-means Clustering

1: Begin
2: Place c points into the space represented by the data points that are being

clustered. These points represent a set of initial cluster centers V .
3: Assign each data point to the nearest cluster centers.
4: When all data points have been assigned, recalculate the positions of the

cluster centers using Eq. (2.2) such that Xj is the subset of data points from
X belonging to the jth cluster.

vj =
1

|Xj|
∑
xi∈Xj

xi (2.2)

5: Repeat steps 2 and 3 until there is a relatively small change in the cluster
centers. The produced partition minimizes the objective function.

6: End

There are many limitations of the K-means clustering. The first is that the

K-means algorithm requires an initial set of cluster centers, which implies that

the number of clusters is to be known in advance [1]. The second is that the

K-means algorithm is non-deterministic if this initial set of clusters is chosen

randomly [65]. The final set of cluster centers returned by K-means is highly

dependent on the initial set of clusters centers. Third, the K-means clustering

is highly sensitive to outliers, although it is quite efficient in terms of computa-

tional time.

Run-time complexity

The K-means clustering algorithm has a time complexity of O(ntdc), where n

is the number of data points, t is the number of iterations, d is the number of

dimensions of data points or features, and c is the number of clusters [18].

2.1.2 Fuzzy Clustering

Fuzzy clustering is based on a fuzzy set theory which allows a data point to

have varying grades of membership in a set [66]. Fuzzy set theory is used in

the clustering algorithm so that a data point can belong to multiple clusters

[67]. A fuzzy clustering produces fuzzy partitions that can be expressed by the

membership matrix or fuzzy partition matrix, U of size n × c. The degree of

membership of data point i in cluster j is represented by uij. This is subjected

18

CHAPTER 2. LITERATURE SURVEY

to the following constraints [22,68]:

uij ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ j ≤ c (2.3)

c∑
j=1

uij = 1, 1 ≤ i ≤ n (2.4)

n∑
i=1

uij > 0, 1 ≤ j ≤ c (2.5)

Fuzzy cluster analysis gives the flexibility to express that the data points can

belong to more than one cluster at the same time. In addition to this, the

membership degrees can also show how ambiguously or definitely a data point

should belong to a cluster. The concept of fuzzy analysis has been successfully

integrated into many clustering algorithms [69–72]. One of the most widely used

fuzzy clustering algorithms is discussed next.

Fuzzy C-Means algorithm

The FCM algorithm was initially presented by Dunn [73] and completed by

Bezdek [22]. It is also known as LFCM clustering [36]. LFCM partitions the

collection of n data points xi, i = 1, ..., n into c fuzzy clusters and finds a set

of cluster centers. LFCM executes iteratively until the difference in the cluster

centers of previous and current iteration is less than the defined termination

criteria (ε) [68]. The aim is to minimize the objective function (Jm). In LFCM,

the membership degree uij can take any values between 0 and 1. The objective

function of LFCM can be formulated as follows:

Jm(U, V
′
) =

n∑
i=1

c∑
j=1

(uij)
m‖xi − v

′

j‖2 (2.6)

where V
′

denote the set of final cluster centers such that V
′

= {v′1, v
′
2, .., v

′
c}.

The parameter m controls the degree of fuzziness of every data point between

the fuzzy clusters and reflects the partition percentages for every point in each

cluster, and it drastically affects the clustering results. The LFCM algorithm is

based on the iterative optimization of the objective function given in Eq. (2.6)

by updating the membership matrix U and cluster centers to get a set of final

cluster centers V
′
. The parameters related to LFCM are listed in Table 2.1.

19

2.1. BASIC CLUSTERING ALGORITHMS

Algorithm 2.2 , presents the steps of the LFCM algorithm.

Algorithm 2.2 Algorithm for Literal Fuzzy C-Means (LFCM) to Iteratively
Minimize Jm(U, V

′
)

1: Input: X, V , c, m, ε
2: Output: U, V

′

3: Begin
4: Randomly initialize cluster centers V = {v1, v2.., vc}.
5: Compute the cluster membership matrix U using Eq. (2.7) such that∑c

j=1 uij = 1.

uij =
‖ xi − vj ‖

−2
m−1∑c

k=1 ‖ xi − vk ‖
−2

m−1

,∀i, j (2.7)

6: Compute the cluster centers v
′
j for j = 1, 2, .., c.

v
′

j =

∑n
i=1[uij]

mxi∑n
i=1[uij]

m
, ∀j ∈ [1, c] (2.8)

7: If improvement in Jm(U, V
′
) is less than ε or if ‖ V ′ − V ‖< ε, then stop;

Else : V = V ′ and go to Line 5.
8: Return U, V

′

9: End

The LFCM algorithm has an expected run-time complexity of O(ntdc2) [33].

Despite the wide acceptance of the LFCM algorithm, it suffers from several

disadvantages. There are many parameters in LFCM, which significantly affects

the performance and results of fuzzy clustering. An important issue in LFCM is

the selection of the number of clusters and choosing the initial cluster centers.

These parameters are selected randomly, and it makes the iterative process

converge to a locally optimal solution [77]. Many methods have been proposed

by researchers [27, 78–80], to automatically determine the number of clusters

and locations of cluster centers. However, these methods do not provide good

generalization capabilities in obtaining appropriate centers [78].

Table 2.1: Specification of parameters for LFCM.

Parameters Description Values

ε Termination criteria 0.001 [22]
m Fuzzifier m ∈ [1.5, 2.5] [74]
cmin Minimum number of clusters 2
cmax Maximum number of clusters

√
n [4, 74–76]

n Number of data points Size of dataset
c Number of clusters c ∈ [cmin, ..., cmax] [8]

20

CHAPTER 2. LITERATURE SURVEY

Another important factor that influences the effectiveness of LFCM is the

fuzzifier [24, 25]. The fuzzifier controls the degree of fuzziness of a data point

between the fuzzy clusters. Most researchers have shown that there exists an

efficient range of values for the fuzzifier. However, the methods adopted by

researchers are mainly experimental or empirical. Hence, selecting an appropri-

ate value for the fuzzifier while implementing the LFCM is still an open prob-

lem. Another major difficulty with applying the LFCM clustering algorithm is

scalability. On large datasets, defined as 108 bytes according to Huber’s de-

scription [28], the time taken by traditional clustering algorithms is too long.

Therefore researchers have prohibited the use of conventional algorithms and

have designed new accelerated clustering algorithms [32–34,36,81] that perform

clustering by processing the data in terms of subsets [81].

Thus, a wide range of issues affecting the performance of LFCM during the

clustering process, like the identification of an appropriate number of clusters,

the selection of the fuzzifier, and the scalability measured in terms of speedup

and sizeup for processing VL and Big Data. To handle these issues, it is proposed

to investigate the improvements in the performance of LFCM and to design the

incremental along with scalable fuzzy approaches for efficient clustering of VL

and Big Data. Related to these issues of fuzzy clustering, a lot of work is carried

out [24,42,74,82]. One of the important issues related to fuzzy clustering based

algorithms is discussed, which is termed as a cluster validity index. The cluster

validity index helps in identifying the number of clusters, and it also accesses

the quality of formed clusters.

2.2 Preliminaries for Cluster Validity Index

In clustering scenario, there are two fundamental questions [83] that need to

be addressed: (i) how many clusters are present in the data and (ii) how real

or useful is the clustering in itself. In fuzzy clustering, finding the number

of clusters has been one of the most severe problems. Many methods have

been proposed by the researchers [27, 78–80] that automatically determines the

number of clusters. However, these methods do not provide good generalization

capabilities in determining the number of clusters and obtaining appropriate

cluster centers. As these methods unable to determine the number of clusters

21

2.2. PRELIMINARIES FOR CLUSTER VALIDITY INDEX

appropriately for a different variety of datasets, therefore these methods cast into

the problem of model selection [52]. One approach uses the principle of minimum

description length for selecting the number of clusters [84]. Gap Statistics [85] is

another commonly used method for deciding the number of clusters. In spite of

these objective criteria, it is not easy to determine the number of clusters that

leads to more meaningful clusters.

The problem of determining a proper number of clusters and the correspond-

ing fuzzy partition is an important issue in cluster analysis, which is usually

evaluated by a cluster validity index. A cluster validity index is an evaluation

function that measures, relatively, the quality of c discovered clusters in each

fuzzy partition. Therefore, the best partition can be decided as the one with

the largest and smallest value of cluster validity index among all the fuzzy par-

titions [5, 86–88]. Many approaches are based on this principle and finds the

optimal number of clusters by repeatedly running the algorithm with a different

number of clusters as an input. Then, select the partitioning of the data as the

best partition that results in the largest or smallest value of the cluster validity

index among all the fuzzy partitions [89]. Ideally, a validity index should take

care of the following aspects of partitioning [5, 90]:

• Compactness measure: It evaluates the concentration of data points

that belong to the same cluster. A standard measure of compactness is

the variance, which should be minimized. Thus, the minimum value of

variance of patterns in a cluster indicates cluster compactness [5].

• Separation measure: This measure quantifies the distance between

fuzzy clusters where a large distance represents a greater separation.

• Overlap measure: It quantifies the degree of overlap of a specified num-

ber of fuzzy clusters.

To evaluate the quality of clustering results, many cluster validity indexes [76,

91–98] have been proposed in literature such as Partition Coefficient (VPC) and

Partition Entropy (VPE) indexes [91], Fukuyama and Sugeno (VFS) index [92],

Xie and Beni (VXB) index [76], Rezaee et al. (VCWB) index [93], CS (CSI)

index [94], Kim and Lee (vOS) index [95], PBMF index [96], PCAES index [97],

and OSI index [98]. These validity indexes incorporate only two measures out

22

CHAPTER 2. LITERATURE SURVEY

of three measures discussed above. The details of some of these validity indexes

are presented next.

In particular, Bezdek proposed two commonly used cluster validity indexes

[91] for fuzzy clustering, the Partition Coefficient (VPC) and the Partition En-

tropy (VPE) which is defined as:

VPC =
1

n

n∑
i=1

c∑
j=1

u2ij (2.9)

VPE = − 1

n

n∑
i=1

c∑
j=1

uij log2(uij) (2.10)

The Partition Coefficient measures the amount of overlap between clusters,

whereas Partition Entropy only measures the fuzziness of a cluster partition.

A large value of VPC and a small value of VPE index implies better clustering

results. The major drawback of these indexes is that as the number of clus-

ters increases, the VPC index monotonically decreases while the VPE index value

monotonically increases, which makes these indexes hard to detect the optimal

number of clusters. Also, these indexes have no direct relationship with the

data it means that they use only the fuzzy membership degree for each cluster

without considering the data structure of the clusters [95].

Fukuyama and Sugeno proposed a cluster validity index (VFS) [92] that com-

bines the properties of compactness and separation measurements. The mini-

mum value of VFS index indicates the optimal fuzzy partition. The VFS index

is defined as follows:

VFS =
n∑

i=1

c∑
j=1

umij‖xi − vj‖2 −
n∑

i=1

c∑
j=1

umij‖vj − v̄‖2 (2.11)

where v̄ denotes the mean of the cluster centers.

Xie and Beni proposed a validity index (VXB) [76] that evaluates overall

compactness of fuzzy c-partition according to geometric distance measure and

separation between the cluster centers. This index monotonically decreases when

the number of clusters increases. The minimum value of VXB index indicates

the optimal fuzzy partition. The VXB index is defined as:

VXB =

∑n
i=1

∑c
j=1 u

2
ij‖xi − vj‖2

n(minj 6=k ||vj − vk||2)
(2.12)

23

2.2. PRELIMINARIES FOR CLUSTER VALIDITY INDEX

Rezaee et al. proposed a new validity index (VCWB) [93] that tends to focus

on compactness and separation measures. In this index, the function describing

the compactness measure is combined with the separation measure. Here, the

compactness measure is computed within the fuzzy cluster based on the degree

of variance, which indicates the average scattering of c clusters. In this, a

separation measure is calculated by considering the distance between the fuzzy

clusters. The minimum value of this index indicates the optimal number of

clusters and fuzzy partitions. The VCWB index is defined as:

VCWB = τ

∑n
i=1

∑c
j=1 uij(xi − vj)2

cn‖σ(X)‖
+
Dmax

Dmin

c∑
k=1

(c∑
z=1

‖vk − vz‖
)−1

(2.13)

where σ(X) represents the variance of the pattern set X, τ accounts for a

balancing factor, and Dmax and Dmin are the maximum and minimum distances

between the cluster centers.

Kim and Lee proposed a new cluster validity index by considering the overlap

and separation measures denoted by vOS [95]. The minimum value of numerator

indicates the classification of each data point xi to a particular cluster from a

given fuzzy c-partitions. The denominator computes the separation between

clusters using a distance measure in the fuzzy set theory, which is based on

the similarity measure [99]. The higher value of the denominator indicates

well separated fuzzy partitions. The minimum value of vOS index indicates the

optimal fuzzy partitions. The vOS index is defined as follows:

vOS =

2
c(c−1)

c−1∑
z=1

c∑
y=y+1

×
[∑

u

n∑
i=1

δ(xi, u : Fz, Fy)ω(xi)

]
1− min︸︷︷︸

z 6=y

[
max︸︷︷︸
x∈X

min(uFz(x), uFy(x))

] (2.14)

where δ(xi, u : Fz, Fy) determines whether two fuzzy clusters Fz and Fy are

overlapped at the membership degree u for data point xi, ω(xi) represents weight

factor for each data, uFz(x) and uFy(x) are the membership degree of each data

point corresponding to two fuzzy clusters Fz and Fy.

Capitaine and Frelicot proposed a new cluster validity index OSI [98], which

employs a multiple cluster overlap and a separation measure for each data point,

both based on an aggregation operation of membership degrees. The OSI index

24

CHAPTER 2. LITERATURE SURVEY

is defined as follows:

OSI =
1

n

n∑
i=1

⊥1
l=2,c(⊥c

j=1,cuij)

⊥1 (⊥1
j=1,cuij, ...,⊥1

j=1,cuij)︸ ︷︷ ︸
c−1 times

(2.15)

where, ⊥l
j=1,cuij is defined as the l-order fuzzy-OR operator [100] on {uij|j =

1, 2,, c}.

The above-discussed cluster validity indexes do not jointly incorporate all

the measures necessary for cluster analysis, i.e., compactness, separation, and

overlap. Some cluster validity indexes consider the compactness and separation

measures to evaluate the optimal fuzzy partition while the other consider the

separation and overlap measures. Thus, these indexes may not accurately eval-

uate the clustering results and may provide misleading information to the data

analyst. Therefore, there is an extensive need for a cluster validity index, which

jointly incorporates all the three measures for evaluating the optimal number of

clusters and fuzzy partitions.

2.3 About Fuzzifier Parameter

Another important parameter for fuzzy clustering is the fuzzifier denoted by

m. It is also called as weighting exponent and has a significant impact on the

performance of FCM. FCM is sensitive to the initialization of m and usually

gets trapped in local optima due to improper selection of m. When m is se-

lected close to one, the FCM approaches the hard K-means algorithm and if m

approach infinity, then the only solution for the FCM is the mass center of the

dataset. Hence, choosing a suitable weighting exponent is a very challenging

task when implementing FCM. However, different methods have been adopted

by the researchers to select an appropriate value of the fuzzifier for the execution

of FCM.

Pal and Bezdek [74] have given heuristic guideline regarding best choice of

m, and they consider different cluster validity index to analyze the best selection

of the fuzzifier. By experimental evaluation, the researchers found that suitable

value for m is selected in the range of [1.5, 2.5]. Other researchers [101, 102]

have given the similar recommendations, but these recommendations are based

25

2.4. DECIDING OTHER PARAMETERS OF FUZZY CLUSTERING
OPTIMALLY

on empirical studies and may not be appropriate in general for all the datasets.

Yu et. al [82] developed a new theoretical and practical approach for selecting

the weighting exponent in FCM. In this method, a new local optimality test of

solutions for the FCM is proposed. Based on this test, one obtains theoretical

rules for selecting the weighting exponent in FCM, which show that a proper

m depends on the dataset itself. However, theoretical analysis and numerical

experimental results show that m = 2 is not a reasonable heuristic guideline.

Huang et al. [24], presented a theoretical approach consisting of two rules to

determine the range of values for fuzzifier in the conventional FCM algorithm.

This method utilizes the behavior of membership function on two particular data

points, based on which it reveals the partial relationship between the fuzzifier

and structure of the dataset. The results show that range of values of m identi-

fied is very close to range identified by other researchers from empirical studies.

From the sound analysis of FCM, Wu [25] proposed a new guideline for se-

lecting parameter m. This guidance suggested that a large value of m makes

FCM more robust to noise and outliers. However, considerably large m val-

ues that are greater than the theoretical upper bound would make the sample

mean a unique optimizer. To avoid such unexpected cases, a simple and efficient

method for fuzzy clustering is to assign a cluster core to each cluster. It means

that if data points lie inside the cluster, then it would have membership values

of zero or one. For a large theoretical upper bound case, the implementation of

FCM with a suitably large m value is recommended. Otherwise, the implemen-

tation of FCM with cluster cores is suggested. In the case of large theoretical

upper bound, when dataset contains noise and outliers, the fuzzifier m = 4 is

recommended for FCM.

2.4 Deciding Other Parameters of Fuzzy Clus-

tering Optimally

In FCM, there are few more parameters such as the number of clusters and the

initialization of cluster centers in addition to the fuzzifier, which significantly

affects clustering results. Determining the number of clusters has a significant

role in obtaining practical and sound results for FCM. Similarly, choosing the

26

CHAPTER 2. LITERATURE SURVEY

initial cluster centers is crucial as it has a direct impact on the formation of final

clusters. The major problem with FCM is that it is sensitive to initialization

of these parameters. The random selection of these parameters does not guar-

antee unique clustering results which make FCM algorithm to converge at local

optimal solutions.

For the selection of the number of clusters and the fuzzifier, different validity

indexes have been developed based on an unsupervised feature of the conven-

tional FCM. Some of these validity indexes are VPC and VPE [91], VFS [92],

VXB [76], VCWB [93], CSI [94], vOS [95], PBMF [96], PCAES [97], and OSI [98].

These validity indexes do not eliminate the local convergence problem of FCM.

In addition to this, many hybrid fuzzy clustering approaches [27,42,43,103,104]

have also been proposed by researchers to deal with the local convergence prob-

lem and for finding optimal parameters of FCM.

Hung et al. [43] proposed a QM-FCM approach for solving the local con-

vergence problem of FCM. This method utilizes a large search space for initial-

ization of parameters of FCM. Wang et al. [104] proposed an approach called

RQECA. This method chooses a multi-distribution center location from tradi-

tional FCM. It is a combination of the RQIEA and FCM approach, to overcome

the local search defect of FCM and make optimization result independent of a

choice of initial values.

Kannan et al. [103] proposed a method called QEFCM to produce an alterna-

tive generalization of FCM clustering techniques to deal with more complicated

data. This approach deals with efficient quadratic entropy FCM using the com-

bination of regularization function, quadratic terms, mean distance functions,

and kernel distance functions. It presents a complete framework of quadratic

entropy approaching for constructing efficient quadratic entropy based fuzzy

clustering algorithms. The proposed approach establishes an effective way of es-

timating membership degrees and updating centers by minimizing the objective

functions. In this method, an efficient way of prototype initialization method

is presented that assigns initial cluster centers without human intervention and

also reduces the number of iterations of proposed approach. The Silhouette

method [105] is used in this process to validate the fuzzy partitions and for

choosing the number of clusters.

Bandyopadhyay and Maulik [42] proposed an approach that employs the

27

2.4. DECIDING OTHER PARAMETERS OF FUZZY CLUSTERING
OPTIMALLY

concept of VGA in fuzzy clustering to develop a novel nonparametric clustering

technique. This method aims to evolve a proper value of the number of clusters

by utilizing search capability of VGA, but it does not assume any particular

underlying distribution of the dataset. Gan et al. [106] proposed the genetic

fuzzy K-modes algorithm for clustering of categorical datasets. In this algo-

rithm, they treated the fuzzy K-modes clustering as an optimization problem

and used genetic algorithms to eliminate the local convergence problem of FCM.

To speedup the convergence of algorithm, one-step fuzzy K-modes algorithm is

integrated into the crossover process instead of traditional crossover operator.

Izakian and Abraham [27] proposed a hybrid fuzzy clustering method called

as FCM-FPSO by integrating FCM algorithm with FPSO algorithm. In this ap-

proach, the concept of FCM is applied to improve the fitness of each particle and

to make use of the merits of both algorithms to eliminate the local convergence

problem of FCM. In literature, it is mentioned that the hybrid clustering algo-

rithms have shown improvement in accuracy over traditional FCM but results

in a bad execution time in comparison with partitional clustering techniques.

Another problem with hybrid PSO based clustering algorithms is that PSO

based approaches require tuning of an extensive range of parameters to find real

solutions.

To overcome the problem of above discussed evolutionary approaches, we

have used the principle of quantum computing. However, this principle has

been taken from quantum physics, but in computer science, the research of

evolutionary based quantum computing has been started since the late 1990s

[107]. The research of evolutionary based quantum computing has been classified

into two fields. One concentrates on generating new quantum algorithms using

automatic programming techniques such as genetic programming [108]. The

other concentrates on quantum-inspired evolutionary computing for a classical

computer, a branch of study in evolutionary computing that is characterized by

certain principles of quantum mechanics such as standing waves, interference,

and coherence.

Here, quantum-inspired evolutionary computing principle is used to propose

hybrid quantum-inspired evolutionary fuzzy clustering algorithms for selection

of optimal parameters of fuzzy clustering. Preliminaries for the quantum com-

puting theory is discussed next.

28

CHAPTER 2. LITERATURE SURVEY

Quantum computing

The quantum computing represents data in terms of a quantum bit (Q). A

quantum bit consists of several qubits represented as follows:

Q = (q1|q2........|qh) (2.16)

where qk represents the kth qubit, k = 1, 2, ...h, and h represents the number

of qubits to form a quantum bit (Q). Generally, qubits differ from classical

bits in terms of representation. Classical bits represent only two possibilities of

any event at one time by bit “1” or “0”. However, a qubit can exist in both

the states, i.e., “1” state and “0” state simultaneously using the probability

concept proposed by Han and Kim [107, 109]. A characteristic of qubit repre-

sentation is the ability to represent a linear superposition of “1” and “0” states

probabilistically, which is denoted as follows:

qk = αk | 0〉+ βk | 1〉, (2.17)

where 0 ≤ αk ≤ 1, 0 ≤ βk ≤ 1, αk and βk are the complex numbers representing

the probability of a kth qubit, and k = 1, 2, ..., h. According to Eq. (2.17), a

qubit may appear in the “1” state, in the “0” state, or in a linear superposition

of the two states, thus Eq. (2.16) can be rewritten as follows:

Q =

〈
α1 α2 . . . αh

β1 β2 . . . βh

〉
(2.18)

where (αk)2 + (βk)2 = 1 and k = 1, 2, ..., h. (αk)2 is the probability that a kth

qubit found in state “1” and (βk)2 is the probability that a kth qubit found in

state “0”. Since (αk)2 + (βk)2 = 1, therefore Eq.(2.18) can be simplified as:

Q =
〈
α1 α2 . . . αh

〉
(2.19)

As mentioned above, the advantage of qubit representation is that it can repre-

sent a linear superposition of two states, i.e., 0 state and 1 state probabilistically.

For instance, an example is considered here that explains the essence of a quan-

29

2.4. DECIDING OTHER PARAMETERS OF FUZZY CLUSTERING
OPTIMALLY

tum bit formed using two-qubits is represented as:

Q =

〈
α1 α2

〉
(2.20)

As discussed above, the value of αk and βk lies in the range of “0” and “1”.

Thus, α1 and α2 in Eq. (2.20) can be initialized with any value in the interval

mentioned above as follows:

Q =
〈

1/
√

2 1/
√

2
〉

(2.21)

As mentioned above that (αk)2 + (βk)2 = 1, therefore with the given value of α1

and α2 in Eq. (2.21), the value of β1 and β2 is computed as βk =
√

1− (αk)2. In

Eq. (2.21) we can see that a quantum bit (Q) formulated in terms of two-qubits

consist of 4 different stages are represented as follows:

Q = (1/
√

2× 1/
√

2)〈00〉+ 1/
√

2× 1/
√

2)〈01〉

+ 1/
√

2× 1/
√

2)〈10〉+ 1/
√

2× 1/
√

2)〈11〉, (2.22)

In Eq. (2.22), we can see that a quantum bit (Q) with two-qubits would perform

the operation on four values and thus it is enough to represent four states at the

same time. Similarly, a quantum bit (Q) formed by h-qubits can represent 2h

states at the same time. Thus, quantum bit representation has better character-

istics of population diversity (exploration) than other representations, since it

can represent a linear superposition of states probabilistically. This exploration

is achieved through the observation process [110].

In the observation process [110], a quantum bit (Q) with h-qubits, generate

a random number vector ρ = [ρ1ρ2...ρh], where 0 ≤ ρk ≤ 1, k = 1, 2, ..., h; and

the corresponding bit in a binary vector b = [b1b2....bh] takes “1” if ρk ≤ (αk)2,

or “0” otherwise. This concept of qubit representation and observation process

is discussed in detail in chapter 4, and it is utilized in the proposed hybrid

quantum-inspired evolutionary fuzzy clustering algorithms for the selection of

optimal parameters of fuzzy clustering from a large search space.

In recent years, it has been observed that traditional fuzzy based clustering

algorithm is unable to perform clustering of large and VL datasets. In such

30

CHAPTER 2. LITERATURE SURVEY

a case, there is a need to develop algorithms which can reduce run-time while

maintaining the quality of clustering results. The detailed description of issues

involved in the processing of large or VL data with fuzzy clustering algorithms

and their related work is described next.

2.5 Clustering Algorithms for Large and Very

Large Data

Clustering is a widely used unsupervised learning technique for exploratory data

analysis. One of the major problems with traditional fuzzy clustering algorithms

is that they do not work well for large datasets. As discussed earlier in sec-

tion 2.1.2, LFCM has an expected run-time complexity of O(ntdc2). Kolen and

Hutcheson [111] suggested that it is possible to reduce the run-time of LFCM

to O(ntdc).

Given a dataset with c natural clusters, LFCM can be accelerated further

by reducing n, d or t. There are techniques available [112,113] for reducing the

number of dimensions of data, but many of these techniques are not integrated

into the clustering process instead they only preprocess the data [114, 115].

An alternative approach called subspace clustering, find clusters using a subset

of the available features [116, 117]. Each cluster formed in this way can use

a different subset of available features. Thus, there is a need to design an

accelerated approach that reduces the size of data and the number of iterations.

One of the ways to decrease the number of iterations is to select the position

of initial cluster centers in such a way that it is very close to the final solution.

Due to the reduction in iterations, lesser run-time is achieved.

Methods are investigated to improve the initial starting points for LFCM

by processing a small data sample. Cheng [30] describes an iterative process

to develop a “good” starting point called mrFCM approach which consists of

two parts. The first part progressively samples the dataset by improving the

starting clusters until a termination criterion is satisfied. Then it uses these

starting clusters to initialize LFCM on full dataset. Hung and Yang [31] has

proposed an approach called psFCM, that partitions the data using a K-d tree

to obtain a simplified dataset. It uses a subsample to estimate the position of

31

2.5. CLUSTERING ALGORITHMS FOR LARGE AND VERY LARGE
DATA

the cluster centers, and then the resulting estimate is used to initialize LFCM

on the full dataset.

There are methods proposed by researchers [32,34] that apply the extended

clustering schemes on a clustering algorithm. These methods use a representa-

tive sample of the full dataset, and then it noniteratively extends the sample

result to obtain clusters for the remaining data in the entire dataset. The algo-

rithms which include their noniterative mechanisms for extension are referred to

as extensible algorithms [32]. However, some algorithms are designed based on

the sampling methods are CLARA [61], corsets [118], and CURE [119]. These

algorithms work by randomly selecting a sample of data from a huge dataset and

computing cluster centers of this sampled data. The results obtained on this

sample are extended to approximate the cluster centers of the entire dataset.

Pal et al. [32] and Wang et al. [34] used progressive sampling to select a subsam-

ple representative of the dataset. They used a divergence test to assess whether

the subsample matched the distribution of the dataset. If the test failed, pro-

gressively larger subsamples were taken until the test passed.

One of the most well-known methods for fuzzy clustering of VL data is

the geFFCM algorithm [29]. This algorithm uses statistics-based progressive

sampling to produce a reduced dataset. However, it assumes that the reduced

dataset is large enough to capture the overall nature of the data. It then clusters

this reduced dataset and noniteratively extends the partition to the full dataset.

However, the sampling method used in geFFCM can be inefficient in some cases,

when the data reduction is not sufficient for VL data. One of the most simple

ways to reduce the size of data is to select a sample of the dataset and apply the

clustering algorithm to the sample. Havens et al. [36] adapt geFFCM algorithm

into a rseFCM algorithm. This algorithm performs clustering over a sample of

the VL data using LFCM [36,37], and then it extends results over the entire data

using the steps of the LFCM algorithm. The details of the rseFCM algorithm

are presented subsequently.

Furthermore, incremental fuzzy clustering algorithms have been developed

based on the well- known LFCM [22]. Few traditional incremental algorithms

include the spFCM [33] and the oFCM [38] algorithms. These two algorithms

process data chunk by chunk and estimate the c centroids for the entire dataset

by extracting information in each chunk. The spFCM and oFCM algorithms

32

CHAPTER 2. LITERATURE SURVEY

both are based on a vector representation of data and referred to as object data.

Random sampling plus extension Fuzzy C-Means (rseFCM)

To address the clustering of VL data according to Huber statistics [28] presented

in Table 1.1, Havens et al. [36] presented an algorithm. In this algorithm, he

addressed a way to process VL data, is to sample the dataset and then LFCM

is applied to the sample data to compute the cluster centers. Algorithm 2.3

outlines the steps of the rseFCM algorithm.

Algorithm 2.3 Algorithm for random sampling plus extension Fuzzy C-Means
to approximately minimize Jm(U, V

′
)

1: Input : X, V, c,m, ε
2: Output : U, V

′

3: Sample the ns objects from X without replacement, denoted Xs.
4: Us, V = LFCM(Xs, V, c,m)
5: Extend the partition (Us, V) to X,∀xi /∈ Xs using Eq. (2.7), to produce

(U, V
′
).

6: Return U, V
′

In this algorithm, it is assumed that the data is sufficiently sampled. There-

fore, the error between the cluster center locations produced by clustering the

entire dataset and the location generated by clustering the sampled data should

be small. The extension in step 5 of this algorithm used to calculate the full

fuzzy data partition for any algorithm that approximates the cluster centers.

Nowadays, it has been observed that the accelerated and incremental clus-

tering does not scale well for Big Data because the surging volume of Big Data

makes the result of an accelerated and incremental clustering algorithm obsolete

over time [40]. As mentioned in objectives, section 1.2, it is proposed to scale

the accelerated and incremental clustering algorithms on Big Data processing

frameworks. A survey of Big Data processing framework is presented next.

2.6 Big Data Frameworks and Related Algo-

rithms

Today, a vast amount of digital data accumulated at an accelerating rate in

many critical areas, which includes social networking, finance, health care, and

bioinformatics. Due to the surging volume of Big Data from various sources,

33

2.6. BIG DATA FRAMEWORKS AND RELATED ALGORITHMS

there is a real pressing need for credible research into large-scale data analytics,

to gain insights from the useful information in Big Data [40]. Clustering is a

widely used data mining technique for Big Data analysis. However, the surging

volume of Big Data has put tremendous pressure on clustering algorithms to

scale beyond a single machine, due to both space and time bottlenecks. To scale

the clustering algorithms for Big Data, there is a need for Big Data processing

frameworks. In recent years, a large number of computing frameworks have been

developed such as Hadoop, MapReduce (with its open-source implementations,

such as Hadoop) [120], Apache Flink [121], Apache Mahout [122], Haloop [123],

Apache Storm [124], Apache Samza [125], Hlive [126], Hbase [127], and Apache

Spark [128,129]. The details of some of the Big Data processing frameworks are

presented next.

2.6.1 Big Data frameworks

There are a wide variety of processing frameworks available for Big Data. The

details are as follows:

• Apache Hadoop: It is a framework for distributed processing and dis-

tributed storage of VL datasets across multiple nodes using a simple pro-

gramming model. It is designed to scale up from single servers to thou-

sands of machines, each offering local computation and storage. The core

of Apache Hadoop consists of a storage part, known as HDFS, and a

processing part called MapReduce. It splits files into large blocks and

distributes them across nodes in a hadoop cluster. To process data in

parallel, it transfers packaged code for nodes based on the data that needs

to be handled.

• MapReduce: It is a framework for easily writing applications which pro-

cess a vast amount of data in parallel on large clusters in a reliable and

fault-tolerant manner. A MapReduce job usually splits the input dataset

into independent chunks which are processed by the map tasks in a com-

pletely parallel manner. This framework sorts the outputs of the maps,

which are then given as inputs to the reduce tasks. Typically, both the

input and the output of the job are stored in a file-system.

34

CHAPTER 2. LITERATURE SURVEY

• Apache Flink: It is an open source framework for distributed Big Data

analytics, like Hadoop. The core of Apache Flink is a distributed streaming

data flow engine, and it provides facilities for distributed computation

over streams of data. It aims to bridge the gap between MapReduce-like

systems and shared-nothing parallel database systems.

• Apache Mahout: It is an open source project that is primarily used in

producing scalable machine learning algorithms and focused in the areas

of collaborative filtering, clustering, and classification. It uses the Apache

Hadoop library to scale efficiently in the cloud. The algorithms of Mahout

are written on the top of Hadoop, so it works well in a distributed envi-

ronment. It also offers the coder, a ready-to-use framework for doing data

mining tasks on a large volume of data.

• Apache Storm: It is a distributed real-time computation system, de-

signed for efficiently processing unbounded streams and can be used with

any programming language. It can be utilized for real-time analytics, dis-

tributed machine learning, and numerous other cases, especially those of

high data velocity. Storm can run on YARN and integrate into Hadoop

ecosystems, providing existing implementations a solution for real-time

stream processing. It is fast, scalable, fault-tolerant, reliable, and easy to

operate Big Data processing framework.

• Apache Haloop: This framework is an extension of Hadoop which along

with the processing of data provides an interesting way to perform iterative

computation on the data. It provides inter-iteration locality where the

major goal of haloop is to keep the data for map and reduce that uses

same data in different iterations on the same machine. Here data is easily

cached and is reused in various other applications.

• Apache Samza: It is another distributed stream processing framework.

It uses Apache Kafka for messaging and Apache Hadoop YARN to provide

fault tolerance, processor isolation, security, and cluster resource manage-

ment.

• Apache Spark: It was originally developed at the University of California

in 2009. It is an open source cluster computing framework built for so-

35

2.6. BIG DATA FRAMEWORKS AND RELATED ALGORITHMS

phisticated data analysis. Spark is optimized for iterative algorithms and

large-scale interactive computation. Apache Spark works well for iterative

algorithms by supporting in-memory computations, while retaining the

scalability and fault tolerance of MapReduce. Spark performs up to 100

times faster than Hadoop MapReduce and significantly faster than other

frameworks [128,129].

As mentioned in the objectives, section 1.2, it is proposed to design the scal-

able clustering algorithms which aim to utilize the Apache Spark framework for

the processing of Big Data. Therefore, a detailed description of Apache Spark

framework is presented next.

2.6.2 Working of Apache Spark

Spark cluster consists of many machines, each of which is referred to as a node.

There are two main components of Spark: Master and Workers. There is only

one master node, and it assigns jobs to the slave nodes or worker nodes. How-

ever, there can be any number of slave nodes. Data can be stored in HDFS [130]

or a local machine. A job reads data from the local machine/HDFS, performs

a computation on it and writes some output. Spark can run over a variety of

cluster managers. A simple cluster manager included in Spark itself is known as

Standalone Scheduler, on Apache Mesos [131], or on Hadoop YARN [132]. For

distributed data storage, the spark can interface with a wide variety including

Hive [126], HBase [127], Tachyon [133], and HDFS [134]. Figure 2.2 describes

how the master node divides the job among the worker nodes. A Driver process

executing on the master node is responsible for running this job on the Spark

Engine. Each job is partitioned into some stages. Each stage can either be a

 Master node

 Worker nodes

 Serial . . .

 Execution

 Parallel execution

Job

Stage n Stage 3 Stage 2 Stage 1

Task 1 Task 3 Task 2 Task 4

Figure 2.2: Internal workflow of Apache Spark.

36

CHAPTER 2. LITERATURE SURVEY

map or a reduce stage represented by a map function and reduceByKey function

which are discussed in detail in section 6.2.1, chapter 6. One stage may be de-

pendent on the results of a previously occurring stage. All stages are executed

serially. The dataset is logically divided into several chunks, and these chunks

are assigned to different worker nodes. A task performs the set of operations,

defined by a stage, on a chunk. These tasks are performed by executor processes

on a worker node. Only one task is performed on one chunk by each executor.

Features of Apache Spark

Spark performs better than MapReduce, the features of Apache Spark is pre-

sented as follows:

1. Speed - Spark helps to run an application on a Hadoop cluster, up to

100 times faster in memory, and 10 times faster when running on a disk.

Spark makes it possible by reducing the number of read/write operations

to disk. It stores the intermediate processing data in-memory. It means

that it does in-memory computations, i.e., it copies the data from the dis-

tributed physical storage to the much faster logical RAM. The in-memory

computations feature help Spark to eliminate the disk I/O time, making it

100 times faster than Hadoop MapReduce [128, 129]. It uses the concept

of an RDD, which allows it to transparently store data in memory and

persist it to disk only if it is needed. The RDD helps in reducing read and

write to disk which is one of the main time-consuming factors. The details

of RDD are presented subsequently. Figure 2.3 describes the operations

performed on Spark and shows that how intermediate data retained in

RAM and makes its execution 100 times faster than Hadoop MapReduce.

2. Supports multiple languages - Spark provides built-in APIs in Java,

Scala, and Python. It also has data frame APIs for manipulating semi-

structured data. Its ability to support multiple languages makes it dy-

namic.

3. Support for sophisticated analytics - Spark not only supports ’map’

and ’reduce’ operations. It also supports SQL queries, streaming data,

and complex analytics such as machine learning and graph algorithms.

37

2.6. BIG DATA FRAMEWORKS AND RELATED ALGORITHMS

FULL

DATA

DATA

CHUNK 1

in RAM

DATA

CHUNK 3

in RAM

DATA

CHUNK 2

in RAM

MAP

MAP

MAP

REDUCE

REDUCE

REDCUE

OUTPUT

OUTPUT

OUTPUT

Figure 2.3: In-memory computation of Spark.

4. Real time stream processing - Spark can handle real-time stream pro-

cessing along with the integration of other frameworks which concludes

that sparks streaming ability is easy, fault tolerance and integrated.

5. Ability to integrate with Hadoop and existing Hadoop Data -

Spark can run independently. In addition to this, it is compatible with

both versions of Hadoop ecosystem, i.e., it can run on Hadoop YARN

cluster manager [132] and SIMR. It can also read any existing Hadoop

data that’s makes it suitable for migration to pure Hadoop-MapReduce

applications.

6. Supports lazy evaluation - Another outstanding feature of Spark is

that it follows a lazy approach, i.e., it loads and pushes an RDD into the

RAM only when an action needs to be performed, not when it encounters

an RDD. This means that it waits for instructions before providing a final

result which saves a significant time.

Resilient Distributed Datasets

RDD [128] is the representation of data in object format on which compu-

tations can be performed in parallel. Spark provides special operations on

RDDs containing key-value pairs. These RDDs are called pair RDDs. It is

a useful building block in many programs, as they expose operations that

allow you to act on each key in parallel or regroup data across the network

38

CHAPTER 2. LITERATURE SURVEY

with the same key. Two types of operations that can be performed on an

RDD:

(a) Transformations: Transformations are operations on an RDD which

result into another RDD.

• Map: It is a transformation that passes each data point through a

function and returns a new RDD representing the results such as

my data.map(lambda x: 2x) gives an RDD where each element

is twice the value of each element in my data. Pair RDDs are

allowed to use all the transformation available to standard RDDs.

Pair RDDs can be created by running a map() function that

return key-value pairs. For example, pairs=line.map(lambda x:

(x.split(” ”)[0],x)).

• Aggregations: When a dataset is described in terms of key-value

pairs, it is common to aggregate statistics across all the elements

with the same key. Spark has a set of operations that combines

values with the same key by using a reduceByKey function. This

function merges the values for each key using an associative re-

duce function. It works only for RDDs which contains key and

value pairs kind of elements (i.e. RDDs having tuple or Map as

a data element). In this, one associative function is passed as a

parameter, which will be applied to the source RDD and will cre-

ate a new RDD with resulting values (i.e. key-value pairs). This

function produces the same result when repetitively applied on

the same set of RDD data with multiple partitions irrespective

of elements order.

(b) Actions: These operations are performed only when the program

needs to answer a question. For example, my data.count() counts

the number of elements that are present in my data.

2.6.3 Algorithms for Processing Big Data

Recently, a wide variety of algorithms [50, 135–138] has been proposed by re-

searchers for processing Big Data using various frameworks. This is because the

enlarging volume of information emerging by the progress of technology makes

39

2.7. REAL-LIFE PLANT GENOME DATA

the clustering of Big Data a challenging task. Kwok et al. [135], proposed

a parallel version of the FCM algorithm for clustering. The designed algo-

rithm runs on parallel computers of the SPMD model with the MPI. Beringer

et al. [136], developed a scalable online version of the Fuzzy C-Means algorithm.

In this method, the aim is to consider the problem of clustering of continuously

evolving time series data in the form of parallel streams of real value data. In

particular, this approach seems to be useful for the applications, in which the

clustering structure is subjected to continuous changes. Zhao et al. [50], pro-

posed a parallel K-means clustering algorithm based on MapReduce, which is

a simple yet powerful parallel programming technique. Zhang et al. [137], pro-

posed i2MapReduce, a novel MapReduce-based framework for incremental Big

Data processing. It combines fine-grain incremental engine, a general-purpose

iterative model, and a set of useful techniques for incremental iterative com-

putation. It performs key-value pair level incremental processing and provides

support for not only one-step calculation but also supports more sophisticated

iterative computation. Furthermore, it incorporates a set of novel techniques to

reduce I/O overhead for accessing preserved fine-grain computation states.

In recent scenario, Big Data is evolving in various domains, so it is important

to investigate the applicability and performance of scalable Big Data algorithms

on a real-life problem. As discussed in the objectives, section 1.2, it is pro-

posed to study the applicability of scalable clustering algorithms on a real-life

Big Data classification problem, i.e., the protein database of the complex plant

genome. For working on this Big Data problem, there is a tremendous need to

propose an efficient feature extraction approach for protein sequence classifica-

tion. Therefore, a survey related to feature extraction approaches is presented

next.

2.7 Real-life Plant Genome Data

Bioinformatics has been an active area of research for the last three decades,

and it is continuously gaining careful attention from computer scientists and

biologists research community. The objective of bioinformatics is to store and

manage the biological data and to develop sophisticated computational tools

that are helpful in analysis and modeling [139]. Genome sequencing projects are

40

CHAPTER 2. LITERATURE SURVEY

currently producing an enormous amount of new sequences and cause the rapid

increase of protein sequence databases. Protein sequences contain characters

from the 20-letter amino acid alphabets
∑

={A, C, D, E, F, G, H, I, K, L,

M, N, P, Q, R, S, T, V, W, Y}. Protein sequences are of any length, and the

amino acids present in a sequence can be combined in any order. There is a

substantial need of machine learning approaches for the analysis and modeling

of an enormous amount of protein sequence data.

An important issue in applying any algorithm to protein sequence classi-

fication is how to represent the protein sequences in terms of feature vectors.

The high dimensionality of protein data creates several crucial problems for

the researchers during the implementation of machine learning algorithms [140].

Evidently, a good input representation (extraction of features) is necessary for

the proper classification of protein sequences. Many feature selection tech-

niques [141–149] have been introduced in the past, but still, there is a need

of a method that can select statistically significant features for each protein

sequence. The extraction of significantly useful features would increase the clas-

sification accuracy by removing the redundant or unnecessary features and also

decrease the run-time of classification algorithms. The automated classification

mechanism saves the long time required for the experiments and the expense of

expensive biological tests performed in the laboratories.

Wang et al. [142] proposed a new technique for feature extraction which tries

to capture both the global similarity and local similarity of protein sequences.

The global similarity refers to the overall similarity among multiple sequences,

whereas the local similarity refers to frequently occurring substrings in the se-

quences. It considered 2-gram method as discussed in [141] to compute the

global similarity of protein sequences and adopted a method called 6-letter ex-

change groups to represent a sequence [150]. Then it uses sequence mining tool

to compute the local similarity.

Leslie et al. [143] proposed a spectrum kernel to measure the sequence sim-

ilarity between protein sequences. The technique considered subsequences of

k length amino acids as a feature vector. The obtained feature vector was

then passed to a support vector machine for classification of protein sequences

into their relevant classes. Another feature extraction approach is proposed by

Bandyopadhyay [144] that uses 1-gram technique for feature encoding. The fea-

41

2.7. REAL-LIFE PLANT GENOME DATA

ture size comprises of 20 amino acids. The extracted features are such that they

take into consideration the probabilities of occurrences of the amino acids in the

different positions of the sequences.

Mansoori et al. [145], proposed a new technique for feature extraction. To

extract the relevant features from protein sequences, the features are counted as

the occurrences of six exchange groups [150] in each sequence. Another feature

extraction approach for protein sequence is proposed by Mansoori et al. [146].

This method uses 2-grams and a 2-gram exchange group from the training and

test data. In this approach, distance-based feature ranking method was utilized

for the selection of the best and most appropriate features.

Caragea et al. [147] investigated feature hashing technique to map high-

dimensional features to low-dimensional using hash keys. The high dimensional

features were obtained using the traditional k-gram representation. The feature

vector obtained by applying hash function stores frequency counts of each K-

gram hashed together in the same hash key. With this technique, multiple

features can be mapped to the same key. The size of the feature vector has been

reduced from 222 to 210 without a major decrease in the classification accuracy.

Yu et al. [148] proposed a k-string dictionary technique to represent a protein

sequence. The value of “k” can be 1, 2,. . ., k amino acids. Repeated k-strings

were considered only once. The frequency or probability of each k-string vec-

tor was observed during the experiments. Then SVD was applied for the fac-

torization of frequency/probability matrix, representing each protein sequence

correctly. This technique reduces the size of the feature vector significantly.

Iqbal et al. [149] proposed a statistical metric-based feature subset selection

technique for the selection of discriminant and invariant features from protein

sequences. In this method, during the sequence encoding process, each pro-

tein sequence is represented by n-gram descriptors frequency. The statistical

metric is used in this approach to discard the irrelevant or redundant features

and represent the protein sequences with a minimum number of statistically

discriminant features.

42

CHAPTER 2. LITERATURE SURVEY

2.8 Performance Measures

This section presents the different performance measures to evaluate the pro-

posed clustering algorithms. To assess the performance of fuzzy clustering, clus-

ter validity index is one of the important factor for all sorts of fuzzy clustering

algorithms as it determines the number of clusters required for grouping of dif-

ferent datasets by fuzzy clustering. The details about this are already presented

in section 2.2. Furthermore, to evaluate the performance of fuzzy clustering, a

novel cluster validity index is proposed and discussed in detail in Chapter 3 that

determines the optimal number of clusters for different datasets. However, there

are other factors, i.e., fuzziness parameter (m) and a set of initial cluster cen-

ters which affects the performance of fuzzy clustering. Many hybrid approaches

are proposed by the researchers [24, 25, 27, 42, 43, 74, 82, 103] to determine these

factors, which are already discussed in detail in section 2.3 and section 2.4.

Moreover, two novel hybrid approaches are proposed and reviewed in depth in

Chapter 4 to determine these factors for the investigations of improvement in

the performance of fuzzy clustering. In addition to this, for evaluating the per-

formance of scalable clustering algorithms, various measures are used such as

NMI [46], F-measure [45], ARI [47,48], speedup, sizeup, scaleup [49,50], and Ob-

jective function. Also, the trade-off between performance gain versus accuracy

is also evaluated for in-depth analysis of the performance of scalable clustering

algorithm. The detail of these measures is present in the subsequent section.

After this, we discuss the measures used to evaluate the performance of incre-

mental clustering algorithm and the proposed feature extraction approach. To

do this, we evaluate the average classification accuracy, specificity, sensitivity,

and confusion matrix [151]. The details of various measures are presented next.

2.8.1 Performance Measures for Scalable Algorithms

Here, we discuss the measures used to evaluate the performance of the proposed

scalable fuzzy clustering algorithms on Big Data which are as follows:

• NMI [46]

It is used to compute the clustering results, which measure the agreement

of the clustering results produced by an algorithm and the ground truth.

43

2.8. PERFORMANCE MEASURES

If we refer to the class as the ground truth and to cluster as the results of

a clustering algorithm, the NMI is calculated as follows:

NMI =

∑c
j=1

∑w
l=1 n

l
jlog

(n.nl
j

nj .nl

)√(∑c
j=1 njlog

(nj

n

))(∑w
l=1 nllog

(
nl

n

)) (2.23)

where w is the number of classes, nj are the number of data points belongs

to jth cluster and nl are the number of data points belongs to lth class,

respectively, and nl
j is the number of common data points belongs to both

the lth class and jth cluster.

• F-measure [45]

It helps in determining the accuracy of a clustering solution. The F-

measure F (j, l)) for a jth cluster with respect to a particular lth class indi-

cates how good jth cluster describes lth class by calculating the harmonic

mean of precision and recall as follows:

plj =
nl
j

nl

, rlj =
nl
j

nj

(2.24)

F (j, l) =
2 ∗ plj ∗ rlj
plj + rlj

(2.25)

where precision plj is the fraction of nl
j and nl, recall rlj is the fraction of

nl
j and nj. The overall F-measure is defined as:

F −measure =
∑
j

nl
j

n
maxlF (j, l) (2.26)

A higher value of F-measure indicates better clustering results. F-measure

equal to 1 indicates that the clustering result is same as the ground truth.

• ARI [47, 48]

It is the corrected-for-chance version of the Rand index, which evaluates

the similarity between two partitions. The ARI measure assumes that the

clustering is discrete, i.e., hard [152]. To compute the ARI, in the case of

fuzzy clustering we first harden the fuzzy partitions by setting the highest

membership value of each data point to the cluster equal to 1, and all else

to 0 [36]. We use ARI to compare the clustering solutions with ground

44

CHAPTER 2. LITERATURE SURVEY

truth labels (when available), as well as it examines the partition of an

accelerated algorithm to that of the reference algorithm. The formulation

of ARI is defined as follows:

ARI =

∑c
j=1

∑w
l=1

(nl
j

2

)
−
[∑c

j=1

(
nj

2

)∑w
l=1

(
nl

2

)]
/
(
n
2

)
1
2

[∑c
j=1

(
nj

2

)
+
∑w

l=1

(
nl

2

)]
−
[∑c

j=1

(
nj

2

)∑w
l=1

(
nl

2

)]
/
(
n
2

) (2.27)

• Speedup [49, 50]

It is the measure to compute the performance of the algorithm in terms

of run-time by keeping the dataset constant and varying the number of

worker nodes in the spark cluster.

• Sizeup [49, 50]

It computes the performance of the algorithm in terms of run-time by

keeping the number of worker nodes in the spark cluster constant and

varying the size of the dataset.

• Scaleup [49, 50]

It computes the performance of the algorithm in terms of run-time by

varying both the number of worker nodes and the size of the dataset. It is

the ability of an m-times larger system to perform an m-times larger job

in the same run-time as the original system.

• Objective Function Value

The performance of scalable clustering algorithms is evaluated by its abil-

ity to minimize the objective function stated in Eq. (2.6).

Apart from the performance measure discussed above, there is a need to eval-

uate the trade-off between the performance gain (in terms of run-time) versus

accuracy (in terms of NMI) for accurate assessment of scalable clustering algo-

rithms. The trade-off is evaluated in terms of percentage change in run-time and

the loss of accuracy (in terms of NMI) which shows that with the decrease of

run-time how much the accuracy gets affected. The detailed description of the

same is presented in section 6.4.2, and its experimental evaluation is presented

in terms of Figure 6.8.

45

2.8. PERFORMANCE MEASURES

2.8.2 Performance Measures for Incremental Algorithm

and Protein Feature Extraction Approach

The measures used to evaluate the performance of the proposed incremental

clustering algorithm and the proposed protein feature extraction approach are

presented as follows:

• Accuracy

When the actual class labels are available for a test dataset, calculating

the percentage accuracy of a clustering solution is an obvious metric, but

somewhat misleading because clustering algorithms do not optimize ef-

ficiency. Each cluster label is associated with a class label and any data

points whose cluster label does not match its associated class is considered

inaccurate. Before the calculation, clusters must be aligned to the class

labels that is done by using Bayes’ theorem [153]. The average accuracy

for multi-class classification [151] is defined as follows:

AverageAccuracy =
w∑
l=1

tpl+tnl

tpl+fnl+fpl+tnl

w
× 100 (2.28)

where, tpl, tnl, fnl and fpl represents the true positive, true negative,

false negative and false positive of lth class, respectively.

– True positive (tpl): It denotes the correct classification of positive

data of the lth class. In the case of multi-class classification problem,

the diagonal element of the matrix represents the true positive for

each class.

– True negative (tnl): It denotes the correct classification of negative

data of the lth class. In the case of multi-class classification problem,

true negative for a particular Ath class is evaluated as follows:

tnA = tpB + EBD + EDB + tpD (2.29)

– False positive (fpl): It denotes the incorrect classification of negative

data of lth class that is classified as positive. The parameter in case

of multi-class classification problem is evaluated for a particular Ath

46

CHAPTER 2. LITERATURE SURVEY

class is defined as follows:

fpA = EBA + EDA (2.30)

– False negative (fnl): It denotes the incorrect classification of positive

data of lth class that is classified as negative. In case of multi-class

classification problem, false negative for a particular Ath class is eval-

uated as follows:

fnA = EAB + EAD (2.31)

• Sensitivity [151]

An average per class effectiveness of a classifier to identify the fraction of

positive data that are classified as positive.

Sensitivity =

∑w
l=1

tpl
tpl+fnl

w
× 100 (2.32)

• Specificity [151]

An average per class effectiveness of a classifier to identify the fraction of

negative data that are classified as negative.

Specificity =

∑w
l=1

tnl

tnl+fpl

w
× 100 (2.33)

• Confusion Matrix [151]

A confusion matrix contains information about actual and predicted clas-

sifications performed by a classifier. The performance of such classifiers is

commonly evaluated using the data in the matrix. A confusion matrix in

case of three class problem is given in Table 2.2. The terms are provided

in Table 2.2 have already been detailed earlier.

Table 2.2: Confusion matrix.

Predicted class

Actual class

CA CB CD

CA tpA EAB EAD
CB EBA tpB EBD
CD EDA EDB tpD

47

2.9. WORKING WITH DATASETS

The proposed cluster validity index and hybrid approaches are designed to in-

vestigate the parameters for improving the performance of fuzzy clustering. All

these methods are evaluated on various benchmark datasets collected from UCI

Machine Learning Repository [154]. The experimental evaluation of these meth-

ods on benchmark datasets is presented in Chapter 3 and Chapter 4. In addi-

tion to this, the performance of the proposed incremental clustering algorithm

is tested on VL datasets collected from UCI repository, and the experimental

evaluation of the proposed algorithm on VL datasets is presented in Chapter 5.

Furthermore, the performance of the proposed scalable clustering algorithms

is tested on several Big Datasets that is created by taking data from other

sources [154–157]. The experimental evaluation of scalable clustering algorithms

on several Big datasets is presented in chapter 6. The validation methods used

for evaluating the results are shown in Appendix B. The details of various bench-

mark datasets and VL datasets are presented in Appendix A, whereas the details

of Big datasets are presented next.

2.9 Working with Datasets

This section presents the details of datasets used in the experimental study of

all the proposed approaches. In all, total fifteen datasets are utilized in the

experiments out of which twelve datasets are taken from UCI Machine Learning

repository [154] and remaining three Big Datasets are created by taking data

from different sources [154–157]. The benchmark datasets namely IRIS, WINE,

VEHICLE, GLASS, SEED, BUPA, DIABETES, PAGE BLOCKS, PENDIG-

ITS, SUSY, HTRU2, and EEG Eye State are taken from UCI repository. The

detailed description of these benchmark datasets are presented in Appendix A.

Out of these twelve benchmark datasets, first six datasets are used to investi-

gate the performance of proposed cluster validity index presented in chapter 3.

Furthermore, the first four benchmark datasets along with DIABETES dataset

are used to evaluate the performance of proposed hybrid approaches discussed

in chapter 4. The performance of the proposed incremental clustering algorithm

is evaluated on four VL datasets, i.e., PAGE BLOCKS, PENDIGITS, HTRU2,

and EEG Eye State and the discussion for the same is presented in chapter 5.

However, for the sake of testing of scalable clustering algorithms on Big Datasets,

48

CHAPTER 2. LITERATURE SURVEY

we have simulated three datasets by taking them from various sources [154–157],

to enlarge their volume in the range of 2.4 GB to 34 GB. The performance of

scalable clustering algorithms is evaluated on four Big Datasets, i.e., the SUSY

dataset along with three Big simulated datasets and the results for the same is

presented in chapter 6. Table 2.3 lists the number of samples, features, classes,

and size of these Big Datasets. The detailed description of these Big Datasets

is presented next.

SUSY

The dataset is taken from UCI Machine Learning repository [154]. It has been

produced using Monte Carlo simulations. The size of this dataset is 2.4 GB

and contains 5,000,000 instances which are divided into 2 classes and has 18

features. The first 8 features are kinematic properties measured by the particle

detectors in the accelerator. The last ten features are functions of the first 8

features; these are high-level features derived by physicists to help discriminate

between the two classes.

MONARCH-SKIN

The dataset is constructed by randomly sampling B, G, R values from face

images of various age groups (young, middle, and old), race groups (white, black,

and asian), and genders obtained from FERET database and PAL database.

Total learning sample size is 2,45,057 having 3 features and consists of 2 classes;

out of which 50,859 is the skin samples and 1,94,198 is non-skin samples.

To create a massive dataset, we did the Cartesian product of SKIN SEG-

MENTATION data obtained from UCI [154] with monarch dataset [156] having

only one feature. A subset of the Cartesian product of 1,470,342,000 instances

and size 25.04 GB is used as the dataset in the experimental study. It is appro-

priately named as Monarch-Skin dataset.

Table 2.3: Information of datasets used for Big Data experimentation.

Datasets Samples Features Classes Size
SUSY 5,000,000 18 2 2.4 GB
MINST8m 8,100,000 784 10 19 GB
Monarch-Skin 1,470,342,000 3 2 25.4 GB
Replicated-USPS 14,582,000 256 10 34 GB

49

2.9. WORKING WITH DATASETS

REPLICATED-USPS

It is a numeric data obtained from the scanning of handwritten digits from

envelopes by the U.S. Postal Service. The originally scanned digits are binary

and of different sizes and orientations; the images here have been deslanted,

and size normalized, resulting in 16 x 16 grayscale images. The original dataset

consists of 7291 training samples and 2007 test samples, each having 256 features

and consists of 10 classes [155].

To create an enormous amount of data, we replicate the original USPS

dataset 2000 times to make it larger and named it as Replicated-USPS dataset.

The resulting size of the dataset is 34 GB and consists of 14,582,000 instances.

This is done on the basis of work done by researchers recently [137,138].

MINST8m

It is a handwritten digit recognition dataset of size 19 GB and contains 8,100,000

greyscale images (28x28 pixels of the digits 0 to 9) [157]. Each pixel has an

integer value between 0 to 255. The pixel values are scaled between [0,1] by

dividing it by 255, and each image is represented as a 784-dimensional feature

vector. It consists of total 10 number of classes.

50

Chapter 3

Cluster Validity Index

3.1 Introduction

One of the most widely used fuzzy clustering algorithms is FCM proposed by

Bezdek [22]. In this algorithm, for the computations of fuzzy partitions, it is

required that the user should pre-define the number of clusters (c). Since the

optimality of fuzzy c-partitions are dependent on the choice of c, so it is im-

portant to validate the fuzzy c-partitions, to determine the optimal number of

clusters and the corresponding best fuzzy partition [74]. The validation of the

fuzzy c-partitions is done by a cluster validity index, which measures the quality

of c discovered clusters [88, 158] in each fuzzy partition. Thus, the largest or

smallest value of a cluster validity index among all the fuzzy partitions gives the

optimal number of clusters and the corresponding best fuzzy partition. Cluster

properties such as compactness and separation are often considered as two pri-

mary criteria in various cluster validity indexes for evaluating clustering results

and for the selection of an optimal clustering scheme [159]. The compactness

measure evaluates the density of data points that belongs to the same clus-

ter, whereas the separation measure evaluates the isolation among clusters. In

addition to compactness and separation measures, an overlap measure is used

in many cluster validity indexes [95, 98], to evaluate the degree of overlap of a

specified number of fuzzy clusters.

The classical validity indexes validate the fuzzy partitions by using either

of the two measures out of three. They are limited in their ability as they do

not jointly exploit all the three measures, which leads to an incorrect validation

51

3.2. PROPOSED NOVEL CLUSTER VALIDITY INDEX

result [95]. In this chapter, we proposed a novel cluster validity index termed

as V IDSO, which jointly exploits all the three measures, i.e., compactness as

dispersion, separation, and overlap, to find the optimal number of clusters and

the corresponding best fuzzy partition. Insights of the proposed cluster validity

index are presented next.

3.2 Proposed Novel Cluster Validity Index

In this section, a novel cluster validity index is designed by exploiting three

proposed measures, i.e., intra-cluster compactness, inter-cluster separation, and

inter-cluster overlap. The detailed description of these measures is presented

below.

3.2.1 Intra-cluster Compactness

The proposed intra-cluster compactness measure (Disp(c, U))), is computed by

the relative variability concept known as the coefficient of variation. It calculates

the relative dispersion of data points in all the dimensions and considers the di-

mension in which data points have maximum dispersion and aims to minimize

the maximum dispersion. Minimization of the maximum dispersion indicates

that the overall dispersion of data points in other dimensions within the cluster

is reduced. Figure 3.1, shows the two fuzzy clusters with different degree of com-

pactness. The proposed definitions for the intra-cluster compactness measure is

presented as follows:

Firstly, we evaluate the dispersion of all the data points in each dimension.

(a) Fy ∈ (Uy,Vy) (b) Fz ∈(Uz,Vz)

Figure 3.1: Two fuzzy clusters Fy and Fz with different degree of compactness.

52

CHAPTER 3. CLUSTER VALIDITY INDEX

The small value of this term indicates that the data points are tightly coupled

with each other in all the dimensions. The definition for the dispersion is given

as follows:

Definition 1: Standard deviation of data points present in set X in f th dimen-

sion is denoted by σ(Xf) and is defined as:

σ(Xf) =

√√√√(
n∑

i=1

(xif)2 − (µ(Xf)× n)2/n)/n (3.1)

where, n is the number of data points, Xf = {x1f ,, xnf}; ∀xi ∈ Rd, f =

1, 2, ..., d such that σ(X) = {σ(X1), ..., σ(Xd)}; X ∈ Rd denote the data points

present in set X consist of d dimensions; µ(Xf) =
∑n

i=1 xif/n indicates the

mean of n data points in f th dimensions; ∀xi ∈ X.

Next, we compute the relative dispersion of all the n data points in f th

dimension. The definition for the relative dispersion is presented as follows:

Definition 2: Coefficient of Variation of all the data points present in set X in

f th dimension is denoted by Coff var(Xf) and is defined as:

Coff var(Xf) =
σ(Xf)

µ(Xf)
(3.2)

where, Coff var(Xf) ∈ Coff var(X) such that Coff var(X) = {Coff var(X1)

, ..., Coff var(Xd)}.

Next, we compute the dispersion of each cluster in d dimensions. The small

value of this term indicates that the dispersion within the c number of clusters

in each dimension is minimized. The definition for the same is given as follows:

Definition 3: Standard deviation of n data points on jth cluster in f th dimen-

sion is denoted as σvfj and given by:

σvfj =

√√√√ 1

n
[

n∑
i=1

(xif − vfj)2] (3.3)

where σvj = {σv1j
, ..., σvdj} , vj ∈ Rd, j = 1, 2, ..., c, f = 1, 2, .., d, X =

{x1, .., xi, .., xn}, ∀xi ∈ Rd, vfj denote the jth cluster in f th dimension, and

d represents the number of dimensions.

Next, we evaluate the relative dispersion of each cluster in d dimensions. The

53

3.2. PROPOSED NOVEL CLUSTER VALIDITY INDEX

small value of this term indicates the particular dimension in which each cluster

has lesser dispersion as compared to other dimensions. The definition for the

same is presented as follows:

Definition 4: Coefficient of Variation of jth clusters in f th dimension is denoted

as Coff varvfj and is defined as:

Coff varvfj =
σvfj
vfj

(3.4)

where, Coff varvfj ∈ Coff varvj such that Coff varvj ={Coff varv1j
,,

Coff varvdj}, f = 1, 2, .., d.

Definition 5: The overall dispersion within c number of clusters is defined as:

Disp(c, U) =
max
1≤j≤c

max
1≤f≤d

{Coff varvfj}

max
1≤f≤d

{Coff var(Xf)}
(3.5)

The numerator in the proposed formulation computes the dispersion of each

cluster in d dimensions, respectively, and finally, it considers the cluster which

has the maximum variation in a particular dimension. The denominator con-

siders the dimension in which all the data points have a maximum dispersion

in comparison to other dimensions. Therefore, evaluation of mathematical ex-

pression Disp(c, U) considers the dimension in which the data points within

the clusters have maximum dispersion relatively with other dimensions. Thus,

it reflects the overall dispersion corresponding to all the data points within c

clusters. Hence, the small value of Disp(c, U) indicates the higher compactness

within the cluster.

3.2.2 Inter-cluster Separation based on Fuzzy Set

The separation measure plays a significant role in evaluating the quality of

fuzzy partitions produced by fuzzy clustering. Figure 3.2, shows the separation

between the fuzzy clusters. The proposed inter-cluster separation (Sep(c, U))

quantifies the distance between the clusters using fuzzy set theory. To evaluate

this, we utilize the similarity measure suggested by Lee [99]. The similarity

between the two fuzzy cluster Fz and Fy at data point xi is defined as follows:

S(Fz, Fy) = max
1≤i≤n

min(uFz(xi), uFy(xi));∀xi ∈ X (3.6)

54

CHAPTER 3. CLUSTER VALIDITY INDEX

il
x * l

v
irx

 * rv

zv * yv *

Fz Fy

Figure 3.2: Two fuzzy clusters Fz and Fy shows the separation between cluster
centers.

where uFz(xi) and uFy(xi) are the membership degrees of ith data point corre-

sponding to fuzzy clusters Fz and Fy, respectively. On the basis of similarity

measures suggested by Lee [99], the proposed definitions for the inter-cluster

separation (Sep(c, U)) are presented as follows:

Definition 1: The separation between the two fuzzy clusters Fz and Fy are

defined as follows:

Dist(Fz, Fy) = 1− S(Fz, Fy) (3.7)

Definition 2: The overall separation among c clusters is defined as:

Sep(c, U) = min(Dist(Fz, Fy)) (3.8)

The inter-cluster separation measure considers the clusters with maximum sim-

ilarity, which conversely results in consideration of the clusters with minimum

separation. Therefore, we maximize the distance between the fuzzy clusters

which has the minimum separation to ensure the overall maximum separation

between the c clusters. Thus, the large value of Sep(c, U) indicates that the clus-

ters which are separated by minimum distance are far apart from each other.

Conversely, it shows the large separation between other pairs of fuzzy clusters.

Thus, it results in generation of the well separated fuzzy partitions.

3.2.3 Inter-cluster Overlap Measure

Overlapping plays a significant role in fuzzy cluster analysis which is computed

by an inter-cluster overlap measure. The proposed inter-cluster overlap measure

evaluates the overlap of each data point xi between two fuzzy clusters Fz and

Fy, which is represented by R(xi, Fz, Fy). A degree of overlap is assigned to

each data point xi depending on the belongingness of that data point to the

55

3.2. PROPOSED NOVEL CLUSTER VALIDITY INDEX

clusters [95], and it is denoted by δ(xi). Vague data points are assigned a

higher degree of overlap than distinctly classified data points. Various formal

definitions are proposed for the inter-cluster overlap, which is given below.

Definition 1: The overlap of each data point xi between the two fuzzy clusters

Fz and Fy are defined by R(xi, Fz, Fy) and computed as follows:

R(xi, Fz, Fy) =

 δ(xi), if
(
Dommin(xi) > 0 & Dommax(xi) < 1

)
0.0, Otherwise

(3.9)

Where,

Dommin(xi) = min(uFz(xi), uFy(xi)) (3.10)

Dommax(xi) = max(uFz(xi), uFy(xi)) (3.11)

The maximum and minimum degree of membership of a data point xi are rep-

resented by Dommax(xi) and Dommin(xi), respectively. The data point xi is

considered vague, if Dommax(xi) ≤ 0.5, then the degree of overlap δ(xi) of data

point xi between two fuzzy clusters Fz and Fy will be higher and assigned as

δ(xi) = 1. Conversely, if the data point xi is not vague, and its maximum

degree of membership to a particular cluster is much higher in comparison to

the other clusters, i.e., Dommax(xi)>0.5 & Dommax(xi)< 1, then the degree of

overlap (δ(xi)) of data point xi is uniformly distributed in the range of [0.1,

0.9]. Otherwise, if the data point xi is classified to a particular cluster, i.e.,

Dommax(xi) = 1, then its degree of overlap δ(xi)=0.

Definition 2: The total overlap between two pairs of fuzzy clusters Fz and Fy

is defined as follows:

O(Fz, Fy) =
n∑

i=1

R(xi, Fz, Fy) (3.12)

Definition 3: The total overlap between all pairs of fuzzy clusters is represented

by Overlap(c, U) and is computed by considering the pair of fuzzy clusters

having maximum overlap. The formulation for this is defined as follows:

Overlap(c, U) = max
z 6=y

(O(Fz, Fy)) (3.13)

56

CHAPTER 3. CLUSTER VALIDITY INDEX

The fuzzy partitions and the value of c on which Overlap(c, U) attain its mini-

mum value, indicates that we minimize the maximum overlap between a pair of

fuzzy clusters. If the maximum overlap is reduced, then it shows that the other

pairs of fuzzy clusters will have lesser overlap. Thus, it achieves the best fuzzy

partition and results in well-classified data points within the cluster.

3.2.4 Formulation of Proposed Validity Index

Once all the three proposed measures, i.e., Disp(c, U), Sep(c, U), andOverlap(c, U)

for cluster analysis, is defined. The proposed cluster validity index V IDSO is

formed by jointly exploiting all the three measures. These three measures are

of varying scales, so it is necessary to conciliate it through the normalization

approach. Thus, all the three measures are computed for different c values, i.e.,

c=[cmin, ..., cmax]; cmin=2, cmax=
√
n [4, 74–76]. These measures for different c

values are defined as follows:

Disp(c, U) = [Disp(2, U), ..., Disp(cmax, U)] (3.14)

Sep(c, U) = [Sep(2, U), ..., Sep(cmax, U)] (3.15)

Overlap(c, U) = [Overalp(2, U), ..., Overlap(cmax, U)] (3.16)

The maximum value of each measure is computed as follows:

Dispmax = max
cmin≤c≤cmax

[Disp(c, U)] (3.17)

Sepmax = max
cmin≤c≤cmax

[Sep(c, U)] (3.18)

Overlapmax = max
cmin≤c≤cmax

[Overlap(c, U)] (3.19)

All the three measures are normalized corresponding to each value of c with

respect to their maximum values Dispmax, Sepmax, and Overlapmax. The nor-

malized values of these measures are represented as follows:

DispN(c, U) =
Disp(c, U)

Dispmax

(3.20)

SepN(c, U) =
Sep(c, U)

Sepmax

(3.21)

57

3.2. PROPOSED NOVEL CLUSTER VALIDITY INDEX

OverlapN(c, U) =
Overlap(c, U)

Overlapmax

(3.22)

where, DispN(c, U) represents the normalized value of dispersion of data points

within the cluster, SepN(c, U) represents the normalized value of separation

between the fuzzy clusters and OverlapN(c, U) represents the normalized value

of overlap of data points between fuzzy clusters for a fuzzy partition with a

particular U and c; U denote membership matrix or fuzzy partition matrix.

The above-discussed measures are combined to formulate the proposed validity

index V IDSO, which is defined as follows:

V IDSO(c, U) =
DispN(c, U)

SepN(c, U)
+
OverlapN(c, U)

SepN(c, U)
(3.23)

The motivation for designing Eq. (3.23) in this way is to give the equal impor-

tance (weightage) to the compactness and separation measures as well as to the

overlap and separation measures. The proposed validity index is evaluated for

different values of c which is varying from [cmin, ..., cmax]. The value of c and

the corresponding fuzzy partition U on which V IDSO(c, U) attains its minimum

value is considered as the optimal c and the optimal fuzzy partition. The min-

imum value of V IDSO(c, U) indicates that the data points present within the

cluster are tightly coupled with each other. Furthermore, the obtained fuzzy

clusters are overlapped with a lesser degree and well separated from each other.

The working of V IDSO index in terms of the flowchart is present in Figure 3.3.

The step-wise procedure of V IDSO index involved in the validation of a num-

ber of clusters and their corresponding fuzzy partitions are presented in the form

of Algorithm 3.1 , which is given next.

Algorithm 3.1 Algorithm for Evaluation of Proposed V IDSO(c, U) Index

1: Input DatasetX = {x1, x2, ..., xn} and initialize fuzzy clustering parameters
as mentioned in Table 2.1.

2: Output Optimal number of clusters (c) and membership matrix (U).
3: Begin
4: for c := cmin to cmax step 1 do
5: Call and execute Algorithm 2.2 for each value of c.
6: Compute and store the value of compactness, Separation, and overlap

measure, i.e., Disp(c, U), Sep(c, U), and Overlap(c, U) measure using
Eqs. (3.5), (3.8), and (3.13) for each value of c.

7: end for

58

CHAPTER 3. CLUSTER VALIDITY INDEX

Algorithm 3.1 (Continued)

8: Compute the normalized value of all the measures, i.e., compactness mea-
sure DispN(c, U), separation measure SepN(c, U), and overlap measure
OverlapN(c, U) using Eqs. (3.20), (3.21), and (3.22) for all the values of
c.

9: Compute the proposed validity index V IDSO(c, U) using Eq. (3.23) for all
values of c where, c = [cmin, ..., cmax].

10: Find the optimal number of clusters (c) and the corresponding member-
ship matrix (U) by storing the value of c that minimizes V IDSO, which is
computed as follows:

V Imin
DSO(c, U) = min

cmin≤c≤cmax

[V IDSO(c, U)] (3.24)

11: Return optimal c and U .
12: End

 NO

 Yes

 START

Initialize input maxmin
 , [,...,], 0.001;X c c c

 Parameters maxmin
2, , [1.5, 2.5]c c n m

Initialize c and run Algorithm 2.2

maxc c

Update

1c c

Return optimal c and U

 STOP

Minimize the
DSO

VI index

maxmin

min (,) min (,)
DSO DSOc c c

VI c U VI c U

Compute the proposed validity index

DSOVI for all values of c and U

Compute the normalized

compactness measure

(,)NDisp c U for all

values of c and U

Compute the normalized

separation measure

(,)NSep c U for all

values of c and U

Compute the normalized

separation measure

(,)NOverlap c U for all

values of c and U

Compute the Intra-cluster

compactness measure (,)Disp c U

Compute the Inter-cluster

separation measure (,)Sep c U

Compute the Inter-cluster overlap

measure (,)Overlap c U

Figure 3.3: Flow chart of proposed cluster validity index.

3.3 Experimental Evaluation

In this section, we describe the datasets and the experimental settings used to

perform our experimentation. Also, we present the experimental results to com-

59

3.3. EXPERIMENTAL EVALUATION

pare our proposed cluster validity index with other well-known validity indexes

namely Partition Coefficient (VPC) and Partition Entropy (VPE) [91], Rezaee et

al. index (VCWB) [93], and Kim and Lee index (vOS) [95].

3.3.1 Datasets and Experimental Settings

To demonstrate the effectiveness of our approach over other well-known clus-

ter validity indexes, we have taken six datasets namely IRIS, WINE, VEHI-

CLE, SEED, GLASS, and BUPA from UCI Machine Learning repository [154].

The detailed description of these datasets is given in Appendix A and scatter

plot of these datasets is shown in Figure 3.4. In this figure, within the scatter

plot of each dataset, a particular color represents a class, and the collection of

data points shown by the same color belongs to a particular class. We imple-

ment all these validity indexes using MATLAB (Matlab R2014a) on an Intel(R)

Core(TM) i3-2100 computer of 3.10GHZ with 2GB of RAM. The parameter

values to implement all these validity indexes are given in Table 2.1.

3.3.2 Experimental Results and Discussion

In this section, we compare our proposed cluster validity index with other well-

known validity indexes on six different datasets. In addition to this, we have also

investigated the reliability of a V IDSO index in comparison with other indexes

with a change in fuzzifier (m).

Comparison of proposed validity index with other indexes on IRIS

dataset

In this section, we compare our proposed cluster validity index with other va-

lidity indexes on IRIS dataset. The scatter plot of this dataset is presented

in Figure 3.4(a). The IRIS dataset consists of three classes representing three

physical clusters. Therefore, in this figure, three different colors are used to

represent three categories. Furthermore, all the data points which belong to

the same class is represented by a particular color. Figure 3.4(a) shows that,

according to their numerical representation out of three clusters, two clusters

have the substantial overlap, while the third cluster is well separated from the

other two. The proposed cluster validity index is evaluated on different values of

60

CHAPTER 3. CLUSTER VALIDITY INDEX

4 5 6 7 8
2

3

4

5

Sepal length

S
ep

al
 w

id
th

4 4.5 5 5.5 6 6.5 7 7.5
1

2

3

4

5

6

7

sepal length

pe
ta

l l
en

gt
h

4.5 5 5.5 6 6.5 7 7.5 8

sepal length

(a) IRIS Dataset

4 6
Flavanoids

0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Flavanoids

P
ro

an
th

oc
ya

ni
ns

0 2 4 6
0

5

10

15

Flavanoids

C
ol

or
 in

te
ns

ity
2 4 6

Flavanoids
0 2 4 6

1

1.5

2

2.5

3

3.5

4

Flavanoids

di
lu

te
d

w
in

es

0 2 4
200

400

600

800

1000

1200

1400

1600

1800

Flavanoids

P
ro

lin
e

(b) WINE Dataset

0 50 100 150
0

10

20

30

40

50

60

PR.AXIS ASPECT RATIO0 50 100 150
100

120

140

160

180

200

220

240

260

280

PR.AXIS ASPECT RATIO

0 50 100 150
20

40

60

80

Pr. axis aspect ratio

E
lo

ng
at

ed
ne

ss

0 50 100 150
16

18

20

22

24

26

28

30

PR.AXIS ASPECT RATIO
0 50 100 150

110

120

130

140

150

160

170

180

190

PR.AXIS ASPECT RATIO

M
A

X
.L

E
N

G
T

H
 R

E
C

T
A

N
G

U
LA

R
IT

Y

0 50 100
120

140

160

180

200

220

240

260

280

300

320

PR.AXIS ASPECT RATIO

S
C

A
LE

D
 V

A
R

IA
N

C
E

 A
LO

N
G

 M
A

JO
R

 A
X

IS

(c) VEHICLE Dataset

4.5 5 5.5 6 6.5 7
4.5

5

5.5

6

6.5

7

Length of kernel

Le
ng

th
 o

f k
er

ne
l g

ro
ov

e

12 13 14 15
4

5

6

7

perimeter

le
ng

th
 o

f k
er

ne
l g

ro
ov

e

14 16 18 20 22
area

10 12 14 16 18 20 22
0.8

0.85

0.9

0.95

1

area

co
m

pa
ct

ne
ss

10 12 14 16
4

5

6

7

area

le
ng

th
 o

f k
er

ne
l

14 16 18 20 22
area

10 12 14 16 18 20 22
0

5

10

area

as
ym

m
et

ry
 c

oe
ffi

ci
en

t

12 13 14 15
10

15

20

25

perimeter

ar
ea

(d) SEED Dataset

0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

Mg

A
l

0 2 4 6
0

1

2

3

4

5

6

7

Mg

K

0 2 4 6
4

6

8

10

12

14

16

18

Mg

C
a

0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

Mg

B
a

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mg

F
e

0 5
68

70

72

74

76

Mg

S
i

(e) GLASS Dataset

60 80 100 120
0

50

100

150

Mcv

A
lk

ph
os 60 80 100 120

0

100

200

mcv

sg
pt

60 80 100 120
0

50

100

mcv

sg
ot

60 80 100 120
0

10

20

mcv

dr
in

ks

0 50 100 150
0

100

200

alkphos

sg
pt

0 50 100 150
0

50

100

alkphos

sg
ot

0 50 100 150
0

200

400

alkphos

ga
m

m
ag

t

0 50 100 150
0

10

20

alkphos

dr
in

ks

0 50 100 150 200
0

100

200

300

sgpt

ga
m

m
ag

t

0 50 100 150 200
0

10

20

sgpt

dr
in

ks

0 50 100
0

10

20

sgot

dr
in

ks

0 100 200 300
0

10

20

gammagt

dr
in

ks

(f) BUPA Dataset

Figure 3.4: Scatter plot of datasets in two dimensional space.

c (c = [cmin, ..., cmax], cmax =
√
n ≈ 12) and found c = 2 as the optimal number

of clusters. The same is being reported in Figure 3.5. The optimal number

of clusters is found at c = 2 because the proposed index measures the overlap

between the fuzzy clusters, and thus the data points with different class labels

that are not distinguishable to each other by their features are grouped into a

single cluster. Therefore, rather than considering three separate clusters, the

overlapped data points are grouped into a single cluster [5]. Thus, we consider

c = 2 as the optimal number of clusters according to the geometric structure of

IRIS data as mentioned by Pal and Bezdek [74]. The proposed V IDSO index is

compared with other validity indexes, i.e., VPC [91], VPE [91], and VCWB [93].

61

3.3. EXPERIMENTAL EVALUATION

Figure 3.5: Comparison of cluster validity indexes on IRIS dataset at m = 2.0.

These indexes also find the optimal number of clusters at c = 2. On the other

hand, vOS index [95] attains the minimum value at c = 12. The vOS index

is monotonically decreases with c, which makes it hard to detect the optimal

number of clusters. Thus, the optimal number of clusters for IRIS dataset is

chosen to be 2.

Comparison of proposed validity index with other indexes on WINE

dataset

In this section, we present the optimal number of clusters identified by the

proposed validity index in comparison with other indexes on WINE dataset.

As shown in Figure 3.4(b) according to the numerical representation two out

of three clusters have the substantial overlap. The proposed validity index is

evaluated for different values of c (c = [cmin, ..., cmax], cmax =
√
n ≈ 13) it

indicates the optimal number of clusters at c = 2, as shown in Figure 3.6.

As discussed earlier, the proposed index finds the optimal clusters such that

overlap between the fuzzy clusters is minimized. So rather than considering

three separate clusters for overlapped data points (i.e., the data points with

different classification labels that are not distinguishable to each other by their

features), these data points are grouped into one cluster [5]. Thus, it achieves

the optimal number of clusters at c = 2. The proposed V IDSO index when

compared with the existing indexes, i.e., VPC [91], VPE [91], and VCWB [93],

they also indicate the optimal number of clusters at c = 2. On the contrary, vOS

index [95] indicates that the minimum value reached at c = 12. As discussed

earlier, vOS index monotonically decreases with the increase of c, which makes it

unreliable in detecting the optimal number of clusters for WINE dataset. Thus,

62

CHAPTER 3. CLUSTER VALIDITY INDEX

Figure 3.6: Comparison of cluster validity indexes on WINE dataset at m = 2.0.

an optimal number of clusters for WINE dataset is rated to be at c = 2.

Comparison of proposed validity index with other indexes on VEHI-

CLE dataset

In this section, the proposed cluster validity index V IDSO is compared with other

cluster validity indexes in terms of an optimal number of clusters identified for

VEHICLE dataset. Figure 3.4(c), shows the scatter plot of VEHICLE dataset.

In this figure, the spread of data in two-dimensional space indicates the presence

of three clusters. As shown in Figure 3.7, the performance of V IDSO index when

evaluated on different values of c = [cmin, ..., cmax] (cmax =
√
n ≈ 29) it achieves

the optimal value at c = 3. The V IDSO index when compared with VPC [91]

and VPE [91], both the indexes attains the optimal value at c = 2. Similarly,

the VCWB index [93] attain the minimum at c = 5 and vOS index [95] attain the

minimum at c = 29. In cluster analysis, compactness, separation, and overlap

measures play a significant role, and the proposed V IDSO index integrates all the

Figure 3.7: Comparison of cluster validity indexes on VEHICLE dataset at
m = 2.0.

63

3.3. EXPERIMENTAL EVALUATION

three measures. Therefore, the identified number of clusters c = 3 satisfies all

the three properties, so c = 3 could be rated as the optimal number of clusters

in comparison with other indexes for VEHICLE dataset.

Comparison of proposed validity index with other indexes on SEED

dataset

In this section, we present the optimal number of clusters identified by V IDSO

index in comparison with other indexes on SEED dataset. The scatter plot of

SEED dataset is presented in Figure 3.4(d). In Figure 3.8, we have evaluated the

performance of all the validity indexes on a SEED dataset for different values

of c = [cmin, ..., cmax]; cmax =
√
n ≈ 14. It is observed that the proposed V IDSO

index achieves the optimal number of clusters at c = 3. Similarly, VCWB attains

the optimal value at c = 3. On the contrary, the VPC and VPE indexes [91]

reaches the minimum at c = 2, and vOS index [95] indicates its minimum at

c = 14. According to the reported results, the best partitioning of the data is

achieved with 3 clusters so c = 3 could be considered as the optimal number of

clusters for SEED dataset.

Comparison of proposed validity index with other indexes on GLASS

dataset

In this section, the V IDSO index is compared with the other cluster validity in-

dexes in terms of the optimal number of clusters identified for GLASS dataset.

The scatter plot of GLASS dataset is presented in Figure 3.4(e). The per-

formance of V IDSO index is evaluated by executing it for different values of

c = [cmin, ..., cmax]; cmax =
√
n ≈ 14 and identified that it achieves the optimal

Figure 3.8: Comparison of cluster validity indexes on SEED dataset at m = 2.0.

64

CHAPTER 3. CLUSTER VALIDITY INDEX

Figure 3.9: Comparison of cluster validity indexes on GLASS dataset atm = 2.0.

value at c = 4. The similar observation can be drawn from Figure 3.9, and it

clearly shows the presence of 4 clusters with higher compactness, lesser overlap,

and maximum separation. The performance of V IDSO index when compared

with VCWB index [93], it shows that it achieves the optimal value at c = 4.

On the other hand, the VPC and VPE indexes [91] attain the minimum value at

c = 2 and vOS index [95] indicating the minimum value at c = 14. The main

problem with VPE index is that it monotonically increases with c whereas the

VPC and vOS indexes monotonically decreases with c, so unable to capture the

underlying structure of dataset appropriately. Therefore, the optimal number

of clusters cannot be rated based on these three validity indexes. Thus, the

optimal number of clusters identified by V IDSO and VCWB indexes can be only

measured at c = 4 for GLASS dataset.

Comparison of proposed validity index with other indexes on BUPA

dataset

In this section, we discuss the optimal number of clusters identified by the

proposed V IDSO index in comparison with other cluster validity indexes for

BUPA dataset. The scatter plot of BUPA dataset in two-dimensional space

is shown in Figure 3.4(f). In Figure 3.10, the performance of V IDSO index is

evaluated for different values of c = [cmin, ..., cmax]; cmax =
√
n ≈ 18 and it is

identified that the optimal value is reached at c = 2. The V IDSO index when

compared with the other indexes, i.e., VPC and VPE, they also attain the optimal

value at c = 2. On the other hand, the other two indexes, i.e., VCWB and vOS

achieves the minimum value of c at 5 and 18. Figure 3.4(f), clearly indicates the

presence of two clusters with maximum compactness, lesser overlap, and higher

65

3.3. EXPERIMENTAL EVALUATION

Figure 3.10: Comparison of cluster validity indexes on BUPA dataset at m =
2.0.

separation. Thus, the optimal number of clusters identified by V IDSO, VPC , and

VPE index is reached at c = 2.

Reliability analysis of proposed validity index in comparison with

other indexes

As suggested by Pal and Bezdek [74], the reliability of validity index is judged

when the optimal number of clusters identified by the validity index remains

unaffected with the change in m values. Pal and Bezdek also suggested for

m ∈ [1.5, 2.5], the fuzzy clustering algorithm generates the best results. In this

section, we have reported the results by investigating the reliability of V IDSO

index in comparison with other indexes for six different datasets. The results

in terms of an optimal number of clusters are reported for each value of m ∈

[1.5, 2.5] with a step size of 0.2 by varying c between cmin to cmax. Tables 3.1(a),

3.1(b), and 3.1(f) present the results of IRIS, WINE, and BUPA datasets. The

results emphatically show that for all the values of m, the V IDSO, VPC , and VPE

are the only indexes which correctly identify the presence of an optimal number

of clusters at c = 2. On the other hand, the number of clusters reported by the

VCWB and vOS indexes changes with a change in m. The results show that the

proposed index in addition to other two indexes, i.e., VPC and VPE are considered

reliable for IRIS, WINE, and BUPA datasets over other compared indexes. The

similar observation is drawn in case of VEHICLE, SEED, and GLASS datasets

from Tables 3.1(c), 3.1(d), and 3.1(e) which shows that V IDSO is the only index

that correctly identifies the optimal number of clusters for all three datasets on

different values ofm in comparison with other indexes. Furthermore, the optimal

66

CHAPTER 3. CLUSTER VALIDITY INDEX

Table 3.1: Identification of the optimal number of clusters (c) for different values
of m ∈ [1.5, 2.5] with a step size of 0.2.

(a) IRIS

m VPC VPE VCWB vos V IDSO

1.5 2 2 2 12 2
1.7 2 2 2 12 2
1.9 2 2 2 12 2
2.1 2 2 2 12 2
2.3 2 2 3 12 2
2.5 2 2 3 12 2

(b) WINE

m VPC VPE VCWB vos V IDSO

1.5 2 2 2 11 2
1.7 2 2 2 13 2
1.9 2 2 2 12 2
2.1 2 2 2 13 2
2.3 2 2 4 13 2
2.5 2 2 4 13 2

(c) VEHICLE

m VPC VPE VCWB vos V IDSO

1.5 2 2 3 29 3
1.7 2 2 3 29 3
1.9 2 2 3 29 3
2.1 2 2 6 29 3
2.3 2 2 20 29 3
2.5 2 2 22 29 3

(d) SEED

m VPC VPE VCWB vos V IDSO

1.5 2 2 2 14 3
1.7 2 2 2 14 3
1.9 2 2 2 14 3
2.1 2 2 3 14 3
2.3 2 2 3 14 3
2.5 2 2 3 14 3

(e) GLASS

m VPC VPE VCWB vos V IDSO

1.5 2 2 4 13 4
1.7 2 2 3 14 4
1.9 2 2 4 14 4
2.1 2 2 4 14 4
2.3 2 2 4 14 4
2.5 2 2 4 14 4

(f) BUPA

m VPC VPE VCWB vos V IDSO

1.5 2 2 3 18 2
1.7 2 2 3 18 2
1.9 2 2 5 18 2
2.1 2 2 5 18 2
2.3 2 2 7 18 2
2.5 2 2 11 18 2

number of clusters identified by proposed index does not change with a change

in m values. Therefore, V IDSO index is considered as more effective and reliable

over other indexes.

3.4 Summary

In this chapter, we have presented the design of novel cluster validity index,

which integrates the three proposed measures namely intra-cluster compact-

ness, inter-cluster separation based on the fuzzy set, and inter-cluster overlap.

The purpose of this work is to find an optimal number of clusters and the corre-

sponding fuzzy partition for the validation of fuzzy clustering. In the proposed

intra-cluster compactness measure, we compute the relative dispersion of data

points in all the dimensions and try to minimize the maximum dispersion to in-

crease the overall compactness within the clusters. In the proposed inter-cluster

67

3.4. SUMMARY

separation measure based on the fuzzy set, we compute the distance between the

centroids of fuzzy clusters and try to maximize the distance between the cen-

troid of less separated fuzzy clusters to increase the overall separation among

all pairs of fuzzy clusters. In the proposed inter-cluster overlap measure, we

compute the degree of overlap between the fuzzy clusters. In this, we minimize

the degree of overlap among the highly overlapped fuzzy clusters to reduce the

overall overlapping among the fuzzy partitions. Hence, the optimal number of

clusters determined by the proposed validity index for fuzzy clustering is ex-

pected to have high compactness, less degree of overlap, and greater separation

between the fuzzy clusters.

The results show that the V IDSO index outperforms over other indexes by

correctly identifying the optimal number of clusters and the corresponding fuzzy

partitions. Moreover, the optimal number of clusters determined by the V IDSO

index does not change with a change in values of m. Thus, we conclude that

the V IDSO index is considered as the reliable index and thus enhances the fuzzy

clustering capability drastically.

68

Chapter 4

Methodologies for Selection of

Optimal Parameters in Fuzzy

Clustering

4.1 Introduction

As discussed in the previous chapter, for the selection of the optimal number

of clusters (c), a novel cluster validity index is designed. There are a few more

parameters on which clustering efficiency depends, i.e., the fuzzifier (m), and

the initial cluster centers (V). A random selection of these parameters leads

fuzzy clustering to trap into the problem of local optima. The fuzzifier controls

the extent of sharing among fuzzy clusters [22]. It is a key parameter, which

significantly affects the result of fuzzy clustering. Although, there have been

many studies for the selection of m in fuzzy clustering [24, 25, 74, 82, 101, 102],

Pal and Bezdek [74], suggested that an optimal value of m lies in the range of

[1.5, 2.5]. But, there is still not one generalized form of criteria for selection of

the optimal value of m in this range.

Another important factor in fuzzy clustering is the selection of the optimal

number of clusters. In cluster analysis, determining the number of clusters

plays an important role in obtaining practical and sound results. Many cluster

validity indexes exist for the selection of the optimal number of clusters [76,92–

98] and some of these indexes also assist in selecting the optimal value of fuzzifier.

However, these validity indexes do not take into consideration all the necessary

69

4.2. PROPOSED WORK

measures of cluster analysis. One more important factor in fuzzy clustering is

the selection of initial cluster centers as it has a direct impact on the formation

of final clusters. Many hybrid approaches [26,27,42,43,103,104,160] exist for the

selection of initial cluster centers. In spite of the wide popularity of above-stated

approaches and applications, initialization of parameters for fuzzy clustering is

still a challenging task.

So, there is an immense need to find the appropriate value of m, c, and V by

using the quantum computing to resolve the local convergence problem of fuzzy

clustering. For this reason, we propose two algorithms, i.e., the QIE-FCM, and

the EQIE-FCM. The proposed approaches utilize the quantum computing in

fuzzy clustering to find the optimal value of parameters during the clustering

process. The advantage of using the quantum computing is that it provides

better characteristics of population diversity in comparison with other represen-

tations due to a linear superposition of states probabilistically. Thus, it provides

a large search space for the selection of optimal solution by maintaining a proper

balance between exploration and exploitation [107].

4.2 Proposed Work

This section presents details of two proposed algorithms, i.e., the QIE-FCM and

the EQIE-FCM designed for finding the optimal parameters of fuzzy clustering.

In both the proposed algorithms, i.e., QIE-FCM and EQIE-FCM the evolution-

ary quantum computing concept is utilized. The motivation behind using the

evolutionary quantum computing concept is to evolve the parameters of fuzzy

clustering. This concept uses a quantum bit in place of a classical bit to evolve

the parameters. The evolutionary quantum computing concept is characterized

by the representation of the individual, the evaluation function, and the pop-

ulation dynamics. The quantum bit Q is made up of a string of qubits and

can represent a linear superposition of states in a search space probabilistically.

Thus quantum bit representation has a better characteristic of population di-

versity (exploration) than other representations. Here, quantum rotational gate

is also used as a variation operator to drive the individuals towards better so-

lutions and eventually toward a single state. As the probability of each qubit

approaches either 1 or 0 by the quantum rotational gate, the qubit individual

70

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

converges to a single state. Thus, it helps to achieve the exploitation. By this in-

herent mechanism, quantum evolutionary concept maintains a balance between

exploration and exploitation.

In the proposed QIE-FCM algorithm, we utilize the concept of quantum

computing [107] for evolving the parameter m of the fuzzy clustering in sev-

eral generations (gmax). In this, the obtained value of m in each generation (g)

through the observation process is utilized for the execution of fuzzy cluster-

ing which helps to achieve the exploration. Within each generation, the fuzzy

clustering is executed multiple times with the obtained value of m by varying

the values of c. In this, the local and global fitness functions are designed by

using a cluster validity index (V IDSO) [161] which evaluates the fitness of every

fuzzy partition obtained for each value of c. The minimum value of the fitness

function indicates the optimal number of clusters corresponding to the value

of m obtained in each generation. Then a different value of m is evolved in

each generation by using the quantum rotational gate [109]. The update of the

quantum bit of fuzzifier with the quantum rotational gate provides a proper ex-

ploitation during evolution. Thus, by comparing the fitness values of the local

and global functions in each generation, a proper balance between exploration

and exploitation is achieved. This comparison helps to shift the quantum bit in

a proper direction where the optimal value of the parameter can be achieved.

Hence, after several generations of evolution, the proposed algorithm gives the

optimal number of clusters (cbest) and the best value of fuzzifier (mbest) from

a large search space by maintaining a proper balance between exploration and

exploitation. The limitation of this approach is a random selection of initial

cluster centers. Due to this, the proposed QIE-FCM algorithm takes a higher

number of iterations to determine the cluster center locations, which leads to a

slow convergence problem.

Next, we propose an enhancement of the QIE-FCM algorithm, referred to as

the EQIE-FCM algorithm. In this approach, we utilized the quantum computing

[107] in fuzzy clustering to evolve the parameters, i.e., m and V from a large

search space in gmax generations. In each generation, the obtained value of

m and V (for each c) through the observation process helps to achieve the

exploration which is utilized for the execution of fuzzy clustering. Within the

generation, the fuzzy clustering process is executed multiple times with the

71

4.2. PROPOSED WORK

obtained value of m and V (for each m the V is varied for every value of c).

In this, the local and global fitness functions are designed by using the cluster

validity index V IDSO [161], which is used to evaluate the fitness of every partition

obtained for each value of c. The parameters m and V in each generation

are evolved by updating quantum bits of these parameters using the quantum

rotational gate given by Han and Kim [109]. The update of quantum bits of these

parameters with the quantum rotational gate provides a proper exploitation

during evolution. Thus, by comparing the global fitness function with local

fitness function in each generation, a proper balance between exploration and

exploitation is achieved. This comparison of fitness functions in each generation

helps to shift the quantum bits in a proper direction where the optimal value can

be achieved. After executing the EQIE-FCM algorithm for several generations,

it gives the mbest, cbest and the best location of cluster centers (vbest) from a

large search space by maintaining a proper balance between exploration and

exploitation. The details of the same are presented next.

4.2.1 Representation of Fuzzifier and Initial Cluster Cen-

ters in Qubits

In this section, we have used an evolutionary principle of quantum computing

to represent the fuzzifier and initial cluster centers in terms of a quantum bit.

The preliminaries of quantum computing are already discussed in sections 2.4,

The fuzzifier in each generation is represented in terms of a quantum bit defined

as follows:

M g = Qg (4.1)

where M g is a quantum representation of fuzzifier for a generation and Qg

represents a quantum bit for a generation. Here, Qg is represented in terms of

only two-qubits which is defined as follows:

Qg = (qg1 |q
g
2) (4.2)

where qgk denotes a kth qubit for a generation, k = 1, ..., h, and h = 2, h represents

the total number of qubits in a quantum bit. The Eq. (4.2) can be rewritten

72

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

using Eqs. (2.18) and (2.19) as follows:

Qg = 〈αg
1|α

g
2〉 (4.3)

where αg
k is a complex number representing the probability of a kth qubit for

generation g, k = 1, ..., h, and h = 2. Here, a quantum bit is represented

in terms of only two-qubits. This is because the best value of m has to be

found within the range of [1.5, 2.5] as suggested by Pal and Bezdek [74]. It is a

single dimension real value that can be efficiently searched from four subspaces

generated by the probabilistic representation of two-qubits of a quantum bit,

which is already discussed in section 2.4.

For each value of m represented in terms of a quantum bit for generation g,

the value of c is initialized in the range of [cmin, ..., cmax]. In general, a set of

initial centers for c clusters is represented as follows:

V g = {vg1 , v
g
2 ,, v

g
c} (4.4)

where V g denotes a set of initial cluster centers for a generation, vgj denotes the

jth cluster center for a generation, and j = 1, 2, ..., c. vgj ∈ Rd represents a jth

cluster center in a generation consists of d dimensions defined as follows:

vgj = {vg1j, v
g
2j,, v

g
dj} (4.5)

where vgfj represents a f th dimension of the jth cluster center in a generation and

f = 1, 2, .., d. As stated above, the parameter m contains a single dimension real

value. Therefore, a quantum bit consists of only two qubits given in Eq. (4.2)

is enough to represent the parameter m in a generation g as shown in Eq. (4.1).

Here, a set V g is given in Eq. (4.4) consist of c cluster centers and each jth

cluster center for a generation consist of d-dimensions as shown in Eq. (4.5).

Thus, each jth cluster center in f th dimension in a generation, i.e., vgfj contains

a single dimension real value. Therefore, a quantum bit consists of two-qubits

are enough to represent a jth cluster center in f th dimension where f = 1, 2, ..., d.

Hence, multiple quantum bits are required to represent each jth cluster center

in a generation, i.e., vgj and a set V g. However, the jth cluster center in f th

dimension for a generation is represented in terms of a quantum bit, let us

73

4.2. PROPOSED WORK

assume a different notation for this denoted as (v
′′
)gfj and it is defined as follows:

(v
′′
)gfj = Qg

fj (4.6)

where (v
′′
)gfj is a quantum representation of the jth cluster center in f th di-

mension for a generation, and Qg
fj is a quantum bit of the jth cluster center in

f th dimension for a generation. Here, Qg
fj consists of only two-qubits, and it is

represented as follows:

Qg
fj = (qgfj)1|(q

g
fj)2 (4.7)

As discussed above, the formulation of Eq. (4.3), similarly the Eq. (4.7) can be

rewritten using Eqs. (2.18) and (2.19) and is redefined as follows:

Qg
fj = 〈(αg

fj)1|(α
g
fj)2〉 (4.8)

where (αg
fj)k is a complex number representing the probability of a kth qubit

of jth cluster center in f th dimension for a generation, such that k = 1, ..., h,

and h = 2. Here, a quantum bit Qg
fj is represented in terms of only two-qubits.

This is because jth cluster center in f th dimension represents a single real value

which can be sufficiently found from four subspaces obtained by the two-qubits

representation of a quantum bit as discussed in section 2.4.

It is important to notice that both the proposed algorithms, i.e., the QIE-

FCM and the EQIE-FCM execute on a classical computer. Therefore, it is

required that a quantum bit of M g and (v
′′
)gfj has to be converted into a real-

coded value. This conversion is carried out with the help of observation process

that helps in achieving the exploration [110]. The preliminaries of observation

process are given in section 2.4, and detailed description is showing the conver-

sion of a quantum bit into a real-coded value is presented next.

4.2.2 Observation Process

In general, we present the observation process showing the conversion of a quan-

tum bit Qg into real-coded value (Q
′
)g. The same procedure is applicable for the

conversion of a quantum bit of M g and (v
′′
)gfj into real-coded value represented

as mg and vgfj, respectively. The observation process starts with the selection

of a random number vector for a generation, i.e., ρg, where ρg = [ρg1ρ
g
2]. The

74

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

random number vector selected corresponds to a quantum bit Qg = (qg1 |q
g
2) or

Qg = 〈αg
1|α

g
2〉 given in Eqs. (4.2) and (4.3) or corresponds to a quantum bit

Qg
fj = (qgfj)1|(q

g
fj)2 or Qg

fj = 〈(αg
fj)1|(α

g
fj)2〉 given in Eqs. (4.7) and (4.8). Then,

a further mapping is done by generating a corresponding bit in a binary vector

for a generation, i.e., bg where bg = [bg1, b
g
2] and the Gaussian random number

generator (grg) with a mean value µg
k and variance σg

k for a generation repre-

sented as grg(µg
k, σ

g
k), where k = 1, .., h, and h = 2. Using the random number

vector and a quantum bit, the binary vector bg is generated as follows:

if (ρgk ≤ (αg
k)2) then bgk = 1 else bgk = 0.

Now, with the help of binary vector and the Gaussian random number generator,

the real-coded value is selected using a formula bin2dec(bg) + 1.

The observation process is presented in terms of pseudo-code showing the

conversion of a quantum bit into a real-coded value for a generation (g) repre-

sented as (Q
′
)g. This conversion is presented as follows:

Observation Process()

Begin

Step-1: Initialize a quantum bit Qg, a random number vector ρg and link = 0.

for k := 1 to 2 step 1 do

Qg = αg
k; 0 ≤ αg

k ≤ 1

ρgk = rand;

end for

Step-2: for k := 1 to 2 step 1 do

if ρgk ≤ (αg
k)2

bgk = 1;

else

bgk = 0;

end if

end for

Step-3: link = bin2dec(bg) + 1

if link ∼= 0

75

4.2. PROPOSED WORK

k = link;

(Q
′
)g = grg(µg

k, σ
g
k);

end if

End

return (Q
′
)g

Once, the observation process is completed, a real-coded value for the fuzzifier

mg is represented as follows:

mg = (Q
′
)g (4.9)

Similarly, the real-coded value of cluster centers vgfj is represented as follows:

vgfj = (Q
′
)g (4.10)

where f = 1, 2, .., d and j = 1, 2, .., c such that the real-coded values of Eqs. (4.4)

and (4.5) are obtained using Eq. (4.10).

Now, the real-coded value of mg is used in both the proposed algorithms, i.e.,

the QIE-FCM and the EQIE-FCM. Similarly, the real-coded value of cluster cen-

ters vgfj is used in the EQIE-FCM algorithm. In both the proposed algorithms,

a different value of the fuzzifier and initial cluster centers are evolved in each

generation by using the concept of the quantum rotational gate [109], which is

presented next.

4.2.3 Working of Quantum Rotational Gate

The quantum rotational gate [109] is used to update the qubits of fuzzifier

and cluster centers in each generation so that a proper exploitation among the

solutions can be achieved. The update of qubits with the quantum rotational

gate is defined as follows:

αg+1
k = [(αg

k ∗ cos(∆θ))− (
√

1− (αg
k)2 ∗ sin(∆θ))] (4.11)

where rotational angle or angular displacement (∆θ) provides a proper angle for

rotating qubits so that we can get proper exploitation for selecting the appro-

priate value of a new quantum bit. This concept of the quantum rotational gate

is used in the proposed algorithms to update qubits in each generation. Thus,

76

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

the proposed algorithms, i.e., the QIE-FCM and the EQIE-FCM is detailed

subsequently.

4.2.4 Quantum-inspired Evolutionary Fuzzy Clustering

Algorithm

This section discusses the use of quantum computing concept in the proposed

QIE-FCM algorithm. In this algorithm, the value of fuzzifier is evolved in each

generation by using the evolutionary principle of quantum computing. In the

proposed algorithm, qubits of the fuzzifier in each generation are evolved by

updating it using a concept of the quantum rotational gate [109] as presented

in Eq. (4.11). In this equation, ∆θ is calculated on the basis of two fitness func-

tions, i.e., global function (FGbest(mbest, cbest)) and local function (F g
Lbest(m

g, c))

and it is also selected on the basis of conditions presented in Table 4.1. How-

ever, formulations of these fitness functions are designed by using the V IDSO

index [161]. The formulation of local fitness function ((F g
Lbest(m

g, c)) is given in

Eq. (4.16) whereas the global fitness function FGbest(mbest, cbest) is determined

as follows:

FGbest(mbest, cbest) = min(FGbest(mbest, cbest), F
g
Lbest(m

g, c)) (4.12)

where, F g
Lbest(m

g, c) is a minimum value of the fitness function determined cor-

responding to mg by varying the value of c = [cmin, ..., cmax]. The global fitness

function, i.e., FGbest(mbest, cbest) is initially assumed to be infinity (∞) and is

computed by storing the best value of local fitness function obtained among all

the generations. Thus, the global fitness function generates the best value of

fuzziness parameter and the optimal number of clusters denoted as mbest and

cbest, respectively.

In this, the value of FGbest(mbest, cbest) and F g
Lbest(m

g, c) are derived cor-

responding to the value of mg, which is generated through a quantum bit

(M g). Also, the observation process shows that each qubit αg
k is associated

with a binary bit bgk. Therefore a mapping is done between FGbest(mbest, cbest),

F g
Lbest(m

g, c), and bgk to update each qubit. The values of FGbest(mbest, cbest) and

F g
Lbest(m

g, c) is obtained corresponding to bglobalk and bgk where bglobalk and bgk is a

binary bit corresponding to FGbest(mbest, cbest) and F g
Lbest(m

g, c), respectively. If

77

4.2. PROPOSED WORK

Table 4.1: Parameters for qubits updation of the QIE-FCM algorithm.

bgk bglobalk FGbest(mbest, cbest) > F g
Lbest(m

g, c) ∆θ

0 0 false 0

0 0 true 0

0 1 false −0.03 ∗ Π

0 1 true 0

1 0 false 0

1 0 true 0.03 ∗ Π

1 1 false 0

1 1 true 0

the value of F g
Lbest(m

g, c) obtained in the current generation is worse than the

value of FGbest(mbest, cbest) obtained in the previous generation, and state of bgk

is zero in the current generation, and bglobalk is one, then decreasing the proba-

bility of αg
k to zero may produce the worst result. Therefore, to update αg

k, it is

required that ∆θ must be negative. On the contrary, if the value of F g
Lbest(m

g, c)

obtained in the current generation is better than the value of FGbest(mbest, cbest)

obtained in the previous generation, and state of bgk is one in the current itera-

tion and bglobalk is zero, then increasing the probability of αg
k to one may produce

the worst result. Therefore, to update αg
k, ∆θ must be positive. In other cases,

∆θ remains zero. The value of ∆θ must be selected in such a way so that it

takes a minimum number of iterations to cover a maximum number of values of

αg
k in the range of (0, 1). Hence, according to Han and Kim [109], ∆θ must be

initialized between [0.01× π, 0.05× π].

From preventing the quantum bit αg
k from attaining values 0 or 1, following

constraints are applied:

αg
k =

√
γ, if αg

k <
√
γ

αg
k if

√
γ ≤ αg

k ≤
√

1− γ
√

1− γ if αg
k >
√

1− γ

(4.13)

where the limiting parameter γ is assigned a very small value (approximately

approaching to zero) so that it can cover maximum values in the range of (0, 1).

Next, we present the working of proposed QIE-FCM algorithm which is

executed for gmax generations where gmax is set to 100 to find the best value of

fuzzifier and the optimal number of clusters. As suggested by Pal and Bezdek

78

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

[74], an appropriate value of m lies in the interval of [1.5, 2.5]. Therefore, the

QIE-FCM algorithm is executed for only 100 generations because the values

lying within the interval [1.5, 2.5] are sufficiently explored in 100 generations.

It means that a significant exploration and exploitation is achieved within 100

generations. If the QIE-FCM algorithm is executed for a higher number of

generations, i.e. greater than 100, then it is not changing the value of fuzzifier

at all and unnecessarily increasing the computational overhead. The QIE-FCM

algorithm is presented next in the form of Algorithm 4.1 .

Algorithm 4.1 Algorithm for Quantum-inspired Evolutionary Fuzzy Cluster-
ing

1: Input X = {x1, x2, ..., xn} and use Table 4.2 to initialize the parameters.
2: Output FGbest(mbest, cbest).
3: Begin
4: Set the maximum number of generations gmax to 100, and the current gen-

eration number g is initialized as 1.
5: while g ≤ gmax do
6: Initialize m for a generation in the form of a quantum bit using Eq. (4.1).
7: Call observation process: To obtain a real-coded value (mg)

corresponding to a quantum value M g using Eq. (4.9).
8: Initialize parameters related to the fuzzy clustering using Table 2.1.
9: for c := cmin to cmax step 1 do

10: Execute the fuzzy clustering stated in Algorithm 2.2 for each value
of c.

11: end for
12: Compute the objective function V IDSO(c, U g) [161] using Eq. (3.23) to

evaluate the fitness of obtained partitions for each value of c corresponding
to mg.

13: Compute the summation of V IDSO(c, U g) as follows:

V IsumDSO(c, U g) =
cmax∑

c=cmin

V IDSO(c, U g) (4.14)

14: for c := cmin to cmax step 1 do
15: Compute the normalized value of V IDSO(c, U g) for each value of c as

follows:

V INormalized
DSO (c, U g) =

V IDSO(c, U g)

V IsumDSO(c, U g)
(4.15)

16: end for
17: Compute the local fitness value for a generation, i.e., F g

Lbest(m
g, c) as

follows:
F g
Lbest(m

g, c) = min
cmin≤c≤cmax

[V INormalized
DSO (c, U g)] (4.16)

18: Compute FGbest(mbest, cbest) using Eq. (4.12).
19: Update quantum bit (M g) by using Table 4.1, Eqs. (4.11) and (4.13).

79

4.2. PROPOSED WORK

Algorithm 4.1 (Continued)

20: Update g = g + 1.
21: end while
22: End

Table 4.2: Specification of parameters of QIE-FCM algorithm.

Parameters Description Values
σ Variance 0.6
∆θ Rotational angle 0.03× π
γ Limiting parameter 0.01
gmax Maximum number of generations 100
FGbest(mbest, cbest) Global fitness function ∞

One of the major limitation of the proposed QIE-FCM algorithm is that

in this, the location of initial cluster centers is chosen randomly. Due to this,

the QIE-FCM algorithm converges slowly by taking a higher number of iter-

ations to determine the cluster center locations. Therefore, to overcome the

drawback of the QIE-FCM algorithm, we proposed another algorithm named as

Enhanced Quantum-inspired Evolutionary Fuzzy Clustering Algorithm (EQIE-

FCM), which is discussed next.

4.2.5 Enhanced Quantum-inspired Evolutionary Fuzzy Clus-

tering Algorithm

In the proposed EQIE-FCM algorithm, we apply the evolutionary quantum

computing to evolve two parameters, i.e., the fuzzifier and initial cluster centers.

In this algorithm, the qubits of fuzzifier and initial cluster centers are evolved

in each generation. To do this, the quantum rotational gate [109] is used which

plays an important role in quantum inspired approaches. The quantum bits of

these parameters are updated using Eqs. (4.11) and (4.13). In these equations,

the rotational angle (∆θ) is calculated by using the conditions presented in

Table 4.3.

Next, we present the working of proposed EQIE-FCM algorithm, which is

also executed for gmax generations, similar to the proposed QIE-FCM algorithm.

The step-wise procedure of the EQIE-FCM algorithm for the selection of the

optimal number of clusters (cbest), the best value of fuzzifier (mbest), and the

best location of initial cluster centers (vbest) is presented next in the form of

Algorithm 4.2 .

80

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

Algorithm 4.2 Algorithm for Enhanced Quantum-inspired Evolutionary Fuzzy
Clustering

1: Input X = {x1, x2, ..., xn} and use Table 4.4 to initialize the parameters.
2: Output FGbest(mbest, cbest).
3: Begin
4: Current generation g is initialized as 1 and set the maximum number of

generations gmax to 100.
5: while g ≤ gmax do
6: Initialize m for a generation in terms of quantum bits using Eq. (4.1).
7: Call observation process: To obtain the real-coded value mg

corresponding to the quantum value M g using Eq. (4.9).
8: Initialize parameters related to fuzzy clustering using Table 2.1.
9: for c := cmin to cmax step 1 do

10: Initialize the cluster centers in terms of a quantum bit using Eq. (4.6).
11: Call observation process: To obtain the real-coded value vgfj

corresponding to the quantum value (v
′′
)gfj using Eq. (4.10).

12: Execute the fuzzy clustering stated in Algorithm 2.2 for each value
of c.

13: end for
14: Compute the V IDSO index [161] using Eq. (3.23) which is used as the

objective function V IDSO(c, U g) in this algorithm to evaluate the fitness
of obtained partitions for all the values of c corresponding to mg.

15: Compute the summation of V IDSO(c, U g) using Eq. (4.14).
16: for c := cmin to cmax step 1 do
17: Compute the normalized value of V IDSO(c, Ug) for each value of c

using Eq. (4.15).
18: Store the fitness of fuzzy partition corresponding to each c in F g

c

defined as follows:

F g
c = V INormalized

DSO (c, U g) (4.17)

19: if (F g
c ≤ F gbest

c) then
20: F gbest

c = F g
c

21: vbest = V g

22: Update the quantum bit of (v
′′
)gfj by using Table 4.3, Eqs. (4.11) and

(4.13).
23: else
24: F gbest

c =F gbest
c

25: vbest = vbest
26: Update the quantum bit of (v

′′
)gfj by using Table 4.3, Eqs. (4.11) and

(4.13).
27: end if
28: end for
29: Compute the local fitness value for generation (g), i.e., F g

Lbest(m
g, c)

using Eq. (4.16).
30: Compute FGbest(mbest, cbest) using Eq. (4.12) to identify the mbest, cbest

and the vbest from the overall generations.

81

4.3. EXPERIMENTAL EVALUATION

Algorithm 4.2 (Continued)

31: Update the quantum bit of (M g) by using Table 4.3, Eqs. (4.11) and
(4.13).

32: Update g = g + 1.
33: end while
34: Return mbest, cbest and vbest.
35: End

Table 4.3: Parameters for qubits updation of the EQIE-FCM algorithm.

bgk bglobalk FGbest(mbest, cbest) > F g
Lbest(m

g, c) ∆θ
or

F gbest
c > F g

c

0 0 false 0
0 0 true 0
0 1 false −0.03 ∗Π
0 1 true 0
1 0 false 0
1 0 true 0.03 ∗Π
1 1 false 0
1 1 true 0

4.3 Experimental Evaluation

In this section, we present the datasets and the experimental settings used in

experimental evaluations. We compare the performance of proposed QIE-FCM

algorithm with standard validity indexes, i.e., Rezaee et al. index (VCWB) [93]

and Kim and Lee index (vOS) [95]. This is because the proposed QIE-FCM

algorithm uses V IDSO index in the fitness function. Therefore, to compare

the fitness value, it is good to report the comparison of the proposed QIE-

FCM algorithm with the other cluster validity indexes which also evaluates the

fitness value using an almost similar kind of measures. Thus, other compared

indexes also evaluate the fitness value based on the combination of compactness,

separation, and overlap measures like our proposed V IDSO index. Thus, for

reporting these comparisons, other indexes are also executed for 100 independent

runs using the similar value of fuzzifier which is taken in each generation of the

QIE-FCM algorithm. Furthermore, the comparison of the one more proposed

EQIE-FCM algorithm is done with the proposed QIE-FCM algorithm [162].

Furthermore, the comparisons of both the proposed algorithms, i.e., QIE-FCM

and EQIE-FCM is done with other evolutionary clustering algorithms [42, 43,

104].

82

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

Table 4.4: Specification of parameters of EQIE-FCM algorithm.

Parameters Description Values
σ Variance 0.6
∆θ Rotational angle 0.03× π
γ Limiting parameter 0.01
gmax Maximum number of generations 100
vbest Best location of cluster centers φ
F gbest
c Global best fitness for cth cluster ∞
FGbest(mbest, cbest) Global best fitness function ∞

4.3.1 Datasets and Experimental Settings

The effectiveness of QIE-FCM algorithm is evaluated on six well-known datasets,

i.e., IRIS, WINE, GLASS, VEHICLE, SEED, and BUPA. Also, the performance

of the EQIE-FCM algorithm is evaluated on all these datasets along with the

PID dataset. These datasets are taken from the UCI Machine Learning repos-

itory [154]. The detailed description of these datasets is given in Appendix A.

All the experiments are carried out on Intel(R) Xeon(R) E5-1607 v3 @ 3.10GHz

x 4, workstation PC with 64 GB of memory and running on the Windows 7

Professional operating systems. The implementation is done in the MATLAB

computing environment and executed on MATLAB version R2014a. The set-

ting of various parameters for the QIE-FCM algorithm and the EQIE-FCM

algorithm is presented in Tables 4.2 and 4.4.

4.3.2 Experimental Results and Discussion

In this section, first the results of a comparative analysis for the QIE-FCM

algorithm is presented, and then we show the result of comparative analysis of

the EQIE-FCM algorithm.

Comparative result of QIE-FCM algorithm

In this section, the performance of proposed QIE-FCM algorithm is evaluated

in comparison with two well-known fuzzy based clustering indexes [93, 95]. In

addition to this, the superiority of QIE-FCM algorithm is also investigated by

comparing it with three evolutionary clustering algorithms [42, 43, 104]. The

efficacy of QIE-FCM algorithm is judged in terms of the best value of fitness

function, identification of the best value of fuzzifier, and determination of the

83

4.3. EXPERIMENTAL EVALUATION

optimal number of clusters, which is discussed next.

Best fitness value analysis

In Figure 4.1, for each dataset, the best fitness value of the proposed QIE-

FCM algorithm is reported in comparison with the VCWB [93] and vOS [95]

indexes on different values of the fuzzifier obtained in 100 generations. The

reason for comparing the proposed QIE-FCM algorithm with the VCWB and vOS

indexes is that in the QIE-FCM algorithm, the fitness functions are calculated

by using the V IDSO index [161] which is based on three important measures

such as compactness, separation, and overlap and thus evaluates the fitness of

obtained fuzzy partitions. The small value of the V IDSO index indicates the

best fitness value which leads to better fuzzy partitions. The compared indexes

are also based on the combination of these measures and evaluate the fitness.

So to compare our proposed approach in terms of appropriateness of proposed

V IDSO index, we compared with these two indexes in terms of fitness value.

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Values of m (fuzzifier)

F
itn

es
s

fu
nc

tio
n

QIE−FCM
V

cwb

V
os

Determination of best fuzzifier

m
best

=2.0428 m
best

=2.2531

m
best

=2.1858

(e) SEED Dataset

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Values of m (fuzzifier)

F
itn

es
s

fu
nc

tio
n

QIE−FCM
V

cwb

V
os

m
best

 = 2.2531

(f) BUPA Dataset

m
best

 = 2.0428

m
best

 = 2.2335

Determination of best fuzzifier

Figure 4.1: Comparison of the QIE-FCM algorithm with other cluster validity
indexes indicating the best value of fuzzifier for different datasets.

84

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

Since our approach is working on evolutionary quantum computing principle,

therefore it is giving better fitness value as compared these two indexes. It

is observed from Figure 4.1, the best fitness value achieved by the QIE-FCM

algorithm on IRIS dataset is at mbest = 1.523, that is comparatively 29.45

times and 3.23 times lesser than the best fitness value obtained by the VCWB at

mbest = 1.5154 and vOS at mbest = 2.2531. On WINE dataset, the QIE-FCM

algorithm achieved best fitness value at mbest = 1.6605 that is in comparison 3.44

times and 1.43 times lesser than the best fitness value attained by the VCWB

and vOS at mbest = 1.5154. Furthermore, for GLASS dataset, the QIE-FCM

algorithm achieves the best fitness value at mbest = 1.5154, that is comparatively

96 times and 3.9 times lesser the best fitness value achieved by the VCWB at

mbest = 1.6605 and vOS at mbest = 1.6605. On VEHICLE dataset, the best

fitness value attains by the QIE-FCM algorithm is at mbest = 1.5154, that is

in comparison 1.33 times lesser than the best fitness value obtained by the vOS

at mbest = 2.5045 and 64.47 times higher than the best fitness value obtained

by the VCWB at mbest = 2.2977. On SEED dataset, the QIE-FCM achieves the

best fitness value at mbest = 2.2531 which is in comparison 20.02 times and 14.74

times lesser than the best fitness value obtained by the VCWB at mbest = 2.1858

and vOS at mbest = 2.0428, respectively. On BUPA dataset, the best fitness

value achieved by the QIE-FCM is at mbest = 2.2531 which is comparatively

16.41 times and 4.22 times lesser than the fitness value attained by the VCWB at

mbest = 2.0428 and vOS at mbest = 2.2335, respectively. It can be seen from the

above-reported results that, the QIE-FCM algorithm achieves the better fitness

value in comparison with the VCWB and vOS indexes for IRIS, WINE, GLASS,

SEED, and BUPA datasets, respectively. But, in the case of VEHICLE dataset,

the QIE-FCM algorithm achieves the better fitness value only in comparison

with the vOS index.

Identification of number of clusters versus fuzzifier

As suggested by Pal and Bezdek [74], the fuzzy clustering achieves the best re-

sults for m ∈ [1.5, 2.5]. Furthermore, the fuzzy based approaches or the validity

indexes are considered reliable when the number of clusters identified by these

approaches is insensitive to change in values of fuzzifier. Therefore, in Figure 4.2

for each dataset, the number of clusters identified by the QIE-FCM algorithm

85

4.3. EXPERIMENTAL EVALUATION

Figure 4.2: Comparison of the QIE-FCM algorithm with other cluster validity
indexes in terms of the number of clusters for different datasets.

and the VCWB [93] and vOS [95] indexes on ten different values of m ∈ [1.5, 2.5]

by varying c from [cmin, ..., cmax]; cmin = 2; cmax =
√
n is reported. The perfor-

mance of the QIE-FCM algorithm is evaluated in comparison with the VCWB

and vOS indexes, respectively. This is because the QIE-FCM algorithm makes

use of the V IDSO index [161] to evaluate the fitness of fuzzy partitions, therefore,

86

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

it is necessary to evaluate the performance of the QIE-FCM algorithm in com-

parison with the VCWB and vOS indexes. In case of above-reported datasets, for

all values of m, the QIE-FCM algorithm always correctly identified the optimal

number of clusters which is similar to the number of clusters can be seen in the

distribution of data shown in Figure 3.4. Also, the number of clusters obtained

by the QIE-FCM algorithm is constant and does not change with a change in

m values. Therefore, the proposed QIE-FCM algorithm is considered reliable

because it always correctly identifies the number of clusters which are insensi-

tive to change in m. However, in the case of all six datasets for some values

of m, the VCWB index can correctly identify the number of clusters. Also, the

number of clusters identified by the VCWB index changes with a change in values

of m therefore, it is not considered reliable in validating the fuzzy partitions and

in predicting the number of clusters correctly. Similarly, for the above-stated

dataset, the vOS index is unable to identify the number of clusters correctly for

all the values of m. This is because vOS index monotonically decreases with in-

crease in c value, which makes it hard to detect the optimal number of clusters.

Thus, the optimal number of clusters cannot be rated based on the vOS index

and therefore it is not considered reliable in identifying the number of clusters

correctly with respect to m.

We can see from the results reported in Table 4.5 that, for all the six datasets,

the QIE-FCM algorithm always correctly identifies the optimal number of clus-

ters. It also identifies the best value of fuzzifier corresponding to the best value

of fitness function. In contrast, only on the IRIS, WINE, and SEED datasets,

the VCWB index [93] can correctly identify the optimal number of clusters. For

the above-reported datasets, the vOS index [95] is unable to identify the opti-

mal number of clusters correctly. Furthermore, for all six datasets, the VCWB

and vOS are unable to determine the best value of fuzzifier as a minimum value

of the fitness function achieved by these indexes is much higher than the fit-

ness value achieved by the QIE-FCM algorithm. Hence, it can be inferred from

the above-reported results that, the QIE-FCM algorithm outperforms over the

VCWB and vOS indexes in terms of various parameters. The value of fitness

function achieved by the QIE-FCM algorithm is comparatively much lesser than

other approaches. In addition to this, the above-reported results show that for

all six benchmark datasets, corresponding to different values of fuzzifier obtained

87

4.3. EXPERIMENTAL EVALUATION

Table 4.5: Comparison of QIE-FCM algorithm with other indexes in terms of
the best value of fuzzifier and the optimal value of number of clusters.

Datasets QIE-FCM VCWB vOS

mbest cbest fitness SD mbest cbest fitness SD mbest cbest fitness SD

value value value

IRIS 1.5230 2 0.0401 0.0985 1.5154 2 1.1784 1.4503 2.2531 12 0.1737 1.2922

WINE 1.6605 2 0.0108 0.0560 1.5154 2 0.0316 1.5768 1.5154 11 0.0127 2.0983

GLASS 1.5154 4 0.0143 0.0231 1.6605 3 1.3704 1.7483 1.6005 14 0.0612 1.3838

VEHICLE 1.5154 3 0.0129 0.0456 2.2977 16 0.0002 2.4738 2.5045 29 0.0172 1.3728

SEED 2.2531 3 0.03472 0.01610 2.1858 3 0.69521 2.0972 2.0428 14 0.5121 1.0982

BUPA 2.2531 2 0.021423 0.08362 2.0428 5 0.35167 1.3832 2.2335 18 0.09056 1.0737

in 100 generations, the QIE-FCM algorithm always correctly identified the opti-

mal number of clusters which are insensitive to change in m values. This shows

that the QIE-FCM algorithm is reliable over other existing approaches [93,95].

Comparison with other methods

The proposed method is also compared with three different evolutionary clus-

tering algorithms, i.e., the QM-FCM [43], the RQECA [104], and the FCMVGA

[42], in terms of the optimal number of clusters and the best fitness value. In

the proposed QIE-FCM approach, the fitness functions are formulated by us-

ing the V IDSO index [161], which jointly incorporates all three measures, i.e.,

the intra-cluster compactness, the inter-cluster separation, and the inter-cluster

overlap to evaluate the fitness in comparison with other approaches. Therefore,

it is observed from the results reported in Table 4.6 that a minimum value of the

fitness function achieved by the proposed approach is comparatively much lesser

than the value of fitness function achieved by the other compared approaches.

In addition to this, the proposed approach can identify the optimal number of

clusters for the above-stated datasets in comparison with other approaches. It

is important to highlight that proposed approach also identifies the best value

of the fuzzifier corresponding to a minimum value of fitness function for these

datasets. In contrast, the authors of comparative approaches are unable to ad-

Table 4.6: Performance comparison with evolutionary clustering algorithms.

Datasets QIE-FCM FCMVGA [42] QM-FCM [43] RQECA [104]

cbest Best fitness SD cbest Best fitness SD cbest Best fitness SD cbest Best fitness SD

value value value value

IRIS 2 0.0401 0.0985 6 4.8024 2.0938 4 0.3866 1.0283 5 0.7587 1.0922

WINE 2 0.0108 0.0560 12 4.03309 1.9739 5 0.0724 1.0982 7 0.4865 1.0083

GLASS 4 0.0143 0.0231 2 36.0576 2.0973 3 0.4201 1.9822 14 1.8975 1.0022

VEHICLE 3 0.0129 0.0456 5 48.0980 2.3473 5 1.4289 1.7362 25 4.5610 1.0237

SEED 3 0.03472 0.01610 4 8.7352 1.0983 6 2.5672 1.7382 12 1.6983 1.7282

BUPA 2 0.021423 0.08362 7 10.2568 1.0092 7 1.8956 2.3622 16 3.5689 1.0282

88

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

dress the issue of identifying best value fuzzifier for these datasets. Hence, the

above-reported results in Table 4.6 quantify the effectiveness of the proposed

approach over other evolutionary clustering approaches.

Comparative result of EQIE-FCM algorithm

In this section, we present results of the EQIE-FCM algorithm on seven bench-

mark datasets, i.e., IRIS, WINE, GLASS, VEHICLE, SEED, BUPA, and PID.

The scatter plot of first six datasets are presented in Figure 3.4, and the scatter

plot of PID dataset is shown in Figure 4.3. The results are evaluated in compar-

ison with the QIE-FCM algorithm in terms of the identification of the best value

of fuzzifier, the best location of cluster centers, and the number of iterations.

In addition to this, comparative results are reported with other evolutionary

clustering algorithms. The details of this are presented next.

Evaluation of best fitness value and fuzzifier parameter

The best value of fuzzifier and the fitness function achieved by the EQIE-FCM

algorithm in comparison with the QIE-FCM algorithm for all the seven bench-

mark datasets are presented in Figure 4.4. The comparative results are reported

on different values of the fuzzifier obtained in 100 generations. In both the al-

gorithms, the fitness functions are formulated by using the V IDSO [161] index.

The fitness functions formulated in these algorithms are used to evaluate the

fitness of obtained fuzzy partitions. The small value of V IDSO index [161] indi-

cates the minimum value of fitness function and thus represents the better fuzzy

partitions. In this figure for IRIS dataset, the minimum value of the fitness

function achieved by the EQIE-FCM algorithm is at mbest = 1.523 which is in

Figure 4.3: Scatter plot of Pima Indians Diabetes data.

89

4.3. EXPERIMENTAL EVALUATION

1 1.5 2 2.5 3

0.04

0.045

0.05

Values of m (Fuzzifier)

F
itn

es
s

fu
nc

tio
n

EQIE−FCM
QIE−FCM

m
best

 =1.523

Determination of best fuzzifier

m
best

= 1.523

 (a) IRIS Dataset

1 1.5 2 2.5 3
0.005

0.01

0.015

0.02

0.025

Values of m (fuzzifier)

F
itn

es
s

fu
nc

tio
n

EQIE−FCM
QIE−FCM

Determination of best fuzzifier

m
best

 = 1.6605

m
best

 = 1.6605

(b) WINE dataset

1 1.5 2 2.5 3
0.01

0.015

0.02

0.025

0.03

0.035

Values of m (fuzzifier)

F
itn

es
s

fu
nc

tio
n

EQIE−FCM
QIE−FCM

Determination of best fuzzifier

m
best

 = 1.5154

m
best

 = 1.5154

(c) Glass Dataset

1 1.5 2 2.5 3
0.01

0.012

0.014

0.016

0.018

0.02

Values of m (fuzzifier)

F
itn

es
s

fu
nc

tio
n

EQIE−FCM
QIE−FCM

(d) VEHICLE Dataset

Determination of best fuzzifier

m
best

 = 1.5154

m
best

 = 1.5154

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Values of m (fuzzifier)

F
itn

es
s

fu
nc

tio
n

EQIE−FCM
QIE−FCM

Determination of best fuzzifier

(e) SEED Dataset

m
best

 = 2.2531 m
best

 = 2.2531

1 1.5 2 2.5 3
0.02

0.025

0.03

0.035

0.04

0.045

Values of m (fuzzifier)

F
itn

es
s

fu
nc

tio
n

EQIE−FCM
QIE−FCM

Determination of best fuzzifier

m
best

 = 2.2531m
best

 = 2.2531

(f) BUPA Dataset

1 1.5 2 2.5 3
0.004

0.006

0.008

0.01

0.012

0.014

0.016

Values of m (Fuzzifier)

F
itn

es
s

fu
nc

tio
n

EQIE−FCM

QIE−FCM

(g) Pima Indian Diabetes Dataset

Determination of best fuzzifier

m
best

 = 1.5154

m
best

 = 1.5154

Figure 4.4: Comparison of the EQIE-FCM algorithm with QIE-FCM algorithm
indicating the best value of fuzzifier for different datasets.

comparison 1.106 times lesser than the value of fitness function achieved by the

QIE-FCM algorithm at mbest = 1.523. For WINE dataset, the minimum value

of fitness function achieved by the EQIE-FCM algorithm at mbest = 1.6605 is

comparatively 1.157 times smaller than the fitness function value attained by

90

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

the QIE-FCM at mbest = 1.6605. Similarly, the minimum value of fitness func-

tion achieved by the EQIE-FCM on GLASS, VEHICLE and PID datasets at

mbest = 1.5154 is comparatively 1.266 times, 1.183 times, and 1.158 times lesser

than the fitness function value attained by the QIE-FCM at mbest = 1.5154,

respectively. In addition to this, on SEED and BUPA datasets, the minimum

value of fitness function achieved by the EQIE-FCM at mbest = 2.2531 is 23.58

times and 1.071 times lesser than the value of fitness function attained by the

QIE-FCM on these datasets at mbest = 2.2531, respectively. Although, both

the algorithms for these datasets identifies the same best value of fuzzifier but

the EQIE-FCM algorithm achieved a much lesser value of fitness function in

comparison with the QIE-FCM algorithm. The reason for the same is discussed

next. Hence, the above-reported results justify the superiority of EQIE-FCM

algorithm over the QIE-FCM algorithm in terms of fitness value.

Comparison of best location of cluster centers

Table 4.7 presents the initial cluster center locations predicted by the EQIE-

FCM algorithm in comparison with the randomly initialized location of cluster

centers taken by the QIE-FCM algorithm. In this table, the content highlighted

in bold represents the location of cluster centers find by both the algorithms

corresponding to the two-dimensional scatter plot of PID dataset shown in Fig-

ure 4.3. It is observed that the best location of cluster centers predicted by the

EQIE-FCM algorithm is reasonably good because each predicted location of the

centers is almost in the middle of the clusters shown in Figure 4.3. However, the

cluster center locations were chosen by the QIE-FCM algorithm for each cluster

is almost colliding with each other. Due to the random selection of initial cluster

center locations by the QIE-FCM algorithm, the clustering results achieved by

this algorithm may trap into the local optima. Conversely, in the EQIE-FCM

Table 4.7: Comparison of initial cluster center locations of the EQIE-FCM Al-
gorithm with the QIE-FCM Algorithm.

Algorithm cluster NTP PGC DBP TSFT SI BMI DPF YOA

1 16.9558 169.3641 6.2682 1.2567 347.1789 37.5227 1.0896 43.28969

EQIE-FCM 2 11.8800 108.8000 10.4400 36.7589 136.7000 45.4500 0.8345 55.1400

3 4.0778 181.8700 1.0892 49.7660 197.5400 44.9360 2.2782 32.1470

1 3.38842 121.1809 69.0090 20.9514 81.5108 31.6374 0.4810 33.3568

QIE-FCM 2 3.9476 120.9351 68.7671 20.1197 75.6281 32.2555 0.4686 33.5969

3 3.7266 121.1631 69.5013 20.5423 81.5276 32.1018 0.4683 32.8297

91

4.3. EXPERIMENTAL EVALUATION

algorithm, the cluster centers are initially represented in terms of a quantum

bit, and after several generations of evolution, the EQIE-FCM algorithm comes

out with the best location of cluster centers. As we can see in Table 4.7, cluster

center locations predicted by the EQIE-FCM algorithm is more accurate than

the randomly chosen location by the QIE-FCM algorithm.

Performance comparison in terms of iterations count per cluster

The number of iterations required to find a stable location of cluster centers by

the EQIE-FCM algorithm in comparison with the QIE-FCM algorithm for 100th

generation is reported in Figure 4.5. The results show that the proposed EQIE-

FCM algorithm always takes the lesser number of iterations in comparison with

the QIE-FCM algorithm for finding a stable location of cluster centers on each

cluster number. The reported results show that the QIE-FCM algorithm is much

more computationally intensive than the EQIE-FCM algorithm. The reason

behind the better computational performance of the EQIE-FCM algorithm in

comparison with the QIE-FCM algorithm is that in the QIE-FCM algorithm,

the location of initial cluster centers is decided randomly. So, if the data points

are located far away from the actual location of initial cluster centers, then

the algorithm will converge slowly by taking many iterations to find the proper

location of cluster centers. However, in the case of the EQIE-FCM algorithm,

due to the selection procedure of location of initial cluster centers, it takes the

less number of iterations in finding the proper location of cluster centers, and

hence, results in faster convergence.

Comparison with evolutionary fuzzy clustering algorithms

To further investigate the efficacy of proposed EQIE-FCM algorithm, it is also

compared with other evolutionary fuzzy based clustering algorithms [42,43,104].

Table 4.8, shows that the proposed approach is found to be significantly bet-

ter than compared approaches in terms of the best value of fitness function

and the optimal number of clusters. The optimal number of clusters identified

by the proposed EQIE-FCM algorithm for different datasets is similar to the

number of clusters can be seen according to the distribution of these datasets

shown in Figure 3.4 and Figure 4.3. Moreover, the best value of fitness func-

tion achieved by the EQIE-FCM algorithm is comparatively much lesser than

92

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

the fitness value attained by the other compared approaches. Hence, the dis-

cussed results quantify the effectiveness of proposed EQIE-FCM algorithm over

comparative algorithms.

2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Number of clusters (c)

N
um

be
r

of
 it

er
at

io
ns

EQIE−FCM
QIE−FCM

Iteration count at 100th generation

(a) IRIS Dataset

2 3 4 5 6 7 8 9 10 11 12 13
0

100

200

300

Number of clusters (c)

N
um

be
r

of
 it

er
at

io
ns

EQIE−FCM
QIE−FCM

Iteration count at 100th generation

(b) WINE Dataset

2 3 4 5 6 7 8 9 10 11 12 13 14
0

50

100

150

200

250

Number of clusters (c)

N
um

be
r

of
 it

er
at

io
ns

EQIE−FCM
QIE−FCM

Iteration count at 100th generation

(c) GLASS Dataset

0 5 10 15 20 25 30
0

200

400

600

800

1000

Number of clusters (c)

N
um

be
r

of
 it

er
at

io
ns

EQIE−FCM
QIE−FCM

Iteration count at 100th generation

(d) VEHICLE Dataset

2 3 4 5 6 7 8 9 10 11 12 13 14
0

100

200

300

400

Number of clusters (c)

N
um

be
r

of
 it

er
at

io
ns

EQIE−FCM

QIE−FCM

Iteration count at 100th generation

(e) SEED Dataset

0 5 10 15 20
0

200

400

600

800
Iteration count at 100th generation

Number of clusters (c)

N
um

be
r

of
 it

er
at

io
ns

EQIE−FCM
QIE−FCM

(f) BUPA Dataset

0 5 10 15 20 25 30
0

200

400

600

800

1000
Iteration count at 100th generation

Number of clusters (c)

N
um

be
r

of
 it

er
at

io
ns

EQIE−FCM
QIE−FCM

(g) Pima Indian Diabetes Dataset

Figure 4.5: Performance comparison of the number of iterations taken by the
EQIE-FCM algorithm and QIE-FCM algorithm.

93

4.4. SUMMARY

Table 4.8: Performance comparison of the EQIE-FCM algorithm with evolu-
tionary algorithms.

Datasets EQIE-FCM FCMVGA [42] QM-FCM [43] RQECA [104]

cbest fitness SD cbest fitness SD cbest fitness SD cbest fitness SD

value value value value

IRIS 2 0.03614 0.05291 6 4.8024 2.0938 4 0.3866 1.0283 5 0.7587 1.0922

WINE 2 0.00761 0.02883 12 4.03309 1.9739 5 0.0724 1.0982 7 0.4865 1.0083

GLASS 4 0.01127 0.01145 2 36.0576 2.0973 3 0.4201 1.9822 14 1.8975 1.0022

VEHICLE 3 0.01089 0.02463 5 48.0980 2.3473 5 1.4289 1.7362 25 4.5610 1.0237

SEED 3 0.00147 0.0098 4 8.7352 1.0983 6 2.5672 1.7382 12 1.6983 1.7282

BUPA 2 0.02000 0.06737 7 10.2568 1.0092 7 1.8956 2.3622 16 3.5689 1.0282

PID 3 0.00508 0.09821 5 0.011029 0.0382 16 0.0045 0.2919 22 0.0011 0.0181

4.4 Summary

In this chapter, mechanisms are designed to select the optimal number of clus-

ters, the fuzzifier and the location of cluster centers. For this, we proposed two

algorithms named as the QIE-FCM algorithm and the EQIE-FCM algorithm.

In the QIE-FCM algorithm, an evolutionary principle of quantum computing is

used to find the best value of fuzzifier in several generations from a large search

space by maintaining a proper balance between exploration and exploitation.

In this algorithm, the fuzzifier is evolved in each generation and the fitness is

determined in each generation by using the V IDSO index as the objective func-

tion. This algorithm determines the best value of fuzzifier and correspondingly

it determines the optimal number of clusters after several generations of evolu-

tion. The major limitation of this approach is that it randomly initializes the

location of cluster centers. Due to this, it takes a higher number of iterations

to determine the actual (best) location of cluster centers, and thus it leads to a

slow convergence problem. To overcome this problem, we proposed the another

algorithm referred to as the EQIE-FCM algorithm that finds the optimal pa-

rameters of fuzzy clustering, i.e., the fuzzifier, the number of clusters, and the

location of cluster centers from a large search space. It resolves the problem of

local convergence, which occurs due to the random selection of these parameters

and also overcomes the slow convergence problem of QIE-FCM.

We have compared the results of the QIE-FCM algorithm with two well-

known cluster validity indexes VCWB and vOS in terms of the optimal value of

the fitness function, the fuzzifier, and the number of clusters. The reason for

comparing the proposed QIE-FCM algorithm with the VCWB and vOS indexes is

that in the QIE-FCM algorithm, the fitness functions are formulated by using the

94

CHAPTER 4. METHODOLOGIES FOR SELECTION OF OPTIMAL
PARAMETERS IN FUZZY CLUSTERING

V IDSO index that is used to evaluate the fitness of fuzzy partitions. Therefore, it

is fair to compare the performance of the QIE-FCM algorithm with existing va-

lidity indexes. The results are evaluated on various datasets taken from the UCI

repository. It is observed from the results that proposed QIE-FCM algorithm

achieves the minimum value of fitness function, identify the best value of fuzzi-

fier, and the optimal number of clusters for all the datasets. Furthermore, the

performance of QIE-FCM is evaluated in comparison with other evolutionary

algorithms. The reported results show that the QIE-FCM algorithm correctly

identifies the optimal number of clusters and attain a minimum value of the

fitness function in comparison with other evolutionary algorithms.

The performance of one more proposed EQIE-FCM algorithm is compared

with the proposed QIE-FCM algorithm and with three other evolutionary clus-

tering algorithms. The experimental results show that the EQIE-FCM algorithm

is very effective in terms of proper selection of learning parameters, and hence,

it converges to the optimal value of parameters. Due to a selection procedure

of location of initial cluster centers in the EQIE-FCM algorithm as compared

to the random initialization of location of cluster centers done in the QIE-FCM

algorithm, the EQIE-FCM algorithm takes the lesser number of iterations in

finding the proper location of cluster centers and results in a fast convergence

as compared to the QIE-FCM algorithm. This verifies the effectiveness of the

proposed EQIE-FCM algorithm over compared approaches. These algorithms

enhance fuzzy clustering capability with proper selection of clustering parame-

ters. Thus, leads to the sophisticated design of fuzzy clustering algorithms.

95

4.4. SUMMARY

96

Chapter 5

Design of Incremental Clustering

Algorithm as a Classifier for

Handling Very Large Data

5.1 Introduction

Nowadays, with the advancement in technology, an enormous amount of data is

continuously generated every day from various sources, including e-commerce,

social networks, financial records, medical records, population databases; or

from scientists who routinely take large-scale simulations for weather prediction

or drug discovery. This kind of progressively generated data is considered as

valuable resources since it can provide key insights in many areas such as human

behavior analysis, market trends, disease identification, engineering safety, and

environmental change [163, 164]. Mining valuable information in prevalent VL

data is vital to gain key insights in voluminous data to get an edge in the

competitive market.

Clustering is a promising data-analysis technique that aims to organize a

collection of patterns into groups for finding pattern structure and informa-

tion underlining unlabeled data. Clustering has been successfully applied to

the analysis of datasets in various fields such as gene analysis [14], commu-

nity detection [15], image processing [35], and analysis of microarray data in

bioinformatics [165]. For clustering of VL data, one of the biggest challenges

is that data is too large to be stored in memory. In this case, clustering al-

97

5.1. INTRODUCTION

gorithms that need to store all the data in memory become infeasible. Like,

the literal fuzzy clustering algorithm [22, 36] as discussed in section 2.1.2, per-

forms clustering of the entire data. Therefore, clustering of VL data with this

algorithm becomes infeasible due to space and time bottleneck. To handle VL

data extended clustering schemes [29, 36] have been proposed in the past, as

discussed in section 2.5. The extended clustering algorithms applied clustering

to a representative (and manageably sized) sample of full dataset, and then it

noniteratively extends sample results to obtain clusters for remaining data of

the entire dataset. As discussed in section 2.5, the rseFCM algorithm works on

a representative sample of full dataset and then the locations of cluster centers,

produced on sampled data, have been extended to compute partitions with full

data. The rseFCM algorithm suffers from overlapping locations of cluster cen-

ters, which significantly affects clustering results. The problem of overlapping

location of cluster centers arises because sampled data does not adequately cover

all samples present in VL data, and thus, it is unable to appropriately capture

the entire sample space represented by the VL data. Hence, the error between

the locations of cluster centers produced by the sampled data and the locations

generated by clustering the entire VL data become drastically higher. Thus,

the rseFCM algorithm approximately minimizes the objective function, which

drastically deviates from the minimum value of objective function produced by

clustering VL data at once.

Recently, incremental clustering framework [36] has been adapted to perform

clustering of VL data by processing data chunk by chunk, whereas one chunk

represents a small portion of the entire data. However, the chunk size can be de-

cided by the user. Therefore, to address clustering of VL data and to overcome

the drawback of the rseFCM algorithm, in this chapter, we propose an incre-

mental clustering algorithm named as RSIO-FCM, which is discussed in detail

in the further section. Next, the Bayes’ theorem [153] is employed to design a

classification mechanism, which relies on the clustering results generated by the

RSIO-FCM algorithm. The designed classification mechanism is dependent on

the cluster centers, and it assigns labels to the formed clusters that are used

further to predict the class labels of unknown samples. The details of the de-

signed classification mechanism are presented in the further section, but before

this, we present the preliminaries of Bayes’ theorem.

98

CHAPTER 5. DESIGN OF INCREMENTAL CLUSTERING ALGORITHM
AS A CLASSIFIER FOR HANDLING VERY LARGE DATA

5.2 Preliminaries

As discussed earlier in section 2.1.2, fuzzy clustering algorithm works on the

collection of n data points xi, i = 1, ..., n and it partitions these data points into

c fuzzy clusters. Thus, it gives the outcomes as cluster centers for c fuzzy clusters

and membership degree corresponding to the n data points. Then, a classifier

is designed using Bayes’ theorem [153], which is termed as a Bayesian classifier.

This is a statistical classifier that can predict class membership probabilities

with which a given data point belongs to the class. According to the probability

theory and statistics, Bayes’ theorem describes the probability of a data point

by considering both the prior probability and conditional probability of a data

point to determine the posterior probability of a data point.

Bayes’ theorem is stated mathematically as follows:

P (H|xi) =
P (xi|H)P (H)

P (xi)
(5.1)

where xi is the ith data point and H is some hypothesis.

• P (H) is the prior probability of H, the probability that H is correct before

that data xi is seen.

• P (xi|H) is the conditional probability of observing the data point xi given

that the hypothesis H is true.

• P (xi) is the marginal probability of xi.

• P (H|xi) is the posterior probability, the probability that the hypothesis is

true, given the data and the previous state of belief about the hypothesis.

In general, the definitions of prior probability, conditional probability, marginal

probability, and posterior probability are defined as follows:

• Prior probability - The prior probability of a data point is the likelihood

of a data point computed before the collection of new data. For example,

if 0.01 percent of a population has Alzheimer’s disease than the probability

that a person has drawn at random would have Alzheimer’s is 0.01.

• Posterior probability - The posterior probability of a data point is the

likelihood of a data point computed following the collection of new data.

99

5.3. PROPOSED WORK

One begins with a prior probability of a data point and revises it in the

light of new data, so the adjusted probability is the Posterior probability.

• Conditional probability - It is the probability of the presence of a

data point xi given that hypothesis H is true is called the conditional

probability of xi given hypothesis H. For example, the probability it rains

on Tuesday given that it rained on Monday would be written as P (Rain

on Tuesday|Rain on Monday).

• Marginal probability - It is the probability of the presence of a data

point without depending on other data points, and it may be thought of

as an unconditional probability.

• Joint probability - The joint probability is a statistical measure of the

presence of two data points at the same time, i.e., a data point xi occurring

at the same time data point xi+1 occurs.

• Total probability - According to probability theory, the law of total

probability is a fundamental rule relating marginal probabilities to condi-

tional probabilities. If x1, x2, x3...xn is a partition of sample space, then

for any hypothesis H we have

P (H) =
n∑

i=1

P (H|xi)P (xi) (5.2)

The Bayes’ theorem presented in Eq. (5.1) and the total probability concept

given in Eq. (5.2) is used for designing a classifier when clustering of input data

points is over. Thus, the probabilities given in Eq. (5.1) is evaluated by the

presence of data points in a cluster and as well as belongingness of data points

to a particular class. The Eq. (5.1) establishes a relationship between clusters

and classes. The details are presented in the next section.

5.3 Proposed Work

This section presents the detailed description of the proposed RSIO-FCM algo-

rithm to perform clustering of VL data. Furthermore, we introduce the design

100

CHAPTER 5. DESIGN OF INCREMENTAL CLUSTERING ALGORITHM
AS A CLASSIFIER FOR HANDLING VERY LARGE DATA

of an efficient classifier to label the formed clusters with the RSIO-FCM algo-

rithm. The classifier is designed by using the concept of Bayes’ theorem [153],

which utilizes the outcomes of RSIO-FCM clustering algorithm to perform the

classification of VL data.

5.3.1 Design of Random Sampling Iterative Optimiza-

tion Fuzzy C-Means Algorithm

The proposed RSIO-FCM is an incremental clustering algorithm, which per-

forms clustering of VL data by processing data chunk by chunk and it is de-

signed to overcome the drawbacks of an extended clustering algorithm called

as rseFCM [36]. The proposed algorithm processes the VL data by dividing

it uniformly into various chunks or subsets such as X = {X1, X2, Xs},

where s denotes the number of subsets. These subsets are created such that

each subset contains distinct data points. It means that the data points present

in one subset will not be included in the rest of the subsets. If the data points

present in all the subsets are combined, then we get the complete VL data.

Also, these subsets jointly represent the same sample space that is represented

by a VL data. Therefore, we can assure that all the subsets adequately cover

all the data points present in the VL data. In this approach, cluster centers

for clustering of the first subset are chosen randomly from the entire data. The

RSIO-FCM algorithm starts by performing clustering of the first subset. Then,

final cluster centers and membership matrix for the first subset denoted as V1

and U1, respectively, are found by applying the LFCM algorithm [36]. After

clustering of the first subset, cluster centers of the first subset V1 are used as the

initial cluster centers for clustering of the second subset. The same process is

repeated for the clustering of all the subsets. The final cluster centers for entire

(VL) data is determined by combining the membership matrix of all the subsets

and using Eq. (2.8). Thus, the proposed RSIO-FCM algorithm generates non-

overlapping locations of cluster centers and works significantly well by covering

the entire sample space represented by VL data. The outline of the algorithm

is presented next in the form of Algorithm 5.1 .

101

5.3. PROPOSED WORK

Algorithm 5.1 Algorithm for Random Sampling Iterative Optimization Fuzzy
C-Means to Iteratively Minimize Jm(U, V

′
)

1: Input : X, V, c,m, ε; X represents a dataset consists of n data points such
that X = {x1, x2, ...xn}, V is the set of initial cluster centers
represented as V = {v1, v2, ...vc}, c denotes the number of clusters,
m represents fuzzifier, and ε represents the termination criteria.

2: Output : U, V
′
; V

′
denote the set of final cluster centers and U represents

the membership matrix.
3: Begin
4: Load X as ns sized randomly chosen subsets X = {X1, X2 Xs}.
5: Sample X1 from X without replacement.
6: U1, V1 = LFCM(X1, V, c,m)
7: for e = 2 to s do
8: Ue, Ve = LFCM(Xe, Ve−1, c,m)
9: end for

10: Compute the partition on full dataset.

U =
s∑

e=1

Ue (5.3)

11: Compute cluster centers V
′

using Eq. (2.8) in which U is utilized from
Eq. (5.3).

12: Compute the objective function using Eq. (2.6).
13: Return U, V

′

14: End

The RSIO-FCM algorithm adequately covers the sample space and generates

final locations of cluster centers by feeding forward the cluster centers of one

subset for processing of the next subset. Thus, the final locations of cluster

centers produced by the RSIO-FCM algorithm is as if the clustering performed

on the entire dataset at once. Due to the proper locations of cluster centers

generated by the RSIO-FCM algorithm, it minimizes the objective function in a

better way as compared to the rseFCM algorithm. This is because the rseFCM

algorithm performs clustering only on a subset of the entire data and extends the

clustering results to produce the clustering results of the entire dataset. Thus,

the final clustering results obtained by the rseFCM do not cover the entire sam-

ple space. Therefore, it approximately minimizes the objective function.

To show the effectiveness of clustering results generated by the RSIO-FCM

algorithm, it is further designed as a classifier by utilizing the concept of Bayes’

theorem [153] so that the clusters produced by the RSIO-FCM algorithm are

assigned class labels. Since classifier is designed with Bayes’ theorem which is

probability-based, therefore the designed classification system is tested based

102

CHAPTER 5. DESIGN OF INCREMENTAL CLUSTERING ALGORITHM
AS A CLASSIFIER FOR HANDLING VERY LARGE DATA

on probability. Thus, the classification results are dependent on the clusters

generated by the RSIO-FCM algorithm. Therefore clustering results have a

significant impact on classification results. The detailed description of the same

is presented next.

5.3.2 Design of Classifier for RSIO-FCM Clusters

After clustering of VL data with the RSIO-FCM algorithm, it is designed as a

classifier by utilizing the concept of Bayes’ theorem [153], which assigns class

labels to the formed clusters generated through the RSIO-FCM algorithm and

then the labeled clusters are used to predict the class labels of unknown test sam-

ples. The designed classifier is dependent only on the cluster centers emphasizes

that the locations of cluster centers have a significant impact on classification

results. To assign class labels to the formed clusters a relational matrix (P) is

modeled by using Bayes’ theorem, which establishes cluster class relationships.

The P constitutes as a c× w matrix, which is defined as follows:

P =

P (class1|cluster1) P (class2|cluster1) · · · P (classw|cluster1)

P (class1|cluster2) P (class2|cluster2) · · · P (classw|cluster2)

· · · · · · · · · · · ·

P (class1|clusterc) P (class2|clusterc) · · · P (classw|clusterc)

 (5.4)

Each component of the P , i.e., P (classl/clusterj) shows that the probability of

lth class having its belongingness to jth cluster is computed as follows:

P (classl|clusterj) =
P (classl, clusterj)

P (clusterj)
(5.5)

where clusterj represents the jth cluster, j = 1, 2, .., c, and classl denote the

lth class, and l = 1, 2, .., w, P (clusterj) represents the prior probability and

it can be rewritten as Num(xi ∈ clusterj)/n, ∀i ∈ [1, n], which determines

the number of samples (Num) belonging to the jth cluster ; P (classl, clusterj)

represents the joint distribution, and it can be rewritten as Num(xi ∈ classl

and xi ∈ clusterj)/n, ∀i ∈ [1, n], which is computed in terms of the proportion

of number of samples belonging to both the jth cluster and the lth class. Thus,

Eq. (5.5) can be rewritten and defined as follows:

P (classl|clusterj) =
Num(xi ∈ classl, xi ∈ clusterj)

Num(xi ∈ clusterj)
;∀i ∈ [1, n] (5.6)

103

5.3. PROPOSED WORK

The denominator of Eq. (5.6), i.e., Num(xi ∈ clusterj) is described by member-

ship degree (uij), i = 1, .., n, and j = 1, ..., c, and is computed using Eq. (2.7).

Thus, for all the clusters j = 1, .., c the uij or Num(xi ∈ clusterj) is computed

using Eq. (2.7) to get a U of size n × c. The Eq. (2.7) shows that clustering

results are dependent on the cluster centers. Also, the assignment of class labels

to the formed clusters in Eq. (5.6) is forming a cluster class relational matrix

using Eq. (5.4) which also shows the dependency on cluster centers. Thus, the

cluster class relational matrix determines the statistical relationship between

the formed clusters and the given classes, and it is used subsequently to assign

labels to test samples. Therefore, locations of cluster centers have a significant

impact on classification results, which is discussed next.

5.3.3 Testing of Designed Classifier

Once the classifier is designed for a given set of samples, testing is carried out

using the total probability theorem, and a cluster class relational matrix is

computed using Eq. (5.4). The details are as follows.

Given a test sample xi, the belongingness of the sample xi to c clusters is

determined by uij or Num(xi ∈ clusterj), ∀j ∈ [1, c], and is computed using

Eq. (2.7). Then, the output class labels of the test sample xi are represented by

f(xi) and are computed by using P and uij evaluated using Eqs. (2.7), (5.4),

and (5.5), respectively. The output class labels of the test sample xi are deter-

mined through the total probability theorem [153], which is defined as:

P (classl|xi) =
c∑

j=1

P (clusterj|xi)P (classl|clusterj) (5.7)

where P (clusterj|xi) represents the posterior probability of the presence of cor-

responding samples in the jth cluster and can be computed using Eq. (2.7),

and P (classl|clusterj) denotes the posterior cluster probabilities of class mem-

bership, i.e., the presence of samples that belong to both the lth class and jth

cluster and can be computed using Eq. (5.5). Thus, the output class labels f(xi)

is defined as

f(xi) = argmax
1≤l≤L

P (classl|xi) (5.8)

It can be seen from Eqs. (5.7) and (5.8), the output class labels of the test

104

CHAPTER 5. DESIGN OF INCREMENTAL CLUSTERING ALGORITHM
AS A CLASSIFIER FOR HANDLING VERY LARGE DATA

sample xi, i.e., f(xi) is also showing its dependency on clustering results, i.e.,

cluster centers. Thus, it can be inferred from this, that clustering results are

significantly affecting the classification results. The complete clustering and

classification process is presented diagrammatically in Figure 5.1.

An illustrative example is used here to describe the steps involved in the

clustering and classification procedure. For this, we have taken IRIS data from

UCI Machine Learning Repository [154], and it is discussed in Appendix A.

Half of the data are used for training and the remaining half is used for testing

purposes. The training data are randomly divided into three subsets or chunks,

and the cluster centers for them are randomly initialized. The locations of these

cluster centers are presented in Table 5.1. Then, with these cluster centers,

clustering is performed on the training data using the RSIO-FCM algorithm,

as stated in Algorithm 5.1. As soon as clustering of training data are over, the

final membership matrix, i.e., the denominator of Eq. (5.5), i.e., P (clusterj) is

obtained that shows the belongingness of each sample to a particular cluster.

Very Large (VL) Data

Training Data Test Data

Randomly

initialized

cluster centers

V2 U1

Us Vs U2 V1

Subset 1 Subset 2 Subset s …

LFCM
LFCM

Subset 3

LFCM LFCM

M

…

Compute final cluster

centers V
’

U

LFCM

Fuzzy Partition

Class

Labels

Cluster class

relation matrix

(P)

Bayesian

theorem

Compute

fuzzy

partition

Clustering process of RSIO-FCM

Output

class

label

Total

probability

theorem

Figure 5.1: Flowchart of the RSIO-FCM clustering and its classification process.

105

5.3. PROPOSED WORK

Table 5.1: Information of IRIS data with three classes in three groups.

Group class label cluster centers

1 1 (5.0155, 3.414, 1.5576, 0.24494)
2 2 (6.3242, 2.8909, 5.295, 1.9086)
3 3 (5.7586, 2.6568, 4.1103, 1.2663)

Each sample shows its belongingness to a particular cluster, based on higher

membership degree as depicted in Table 5.2. The final locations of cluster

centers are obtained after clustering of training samples of IRIS data with the

RSIO-FCM algorithm, as reported in Table 5.3 and visualized in Figure 5.2.

The class membership degree corresponding to the training data is already

known in advance and given in Table 5.4. Thus, we can infer from Tables 5.2

Table 5.2: Membership matrix of training samples of IRIS data.

Sample Cluster

1 2 3

1 0.69779 0.13879 0.16342
2 0.67990 0.14767 0.17243
3 0.60925 0.18106 0.20970
4 0.60060 0.18374 0.21566
5 0.59959 0.1828 0.21761
. . . .
. . . .

26 0.20312 0.46057 0.33631
27 0.14875 0.55831 0.29294
28 0.19461 0.25635 0.54904
29 0.16344 0.51696 0.3196
30 0.19733 0.50066 0.30201
. . . .
. . . .

71 0.15997 0.26076 0.57927
72 0.17836 0.35608 0.46556
73 0.19721 0.29326 0.50953
74 0.54307 0.20835 0.24857
75 0.23958 0.26591 0.49451

Table 5.3: Final locations of cluster centers of IRIS Data.

Group Class label Final locations of cluster centers

1 1 (5.6644, 3.1459, 3.3512, 1.0843)
2 2 (6.0146, 3.0834, 3.9074, 1.2993)
3 3 (5.957, 3.0913, 3.9417, 1.2933)

106

CHAPTER 5. DESIGN OF INCREMENTAL CLUSTERING ALGORITHM
AS A CLASSIFIER FOR HANDLING VERY LARGE DATA

and 5.4, that sample 1 belongs to cluster 1 and class 1. Likewise, to determine

the numerator of Eq. (5.5), we have to count the total number of samples, which

belongs to both cluster 1 and class 1. Thus, a similar observation is carried out

for other pairs of clusters and classes, respectively. Finally, the cluster class

Table 5.4: Information of class membership matrix of training samples of IRIS
data.

Sample Classes

1 2 3

1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
. . . .
. . . .

26 0 1 0
27 0 1 0
28 0 1 0
29 0 1 0
30 0 1 0
. . . .
. . . .

71 0 0 1
72 0 0 1
73 0 0 1
74 0 0 1
75 0 0 1

4 6 8
2

3

4

5

sepal length

se
pa

l w
id

th

1
23

4 5
0

0.5

1

1.5

2

2.5

sepal length

pe
ta

l w
id

th

1

2.5 3 3.5 4 4.5
sepal width

1

2

3

2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

sepal width

pe
ta

l w
id

th

1

2

3

0 2
0

0.5

1

1.5

2

2.5

petal length

pe
ta

l w
id

th

1

Figure 5.2: Graphical representation of final locations of cluster centers of IRIS
data.

107

5.3. PROPOSED WORK

relational matrix of training data is obtained as follows:

P =

1 0 0

0 0.095238 0.90476

0 0.7931 0.2069

 (5.9)

Now, the relational matrix is used to determine the class labels of test sam-

ples. For this, first the cluster membership degree of each test sample, i.e.,

P (clusterj|xi) given in Eq. (5.7) is computed for all values of j = 1, ..., c using

Eq. (2.7) and the obtained values are reported in Table 5.5. Now, the obtained

cluster class relational matrix along with the cluster membership matrix of test

samples given in Table 5.5 is utilized in Eq. (5.7) for classification of test sam-

ples. Thus, the output class label of test samples is determined and presented

in Table 5.6. Next, the output class label of test samples reported in Table 5.6

is defuzzified using Eq. (5.8) and thus, the defuzzified output class label of test

samples is reported in Table 5.7.

Table 5.5: Membership matrix of test samples of IRIS data.

Sample Clusters

1 2 3

1 0.36764 0.31645 0.31591
2 0.36732 0.31653 0.31616
3 0.36799 0.31615 0.31586
4 0.36823 0.31617 0.3156
5 0.36908 0.31613 0.3148
. . . .
. . . .

26 0.25673 0.37248 0.37079
27 0.26728 0.36759 0.36513
28 0.26679 0.37016 0.36306
29 0.28487 0.35763 0.35749
30 0.24615 0.38078 0.37307
. . . .
. . . .

71 0.29352 0.35108 0.35540
72 0.28863 0.35530 0.35608
73 0.28173 0.35794 0.36033
74 0.29583 0.35056 0.35361
75 0.28503 0.35491 0.36005

108

CHAPTER 5. DESIGN OF INCREMENTAL CLUSTERING ALGORITHM
AS A CLASSIFIER FOR HANDLING VERY LARGE DATA

Table 5.6: Output class labels of test samples of IRIS data.

Sample Classes

1 2 3

1 0.36764 0.28069 0.35168
2 0.36732 0.28089 0.3518
3 0.36466 0.28226 0.35308
4 0.36799 0.28062 0.35139
5 0.36823 0.28042 0.35136
. . . .
. . . .

26 0.25673 0.41372 0.32955
27 0.31218 0.38038 0.30744
28 0.26728 0.32459 0.40813
29 0.26749 0.33035 0.40216
30 0.26679 0.41002 0.32319
. . . .
. . . .

71 0.28173 0.31987 0.39840
72 0.2751 0.32276 0.40214
73 0.31055 0.30608 0.38337
74 0.28968 0.31713 0.39319
75 0.28503 0.31936 0.39561

Table 5.7: Defuzzified output class labels of test samples of IRIS data.

Sample Classes

1 2 3

1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
. . . .
. . . .

26 0 1 0
27 0 1 0
28 0 0 1
29 0 0 1
30 0 1 0
. . . .
. . . .

71 0 0 1
72 0 0 1
73 0 0 1
74 0 0 1
75 0 0 1

109

5.4. EXPERIMENTAL EVALUATION

5.4 Experimental Evaluation

In this section, we perform the experiments to investigate the clustering and

classification capability of the proposed RSIO-FCM algorithm on four bench-

mark VL datasets. The performance of proposed RSIO-FCM is evaluated in

comparison to the existing rseFCM algorithm [36] in terms of classification ac-

curacy, run-time, and objective function. The information about datasets and

experimental settings are presented next.

5.4.1 Datasets and Experimental Settings

To demonstrate our approach, we have taken four benchmark VL datasets

namely Pen-Based Recognition of Handwritten Digits, Page Blocks Classifi-

cation, HRTU2, EEG Eye State from UCI Machine Learning repository [154].

The detailed description of these datasets is given in Appendix A. To evalu-

ate the performance of proposed RSIO-FCM algorithm in comparison with the

rseFCM algorithm, we have divided the training and testing data into 50-50

training-testing partition. It means that every dataset is partitioned into two

halves, where one-half of the dataset is used for training, and the other half of

the dataset is used for testing purposes. All the experiments are carried out

on Intel(R) Xeon(R) E5-1607 Workstation PC with 64 GB of memory and run-

ning on the Windows 7 professional operating system with a processing speed

of 3.10 GHz. Both the approaches are implemented in MATLAB computing en-

vironment and executed on MATLAB version R2014a. In the case of both the

algorithms, we have taken the number of clusters equal to the number of classes

of the dataset according to the study suggested by the researchers [36, 45, 166].

Thus, the value of c taken for each dataset is reported in Table 5.8. For each

dataset, we have randomly chosen c data points from a dataset as the initial

Table 5.8: Information of number of clusters taken for VL datasets

Datasets c

Pen-Based Recognition of Handwritten Digits 10
Page Blocks Classification 5
HRTU2 2
EEG Eye State 2

110

CHAPTER 5. DESIGN OF INCREMENTAL CLUSTERING ALGORITHM
AS A CLASSIFIER FOR HANDLING VERY LARGE DATA

cluster centers to initialize V . In all of our experiments, we fix the value of

ε = 10−3 [167].

5.4.2 Experimental Results and Discussion

In this section, we present experimental results to test the performance of the

proposed RSIO-FCM on a different variety of VL datasets, as well as compare

its performance with the rseFCM approach. The performance of RSIO-FCM in

comparison with rseFCM is measured in VL data in terms of various parameters;

(i) the fuzzifier, which controls the degree of fuzziness among fuzzy clusters and

drastically affects cluster formation, (ii) the objective of both the algorithms is

to minimize the objective function iteratively, (iii) run time (reported in seconds)

is the time required to group the VL data into clusters and to compute cluster

centers, and (iv) the classification accuracy determines the number of correctly

classified samples.

From the experimental results reported in Table 5.9, it is observed that the

RSIO-FCM algorithm minimizes the objective function for all the datasets in

a better way as compared to the rseFCM algorithm. Also, the rseFCM algo-

rithm generates improper locations of cluster centers. Therefore, it results in

degradation of classification accuracy. In contrast to rseFCM, the RSIO-FCM

algorithm generates proper locations of cluster centers for every subset of a

dataset because it covers the entire sample space during clustering. Thus, the

RSIO-FCM algorithm produces proper locations of cluster centers due to which

classification accuracy enhances with the increase of fuzzifier (m) by continu-

ously minimizing the objective function. In addition to this, it requires lesser

run-time in comparison with the rseFCM algorithm. Thus, the RSIO-FCM is

preferable for handling VL data.

As shown in Figure 5.3, the classification accuracy of the RSIO-FCM and

the rseFCM is evaluated on four different values of m. It can be observed that

with an increase in the value of m, the classification accuracy achieved by the

RSIO-FCM algorithm continuously increases and much higher than the accu-

racy obtained by the rseFCM algorithm on all the VL datasets. Thus, it can be

inferred from the reported results that higher value of m is suitable for classi-

fication of VL data. The same is verified by the results reported in Table 5.9

111

5.4. EXPERIMENTAL EVALUATION

that the RSIO-FCM algorithm shows drastic improvement in classification per-

formance of VL data as compared to the rseFCM algorithm on four benchmark

VL datasets.

Table 5.9: Comparison of the rseFCM and the RSIO-FCM Algorithms on bench-
mark VL datasets.

Datasets Algorithms Parameters

m Objective Run-time Accuracy
Function (seconds) (%)

Pen-Based Recognition rseFCM 1.2 7833685633 31.79 74.88
of Handwritten Digits 2.3 11917813.07 3.40 71.99

3.5 13718180.49 3.38 69.67
4.5 281935.08 2.42 65.96

RSIO-FCM 1.2 4622236.18 28.56 78.45
2.3 10917812.07 2.089 81.89
3.5 1271610.49 1.892 82.33
4.5 211935.08 1.320 85.34

Page Blocks rseFCM 1.2 387910619.6 1.54 79.02
Classification 2.3 181503981.8 1.44 72.98

3.5 79004007.83 1.43 71.09
4.5 39501984.9 1.36 63.9

RSIO-FCM 1.2 58137603.98 0.560 87.96
2.3 12096408.21 0.495 91.77
3.5 772374.015 0.484 92.34
4.5 70788.88 0.480 93.22

HTRU2 rseFCM 1.2 71022001.51 54.58 85.87
2.3 40348631.22 48.89 81.90
3.5 920548.22 42.22 78.22
4.5 301881.79 27.81 77.91

RSIO-FCM 1.2 55085301.11 50.58 91.64
2.3 11745674.78 45.34 93.87
3.5 860761.41 38.81 94.66
4.5 112337.20 24.32 97.31

EEG Eye State rseFCM 1.2 154867234555.13 30.88 80.66
2.3 25472901122.91 25.67 79.21
3.5 234564123.21 22.45 77.89
4.5 211381108.09 18.56 75.30

RSIO-FCM 1.2 120879423521.92 27.66 82.98
2.3 12273075178.23 20.78 86.71
3.5 1012151236.69 18.77 89.91
4.5 126518904.58 12.34 93.45

112

CHAPTER 5. DESIGN OF INCREMENTAL CLUSTERING ALGORITHM
AS A CLASSIFIER FOR HANDLING VERY LARGE DATA

0

10

20

30

40

50

60

70

80

90

1.2 2.3 3.5 4.5

rseFCM

RSIO-FCM

Fuzzifier

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

(a) Pen-Based Recognition of Handwritten
Digits.

0

10

20

30

40

50

60

70

80

90

100

1.2 2.3 3.5 4.5

rseFCM

RSIO-FCM

Fuzzifier

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

(b) Page Blocks Classification.

0

20

40

60

80

100

120

1.2 2.3 3.5 4.5

rseFCM

RSIO-FCM

Fuzzifier

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

(c) HTRU2.

0

10

20

30

40

50

60

70

80

90

100

1.2 2.3 3.5 4.5

rseFCM

RSIO-FCM

Fuzzifier

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

(d) EEG Eye State.

Figure 5.3: Accuracy comparison of the rseFCM and the RSIO-FCM Algorithms
on benchmark VL datasets.

5.5 Summary

In this chapter, looking towards the current need of handling VL data, we pro-

posed an incremental clustering algorithm called RSIO-FCM, which processes

data, chunk by chunk. The proposed approach is designed to overcome draw-

backs of the existing rseFCM algorithm, which generates overlapping locations

of cluster centers. In the proposed approach, we perform clustering of the entire

dataset in the following manner. First, the RSIO-FCM algorithm divides VL

data into various chunks or subsets. Then, it processes data, chunk by chunk

and performs clustering on each chunk by feeding forward final cluster centers

of that chunk for clustering of the next chunk. The same procedure is repeated

for clustering of all the chunks. Thus, RSIO-FCM algorithm covers the entire

sample space adequately and generates nearly similar locations of cluster centers

as produced by clustering the entire data. Furthermore, a classification mecha-

nism is designed by employing the Bayes’ theorem, which assigns class labels to

the formed clusters obtained using the RSIO-FCM which is used further to de-

termine the class label. The classification mechanism designed using the Bayes’

113

5.5. SUMMARY

theorem is dependent on cluster centers. Thus the locations of cluster centers

have a significant impact on classification results.

The proposed RSIO-FCM overcomes the drawbacks of the rseFCM algo-

rithm, which fails to cover the entire sample space adequately. It is also observed

that, due to proper locations of cluster centers generated by the RSIO-FCM al-

gorithm, it achieves better classification accuracy as compared to the rseFCM

algorithm. The same is verified with the experimental evaluation. The per-

formance of proposed RSIO-FCM is evaluated on four benchmark VL datasets

taken from UCI Machine Learning Repository, and its performance is evaluated

in comparison with the rseFCM, which shows that RSIO-FCM achieved signifi-

cant improvement in classification accuracy with a reduction in run-time. Thus,

it is inferred that the accuracy of classifier significantly depends on clustering

efficiency. One of the major limitation of the RSIO-FCM algorithm is that it

produces highly deviated cluster centers if two chunks would consist of samples

belonging to distinct classes. Therefore, the cluster centers of one chunk may be

significantly different from the cluster centers of the other chunk. Due to this

reason, if the cluster centers of the previous chunk are fed as an input for the

clustering of the current chunk, then the number of iterations during clustering

of current chunk increase significantly and leads to a slow convergence. This

issue is tackled further by proposing an advanced approach in the next chapter.

114

Chapter 6

Scalable Clustering Algorithms

for Handling Big Data

6.1 Introduction

An enormous amount of data accumulated at an accelerating rate from various

areas including health care, education, e-commerce, social networking, finance,

and education, due to the involvement of humans in the digital space. For exam-

ple, Facebook stores more than 30 Petabytes of data, and Walmarts databases

contain more than 2.5 Petabytes of data [164]. Such a huge data containing

useful information is called Big Data. Thus, data nowadays is not limited to

VL data, but it is extended to Big Data. It is becoming necessary to mine such

Big Data to gain insights the valuable information that can be of great use in

scientific and business applications. Clustering is a promising data mining tech-

nique that is widely adopted for mining valuable information from underlying

Big Data. So far, many parallel clustering algorithms have been proposed by

researchers [29,34,36,45,135]. All these clustering algorithms have the following

drawbacks: a) They assume that all samples can reside in main memory at the

same time; b) The parallel systems have provided restricted programming mod-

els and used the restrictions to parallelize the computation automatically. It is

often impossible for a single processor computer to store the whole dataset in the

main memory for processing, and the extensive amount of disk becomes a bot-

tleneck in efficiency. Despite the rapid development of the clustering algorithms

aimed at handling large data, there is a lack of adoption of these techniques in

115

6.2. PROPOSED SCALABLE FUZZY CLUSTERING ALGORITHMS FOR
BIG DATA

the wider data mining and other application communities for Big Data prob-

lems. A likely reason for this is that these algorithms are not scalable to handle

Big Data. Thus, the surging volume of Big Data and the increasing compu-

tational requirement have put tremendous pressure on clustering algorithms to

scale beyond a single machine, due to both space and time bottlenecks. There-

fore, scalability of the clustering algorithm is becoming an important issue [41].

To design such scalable algorithms, Big Data analytics frameworks are required.

Recently, a large number of computing frameworks [120–123, 128, 129, 137, 138]

have been developed for Big Data analysis. With the recent development of Big

Data computing frameworks, there is an immense need to scale clustering algo-

rithms on Big Data computing framework to achieve high performance without

affecting the quality of clustering. For this reason, we present the design of scal-

able fuzzy clustering algorithms implemented in the Apache Spark framework

for handling Big Data.

6.2 Proposed Scalable Fuzzy Clustering Algo-

rithms for Big Data

In this section, we are presenting a proposed novel SRSIO-FCM algorithm. It is

designed to deal with the challenges associated with fuzzy clustering for handling

Big Data and to overcome drawbacks of the RSIO-FCM algorithm presented in

chapter 5. Similar to RSIO-FCM, the proposed approach starts by randomly

partitioning the data into various subsets. In this method, for clustering of the

first subset, cluster centers are initialized randomly. After clustering of the first

subset, the cluster centers, and membership information corresponding to the

first subset is obtained. The final cluster centers obtained after clustering of

the first subset is used as an input for clustering of the second subset. After

clustering of the second subset, the cluster centers, and membership information

is obtained. But unlike RSIO-FCM, it does not use these cluster centers as an

input for clustering of the third subset. Instead, it combines the membership

information of first and second subset to compute the new cluster centers. These

cluster centers are then fed as an input for clustering of the third subset. Then,

after clustering of this subset, the cluster centers, and membership information

116

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

corresponding to it is found. The same procedure is repeated for the cluster-

ing of the rest of the subsets. In comparison with RSIO-FCM, the proposed

SRSIO-FCM uses the cluster centers obtained with the combined membership

information of all the processed subsets for clustering of the current subset. This

is because, in RSIO-FCM, where the cluster center of one subset is fed as input

for clustering of the next subset, it might be possible that two subsets would con-

sist of samples belong to a distinct class. Due to this reason, the cluster center of

one subset fed as an input for clustering of the current subset will result in slow

convergence by taking a higher number of iterations for that subset. Further-

more, it also produces the highly deviated cluster centers for that subset. This

problem has been overcome in the proposed SRISO-FCM because this approach

uses the combined membership information of all the processed subset which

covers a wider sample space. Thus, using the cluster centers obtained with the

membership information of wider sample space will avoid the problem of using

the highly deviated cluster for clustering of the current subset. In addition to

this, it also results in faster convergence by taking less number of iterations for

clustering of the current subset. The proposed SRSIO-FCM algorithm is imple-

mented in the Apache Spark framework, and its detailed description is presented

in section 6.2.2. For the sake of performance comparison of this proposed algo-

rithm, we designed and implemented the scalable version of existing clustering

algorithms, i.e., rseFCM and LFCM on the Apache Spark cluster. The scal-

able version of the rseFCM and LFCM algorithm is termed as SrseFCM and

SLFCM. Before presenting the details of the proposed SRSIO-FCM algorithm,

we present the working of the scalable model of LFCM algorithm. The details

of the SLFCM algorithm are presented next.

6.2.1 Enhanced Scalable Version of LFCM Algorithm to

Handle Big Data

To design the scalable version of the LFCM algorithm implemented on the

Apache Spark cluster, we first need to identify the computations in the LFCM

algorithm, which could be executed in a parallel manner and the computations

which could be executed only in a serial manner. As discussed earlier in sec-

tion 2.6.2, chapter 2, the spark cluster consists of a master node and w
′

worker

117

6.2. PROPOSED SCALABLE FUZZY CLUSTERING ALGORITHMS FOR
BIG DATA

nodes. Thus, the computations of LFCM algorithms that could be executed in a

parallel manner are processed on w
′
worker nodes and the computation executed

in a serial manner are processed on a master node. To identify the parallel and

serial computations, first, the base algorithm, i.e., LFCM (Algorithm 2.2) pre-

sented in section 2.1.2 is analyzed. As presented in Algorithm 2.2 , the most

computation intensive part of LFCM is the calculation of membership degrees of

each point corresponding to all the cluster centers. For the computation of mem-

bership degree, only the data point and cluster centers values are required. As

observed in Line 5 of Algorithm 2.2 , computation of the membership degree

of each data point is independent of other data points. Therefore, computation

of the membership degree of different data points can be performed in parallel

on w
′

worker nodes. To perform the parallel computation of the membership

degree of all the data points on w
′

worker nodes, in Line 5 of Algorithm 6.1 ,

we present the use of map function, and then the final membership degree is

evaluated using a reduceByKey function.

As discussed earlier in section 2.6.2, chapter 2, the Apache Spark cluster

uses HDFS [134] for distributed data storage that uses MapReduce as a pro-

gramming model for data processing and consists of the map and reduceByKey

functions. In general, the map function performs a given operation on each

data point, and reduceByKey function performs a summary operation, i.e., it

combines the output of all the map functions. In the working of the SLFCM

algorithm, the map and reduceByKey are considered as the essential functions.

The map function computes the membership degree of each data point, and

the reduceByKey function combines the output of all the map functions and

updates the cluster centers. Figure 6.1 shows how SLFCM uses the map and

reduceByKey functions for any two pairs of data points. The details of these

functions are presented subsequently. The parallel computation of membership

degree reduces the run-time as compared to the linear execution on a single

machine. Furthermore, in Line 7 of Algorithm 2.2 , membership degrees of

all data points are needed to update the cluster center values. Thus, Line 7 of

Algorithm 2.2 must be executed after membership degrees of all points have

been determined. So, according to this, in Algorithm 6.1 , the membership de-

grees of all the data points are combined at the master node and stored in terms

of membership information I
′
, which is used in Eq. (6.2) to update the cluster

118

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

Figure 6.1: Storage space optimization for any two pairs of data points
.

center v
′
j. Then, by using Line 9 of Algorithm 6.1 , the difference between

previously initialized cluster center and currently updated cluster center values

are computed. According to Line 10 of the Algorithm 6.1 , this procedure is

repeated until no significant change is observed in the values of cluster centers.

Algorithm 6.1 , present the steps involved in SLFCM.

Algorithm 6.1 Algorithm for Scalable Literal Fuzzy C-Means (SLFCM) to
Iteratively Minimize Jm(U, V

′
)

1: Input : X, V, c,m, ε ; X is a dataset consists of n data points such that
X = {x1, x2, ...xn}, V is the set of initial cluster centers represented
as V = {v1, v2, ...vc}, c denotes the number of clusters, and ε

represents the termination criteria.
2: Output : V

′
, I
′
; V

′
represents set of final cluster centers and I

′
represents

the membership information of all the data points.
3: Begin
4: Initialize V by randomly choosing some data points from X.
5: Compute membership information.

I ′ = X.map().reduceByKey() (6.1)

6: Compute cluster centers.
7: for < j,< sum djx, sum dj >> in I

′
do

v
′

j =
sum djx

sum dj
,∀j ∈ [1, c] (6.2)

8: end for
9: Calculate change in cluster center values.

ε
′
=‖ V ′ − V ‖ (6.3)

10: If ε
′
< ε : Stop; Else : V = V ′ and Go to Line 5.

11: Return V
′
, I
′

12: End

119

6.2. PROPOSED SCALABLE FUZZY CLUSTERING ALGORITHMS FOR
BIG DATA

Figure 6.2 depicts the workflow of SLFCM implemented on the Apache Spark

cluster that takes Big Data and performs its parallel processing on Spark Cluster.

In addition to the parallel processing of data in the proposed SLFCM algorithm,

we make its implementation more efficient by reducing the space requirements.

To do this, we avoid storing the large membership matrix of data points. For

example: In Algorithm 2.2 , the membership matrix U is needed to compute

the cluster center v
′
j using Eq. (2.8). Instead of storing the huge membership

matrix U , we directly compute the value of the parameter present in the nu-

merator and denominator of Eq. (2.8), i.e., [uij]
mxi and [uij]

m (for every point

xi and cluster center vj) by using map function, which is represented as Dijxi

and Dij, respectively. The computation of Dijxi and Dij eliminates the need of

storing the huge membership matrix U . Then, we do the summation of all the

Dijxi values and all the Dij values of the data point corresponding to cluster

center vj by using a reduceByKey function to compute the numerator and de-

nominator of Eq. (2.8) that is represented as sum djx and sum dj, respectively

and stored in terms of membership information in a variable I
′

(as stated in

Line 7 of Algorithm 6.1). Then, we access these values to compute the new

cluster centers using Eq. (6.2). Due to this, we save a significantly huge amount

of space and reduce the computational time [111]. Figure 6.1, demonstrates the

entire procedure of storage space optimization for any two pairs of data points.

As discussed earlier, the proposed SLFCM algorithm works in two phases, i.e.,

the map phase (using map function) and reduce phase (using the reduceByKey

function). So, the detailed description of these functions is presented next.

Figure 6.2: Workflow of SLFCM Algorithm.

120

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

Map function

The map function works in the following manner. First, the entire data is

split into several chunks at the master node. Then, these chunks are assigned

to different worker nodes for its processing across the cluster. As discussed

earlier, calculation of the membership degree of each data point is independent

of other data points. Therefore, we perform this operation independently for

each data point on different worker nodes and combine the resulting values on

the master node is equivalent to the operation performed for all the data points

on a single machine. The map function defined in Algorithm 6.2 , calculates

the membership degree of a data point corresponding to each cluster center

and returns the results to RDD in terms of key/value pairs [128]. RDD is

nothing but a data structure used to store the samples efficiently in memory as

already discussed in section 2.6.2 (chapter 2). Here a map function is created

corresponding to each data point, and it gives as many outputs equal to the

number of clusters as results in RDD in terms of key-value pairs where each

key represents a cluster number and a value contains the result of an operation

performed in a map function. Algorithm 6.2 , describes the set of operations

performed during a map function to obtain [uij]
mxi and [uij]

m for every point xi

and cluster center vj from chapter 2, Eq. (2.8). In this algorithm, for the sake

of simplicity [uij]
mxi and [uij]

m are represented as Dijxi and Dij, respectively.

Here, the stated map function produces outputs equal to the number of clusters

(j, ∀j ∈ [1, c]) and writes these outputs as results in RDD in terms of key-value

pairs where each j represents a key and Dijxi, Dij represents the corresponding

values. Algorithm 6.2 outlines the steps of map function.

Algorithm 6.2 Algorithm for Map Function (map())

1: Input : xi, V
2: Output : < j,< Dijxi, Dij >>
3: Begin
4: for each vj in V do
5: j = index of cluster center v; ∀j ∈ [1, c].
6: Dij = membership degree of xi with respect to vj.
7: Dijxi = Dij * xi
8: yield < j,< Dijxi, Dij >>
9: end for

10: End

The parameter xi represents the ith data point, yield is used when a function

121

6.2. PROPOSED SCALABLE FUZZY CLUSTERING ALGORITHMS FOR
BIG DATA

has multiple return values, and < j,< Dijxi, Dij >>; ∀j ∈ [1, c] represents

key-value pairs as outputs of a map function.

Figure 6.3(a), shows the overview of working of SLFCM on the Apache Spark

cluster. It describes how the n number of data points is divided and sent to w
′

worker nodes. Thus, each worker node is assigned with (n/w
′
) data which is

assumed to be as n
′

for the sake of simplicity. Figure 6.3(b), demonstrates the

operations which are performed on a chunk of data given to a task where each

task is composed of many map functions.

(a) Overview of working of SLFCM.

(b) Steps performed on a chunk of data given to a task
executed on a worker node.

Figure 6.3: SLFCM Algorithm implemented on Apache Spark Cluster.

122

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

ReduceByKey function

As discussed earlier, a map function produces many outputs equal to the number

of clusters formed with fuzzy clustering and returns the results in RDD in terms

of many key-value pairs. Then, the outputs of map functions that have the same

key (i.e., with respect to each jth cluster centers) corresponding to each Dijxi

and Dij are combined using the reduceByKey function. This function performs

operations on the key-value pairs that have the same key. However, for the sake

of simplicity, here we describe the operations that are performed on two such

map outputs that share the same key. Spark takes care of performing the same

operations on all the map outputs (key-value pairs). Thus we have calculated

[uij]
mxi and [uij]

m as Dijxi and Dij, respectively for every point xi and jth

cluster center, during the map phase, now we need to add all these values to find

the numerator and denominator of Eq. (2.8), presented in chapter 2 required

to update the cluster center values. This is done by using the reduceByKey

function which is described in Algorithm 6.3 . This gives us the numerator

(
∑n

i=1[uij]
mxi) and the denominator (

∑n
i=1[uij]

m) of Eq. (2.8) for every cluster

center vj as sum djx and sum dj, respectively.

Algorithm 6.3 Algorithm for ReduceByKey Function (reduceByKey())

1: Input : aa, bb such that aa =< j,< (Dijxi)aa, (Dij)aa >>, bb =< j,<
(Dijxi)bb, (Dij)bb >>.

2: Output : < j,< sum djx, sum dj >>
3: Begin
4: sum djx = (Dijxi)aa + (Dijxi)bb
5: sum dj = (Dij)aa + (Dij)bb
6: Return < j,< sum djx, sum dj >>
7: End

The parameters aa and bb are the output of two map functions corresponding

to the jth cluster center, (Dijxi)aa and (Dijxi)bb denotes the value of Dijxi

corresponding to map function outputs aa and bb, respectively, (Dij)aa and

(Dij)bb denotes the value of Dij corresponding to map function outputs aa and

bb, respectively. Similarly, the outputs of all the map functions are combined

which share the same key. Then, the output of the reduceByKey function is

used to calculate the new cluster center values using Eq. (6.2) on the master

node.

123

6.2. PROPOSED SCALABLE FUZZY CLUSTERING ALGORITHMS FOR
BIG DATA

6.2.2 Proposed Design of a Novel SRSIO-FCM Algo-

rithm to Handle Big Data

The SRSIO-FCM algorithm starts by partitioning the entire data into various

subsets (chunks). These subsets are created by randomly selecting data points

from the entire dataset without replacement. The data points present in a subset

are distinct from the data points present in other subsets. The clustering of each

subset is done in parallel on the Apache Spark Cluster. Algorithm 6.4 , outline

the steps involved in the SRSIO-FCM algorithm for clustering of each subset.

For clustering of the first subset, the cluster centers are randomly initialized.

SRSIO-FCM compute cluster centers, and membership information for the first

subset X1, denoted as V
′

and I
′
, respectively in parallel by using Eqs. (6.1),

(6.2), and (6.3). Then, it uses V
′

as initial cluster centers for clustering of the

second subset. After this, the membership information and cluster centers are

computed for the second subset X2, denoted as I and V
′
, respectively in parallel

by again using Eqs. (6.1), (6.2), and (6.3).

But unlike RSIO-FCM, SRSIO-FCM does not use the final cluster centers of

the second subset (V
′
), as the initial cluster centers for clustering of the third

subset. This is because SRSIO-FCM takes into account the fact that random

partitioning may result in the subsets containing the data points of distinct

classes. Therefore, the cluster centers of these two subsets will be significantly

different from each other. So to use a better approximation of initialization

of cluster centers for the clustering of any subset, SRSIO-FCM avoids using

cluster centers of the previous subset as initial cluster centers for clustering of

the current subset. Instead, it combines the membership information of all the

processed subsets. Like, here in Eq. (6.4) the membership information of first

two processed subsets denoted as I
′

and I are combined, and the new cluster

centers are evaluated using the Eq. (6.2). These cluster centers provide a better

estimation to the actual cluster centers since they are calculated using the com-

bined membership information of a larger number of data points, which covers

the wider sample space. This is done to avoid feeding the highly deviated clus-

ter centers as an input for clustering any subsequent subset and thus, it helps

in reducing the sudden increase in the number of iterations during clustering

of a particular subset. The same procedure is followed for clustering of all the

124

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

subsequent subsets in parallel on the Apache Spark cluster. Algorithm 6.4 ,

outlines the steps of SRSIO-FCM.

Algorithm 6.4 Algorithm for Scalable Random Sampling with Iterative Op-
timization Fuzzy C-Means to Iteratively Minimize Jm(U, V

′
)

1: Input : X, V, c,m, ε
2: Output : V

′
, I
′

3: Begin
4: Load X as ns sized randomly chosen subsets X = {X1, X2 Xs}.
5: Sample X1 from X without replacement.
6: V

′
, I
′
= SLFCM(X1, V, c,m)

7: for e = 2 to s do
8: V

′
, I = SLFCM(Xe, V

′
, c,m)

9: Merge the partition of all processed subsets using Eq. (6.4).
10: for j = 1 to c do

I
′

j =< j,< (sum djx)Ij ,+(sum djx)I′j
, (sum dj)Ij ,+(sum dj)I′j

>> (6.4)

11: end for
12: Compute new cluster centers v

′
j using < j,< sum djx, sum dj >> in

I
′

by Eq. (6.2) ∀j ∈ [1, c]
13: end for
14: Compute the objective function using Eq. (2.6).
15: Return V

′
, I
′
.

16: End

Figure 6.4, shows the complete workflow of SRSIO-FCM. It shows that how

data is randomly partitioned into various subsets and cluster centers are ran-

domly initialized for clustering of the first subset (subset 1). It also shows that

how the cluster centers, and membership information for the subset 1 are deter-

mined. Then in the successive steps, it shows the computation of cluster centers,

and membership information during clustering of the second subset (subset 2).

After this, the cluster centers at each step are obtained by combining member-

ship information of all previously processed subsets. Thus, in the end, we get the

cluster centers, which are obtained by combining the membership information

of the entire data. Therefore, it covers a wider sample space and can produce

more accurate cluster centers for each subset. To compare the SRSIO-FCM

algorithm, one more algorithm rseFCM [36] is extended to handle Big Data,

which are discussed next.

125

6.2. PROPOSED SCALABLE FUZZY CLUSTERING ALGORITHMS FOR
BIG DATA

Figure 6.4: Workflow of SRSIO-FCM Algorithm.

6.2.3 Enhanced Scalable Version of rseFCM Algorithm

to Handle Big Data

As discussed in section 2.5 (chapter 2), rseFCM takes a small subset of the

entire data and performs clustering over it. The clustering results obtained on

a small subset are used to compute clustering results of the entire data. This

can be done in parallel to ensure scalability, and for better optimization of space

utilization during clustering, the scalable version of this algorithm is proposed,

termed as SrseFCM. In this, the map and reduceByKey functions are applied

on the entire data using Eq. (6.1) and the final cluster centers are obtained

using Eq. (6.2). For the computation of the final cluster centers, we do not

store the large membership matrix. Instead, we compute the numerator and

denominator as sum djx and sum dj, respectively to perform the storage space

optimization (discussed in section 6.2.1). This makes our implementation space

efficient. Algorithm 6.5 , presents the step-wise procedure for SrseFCM and

Figure 6.5 depicts the workflow of SrseFCM.

126

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

Algorithm 6.5 Algorithm for Scalable random sampling plus extension Fuzzy
C-Means to approximately minimize Jm(U, V

′
)

1: Input : X, V, c,m, ε
2: Output : V

′
, I
′
.

3: Begin
4: Sample the ns objects from X without replacement, denoted as Xs.
5: Us, V = LFCM(Xs, V, c,m)
6: Compute membership information of entire data using Eq. (6.1)
7: Compute cluster centers v

′
j using < j,< sum djx, sum dj >> in I

′
by

Eq. (6.2), ∀j ∈ [1, c]
8: Return V

′
, I
′
.

9: End

 Randomly initialized

 cluster centers

 Updated cluster

 centers

B
ig

 D
at

a

Sample

data
L

ef
t-

o
v
er

 d
at

a

LFCM

E
x
te

n
si

o
n

 o
f

cl
u

st
er

 c
en

te
rs

 t
o

co
v

er
 w

h
o

le
 d

at
a

Spark

Cluster

F
in

al
 c

lu
st

er
 c

en
te

rs

Figure 6.5: Workflow of SrseFCM Algorithm.

6.3 Complexity Analysis

In this section, the proposed scalable clustering algorithms, i.e., SLFCM, Srse-

FCM, and SRSIO-FCM are analyzed in terms of space and time complexity. All

operations and storage space are counted as a unit cost. The space complexity is

calculated on the amount of data held in RAM during computation. Table 6.1,

shows the complexities of scalable fuzzy clustering algorithms. The asymptotic

estimates shown in the table indicate the growth in time and space in terms

of problem variables defined as follows: X is a set that consists of n number

of data points in the d-dimensional space (which are unaffected by the changes

in counting procedures) such that X ∈ Rd ; c is the number of clusters; w
′

is

the number of worker nodes in Spark Cluster; and for SRSIO-FCM algorithm

127

6.3. COMPLEXITY ANALYSIS

Table 6.1: Space and time complexity of Scalable Fuzzy Clustering Algorithms.

Algorithm Time Complexity Space Complexity

SLFCM O
(
ncdt/w

′)
O
(
ncd
)

SrseFCM O
(
ncd/w

′)
O
(
ncd
)

SRSIO-FCM O
(
ncdt/w

′)
O
(
ncd/s

)
the dataset X is partitioned by random sampling without replacement into s

number of subsets represented as X = {X1, X2, ..Xs}. Each subset has (n/s)

data points. The number of iterations required for termination is taken as t.

It may differ, but for the sake of simplicity and comparison, t is taken as the

maximum of the number of iterations for one run of SLFCM, SrseFCM, and

SRSIO-FCM.

The complexity analysis is done as follows. Firstly, we calculate the cost of

computation of membership degree during the map phase. Each map opera-

tion computes the membership degree of one data point corresponding to the c

number of clusters. Since each data point has d dimensions, calculation of each

membership degree takes O(d) time and O(d) space. Therefore, each map op-

eration takes O(cd) time and O(cd) space. The reduceByKey operation linearly

adds the values of all the map outputs corresponding to one cluster on each

worker node and combines the resulting values on the master node. Assuming

equal distribution of work to the w
′

worker nodes, each node takes O(n
′
d) time

and O(cd) space, where n
′

is the number of data points fed as input to one

worker node. Combining the results of reduceByKey operations takes O(cw
′
d)

time and O(cd) space.

SLFCM performs map and reduceByKey operations on the entire dataset.

Each worker node processes n/w
′

data. All the worker nodes process data in

parallel. Thus, the map phase takes a total of O(ncd/w
′
) time and O(ncd)

space for each iteration across all worker nodes. Assuming that SLFCM runs

for t iterations, the total time taken for map phase is O(ncdt/w
′
). Since map

outputs have been held in memory only for the duration of one iteration of

SLFCM, thus the total space complexity for the map phase of SLFCM is O(ncd).

The reduceByKey function linearly adds n/w
′

map outputs, corresponding to

each cluster center in parallel, on each worker node. This takes O(nd/w
′
) time

and O(cd) space on a worker node. Since each worker node performs tasks

on n/w
′

data in a parallel manner and in the same amount of time, thus the

128

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

total time required is O(nd/w
′
). Each worker node gives outputs equal to the

number of clusters (c), each of dimension d, which is aggregated and added to

the master node. This takes O(cdw
′
) time and O(cdw

′
) space. Thus, the total

time complexity for the reduceByKey phase is O(ncd), and space complexity is

O(cdw
′
). Therefore, the time complexity of SLFCM is O(ncdt/w

′
) and space

complexity is O(ncd), where n� w
′
, c.

SrseFCM takes a small subset of the entire data, denoted as n
′
, by randomly

selecting data points without replacement from the entire data and then it per-

forms clustering over n
′

data using LFCM. So, its time complexity would be

the same as that of LFCM for (n
′
) data where n

′
<< n. But, while extending

the cluster centers to the entire data, i.e., to compute the full fuzzy partition of

the entire data, membership degree of all the points are calculated. The time

complexity for this final step is O(ncd/w
′
), which is much higher than the time

complexity of running LFCM over (n
′
) data. Similarly, the space complexity of

running LFCM over (n
′
) data is very less as compared to the space complexity

of the final extension step. In the final extension step, we compute the mem-

bership degree of n size data consists of d dimensions for c number of clusters.

This extension step results in a space complexity of O(ncd). Thus, the time

complexity is O(ncd/w
′
), and space complexity is O(ncd).

SRSIO-FCM divides the entire data X into s equal subsets such that X =

{X1, X2, . . . Xs}, where each subset is of size (n/s). It performs scalable fuzzy

clustering over each of these subsets serially. The time and space complexity

of performing scalable fuzzy clustering over each subset are O(ncdt/sw
′
) and

O(ncd/s), respectively. Since, all the subsets are processed one after another,

and the resulting time complexity is O(ncdt/w
′
) while the space complexity

remains O(ncd/s) because data corresponding to one subset is not retained in

the memory while processing the next subset.

Table 6.1, shows that SLFCM and SRSIO-FCM share the same time com-

plexity. This may lead one to think that both have the same run-time. However,

this is not the case. In SRSIO-FCM, we divide the entire data into various sub-

sets and perform clustering over each subset. So, clustering carried out by the

SRSIO-FCM on each subset converge by taking the less number of iterations (t)

for each subset. Therefore, SRSIO-FCM has lesser run-time, since it performs

clustering on a lesser amount of data as compared to SLFCM, which performs

129

6.4. EXPERIMENTAL EVALUATION

clustering of the entire data. As we can see in section 6.4.2, there is a signifi-

cant difference in the run-time of the two algorithms. The SrseFCM algorithm

uses the cluster centers that are returned after clustering of a subset of data

to produce full data partitions. Although, in SrseFCM we have not estimated

complexity for the completion step.

The space complexity of SRSIO-FCM is less when compared with SrseFCM

and SLFCM, and is proportional to the number of data points that are present

in each subset, i.e., n/s. The space complexity of SRSIO-FCM will be same as

SrseFCM if the size of the subset in SRSIO-FCM is taken to be equal to the

size of the subset in SrseFCM.

6.4 Experimental Evaluation

In this section, we present the experiments of our proposed scalable clustering

algorithms on various Big Datasets and then a comparison of the performance of

SRSIO-FCM with SLFCM and SrseFCM on different measures are presented.

The measures are NMI [46], F-measure [45], ARI [47, 48], objective function,

speedup, sizeup, and scaleup [49, 50]. In addition to this, a trade-off between

performance gain versus accuracy is also observed for the in-depth analysis of loss

of accuracy (in terms of NMI) versus a performance gain (in terms of run-time).

The aim is to achieve the higher value of NMI, F-measure, and ARI and lower

value of the objective function for SRSIO-FCM as compared to SrseFCM and

lower run-time as compared to SLFCM which is evaluated in terms of speedup,

sizeup, and scaleup. The detailed description of these measures is given in the

section 2.8.1. The information about the datasets and experimental settings are

discussed next.

6.4.1 Datasets and Experimental Settings

To demonstrate the efficacy of proposed SRSIO-FCM over the proposed scalable

version of LFCM and rseFCM, we have created Big Datasets by taking data from

various sources [154–157] and evaluate the performance of these approaches

on various Big Datasets, i.e., Minst8m, Replicated-USPS, Monarch-Skin, and

SUSY. The details of these datasets are presented in section 2.9, chapter 2.

To evaluate the performance of all the approaches, we fix the value of fuzzifier

130

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

m = 1.75 and termination criteria ε = 0.001 for these datasets used in the

experimental study. Also, we have fixed the value of c = 10, c = 10, c = 2,

and c = 3 for Minst8m, Replicated-USPS, Monarch-Skin, and SUSY datasets,

respectively. After exhaustive experimentation, we found that these values are

more suitable for the datasets because on these values the datasets achieve

better performance. Also, these values are proven to work well for most of the

datasets [36, 45, 167]. The specification of the parameter value for each dataset

used in the experimental evaluation is given in Table 6.2. All the approaches are

implemented on the Apache Spark Cluster. The experiments have been done on

Spark Cluster with 3 nodes. Each node has the following configuration: Intel(R)

Xenon(R) CPU E5-1607 v3 @ 3.10GHz x 4, 32GB RAM and 2TB storage. The

algorithms have been implemented in Python and tested over Hadoop version

2.4 with Apache Spark version 1.4.0. As discussed earlier in the section 2.6.2,

chapter 2, Apache Spark requires a cluster manager and a distributed storage

system so here we used YARN [132] for cluster management and HDFS [134]

for storing data across the Spark Cluster.

6.4.2 Experimental Results and Discussion

This section presents the experimental results conducted to demonstrate the

effectiveness of SRSIO-FCM in comparison with SLFCM and SrseFCM on four

datasets in terms of NMI, F-measure, ARI, objective function, speedup, sizeup,

and scaleup. Furthermore, observations for a trade-off between performance gain

versus accuracy is also conducted in terms of percentage change in run-time and

NMI.

For each dataset, we compare the performance of SRSIO-FCM with SLFCM

and SrseFCM algorithms using the value of the parameters presented in Table

6.2. The comparison of the values of NMI, F-measure, ARI, and Objective

Table 6.2: Specification of parameters for various datasets.

Parameters
Datasets

MNIST8m Replicated- Monarch- SUSY

USPS Skin

ε 0.001 0.001 0.001 0.001

m 1.75 1.75 1.75 1.75

c 10 10 2 3

131

6.4. EXPERIMENTAL EVALUATION

function of SLFCM and SrseFCM with various chunk sizes of SRSIO-FCM on

four datasets are presented in Tables 6.3, 6.4, 6.5, and 6.6, respectively. The

results reported on the chunk sizes of the SRSIO-FCM algorithm is different

from the chunk size of SrseFCM and SLFCM algorithms. This is because the

SLFCM algorithm performs clustering of the entire data by processing the data

in parallel on various worker nodes. Therefore, the chunk size of SLFCM is

taken as 100%. On the other hand, the chunk size of the SrseFCM algorithm

is taken as 0.001% because the SrseFCM works on a small subset of the entire

data to produce the clustering results of the entire data. Thus, the SrseFCM

works on a small chunk size of the dataset. After exhaustive experimental

evaluation, we have found the chunk size (0.001%) of the SrseFCM algorithm

that gives the best clustering results (with a lesser overhead in terms of run-

time) and which is somewhat closer to the results achieved by SLFCM and

SRSIO-FCM algorithms. Therefore, for the purpose of fair comparison, we have

taken the chunk size of SrseFCM as 0.001%. The chunk sizes of the SRSIO-FCM

reported here is higher than the chunk of SrseFCM because the overhead (in

terms of run-time) increases with the same clustering results in the lesser chunk

size. Furthermore, Table 6.7 compares the performance of SRSIO-FCM with

SLFCM in terms of speedup. Figure 6.6 displays a comparison of the run-time

of SLFCM with various chunk sizes of SRSIO-FCM in terms of sizeup. Figure 6.7

investigate the scalability of SRSIO-FCM as compared to SLFCM for different

datasets. Figure 6.8 demonstrates the trade-off between performance gain versus

accuracy in terms of percentage change in run-time and NMI measure.

Table 6.3, tabulates the value of NMI measure computed on four datasets

using SLFCM, SrseFCM and with various chunk sizes of SRSIO-FCM. NMI

indicates the quality of clustering. The higher NMI value indicates better clus-

tering results. The table shows that the value of NMI measure for SLFCM

and SRSIO-FCM is very close whereas, in most of the cases, SrseFCM attains

a much lower value of the NMI measure as compared to that of SLFCM and

SRSIO-FCM. In addition to this for some datasets, there is no significant vari-

ation in the value of NMI for various chunk sizes of SRSIO-FCM. Thus, we

can conclude that SRSIO-FCM with the given chunk sizes performs better than

SrseFCM and equally well as SLFCM in terms of NMI measure.

Table 6.4, tabulates the value of F-measure computed on four datasets using

132

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

Table 6.3: NMI for SLFCM, SrseFCM, and SRSIO-FCM with various chunk
sizes on different datasets.

Algorithm
Chunk

size

Datasets

MNIST8m Replicated- Monarch- SUSY

USPS Skin

SRSIO-FCM

1% 0.117094 0.365415 0.012703 0.028723

2.5% 0.125052 0.365966 0.012703 0.029032

5% 0.122007 0.365119 0.012703 0.028674

10% 0.118471 0.365557 0.012705 0.028667

20% 0.126027 0.365292 0.012703 0.028798

SLFCM 100% 0.122540 0.396155 0.012703 0.025895

SrseFCM 0.001% 0.118607 0.253252 0.013281 0.001194

SLFCM, SrseFCM and with various chunk sizes of SRSIO-FCM. F-measure

indicates the quality of clustering. Thus, a higher value of F-measure indicates

better clustering. The table shows that the values of F-measure for SLFCM

and SRSIO-FCM is very close whereas, in most of the cases, SrseFCM attains

a significantly lower of the F-measure as compared that of SLFCM and SRSIO-

FCM. Also, the values of F-measure for various chunk sizes of SRSIO-FCM

is approximately equal. Thus, we can conclude that SRSIO-FCM performs as

good as SLFCM and better than SrseFCM in terms of F-measure.

Table 6.5, shows the value of ARI measure computed on four datasets using

SLFCM, SrseFCM and with various chunk sizes of SRSIO-FCM. The ARI value

compares the clustering result with the ground truth labels. The higher value

of ARI measure indicates better clustering results. The table shows that the

values of ARI measure for SLFCM and SRSIO-FCM on MINST8m, Monarch-

Table 6.4: F-measure for SLFCM, SrseFCM, and SRSIO-FCM with various
chunk sizes on different datasets.

Algorithm
Chunk

size

Datasets

MNIST8m Replicated- Monarch- SUSY

USPS Skin

SRSIO-FCM

1% 0.362525 0.787940 0.648496 0.641601

2.5% 0.365356 0.788448 0.648497 0.642083

5% 0.363194 0.788653 0.648496 0.640909

10% 0.364882 0.788539 0.648508 0.641277

20% 0.379519 0.788608 0.648497 0.641660

SLFCM 100% 0.381972 0.842952 0.648497 0.607977

SrseFCM 0.001% 0.380723 0.565469 0.619401 0.453477

133

6.4. EXPERIMENTAL EVALUATION

Table 6.5: ARI for SLFCM, SrseFCM, and SRSIO-FCM with various chunk
sizes on different datasets.

Algorithm
Chunk

size

Datasets

MNIST8m Replicated- Monarch- SUSY

USPS Skin

SRSIO-FCM

1% 0.048867 0.215461 0.035881 0.042860

2.5% 0.052707 0.215343 0.035882 0.043153

5% 0.051061 0.215777 0.035881 0.042747

10% 0.049511 0.215533 0.035889 0.043010

20% 0.053534 0.215607 0.035883 0.042879

SLFCM 100% 0.052189 0.268365 0.035881 0.038094

SrseFCM 0.001% 0.049464 0.294295 0.022201 0.0314584

Skin, and Susy datasets are very close and very low for the SrseFCM. In the

case of Replicated-USPS dataset, the ARI values of SRSIO-FCM on different

chunk sizes are approximately 20% below those of SLFCM approach. This is

due to the repetition of data points in Replicated-USPS dataset. In this dataset,

the proportion of data points belonging to a class is significantly higher than

data points belonging to other classes. As discussed earlier, the SRSIO-FCM

performs clustering of the entire data by partitioning it into various subsets.

Therefore, it is possible that the randomly chosen subsets contain more data

points belonging to the majority class. This results in the generation of skewed

cluster centers in comparison of the SLFCM which perform clustering of the

entire data at once. Therefore, ARI values are 20% below as compared to the

SLFCM. In general, for all the datasets the value of ARI measure for various

chunk sizes of the SRSIO-FCM is approximately equal. Thus, it can be referred

from the results that the SRSIO-FCM performs as good as the SLFCM in terms

of ARI measure. Furthermore, it performs approximately equally well for all

the chunk sizes.

Table 6.6, displays the value of objective function computed on four datasets

by applying our proposed algorithms, i.e., SLFCM, SrseFCM, and SRSIO-FCM

with various chunk sizes of 1%, 2.5%, 5%, 10% and 20%. The objective function

values for SLFCM and SRSIO-FCM is found to be very close, whereas the

objective function values for the SrseFCM is much higher than both the SLFCM

and SRSIO-FCM. Moreover, the values of an objective function for various chunk

sizes of the SRSIO-FCM is approximately equal. Thus, we may conclude that

the SRSIO-FCM minimizes the objective function equally well as the SLFCM

134

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

Table 6.6: Objective Function value for SLFCM, SrseFCM, and SRSIO-FCM
with various chunk sizes on different datasets.

Algorithm
Chunk

size

Datasets

MNIST8m Replicated- Monarch- SUSY

USPS Skin

SRSIO-FCM

1% 74556041.35 83800629 9.53E+016 24522339.61

2.5% 74556041.52 83800623 9.53E+016 24522336.73

5% 74556038.97 83800617 9.53E+016 24522337.77

10% 74556042.40 83800622 9.53E+016 24522346.13

20% 74556036.17 83800622 9.53E+016 24522338.22

SLFCM 100% 74556031.67 83800498 9.53E+016 24522337.10

SrseFCM 0.001% 74647034.95 173762000 1.52E+17 24556967.02

and better than the SrseFCM in almost all the cases.

Table 6.7, shows the speedup evaluation of the SRSIO-FCM and SLFCM

on different datasets by varying the number of nodes (systems) in the cluster

and keeping the chunk size constant. The number of nodes in the cluster is

varied from 1 to 3. We varied the chunk size of datasets from 1% to 20% to

compare the run-time of the SRSIO-FCM with SLFCM which uses 100% data.

The results show that the SRSIO-FCM takes a very less run-time in comparison

with the SLFCM. Thus, SRSIO-FCM achieves an excellent speedup performance

compared to the SLFCM irrespective of the chunk size. Hence, the SRSIO-FCM

performs better than the SLFCM and can efficiently cluster Big Data.

Figure 6.6, shows the sizeup evaluation of the SRSIO-FCM and the SLFCM

on different datasets by varying the chunk size of the datasets and keeping the

number of nodes in the cluster constant. The run-time of the SRSIO-FCM is

evaluated with the varying chunk size of datasets from 1% to 20% in comparison

with the SLFCM. The results show that the run-time of SLFCM on a different

number of nodes in a cluster are comparatively much higher than the run-time

achieved by the SRSIO-FCM. Specifically, with 3 nodes, the sizeup performance

of the SRSIO-FCM is very good for all the datasets. Thus, the SRSIO-FCM

achieves the good sizeup performance in comparison with the SLFCM. Hence,

it is inferred that the SRSIO-FCM can handle Big Data efficiently.

As shown in Figure 6.7, scaleup analysis is reported to evaluate the perfor-

mance of SRSIO-FCM in comparison with the SLFCM algorithm. To demon-

strate how well the SRSIO-FCM algorithm handle Big datasets compared to the

SLFCM algorithm when more nodes (systems) are available, we have performed

135

6.4. EXPERIMENTAL EVALUATION

Table 6.7: Speedup Analysis for SLFCM and SRSIO-FCM.

(a) Run-time comparison (in seconds) of MINST8m data.

Number of Algorithms
nodes

SRSIO-FCM SLFCM

Chunk Size Chunk Size

1% 2.5% 5% 10% 20% 100%

1 Node 2704 1848 1488 1484 1683 3987
2 Nodes 1456 1056 1008 1064 1173 2700
3 Nodes 972 616 528 588 663 2294

(b) Run-time comparison (in seconds) of Replicated-USPS.

Number of Algorithms
nodes

SRSIO-FCM SLFCM

Chunk Size Chunk Size

1% 2.5% 5% 10% 20% 100%

1 Node 26237.83 14810 16035.55 27198.31 45868.00 199228.73
2 Nodes 6984.67 5386.99 7389.05 14252.91 29381.47 103426.81
3 Nodes 3140 2700 3179 5568 10746 25537.92

(c) Run-time comparison (in seconds) of Monarch-Skin data.

Number of Algorithms
nodes

SRSIO-FCM SLFCM

Chunk Size Chunk Size

1% 2.5% 5% 10% 20% 100%

1 Node 301072.07 261984.09 259540.11 240017.01 270691.01 600103.17
2 Nodes 202200 186116 188799 184500 187616 401305.81
3 Nodes 74140 69552 64890 62100 63960 117226.04

(d) Run-time comparison (in seconds) of SUSY data.

Number of Algorithms
nodes

SRSIO-FCM SLFCM

Chunk Size Chunk Size

1% 2.5% 5% 10% 20% 100%

1 Node 1158.16 772.71 616.67 738.82 805.85 3020.83
2 Nodes 296.30 200.66 211.27 294.67 492.29 2133.54
3 Nodes 228 112 128 188 200 864.04

136

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

(a) Run-time comparison on MNIST8m data.

(b) Run-time comparison on Replicated-USPS data.

(c) Run-time comparison on Monarch-Skin data.

(d) Run-time comparison on SUSY data.

Figure 6.6: Sizeup Analysis for SLFCM and SRSIO-FCM.

137

6.4. EXPERIMENTAL EVALUATION

Figure 6.7: Scaleup Analysis for SLFCM and SRSIO-FCM.

the scaleup experiments where we have used the datasets of varying sizes in

proportion to the number of nodes in the cluster. As discussed earlier, we are

working with three nodes in the Apache Spark Cluster, so we have taken three

datasets to evaluate the scalability, i.e., one dataset per node. The reported re-

sults show that the SRSIO-FCM shows decent scaleup performance over datasets

of varying sizes in comparison with the SLFCM. Thus, the SRSIO-FCM scales

very well and handle Big Data efficiently.

Figure 6.8, compares the performance gain versus accuracy in terms of the

percentage change in run-time and the loss of accuracy (in terms of NMI) for

5% chunk size of the SRSIO-FCM as compared to the SLFCM. The results

are analyzed and reported for 3 nodes in a cluster. As depicted clearly by the

graph, the loss of accuracy is almost negligible as compared to the enhancement

in run-time.

Figure 6.8: Trade-off between performance gain versus accuracy.

138

CHAPTER 6. SCALABLE CLUSTERING ALGORITHMS FOR
HANDLING BIG DATA

6.5 Summary

In this chapter, a novel scalable clustering algorithm is proposed referred to

as the SRSIO-FCM algorithm for handling Big Data. The SRSIO-FCM al-

gorithm is designed by enhancing the RSIO-FCM algorithm discussed earlier.

The SRSIO-FCM partitioned the Big Data into various chunks, and processed

the data points present within the chunk in a parallel manner. One distinctive

characteristic of the SRSIO-FCM is that due to the parallel processing of data

points within the chunk, it achieves a significant reduction in run-time for the

clustering of such huge amount of data, without compromising the quality of

clustering results. The other important characteristic is that during the exe-

cution of the proposed algorithm, we eliminate the need for storing the large

membership matrix, which significantly reduces the run-time and storage space

and thus, it makes the execution of the proposed algorithm much faster. This

is a good optimization strategy for clustering of Big Data since the membership

matrix is too huge to be stored. The SRSIO-FCM algorithm is implemented

using the Big Data processing framework called Apache Spark to deal with the

challenges associated with fuzzy clustering for handling Big Data.

To compare our proposed SRSIO-FCM, two other basic algorithms, i.e., rse-

FCM and LFCM are enhanced to make these algorithms scalable for handling

Big Data. To do this, we implemented the LFCM and rseFCM on the Apache

Spark Cluster and designed their scalable versions which are termed as SrseFCM

and SLFCM. Experimental results are evaluated on several Big Datasets in terms

of various performance measures such as NMI, F-measure, ARI, objective func-

tion, speedup, sizeup, and scaleup. Moreover, a trade-off between performance

gain versus accuracy is also reported for in-depth analysis of experimental re-

sults. The efficacy of the SRSIO-FCM is analyzed in terms of space and time

complexity. It is observed that the space complexity of the SRSIO-FCM is very

less in comparison with the SLFCM and SrseFCM both of which share the same

space complexity. The SLFCM and SRSIO-FCM share the same time complex-

ity, but the run-time of SRSIO-FCM is significantly lesser as compared to the

SLFCM. This is because SRSIO-FCM performs clustering on a lesser amount

of data by dividing the entire data into various subsets that lead to faster con-

vergence by taking the less number of iterations as compared to the SLFCM

139

6.5. SUMMARY

which performs clustering on the entire data. The same can be verified with

the experimental evaluations carried out on several Big Datasets. The empiri-

cal evaluations show that the SRSIO-FCM significantly outperformed over the

SLFCM and SrseFCM by achieving higher or comparable clustering results in

terms of NMI, F-measure, ARI, and objective function. Also, the SRSIO-FCM

achieves a significant reduction in run-time in terms of speedup, sizeup, scaleup

as compared to the SLFCM. Furthermore, a trade-off between performance gain

versus accuracy is also evaluated, which shows that the loss of accuracy is almost

negligible as compared to the reduction in run-time. The results indicate that

the SRSIO-FCM has great potential in Big Data clustering.

140

Chapter 7

Application of Scalable

Clustering Algorithm along with

a Novel Feature Extraction

Approach for Classification of

Protein Data

Bioinformatics has emerged as a forefront research area in Big Data analysis as

a huge volume of protein sequences of complex plant genome is generated on a

daily basis through various genome-sequencing projects. This kind of data is also

generated on a regular basis by the DSR, Indore. Thus, an enormous amount of

genome data (protein sequence database) generated by the DSR has been col-

lected to test the performance of the proposed SRSIO-FCM algorithm discussed

in the previous chapter. First of all, this genome database, which contains a

huge volume of variable length protein sequences is required to be preprocessed

efficiently. There exist many approaches for preprocessing of protein sequence

database. Swati and Santanu [140] adopted an AMOGA to optimize the struc-

ture of RBFN. In this, a 2-gram sequence encoding method [141] was utilized to

reduce the size of features. Wang et al. [142] proposed a new approach by using

the 2-gram method [141] and 6-letter exchange groups [150] for extracting fea-

tures from a protein sequence. The extracted features are used as an input to the

Bayesian network to classify protein sequences into superfamilies. Bandyopad-

141

hyay [144] proposed a feature encoding method by using the 1-gram technique.

The extracted features reflected the probability of occurrences of amino acids

in a different position of sequences, which is used as an input to the nearest

neighbor algorithm to classify protein sequences into superfamilies. Mansoori

et al. [145] proposed a new feature extraction technique for extracting relevant

features from protein sequences by counting the occurrence probabilities of six

exchange groups [150] in each sequence. Then, it considers some interpretable

fuzzy rules for assigning protein sequences into appropriate superfamilies.

Another feature extraction approach is proposed by Mansoori et al. [146],

which extracts features from a protein sequence using 2 grams and a 2-gram ex-

change group from a dataset. It uses distance-based feature ranking method for

the selection of best and most appropriate features, and then it employs a steady

state genetic algorithm for extracting fuzzy rules from data that is used for the

classification of protein sequences into superfamilies. Iqbal et al. [149] proposed

a statistical metric-based feature selection technique for selection of discrimi-

nant and invariant features from protein sequences. It extracts different subsets

of features from the original feature space using n-gram descriptors frequency-

based encoding method and selects the best feature subset that classifies protein

sequences into superfamilies with maximum accuracy. Swati et al. [168] applied

the concept of AMOGA to optimize the structure of RBFN. In this, the most

parsimonious network obtained from the Pareto front applies to the classifica-

tion of protein sequences to superfamilies. Bharti and Nagamma [169] proposed

a novel semi-supervised support vector machine classifier, which works with a

combination of labeled and unlabeled dataset and used PCA for reducing fea-

tures of protein sequence and classify protein sequences into superfamilies with

high accuracy. In spite of the wide popularity and the existence of many fea-

ture extraction approaches, there is still need to develop a highly accurate and

efficient feature extraction approach for the interpretation of a huge volume of

variable length protein sequences. For this reason, we propose a novel CPSF

approach. The advantage of the proposed method is that it represents each

variable length protein sequence of huge size with a fixed-length numeric vector

even if the protein sequence has a maximum sequence length of 5000. In addi-

tion to this, it considers all possible position-specific variations of amino acids

in a protein sequence as well as within a superfamily.

142

CHAPTER 7. APPLICATION OF SCALABLE CLUSTERING
ALGORITHM ALONG WITH A NOVEL FEATURE EXTRACTION
APPROACH FOR CLASSIFICATION OF PROTEIN DATA

The proposed CPSF approach is applied to a huge volume of variable length

protein sequences for feature extraction, and then it is applied to a real-life

genome database. This database is collected from the DSR, Indore. The pro-

posed CPSF approach is being implemented in this genome database for its

preprocessing to represent all the protein sequences present in this database in

terms of fixed-length numeric feature vectors. Then, the SRSIO-FCM algorithm

is applied on this preprocessed database for its categorization into various su-

perfamilies. For this, initially the SRSIO-FCM algorithm partitioned the entire

protein database into various clusters by considering the similarity among the

protein sequences and then these formed clusters are used further to predict the

superfamilies of unknown protein sequences. The categorization of massive pro-

tein database into various superfamilies assists the DSR scientists to enhance the

productivity of next generation protein sequences of different species of plant.

The detailed description of the proposed CPSF approach is presented next.

7.1 Proposed Novel Feature Extraction Approach

for Protein Classification

This section presents the detailed description of the proposed CPSF approach.

The CPSF approach captures the statistical characteristics of protein sequence

along with positional information of amino acids to produce a fixed-length nu-

meric feature vector for each protein sequence. The proposed CPSF approach

extracts features of protein database in three stages: encoding of protein se-

quences, global similarity measure, and local similarity measure. In the first

stage, it performs encoding of protein sequences where each protein sequence is

represented in terms of exchange groups [150]. In the second stage, it computes

the global similarity measure that takes into account the probability of occur-

rence of each amino acid in a particular position concerning the total number

of protein sequences present in a particular superfamily. In the third stage, we

compute the local similarity measure, which calculates the weight of each amino

acid with respect to each protein sequence by considering the global similarity

measure. In this way, the CPSF approach represents each protein sequence by a

fixed-length numeric vector consisting of only six dimensions with probabilistic

143

7.1. PROPOSED NOVEL FEATURE EXTRACTION APPROACH FOR
PROTEIN CLASSIFICATION

significance. After this, extracted features are passed as an input to train the

well-known classifiers such as SVM [170], NB [171], k-NN [172], and BLTA [173]

so that these classifiers can classify unknown protein sequences to the respective

superfamilies. The working of each stage in CPSF approach is presented next.

7.1.1 Stage One: Encoding of Protein Sequences

At the very first stage of CPSF approach, each protein sequence is encoded

and represented in terms of six exchange groups. According to Dayhoff and

Schwartz [150], the amino acids present in a protein sequence belongs to six ex-

change groups. This is because, within each exchange group, these amino acids

have high evolutionary similarity. The exchange groups are effective equivalence

classes of amino acids, which is formally represented as {e1, e2, e3, e4, e5, e6},

where e1={H,R,K}, e2={D,E,N,Q}, e3={C}, e4={S, T, P,A,G}, e5={M, I, L, V }

and e6={F, Y,W} [142]. The protein sequences belong to different superfamilies,

and within each superfamily, protein sequences share some structural similarity

with each other. Here an illustration is presented by considering an example

of five related protein sequences shown in Figure 7.1. These protein sequences

belong to a particular superfamily, and within a superfamily, these sequences

have high evolutionary similarity.

These protein sequences are encoded into six exchange groups as follows:

SEQ1, i.e. MDGNPLGN encoded as {M,L} ∈ e5, {D,N} ∈ e2, {P,G} ∈ e4.

Similarly, SEQ2, i.e. MEGNDLQN is encoded as {M,L} ∈ e5, {D,E,N,Q} ∈

e2, {G} ∈ e4. In the same way SEQ3, i.e. TNQDFVRL is encoded as {R} ∈ e1,

{N,Q,D} ∈ e2, {T} ∈ e4, {V, L} ∈ e5, {F} ∈ e6. Similarly SEQ4, i.e.

VDQNPVEL is encoded as {D,Q,E,N} ∈ e2, {P} ∈ e4, {V, L} ∈ e5. In

the same manner SEQ5, i.e. TEGNPIRN is encoded as {R} ∈ e1, {E,N} ∈ e2,

{P, T,G} ∈ e4, {I} ∈ e5. Table 7.1 presents the encoded positional information

of all the protein sequences given in Figure 7.1. Once, the protein sequences are

Figure 7.1: Primary structure of five related protein sequences in a superfamily.

144

CHAPTER 7. APPLICATION OF SCALABLE CLUSTERING
ALGORITHM ALONG WITH A NOVEL FEATURE EXTRACTION
APPROACH FOR CLASSIFICATION OF PROTEIN DATA

Table 7.1: Encoded positional representation of amino acids.

Sequence Positions

1 2 3 4 5 6 7 8

1 e5 e2 e4 e2 e4 e5 e4 e2
2 e5 e2 e4 e2 e2 e5 e2 e2
3 e4 e2 e2 e2 e6 e5 e1 e5
4 e5 e2 e2 e2 e4 e5 e2 e5
5 e4 e2 e4 e2 e4 e5 e1 e2

encoded in terms of exchange groups (as shown in Table 7.1), the global similar-

ity between the encoded exchange groups are computed. Detailed description

about this is presented next.

7.1.2 Stage Two: Global Similarity Measure

In the second stage of CPSF approach, we compute a global similarity measure

by evaluating the probability of occurrences of all exchange groups at each posi-

tion concerning the total number of protein sequences present in the superfamily.

The global similarity measure is computed as follows:

(Probability)ab = (Occurence)ab/η (7.1)

where (Probability)ab represents the probability of occurrence of the ath ex-

change group at bth position, (Occurence)ab denotes the frequency at which the

ath exchange group occur at bth position and η represents the total number of

sequences in a particular superfamily. Now, the global similarity measure is

computed corresponding to the exchange groups given in Table 7.1. In this ta-

ble, exchange group e5 occurs at first position three times out of five sequences,

therefore (Probability)51=
3
5
. Similarly, the probability of other exchange groups

present in this table is also computed. Thus, in Table 7.2, we have reported the

values obtained after computing a global similarity measure corresponding to all

the encoded sequences shown in Table 7.1. After this, the local similarity mea-

sure is calculated which determines the position specific weight of each exchange

group. The detailed description of the same is presented next.

145

7.1. PROPOSED NOVEL FEATURE EXTRACTION APPROACH FOR
PROTEIN CLASSIFICATION

Table 7.2: Global Similarity Measure of encoded protein sequences.

Exchange groups Positions

1 2 3 4 5 6 7 8

e1 0 0 0 0 0 0 0.4 0
e2 0 1 0.4 1 0.2 0 0.4 0.6
e3 0 0 0 0 0 0 0 0
e4 0.4 0 0.6 0 0.6 0 0.2 0
e5 0.6 0 0 0 0 1 0 0.4
e6 0 0 0 0 0.2 0 0 0

7.1.3 Stage Three: Local Similarity Measure

In the third stage of CPSF approach, the local similarity measure is computed,

which determines the position specific weight of each exchange group within

the sequence in terms of weight factors. These weight factor finally represent a

feature vector for each protein sequence. The weight of each exchange group is

computed as follows:

(Weight)SEQo
a =

b
′∑

b=1

(Probability)ab × (PW)SEQo

ab (7.2)

where (Weight)SEQo
a denotes the weight of ath exchange group corresponding to

the oth protein sequence, (Probability)ab represents the probability of occurrence

of the ath exchange group at bth position and (PW)SEQo

ab is the positional weight

assign to the ath exchange group based on the presence of oth protein sequence

at bth position. The weight of exchange groups, i.e., the first encoded protein

sequence (e5e2e4e2e4e5e4e2) present in Table 7.1 is calculated as follows:

(Weight)SEQ1
e2

= 1× 1 + 1× 1 + 0.6× 1 = 2.6

(Weight)SEQ1
e4

= 0.6× 1 + 0.6× 1 + 0.2× 1 = 1.4

(Weight)SEQ1
e5

= 0.6× 1 + 1× 1 = 1.6

The first encoded protein sequence present in Table 7.1 is composed of only

three exchange groups e2, e4, and e5 and the remaining exchange groups, i.e.,

e1, e3, and e6 are absent in the first sequence (SEQ1). Due to the absence

of exchange groups e1, e3, and e6 in SEQ1, the positional weight ((PW)SEQo

ab)

corresponding to these exchange groups is zero. On the contrary, the exchange

group e2 occurs three times in the SEQ1 at position 2, 4, and 8. Therefore, the

146

CHAPTER 7. APPLICATION OF SCALABLE CLUSTERING
ALGORITHM ALONG WITH A NOVEL FEATURE EXTRACTION
APPROACH FOR CLASSIFICATION OF PROTEIN DATA

positional weight assign to the exchange group e2 for each position is 1 which

is multiplied by the probability of occurrence of exchange group e2 on these

positions, i.e., 1, 1, and 0.6 reported in Table 7.2.

Thus, the final weight of exchange group e2 is determined by adding the

product of positional weight and probability of occurrence of exchange group

e2 based on the presence in SEQ1. Similarly, the weight of exchange groups

e4 and e5 are computed. Finally, the feature vector for SEQ1 is obtained

as {(e1, 0), (e2, 2.6), (e3, 0), (e4, 1.4), (e5, 1.6), (e6, 0)}. Similarly, by using three

stages of the CPSF approach, the feature vectors of all the protein sequences

present in Figure 7.1 are determined and reported in Table 7.3. The complete

flowchart showing the working of each stage of CPSF approach along with the

classification of protein sequences into superfamilies is presented in Figure 7.2.

It can be inferred that feature vectors generated by CPSF approach cover all the

possible variations of amino acids by considering both the local and global sim-

ilarity measures. In addition to this, the proposed CPSF approach represents

a long chain of the protein sequence with a feature vector consists of only six

dimensions (attributes). The obtained feature vectors with the proposed CPSF

approach are used in several well-known classifiers for the efficient classification

of protein sequences into superfamilies.

7.2 Experimental Evaluation

In this section, we present the details of the benchmark protein database com-

prises of four superfamilies, which are used to evaluate the performance of the

proposed CPSF approach on standard classifiers such as SVM [170], NB [171],

k-NN [172], and BLTA [173] classifiers. We have used WEKA [174] for imple-

menting SVM, NB, and k-NN classifiers. To make it simple and easier, we just

Table 7.3: Representation of feature vector.

Sequence e1 e2 e3 e4 e5 e6

1 0 2.6 0 1.4 1.6 0
2 0 3.2 0 0.6 1.6 0
3 0.4 2.4 0 0.4 1.4 0.2
4 0 2.8 0 0.6 2.0 0
5 0.4 2.6 0 1.6 1 0

147

7.2. EXPERIMENTAL EVALUATION

Training

Phase

Benchmark Protein

database composed of

variable length protein

sequence

Protein sequence

>>MTEYKLVVVGAG

GVGKSALTIQLQN

HFVDEYDPTIED

Encoding of protein sequence

to exchange groups

Global Similarity measure

Local Similarity measure

Three

stage

CPSF

Obtained Feature vector with

reduced feature space

Testing

Phase

Training Data Test data

Training of classifier

Testing of

classifier

Measuring classification performance

Genome

Database

Data

acquisition

from

database

Figure 7.2: The flowchart of proposed CPSF approach.

use the default parameter values of these classifiers as found in WEKA [174].

In addition to these standard classifiers, we have implemented a neural network

classifier called BLTA. For this classifier, we set its one of the parameters m-

circle to 8. This m-circle refers to as the groups consisting of powers of 2 (which

we will refer to as 2-circles, 4-circles, 8-circles and so on) is used as the basis

of reduction in the Karnaugh domain [175]. The performance of the proposed

CPSF approach is investigated on these classifiers in terms of various measures

used for multi-class classification problems. The measures are confusion matrix,

sensitivity, specificity, and classification accuracy [151]. The detailed descrip-

tion of these measures is already presented in the section 2.8.2. Furthermore,

the performance of the CPSF approach is investigated in comparison with other

feature extraction methods on these classifiers in terms of classification accu-

racy. Also, this section presents the details of the real-life database (a protein

database of complex plant genome) of size 80GB collected from the DSR. The

148

CHAPTER 7. APPLICATION OF SCALABLE CLUSTERING
ALGORITHM ALONG WITH A NOVEL FEATURE EXTRACTION
APPROACH FOR CLASSIFICATION OF PROTEIN DATA

preprocessing of this database is done using the CPSF approach, and then the

extracted features are applied as an input to the SRSIO-FCM algorithm so that

the protein sequences are efficiently assigned to the respective superfamilies.

The performance of the SRSIO-FCM algorithm for this database is evaluated in

terms of NMI [46], F-measure [45], and classification accuracy [151], respectively.

The brief description of these measures is already presented in the section 2.8.1

and 2.8.2. The information about the protein databases and experimental set-

tings used in the experimental evaluation are discussed next.

7.2.1 Datasets and Experimental Settings

To demonstrate the efficacy of the proposed CPSF approach on well-known

classifiers, we have created a benchmark protein database composed of vari-

able length protein sequences of four superfamilies, i.e., Ras, Globin, Trypsin,

and Kinase collected from a publicly available database, i.e., UniProtKB [176].

The UniProtKB is a central repository to access complete protein sequences

with functional information about various organisms and species. The bench-

mark protein database used here is composed of a different number of sequences

taken from each superfamily. The information of the number of protein se-

quences taken from each superfamily is presented in Table 7.4, and the detailed

description of these superfamilies is given in Appendix C. To evaluate the gen-

eralizability of our CPSF approach in comparison with other feature extraction

approaches on well-known classifiers, we divided the training and testing data

using 10-fold cross validation scheme. Also, the results are reported by divid-

ing the training and testing data into 50-50, 60-40, and 70-30 training-testing

partitions to show the importance of proper training. The detailed description

of 10-fold cross validation scheme and different training-testing partitions are

Table 7.4: Information of the superfamilies of the benchmark protein database.

Name of Number of Minimum length Maximum length
superfamilies sequences of sequence of sequence

Ras 2460 171 296
Globin 2500 128 339
Trypsin 2510 142 485
Kinase 2470 215 860

Total sequences 9940 - -

149

7.2. EXPERIMENTAL EVALUATION

given in Appendix B. The classifiers with their default settings have been used

in the experimental evaluation.

All the experiments are carried out on Intel(R) Xeon(R) E5-1607 v3 @

3.10GHz x 4, workstation PC with 64 GB of memory and running on the

Windows 7 Professional operating system. The implementation is done in the

MATLAB computing environment and executed on MATLAB version R2014a.

Furthermore, to investigate the efficacy of proposed CPSF on the SRSIO-FCM

algorithm to handle the real-life genome data, the protein database is collected

from the DSR, Indore which is of size 80 GB and consists of protein sequences

of complex plant genomes. The detailed description of this protein database is

given in Appendix D. All the experiments related to this protein database of

size 80 GB are carried on the Apache Spark Cluster. The experiments have

been done on the Spark Cluster with 3 nodes. Each node has the following

configuration: Intel(R) Xenon(R) CPU E5-1607 v3 @ 3.10GHz x 4, 32GB RAM

and 2TB storage.

7.2.2 Experimental Results and Discussion

In this section, we present the experimental results in terms of confusion ma-

trix, sensitivity, specificity, and classification accuracy to evaluate the perfor-

mance of the proposed CPSF approach on well-known classifiers, i.e., SVM [170],

NB [171], k-NN [172], and BLTA [173] for solving the multi-class protein se-

quence classification problem. In addition to this, the performance of the CPSF

approach compared with other feature extraction methods which are applied on

the same standard classifiers. Furthermore, the proposed CPSF approach along

with the SRSIO-FCM algorithm is applied to real-life complex plant genome

data for its efficient categorization. The efficiency is reported in terms of NMI,

F-measure, and classification accuracy, respectively.

Comparison of classification accuracy of CPSF approach on SVM, NB,

k-NN, and BLTA classifiers for classification of protein sequences

The results of classification accuracy of proposed CPSF approach on SVM, NB,

k-NN, and BLTA classifiers are presented in Table 7.5 using 50-50, 60-40, and

70-30 training-testing partitions and 10-fold cross validation scheme. It can be

150

CHAPTER 7. APPLICATION OF SCALABLE CLUSTERING
ALGORITHM ALONG WITH A NOVEL FEATURE EXTRACTION
APPROACH FOR CLASSIFICATION OF PROTEIN DATA

seen from the results that the features extracted by the proposed CPSF approach

when applied on SVM, NB, k-NN, and BLTA classifiers, the highest classifica-

tion accuracy is achieved with SVM classifier for 50-50 and 60-40 training-testing

partitions are 98.28% and 98.56%, respectively. This shows that even for smaller

training samples, the features extracted by CPSF approach enhances the clas-

sification capability of SVM classifier and efficiently classify protein sequences

into superfamilies. On the other hand, for 70-30 training-testing partition, the

highest classification accuracy is achieved with NB, and k-NN classifiers are

100% which is outstandingly high. The higher classification accuracy shows the

importance of proper training data provided as the features extracted by the

CPSF approach for the efficient classification of protein sequences into super-

families. For 70-30 training-testing partition, SVM and BLTA classifiers also

show improvement in classification accuracy when the training data increases,

but it is not equivalent to NB and k-NN classifiers. The classification accuracy

of 10-fold cross validation scheme shows that SVM, NB, and k-NN classifiers

achieves 100% classification, and classify protein sequences into superfamilies

with high accuracy which is superior in comparison to BLTA classifier. Thus,

it is inferred from the results that feature extracted by the proposed CPSF

approach are highly efficient and statistically significant that leads to the im-

provement in classification accuracy of these classifiers for different training and

testing partitions.

Table 7.5: Comparison of classification accuracies of proposed CPSF approach
on several classifiers for classification of the benchmark protein database.

Validation SVM NB k-NN BLTA

methods Acc(%) Acc(%) Acc(%) Acc(%)

Mean SD Max Mean SD Max Mean SD Max Mean SD Max

50-50 97.48 0.249 98.28 96.28 0.250 97.09 95.13 0.521 96.21 96.02 0.138 96.46

60-40 98.04 0.124 98.56 97.49 0.874 98.08 96.27 0.451 97.73 97.12 0.898 97.91

70-30 98.82 0.483 99.98 99.10 0.295 100 98.93 0.477 100 97.89 0.506 98.82

10-fold cross 99.11 0.346 100 99.23 0.321 100 99.12 0.342 100 98.98 0.440 99.94

validation

151

7.2. EXPERIMENTAL EVALUATION

Comparison of sensitivity and specificity of CPSF approach on SVM,

NB, k-NN, and BLTA classifiers for classification of benchmark pro-

tein sequences

The results of sensitivity and specificity in terms of mean and SD values of

proposed CPSF approach on SVM, NB, k-NN, and BLTA classifiers are pre-

sented in Table 7.6 using 50-50, 60-40, and 70-30 training-testing partitions and

10-fold cross validation scheme. The reported results show that sensitivity and

specificity achieved by the proposed CPSF approach on traditional classifiers for

classification of protein sequences into superfamilies are significantly improved

with the increase of training data. It can be inferred from the results that sen-

sitivity and specificity of all the classifiers are highly appreciable with different

validation methods for classification of protein sequences into superfamilies.

Comparison of actual and predicted classification of protein sequences

by the proposed CPSF approach with well-known classifiers

The results are presented in the form of confusion matrix to show the actual and

predicted classification of protein sequences performed by the proposed CPSF

approach with SVM, NB, k-NN, and BLTA classifiers for each superfamily. The

results are reported with different validation methods as reported in Table 7.7.

The reported results indicate that the rate of true positive and true negative

increases with the increase of training data. Especially, for 70-30 training-testing

partition and 10-fold cross validation, the rate of true positive and the true

negative sample is 100% in the case of most of the classifiers. The results show

that the proposed approach extracts the statistically significant features when

applied on well-known classifiers and gives a good generalization and adaptation

capability of classifiers for classification of protein sequences into superfamilies.

Table 7.6: Comparison of sensitivity and specificity of proposed CPSF approach
on several classifiers for classification of the benchmark protein database.

Validation SVM NB k-NN BLTA

methods Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

50-50 96.52 0.256 98.04 0.347 93.82 0.253 97.01 0.443 91.63 0.752 96.19 0.528 92.04 1.266 97.23 0.426

60-40 96.72 0.356 98.78 0.526 93.36 0.324 97.28 0.652 93.85 0.652 96.85 0.652 96.15 1.796 97.16 1.598

70-30 98.13 0.642 99.01 0.621 98.89 1.054 99.17 0.452 98.98 1.086 99.31 0.254 96.04 1.873 98.01 0.624

10-fold cross 98.78 1.802 99.23 0.701 98.95 1.001 100 0 99.09 0.487 100 0 98.99 1.854 99.32 0.951

validation

152

CHAPTER 7. APPLICATION OF SCALABLE CLUSTERING
ALGORITHM ALONG WITH A NOVEL FEATURE EXTRACTION
APPROACH FOR CLASSIFICATION OF PROTEIN DATA

Table 7.7: Confusion matrix of proposed CPSF approach with well-known clas-
sifiers on the benchmark protein database with different validation methods.

Validation Classifiers Desired Output results for Ras-Globin- Validation Output results for Ras-Globin-

methods results Trypsin-Kinase classification methods Trypsin-Kinase classification

Ras Globin Trypsin Kinase % Score Ras Globin Trypsin Kinase % Score

50-50 SVM Ras 1193 15 12 10 96.99 60-40 966 4 5 9 98.17

Globin 25 1203 12 10 96.24 9 975 7 9 97.5

Trypsin 16 15 1212 12 96.57 6 16 963 19 95.91

Kinase 10 23 10 1192 96.51 18 8 4 958 96.96

NB Ras 1170 25 10 25 95.12 954 20 6 4 96.95

Globin 39 1179 11 21 94.32 30 958 8 4 95.8

Trypsin 21 19 1181 34 94.1 7 16 962 19 95.81

Kinase 40 18 26 1151 93.19 12 14 12 950 96.15

k-NN Ras 1143 52 18 17 92.92 947 10 10 17 96.23

Globin 66 1150 22 12 92 15 948 17 20 94.8

Trypsin 45 31 1161 18 92.5 13 15 956 20 95.21

Kinase 50 30 15 1140 92.3 14 12 17 945 95.64

BLTA Ras 878 0 352 0 71.38 846 0 138 0 85.97

Globin 0 1250 0 0 100 0 994 6 0 99.4

Trypsin 0 0 1255 0 100 7 7 990 0 98.6

Kinase 0 0 0 1235 100 4 0 4 980 99.19

70-30 SVM Ras 737 1 0 0 99.86 10-fold 246 0 0 0 100

Globin 0 750 0 0 100 cross 0 250 0 0 100

Trypsin 0 0 753 0 100 validation 0 0 251 0 100

Kinase 0 0 0 741 100 0 0 0 247 100

NB Ras 738 0 0 0 100 246 0 0 0 100

Globin 0 750 0 0 100 0 250 0 0 100

Trypsin 0 0 753 0 100 0 0 251 0 100

Kinase 0 0 0 741 100 0 0 0 247 100

k-NN Ras 738 0 0 0 100 246 0 0 0 100

Globin 0 750 0 0 100 0 250 0 0 100

Trypsin 0 0 753 0 100 0 0 251 0 100

Kinase 0 0 0 741 100 0 0 0 247 100

BLTA Ras 668 0 70 0 90.51 245 0 1 0 99.59

Globin 0 750 0 0 100 0 250 0 0 100

Trypsin 0 0 753 0 100 0 0 251 0 100

Kinase 0 0 0 741 100 0 0 0 247 100

Comparison of classification accuracy of proposed CPSF approach

with other feature extraction approaches on well-known classifiers

The performance of the proposed CPSF approach is evaluated in comparison

with other feature extraction approaches discussed in the literature for classifi-

cation of protein sequence into superfamilies. The feature encoding technique

used along with the number of features extracted by each approach is listed

here in Table 7.8. We have evaluated the performance of the CPSF approach in

comparison with other feature extraction approaches in terms of classification

accuracy and reported results in terms of mean, SD, and maximum accuracies

for 50-50, 60-40, and 70-30 training-testing partitions and 10-fold cross valida-

tion scheme, respectively in Table 7.9.

The reported results show that the classification accuracies achieved by

153

7.2. EXPERIMENTAL EVALUATION

Table 7.8: Comparison of the number of features extracted with different feature
extraction approaches on the benchmark protein database.

Authors Feature extraction method Number of features

Bandyopadhyay [144] l-gram feature encoding method 20
Mansoori et al. [145] Exchange group encoding method 6
Iqbal et al. [149] Sequence encoding and statistical

20
measure based feature selection method

This study CPSF method 6

the proposed CPSF approach on different classifiers are comparatively much

higher than the classification accuracies achieved by other features extraction

approaches on these classifiers. This shows that although the number of fea-

tures extracted by the proposed CPSF approach is equal to the number of

features extracted by mansoori et al. [145] and much lesser than the features

extracted by Bandyopadhyay [144] and Iqbal et al. [149], but the classification

accuracy achieved by the CPSF approach is significantly higher. This is because

the proposed CPSF approach captures both the statistical characteristics along

with positional information of amino acids in protein sequences more efficiently.

Thus, the reported results affirm the potential use of the proposed method for

more accurate categorization of protein sequences into superfamilies.

Table 7.9: Comparison of classification accuracies of feature extraction ap-
proaches on well-known classifiers for the benchmark protein database.

Classifiers Validation Bandyopadhyay [144] Mansoori et al. [145] Iqbal et al. [149] CPSF approach

methods Acc(%) Acc(%) Acc(%) Acc(%)

Mean SD Max Mean SD Max Mean SD Max Mean SD Max

50-50 87.90 0.671 88.21 74.90 0.754 75.19 74.48 1.09 75.67 97.48 0.249 98.28

60-40 88.09 0.912 89.11 75.18 0.597 76.33 75.01 0.659 76.11 98.04 0.124 98.56

SVM 70-30 88.85 0.789 89.10 77.09 0.367 77.18 78.81 0.359 79.67 98.82 0.483 99.98

10-fold 89.97 0.768 90.57 79.55 0.991 80.08 79.33 0.559 80.85 99.11 0.346 100

50-50 85.49 0.651 86.14 70.95 0.897 71.42 78.97 1.78 80.99 96.28 0.25 97.09

60-40 86.11 0.776 86.91 71.89 0.568 72.21 79.31 0.989 81.87 97.49 0.874 98.08

NB 70-30 86.99 0.589 87.03 73.45 0.923 74.19 81.19 0.886 82.11 99.10 0.295 100

10-fold 87.78 0.91 88.91 75.88 0.398 76.61 83.35 0.328 84.12 99.23 0.321 100

50-50 84.88 0.897 85.73 74.18 1.25 75.93 83.99 0.119 84.17 95.13 0.521 96.21

60-40 84.97 0.988 85.99 75.33 0.449 75.88 85.48 0.449 86.88 96.27 0.451 97.73

k-NN 70-30 85.89 0.987 86.19 76.61 0.783 77.11 87.11 0.878 88.92 98.93 0.477 100

10-fold 86.10 0.897 86.94 79.10 1.11 81.93 89.66 0.187 90.28 99.12 0.342 100

50-50 82.59 0.875 83.08 73.01 0.165 73.89 92.96 0.839 93.69 96.02 0.138 96.46

BLTA 60-40 84.01 0.901 85.89 73.98 0.697 74.67 93.71 0.671 94.19 97.12 0.898 97.91

70-30 85.55 0.152 86.13 75.99 0.122 76.83 94.5 0.991 95.89 97.89 0.506 98.82

10-fold 87.98 0.187 88.61 78.12 0.089 78.65 96.69 0.39 97.01 98.98 0.44 99.94

154

CHAPTER 7. APPLICATION OF SCALABLE CLUSTERING
ALGORITHM ALONG WITH A NOVEL FEATURE EXTRACTION
APPROACH FOR CLASSIFICATION OF PROTEIN DATA

Performance evaluation of real-life Big Data collected from DSR

As discussed earlier, the proposed CPSF approach on well-known classifiers is

validated on a benchmark protein database. Then, the proposed CPSF approach

is applied to a real-life Big Data of size 80 GB (i.e., a protein database com-

posed of various superfamilies of the complex plant genome) which is collected

from the DSR, Indore. This huge protein database is preprocessed efficiently

using the proposed CPSF feature extraction approach. This approach repre-

sents all the protein sequences present in this database in terms of fixed-length

numeric feature vectors, where each feature vector consists of six dimensions.

Then, the preprocessed database is passed as an input to the SRSIO-FCM al-

gorithm for the efficient categorization of the genome database into various

superfamilies. For this, the SRSIO-FCM algorithm firstly partitioned the en-

tire protein database into various clusters by considering similarity among the

protein sequences. Then, these formed clusters are used further to predict the

superfamilies of unknown protein sequences to enhance the productivity of next

generation protein sequences of a plant.

The performance of the SRSIO-FCM algorithm on the features extracted

with the CPSF approach is evaluated on this massive protein database in terms

of NMI, F-measure and classification accuracy, respectively and the results are

given in Table 7.10. The higher value of NMI, F-measure, and classification

accuracy indicates good categorization results. Thus, the reported results show

that the CPSF approach with the SRSIO-FCM algorithm achieves remarkable

results on this real-life protein database. The remarkable results help to assist

the DSR Scientists in enhancing the productivity of next generation protein se-

quences of a plant.

155

7.3. SUMMARY

Table 7.10: Result of the proposed approaches on real-life protein database.

Superfamilies Measures

NMI F-measure Classification
Accuracy (%)

ABB36645.1 0.7831 0.8657 91.85
ACI31552.1 0.7765 0.8563 87.98
AEE29332.1 0.7231 0.7891 83.45
AF456323.1 0.8897 0.9256 95.78
AGO06072.1 0.9123 0.9511 97.18
AHF074N12.027 0.8623 0.9141 94.86
AHF417E07.003 0.8232 0.8871 94.78
Arabidopsis thaliana 0.9332 0.9902 99.22
BAE02726.1 0.8129 0.8762 93.98
gm Glyma12g34160 0.7653 0.8231 84.67
Peanut 0.8097 0.8736 92.97
Plant db allgery 2 0.9156 0.9678 98.81
Plant db disease 0.8227 0.8859 94.06
Plant db sweet gene 0.9106 0.9347 96.09
Plant db unknown 0.9256 0.9876 99.01
Plant db allergy 0.7651 0.8001 84.41
XP 003544375.1 0.9501 0.9941 99.89

7.3 Summary

In this chapter, the proposed SRSIO-FCM algorithm is applied to a real-life

genome database collected from the DSR, Indore. For the preprocessing of

this genome database, a novel CPSF approach is designed. First of all, the

genome database gathered from the DSR, Indore is analyzed. Then, this genome

database consists of a huge volume of variable length protein sequences is pre-

processed using the proposed CPSF approach. This feature extraction approach

works in three stages, i.e., in the first stage, it performs encoding of protein se-

quences where each protein sequence is represented in terms of exchange groups.

Then, in the second and third stage, it computes the global similarity measure

and local similarity measure for representing a protein sequence with a fixed-

length numeric feature vector. One distinctive characteristic of the proposed

CPSF approach is that it computes both local and global similarity for taking

into account all possible position-specific variations of amino acids in a protein

sequence as well as within a superfamily. The other important characteristic is

that it represents each variable length protein sequence consist of a long chain

156

CHAPTER 7. APPLICATION OF SCALABLE CLUSTERING
ALGORITHM ALONG WITH A NOVEL FEATURE EXTRACTION
APPROACH FOR CLASSIFICATION OF PROTEIN DATA

of amino acids with a fixed-length numeric vector consist of only six dimensions.

To validate the proposed CPSF approach, it is tested on a benchmark pro-

tein database comprises of four superfamilies and its performance is evaluated on

SVM, NB, k-NN, and BLTA classifiers in terms of various performance measures

such as confusion matrix, sensitivity, specificity, and classification accuracy, re-

spectively. The protein sequences belong to four superfamilies are relatively

long and have a very low sequence similarity among them. Therefore, it is very

tough to classify protein sequences into existing superfamilies with high accu-

racy. The results show that features extracted by the proposed approach are

highly useful and statistically significant. Thus, the features extracted with the

proposed approach lead to a substantial improvement in the classification ac-

curacy, sensitivity, and specificity of these classifiers for different training and

testing partitions. Also, the results show that the rate of true positive and

true negative sequences increases with the increase of training data this gives a

good generalization and adaptation capability of the proposed CPSF approach

in comparison with other state-of-the-art methods on these classifiers.

Furthermore, the proposed CPSF approach is applied to a real-life protein

database collected from the DSR, Indore. The CPSF approach represents all

protein sequences present in this database in terms of fixed-length numeric fea-

ture vectors. This preprocessed database is passed as an input to the SRSIO-

FCM algorithm for its efficient categorization to the respective superfamilies.

The experimental results on this massive protein database are reported in terms

of NMI, F-measure, and classification accuracy, respectively. The higher value

of NMI, F-measure, and classification accuracy indicates good categorization re-

sults. This shows that integration of proposed feature extraction approach with

the SRSIO-FCM algorithm performs efficient categorization of protein sequences

of complex plant genome into superfamilies.

157

7.3. SUMMARY

158

Chapter 8

Conclusion

8.1 Contributions

Clustering is one of the most well-known concepts for discovering the underlying

structure of data by assigning the data points into groups called clusters so that

data points belong to the same group are more similar than the data points

lying in different groups. The challenges in real-life situations are that every

dataset has different geometrical distribution in feature space and there exists

an ambiguity in designating a data point to a particular group or cluster. There-

fore, it is very difficult to capture the underlying structure of different datasets

with a single clustering algorithm. To handle such challenges, fuzzy clustering

has emerged in recent years that solves various categorization problems. Thus,

there is an immense need to analyze this kind of clustering to improve overall

clustering processes which can handle different categories of data, such as Large,

VL, and Big Data based on their size.

To achieve enhanced fuzzy clustering performance, we have designed a novel

cluster validity index by combining three proposed measures named as Intra-

cluster Compactness, Inter-cluster Separation based on Fuzzy sets, and Inter-

cluster Overlap. The purpose of this work is to find the optimal number of clus-

ters and the corresponding fuzzy partitions for the validation of fuzzy clustering.

One of the distinctive characteristics of this validity index is that it minimizes

the maximum dispersion so as to increase the overall compactness within the

clusters. Also, the validity index maximizes the distance between the centers of

less separated fuzzy clusters to increase the overall separation among all pairs of

159

8.1. CONTRIBUTIONS

fuzzy clusters and also minimizes the degree of overlap among the highly over-

lapped fuzzy clusters in order to reduce the overall overlapping among the fuzzy

partitions. Hence, the purpose of a designed novel cluster validity index is to

determine the optimal number of clusters such that the obtained clusters are ex-

pected to have high compactness, less degree of overlap, and higher separation.

The designed cluster validity index outperforms the other compared indexes in

terms of identifying the optimal number of clusters and the corresponding fuzzy

partitions. In addition to this, the optimal number of clusters determined by

the proposed cluster validity index is insensitive to a change in values of the

fuzzifier and therefore it is considered as the most reliable cluster validity index.

Furthermore, for a better selection of other parameters of clustering such as

the fuzzifier, the number of clusters and the locations of cluster centers, we have

designed two hybrid fuzzy clustering algorithms named as the QIE-FCM and

the EQIE-FCM algorithms. In the QIE-FCM algorithm, the quantum comput-

ing principle is utilized in fuzzy clustering to find the best value of the fuzzifier

from a large search space after several generations of evolution by maintaining

a proper balance between exploration and exploitation. In this approach, cor-

responding to the best value of fuzzifier, it determines the optimal number of

clusters. One of the major limitations of the QIE-FCM approach is a random

initialization of locations of cluster centers. Due to this, it takes a higher num-

ber of iterations to determine the proper locations of cluster centers, and thus

it leads to a slow convergence problem. To overcome this problem, the EQIE-

FCM algorithm is designed that uses the quantum computing principle in fuzzy

clustering to find the optimal parameters of fuzzy clustering, i.e., the fuzzifier,

the number of clusters, and the location of cluster centroids from a large search

space after several generations of evolution by keeping a proper balance between

exploration and exploitation. The performance of the QIE-FCM algorithm has

been evaluated in comparison with well-known cluster validity indexes and has

also been compared to several evolutionary algorithms. It is found that the QIE-

FCM algorithm achieves the minimum value of fitness function, identifies the

best value of fuzzifier, and the optimal number of clusters. The performance of

the EQIE-FCM algorithm is compared with the QIE-FCM algorithm and with

other evolutionary clustering algorithms. From our experimental result, we can

conclude that the EQIE-FCM algorithm is very efficient in terms of proper se-

160

CHAPTER 8. CONCLUSION

lection of learning parameters, and hence, it converges to the optimal value of

parameters and also achieves fast convergence as compared to the QIE-FCM

algorithm.

Looking towards the current need of the clustering process to handle different

categories of data, such as Large, VL and Big Data in real-life situations, another

contribution is made to design a different fuzzy clustering process to handle VL

data, and further scaled this to handle Big Data. For this, an incremental

clustering algorithm called RSIO-FCM is designed to handle VL data. This

processes data, chunk by chunk and performs clustering on each chunk by feeding

forward final cluster centers of the present chunk for clustering of the next

chunk. The main contribution made to the literature over other existing one

is that this approach resolves the problem of overlapping locations of cluster

centers. Furthermore, this approach is modeled as a classifier by using the

Bayes’ theorem that relates clustering results to the classification process for

handling the classification of multi-class VL data. The reported results show

that the RSIO-FCM efficiently handled VL data by showing improvement in

classification accuracy with a significant reduction in run-time. One of the

major limitation of the RSIO-FCM algorithm is that it produces highly deviated

cluster centers in the case when two chunks would consist of samples belonging

to distinct classes. Due to this reason, if the cluster centers of the previous

subset are fed as an input for the clustering of the current subset, then it will

converge slowly by taking a higher number of iterations during clustering of

the current subset. Therefore, another contribution is made to overcome this

problem and also capable of handling Big Data.

We contributed to the design and implementation of a novel SRSIO-FCM

algorithm. This algorithm partitioned the Big Data into various chunks, and

processed the data points present within the chunk in a parallel manner. One

distinctive characteristic of the SRSIO-FCM is that due to the parallel process-

ing of data points within the chunk, it achieves a significant reduction in run-

time for the clustering of such huge amounts of data, without compromising

the quality of clustering. The other important characteristic is that during the

execution of the proposed algorithm, we eliminate the need for storing the large

membership matrix, which significantly reduces the run-time and storage space

and thus, it makes the execution of the proposed algorithm much faster. The

161

8.1. CONTRIBUTIONS

SRSIO-FCM algorithm is implemented using the Big Data processing framework

called Apache Spark to deal with the challenges associated with fuzzy clustering

for handling Big Data. For comparing the performance of SRSIO-FCM, two

basic algorithms present in literature are enhanced by making these algorithms

scalable for handling Big Data. The detailed experimentation is carried out

and the reported results in the previous chapters, show the dominance of the

proposed SRSIO-FCM algorithm over other comparable approaches in terms of

various measures assessing the quality of clustering. The results show that the

SRSIO-FCM has a great potential in Big Data clustering.

The proposed SRSIO-FCM algorithm is applied to a real-life Big Data clas-

sification problem (i.e., protein sequences of complex plant genome) for enhanc-

ing the productivity of next generation protein sequences of various species of

plant. The productivity of next generation protein sequences can be enhanced

by making protein sequences resistance to disease, drought, heat, high tempera-

ture, and food allergies. For this, a real-life Big Data is collected from the DSR,

Indore which is of size 80 GB. First of all, this protein database is required to

be preprocessed efficiently for its proper clustering and classification. For this

reason, we have proposed a novel CPSF approach for feature extraction. One

distinctive characteristic of the CPSF approach is that it computes both local

and global similarity for taking into account all possible position-specific varia-

tions of amino acids in a protein sequence as well as within a superfamily. The

other important characteristic is that it represents each variable length protein

sequence consisting of a long chain of amino acids with a fixed-length numeric

vector consist of only six dimensions. The exhaustive experiments reported

in the previous chapters show the efficacy of the proposed CPSF approach on

well-known classifier in terms of classification of protein sequences into super-

families. Furthermore, the proposed CPSF approach is applied to the real-life

protein database for its preprocessing. This preprocessed database is passed

as an input to the SRSIO-FCM algorithm for efficient categorization of protein

sequences of complex plant genome into superfamilies. The exhaustive results

on this massive protein database are evaluated in terms of various performance

measures. The reported results show that integration of CPSF approach with

SRSIO-FCM algorithm performs efficient categorization of protein sequences

into superfamilies to enhance the productivity of next generation protein se-

162

CHAPTER 8. CONCLUSION

quences of various species of plant.

8.2 Future Work

There are some possible extensions of proposed approaches presented in the

previous chapters. One of the most visible extensions of the problem is to

assess the quality of VL and Big Data clustering. Thus, one of such measures,

V IDSO index, which is proposed herein needs to be redesigned to handle VL

data and Big Data [36, 177]. Furthermore, fuzzy clustering is mainly limited

to spherical clusters. To address this problem, kernel functions based fuzzy

clustering can be designed by mapping data with nonlinear relationships to

appropriate feature spaces for efficient kernel clustering of a different shape of

datasets [178]. Thus, another possible extension is to design fuzzy clustering

algorithms by making use of kernel functions. Further, kernel functions based

scalable fuzzy clustering algorithms can also be developed to achieve better

efficiency [36]. Investigation of the behavior of proposed scalable clustering

algorithms on other genome databases like DNA and SNP is also an attractive

solution for the DSR scientists.

163

8.2. FUTURE WORK

164

Bibliography

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”

ACM Computing Surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[2] V. Estivill Castro, “Why so many clustering algorithms: a position paper,”

ACM SIGKDD Explorations Newsletter, vol. 4, no. 1, pp. 65–75, 2002.

[3] J. Z. Huang, M. K. Ng, H. Rong, and Z. Li, “Automated variable weighting

in k-means type clustering,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 27, no. 5, pp. 657–668, 2005.

[4] W. Cai, S. Chen, and D. Zhang, “A multiobjective simultaneous learning

framework for clustering and classification,” IEEE transactions on neural

networks, vol. 21, no. 2, pp. 185–200, 2010.

[5] C. H. Wu, C. S. Ouyang, L. W. Chen, and L. W. Lu, “A new fuzzy clus-

tering validity index with a median factor for centroid-based clustering,”

IEEE Transactions on Fuzzy Systems, vol. 23, no. 3, pp. 701–718, 2015.

[6] C. Hennig, “What are the true clusters?” Pattern Recognition Letters,

vol. 64, pp. 53–62, 2015.

[7] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transac-

tions on neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[8] N. A. Erilli, U. Yolcu, E. Egrioglu, C. Aladag, and Y. oner, “Determining

the most proper number of cluster in fuzzy clustering by using artificial

neural networks,” Expert Systems with Applications, vol. 38, no. 3, pp.

2248–2252, 2011.

[9] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,”

Annals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[10] G. Castellano, A. M. Fanelli, and C. Mencar, “A fuzzy clustering approach

for mining diagnostic rules,” in Proc. of 2003 IEEE International Confer-

ence on Systems, Man and Cybernetics. IEEE, Washington, D.C., USA,

October, 2003, pp. 2007–2012.

165

BIBLIOGRAPHY

[11] H. B. Shen, J. Yang, X. J. Liu, and K. C. Chou, “Using supervised fuzzy

clustering to predict protein structural classes,” Biochemical and Biophys-

ical Research Communications, vol. 334, no. 2, pp. 577–581, 2005.

[12] L. Jing, M. K. Ng, and J. Z. Huang, “An entropy weighting k-means

algorithm for subspace clustering of high-dimensional sparse data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 19, no. 8, pp. 1026–

1041, 2007.

[13] Z. Deng, K. S. Choi, F. L. Chung, and S. Wang, “Enhanced soft sub-

space clustering integrating within-cluster and between-cluster informa-

tion,” Pattern Recognition, vol. 43, no. 3, pp. 767–781, 2010.

[14] M. Sardana and R. Agrawal, “A comparative study of clustering methods

for relevant gene selection in microarray data,” in Proc. of Second Inter-

national Conference on Computer Science, Engineering and Applications,

Advances in Computer Science, Engineering and Applications, ser. Ad-

vances in Intelligent and Soft Computing. Springer Berlin Heidelberg,

2012, vol. 166, pp. 789–797.

[15] L. Tang, H. Liu, and J. Zhang, “Identifying evolving groups in dynamic

multimode networks,” IEEE Transactions on Knowledge and Data Engi-

neering, vol. 24, no. 1, pp. 72–85, 2012.

[16] H. Frigui and R. Krishnapuram, “A robust competitive clustering algo-

rithm with applications in computer vision,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 21, no. 5, pp. 450–465, 1999.

[17] Y. Leung, J. S. Zhang, and Z. B. Xu, “Clustering by scale-space filtering,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,

no. 12, pp. 1396–1410, 2000.

[18] R. O. Duda, P. E. Hart et al., Pattern classification and scene analysis.

Wiley Interscience New York, 1973, vol. 3.

[19] R. Bellman, R. Kalaba, and L. Zadeh, “Abstraction and pattern classifica-

tion,” Journal of Mathematical Analysis and Applications, vol. 13, no. 1,

pp. 1–7, 1966.

[20] K. Zhou, C. Fu, and S. Yang, “Fuzziness parameter selection in fuzzy c-

means: the perspective of cluster validation,” Science China Information

Sciences, vol. 57, no. 11, pp. 1–8, 2014.

166

BIBLIOGRAPHY

[21] A. T. Azar, S. A. El-Said, and A. E. Hassanien, “Fuzzy and hard clus-

tering analysis for thyroid disease,” Computer methods and programs in

biomedicine, vol. 111, no. 1, pp. 1–16, 2013.

[22] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms.

Kluwer Academic Publishers, 1981.

[23] S. Ghosh, S. Biswas, D. Sarkar, and P. P. Sarkar, “A novel neuro-fuzzy

classification technique for data mining,” Egyptian Informatics Journal,

vol. 15, no. 3, pp. 129–147, 2014.

[24] M. Huang, Z. Xia, H. Wang, Q. Zeng, and Q. Wang, “The range of the

value for the fuzzifier of the fuzzy c-means algorithm,” Pattern Recognition

Letters, vol. 33, no. 16, pp. 2280–2284, 2012.

[25] K. L. Wu, “Analysis of parameter selections for fuzzy c-means,” Pattern

Recognition, vol. 45, no. 1, pp. 407–415, 2012.

[26] M. Erisoglu, N. Calis, and S. Sakallioglu, “A new algorithm for initial

cluster centers in k-means algorithm,” Pattern Recognition Letters, vol. 32,

no. 14, pp. 1701–1705, 2011.

[27] H. Izakian and A. Abraham, “Fuzzy c-means and fuzzy swarm for fuzzy

clustering problem,” Expert Systems with Applications, vol. 38, no. 3, pp.

1835–1838, 2011.

[28] P. J. Huber, “Massive data sets workshop: the morning after,” in Proc.

of a Workshop Massive Data Sets. Washington, DC: National Academy

Press, 1997, pp. 169–184.

[29] R. J. Hathaway and J. C. Bezdek, “Extending fuzzy and probabilistic

clustering to very large data sets,” Computational Statistics and Data

Analysis, vol. 51, no. 1, pp. 215–234, 2006.

[30] T. W. Cheng, D. B. Goldgof, and L. O. Hall, “Fast fuzzy clustering,”

Fuzzy Sets and Systems, vol. 93, no. 1, pp. 49–56, 1998.

[31] M. C. Hung and D. L. Yang, “An efficient fuzzy c-means clustering algo-

rithm,” in Proc. of 2001 IEEE International Conference on Data Mining.

IEEE, San Jose, California, USA, December, 2001, pp. 225–232.

[32] N. R. Pal and J. C. Bezdek, “Complexity reduction for large image pro-

cessing,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 32, no. 5, pp. 598–611, 2002.

167

BIBLIOGRAPHY

[33] P. Hore, L. O. Hall, and D. B. Goldgof, “Single pass fuzzy c means,” in

Proc. of 2007 IEEE International on Fuzzy Systems Conference. IEEE,

London, United Kingdom, July, 2007, pp. 1–7.

[34] L. Wang, J. C. Bezdek, C. Leckie, and R. Kotagiri, “Selective sampling

for approximate clustering of very large data sets,” International Journal

of Intelligent Systems, vol. 23, no. 3, pp. 313–331, 2008.

[35] P. Hore, L. O. Hall, D. B. Goldgof, Y. Gu, A. A. Maudsley, and A. Dark-

azanli, “A scalable framework for segmenting magnetic resonance images,”

Journal of Signal Processing Systems, vol. 54, no. 1-3, pp. 183–203, 2009.

[36] T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, and M. Palaniswami,

“Fuzzy c-means algorithms for very large data,” IEEE Transactions on

Fuzzy Systems, vol. 20, no. 6, pp. 1130–1146, 2012.

[37] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms.

Springer Science and Business Media, 2013.

[38] P. Hore, L. Hall, D. Goldgof, and W. Cheng, “Online fuzzy c means,” in

Proc. of 2008 Annual Meeting of the North American Fuzzy Information

Processing Society. IEEE, New York City, NY, USA, May, 2008, pp. 1–5.

[39] S. Eschrich, J. Ke, L. O. Hall, and D. B. Goldgof, “Fast accurate fuzzy

clustering through data reduction,” IEEE Transactions on Fuzzy Systems,

vol. 11, no. 2, pp. 262–270, 2003.

[40] Y. Zhai, Y. S. Ong, and I. W. Tsang, “The emerging big dimensionality,”

IEEE Computational Intelligence Magazine, vol. 9, no. 3, pp. 14–26, 2014.

[41] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,

A. Kumar, and Y. Yu, “Petuum: a new platform for distributed machine

learning on big data,” IEEE Transactions on Big Data, vol. 1, no. 2, pp.

49–67, 2015.

[42] S. Bandyopadhyay and U. Maulik, “Nonparametric genetic clustering:

comparison of validity indices,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 31, no. 1, pp. 120–125,

2001.

[43] C. C. Hung, E. Casper, B. C. Kuo, W. Liu, X. Yu, E. Jung, and M. Yang,

“A quantum-modeled fuzzy c-means clustering algorithm for remotely

sensed multi-band image segmentation,” in Proc. of 2013 IEEE Inter-

national Geoscience and Remote Sensing Symposium. IEEE, Melbourne,

Australia, July, 2013, pp. 2501–2504.

168

BIBLIOGRAPHY

[44] T. M. Silva Filho, B. A. Pimentel, R. M. Souza, and A. L. Oliveira, “Hy-

brid methods for fuzzy clustering based on fuzzy c-means and improved

particle swarm optimization,” Expert Systems with Applications, vol. 42,

no. 17, pp. 6315–6328, 2015.

[45] Y. Wang, L. Chen, and J. P. Mei, “Incremental fuzzy clustering with

multiple medoids for large data,” IEEE Transactions on Fuzzy Systems,

vol. 22, no. 6, pp. 1557–1568, 2014.

[46] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse framework

for combining multiple partitions,” The Journal of Machine Learning Re-

search, vol. 3, pp. 583–617, 2003.

[47] K. Y. Yeung and W. L. Ruzzo, “Details of the adjusted rand index and

clustering algorithms, supplement to the paper an empirical study on prin-

cipal component analysis for clustering gene expression data,” Bioinfor-

matics, vol. 17, no. 9, pp. 763–774, 2001.

[48] J. M. Santos and M. Embrechts, “On the use of the adjusted rand index as

a metric for evaluating supervised classification,” in Proc. of 19th Interna-

tional Conference on Artificial neural networks, Artificial Neural Networks

ICANN 2009, ser. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2009, vol. 5769, pp. 175–184.

[49] X. Xu, J. Jager, and H. P. Kriegel, “A fast parallel clustering algorithm

for large spatial databases,” in Proc of Scaling Algorithms, Applications

and Systems, High Performance Data Mining. Springer US, 1999, pp.

263–290.

[50] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on mapre-

duce,” in Proc. of IEEE International Conference on Cloud Computing,

Cloud Computing, ser. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2009, vol. 5931, pp. 674–679.

[51] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall,

Englewood Cliffs, NJ, 1988.

[52] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recogni-

tion letters, vol. 31, no. 8, pp. 651–666, 2010.

[53] S. Khan, G. Situ, K. Decker, and C. J. Schmidt, “Gofigure: Automated

gene ontology annotation,” Bioinformatics, vol. 19, no. 18, pp. 2484–2485,

2003.

169

BIBLIOGRAPHY

[54] S. Gunnemann, H. Kremer, D. Lenhard, and T. Seidl, “Subspace clus-

tering for indexing high dimensional data: a main memory index based

on local reductions and individual multi-representations,” in Proc. of 14th

International Conference on Extending Database Technology. ACM, Up-

psala, Sweden, March, 2011, pp. 237–248.

[55] A. Ducournau, A. Bretto, S. Rital, and B. Laget, “A reductive approach

to hypergraph clustering: an application to image segmentation,” Pattern

Recognition, vol. 45, no. 7, pp. 2788–2803, 2012.

[56] T. F. Ng, T. D. Pham, and X. Jia, “Feature interaction in subspace clus-

tering using the choquet integral,” Pattern Recognition, vol. 45, no. 7, pp.

2645–2660, 2012.

[57] J. Y. Jiang, R. J. Liou, and S. J. Lee, “A fuzzy self-constructing fea-

ture clustering algorithm for text classification,” IEEE Transactions on

Knowledge and Data Engineering, vol. 23, no. 3, pp. 335–349, 2011.

[58] J. Feyereisl and U. Aickelin, “Privileged information for data clustering,”

Information Sciences, vol. 194, pp. 4–23, 2012.

[59] S. Soheily-Khah, A. Douzal-Chouakria, and E. Gaussier, “Generalized k-

means-based clustering for temporal data under weighted and kernel time

warp,” Pattern Recognition Letters, vol. 75, pp. 63–69, 2016.

[60] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on

Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[61] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction

to cluster analysis. John Wiley and Sons, 2009, vol. 344.

[62] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya,

S. Foufou, and A. Bouras, “A survey of clustering algorithms for big data:

taxonomy and empirical analysis,” IEEE Transactions on Emerging Top-

ics in Computing, vol. 2, no. 3, pp. 267–279, 2014.

[63] J. Macqueen, “Some methods for classification and analysis of multivari-

ate observations,” in Proc. of Fifth Berkeley Symposium on Mathematical

Statistics and Probability, vol. 1, no. 14. University of California Press,

1967, pp. 281–297.

[64] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of eu-

clidean sum-of-squares clustering,” Machine Learning, vol. 75, no. 2, pp.

245–248, 2009.

170

BIBLIOGRAPHY

[65] C. D. Manning, P. Raghavan, H. Schutze et al., Introduction to infor-

mation retrieval. Cambridge University Press Cambridge, 2008, vol. 1,

no. 1.

[66] A. Kandel and W. J. Byatt, “Fuzzy sets, fuzzy algebra, and fuzzy statis-

tics,” Proceedings of the IEEE, vol. 66, no. 12, pp. 1619–1639, 1978.

[67] J. K. Parker, L. O. Hall, and A. Kandel, “Scalable fuzzy neighborhood db-

scan,” in Proc. of 2010 IEEE International Conference on Fuzzy Systems.

IEEE, Barcelona, Spain, July, 2010, pp. 1–8.

[68] J. K. Parker, L. O. Hall, and J. C. Bezdek, “Comparison of scalable fuzzy

clustering methods,” in Proc. of 2012 IEEE International Conference on

Fuzzy Systems. IEEE, Brisbane, Australia, June, 2012, pp. 1–9.

[69] F. D. A. De Carvalho and C. P. Tenorio, “Fuzzy k-means clustering al-

gorithms for interval-valued data based on adaptive quadratic distances,”

Fuzzy Sets and Systems, vol. 161, no. 23, pp. 2978–2999, 2010.

[70] M. Sato-Ilic, “Symbolic clustering with interval-valued data,” Procedia

Computer Science, vol. 6, pp. 358–363, 2011.

[71] H. Zhao, Z. Xu, S. Liu, and Z. Wang, “Intuitionistic fuzzy mst clustering

algorithms,” Computers and Industrial Engineering, vol. 62, no. 4, pp.

1130–1140, 2012.

[72] C. W. De Almeida, R. M. De Souza, and A. L. Candeias, “Fuzzy kohonen

clustering networks for interval data,” Neurocomputing, vol. 99, pp. 65–75,

2013.

[73] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in de-

tecting compact well-separated clusters. Taylor and Francis, 1973.

[74] N. R. Pal and J. C. Bezdek, “On cluster validity for the fuzzy c-means

model,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 370–379,

1995.

[75] J. Bezdek, Pattern recognition in handbook of fuzzy computation. Boston,

NY, 1998.

[76] X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, no. 8, pp.

841–847, 1991.

171

BIBLIOGRAPHY

[77] K. L. Wu and M. S. Yang, “Alternative c-means clustering algorithms,”

Pattern Recognition, vol. 35, no. 10, pp. 2267–2278, 2002.

[78] S. S. Khan and A. Ahmad, “Cluster center initialization algorithm for k-

means clustering,” Pattern Recognition Letters, vol. 25, no. 11, pp. 1293–

1302, 2004.

[79] A. Bahrololoum, H. Nezamabadi-pour, and S. Saryazdi, “A data clustering

approach based on universal gravity rule,” Engineering Applications of

Artificial Intelligence, vol. 45, pp. 415–428, 2015.

[80] D. Binu, “Cluster analysis using optimization algorithms with newly de-

signed objective functions,” Expert Systems with Applications, vol. 42,

no. 14, pp. 5848–5859, 2015.

[81] J. K. Parker and L. O. Hall, “Accelerating fuzzy-c means using an esti-

mated subsample size,” IEEE Transactions on Fuzzy Systems,, vol. 22,

no. 5, pp. 1229–1244, 2014.

[82] J. Yu, Q. Cheng, and H. Huang, “Analysis of the weighting exponent in

the fcm,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 34, no. 1, pp. 634–639, 2004.

[83] M. K. Pakhira, S. Bandyopadhyay, and U. Maulik, “Validity index for

crisp and fuzzy clusters,” Pattern Recognition, vol. 37, no. 3, pp. 487–501,

2004.

[84] M. H. Hansen and B. Yu, “Model selection and the principle of mini-

mum description length,” Journal of the American Statistical Association,

vol. 96, no. 454, pp. 746–774, 2001.

[85] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of

clusters in a data set via the gap statistic,” Journal of the Royal Statistical

Society: Series B (Statistical Methodology), vol. 63, no. 2, pp. 411–423,

2001.

[86] K. R. Žalik and B. Žalik, “Validity index for clusters of different sizes and

densities,” Pattern Recognition Letters, vol. 32, no. 2, pp. 221–234, 2011.

[87] S. Ramanna, P. Lingras, C. Sombattheera, and A. Krishna, “Multi-

disciplinary trends in artificial intelligence,” in Proc. of 7th International

Workshop on Multi-disciplinary Trends in Artificial Intelligence -MIWAI

2013, ser. Lecture Notes in Computer Science. Springer, Berlin, Heidel-

berg, 2013, vol. 8271.

172

BIBLIOGRAPHY

[88] R. Xu, J. Xu, and D. C. Wunsch, “A comparison study of validity indices

on swarm-intelligence-based clustering,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 4, pp. 1243–1256,

2012.

[89] M. Halkidi and M. Vazirgiannis, “Clustering validity assessment: Finding

the optimal partitioning of a data set,” in Proc. of 2001 IEEE Interna-

tional Conference on Data Mining. IEEE, San Jose, California, USA,

December, 2001, pp. 187–194.

[90] S. Das, A. Abraham, and A. Konar, “Automatic clustering using an im-

proved differential evolution algorithm,” IEEE Transactions on Systems,

Man and Cybernetics, Part A: Systems and Humans, vol. 38, no. 1, pp.

218–237, 2008.

[91] J. C. Bezdek, “Cluster validity with fuzzy sets,” Journal of Cybernatics,

vol. 3, no. 3, pp. 58–73, 1973.

[92] Y. Fukuyama and M. Sugeno, “A new method of choosing the number

of clusters for the fuzzy c-means method,” in Proc. of 5th Symposium on

Fuzzy Systems, vol. 247, 1989, pp. 247–250.

[93] M. R. Rezaee, B. P. Lelieveldt, and J. H. Reiber, “A new cluster validity

index for the fuzzy c-mean,” Pattern Recognition Letters, vol. 19, no. 3,

pp. 237–246, 1998.

[94] C. H. Chou, M. C. Su, and E. Lai, “A new cluster validity measure and

its application to image compression,” Pattern Analysis and Applications,

vol. 7, no. 2, pp. 205–220, 2004.

[95] D. W. Kim, K. H. Lee, and D. Lee, “On cluster validity index for estima-

tion of the optimal number of fuzzy clusters,” Pattern Recognition, vol. 37,

no. 10, pp. 2009–2025, 2004.

[96] M. K. Pakhira, S. Bandyopadhyay, and U. Maulik, “A study of some

fuzzy cluster validity indices, genetic clustering and application to pixel

classification,” Fuzzy Sets and Systems, vol. 155, no. 2, pp. 191–214, 2005.

[97] K. L. Wu and M. S. Yang, “A cluster validity index for fuzzy clustering,”

Pattern Recognition Letters, vol. 26, no. 9, pp. 1275–1291, 2005.

[98] H. L. Capitaine and C. Frelicot, “A cluster-validity index combining an

overlap measure and a separation measure based on fuzzy-aggregation

173

BIBLIOGRAPHY

operators,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 580–

588, 2011.

[99] H. Lee Kwang, Y. S. Song, and K. M. Lee, “Similarity measure between

fuzzy sets and between elements,” Fuzzy Sets and Systems, vol. 62, no. 3,

pp. 291–293, 1994.

[100] L. Mascarilla, M. Berthier, and C. Frelicot, “A k-order fuzzy or operator

for pattern classification with k-order ambiguity rejection,” Fuzzy Sets and

Systems, vol. 159, no. 15, pp. 2011–2029, 2008.

[101] L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger,

and J. C. Bezdek, “A comparison of neural network and fuzzy clustering

techniques in segmenting magnetic resonance images of the brain,” IEEE

Transactions on Neural Networks, vol. 3, no. 5, pp. 672–682, 1992.

[102] M. J. Fadili, S. Ruan, D. Bloyet, and B. Mazoyer, “On the number of

clusters and the fuzziness index for unsupervised fca application to bold

fmri time series,” Medical Image Analysis, vol. 5, no. 1, pp. 55–67, 2001.

[103] S. Kannan, S. Ramathilagam, and P. Chung, “Effective fuzzy c-means

clustering algorithms for data clustering problems,” Expert Systems with

Applications, vol. 39, no. 7, pp. 6292–6300, 2012.

[104] H. Wang, W. Zhu, J. Liu, L. Li, and Z. Yin, “Multidistribution center loca-

tion based on real-parameter quantum evolutionary clustering algorithm,”

Mathematical Problems in Engineering, vol. 2014, 2014.

[105] S. Kannan, S. Ramathilagam, R. Devi, and A. Sathya, “Robust kernel

fcm in segmentation of breast medical images,” Expert Systems with Ap-

plications, vol. 38, no. 4, pp. 4382–4389, 2011.

[106] G. Gan, J. Wu, and Z. Yang, “A genetic fuzzy k-modes algorithm for

clustering categorical data,” Expert Systems with Applications, vol. 36,

no. 2, pp. 1615–1620, 2009.

[107] K. H. Han and J. H. Kim, “Quantum-inspired evolutionary algorithm for a

class of combinatorial optimization,” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 6, pp. 580–593, 2002.

[108] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Finding a

better-than-classical quantum and/or algorithm using genetic program-

ming,” in Evolutionary Computation, 1999. CEC 99. Proceedings of the

1999 Congress on, vol. 3. IEEE, 1999, pp. 2239–2246.

174

BIBLIOGRAPHY

[109] K. H. Ȟan and J. H. Kim, “Quantum-inspired evolutionary algorithms

with a new termination criterion, hε gate, and two-phase scheme,” IEEE

Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 156–169,

2004.

[110] T. C. Lu, G. R. Yu, and J. C. Juang, “Quantum-based algorithm for opti-

mizing artificial neural networks,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 24, no. 8, pp. 1266–1278, 2013.

[111] J. F. Kolen and T. Hutcheson, “Reducing the time complexity of the fuzzy

c-means algorithm,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2,

pp. 263–267, 2002.

[112] Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and H. Liu,

“Advancing feature selection research,” ASU Feature Selection Repository,

pp. 1–28, 2010.

[113] Y. Zhai, M. Tan, I. Tsang, and Y. S. Ong, “Discovering support and affili-

ated features from very high dimensions,” arXiv preprint arXiv:1206.6477,

2012.

[114] I. Guyon and A. Elisseeff, “An introduction to variable and feature selec-

tion,” The Journal of Machine Learning Research, vol. 3, pp. 1157–1182,

2003.

[115] H. Liu and L. Yu, “Toward integrating feature selection algorithms for

classification and clustering,” IEEE Transactions on Knowledge and Data

Engineering, vol. 17, no. 4, pp. 491–502, 2005.

[116] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic sub-

space clustering of high dimensional data for data mining applications.

ACM, 1998, vol. 27, no. 2.

[117] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimen-

sional data: a review,” ACM SIGKDD Explorations Newsletter, vol. 6,

no. 1, pp. 90–105, 2004.

[118] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-median

clustering,” in Proc. of Thirty-Sixth Annual ACM Symposium on Theory

of Computing. ACM, Chicago, IL, USA, June, 2004, pp. 291–300.

[119] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering algo-

rithm for large databases,” in Proc. of 1998 ACM SIGMOD International

175

BIBLIOGRAPHY

Conference on Management of Data, vol. 27, no. 2. ACM, Seattle, Wash-

ington, USA, June, 1998, pp. 73–84.

[120] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,

2008.

[121] P. Mika, “Flink: Semantic web technology for the extraction and analysis

of social networks,” Web Semantics: Science, Services and Agents on the

World Wide Web, vol. 3, no. 2, pp. 211–223, 2005.

[122] A. M. Team, “Apache mahout: Scalable machine-learning and data-

mining library,” 2011. [Online]. Available: http://mahout.apache.org/

[123] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: efficient

iterative data processing on large clusters,” Proceedings of the VLDB En-

dowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[124] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: traffic-aware online schedul-

ing in storm,” in Proc. of IEEE 34th International Conference on Dis-

tributed Computing Systems. IEEE, Madrid, Spain, June 30-July 3, 2014,

pp. 535–544.

[125] T. A. Runkler and H. Krcmar, “Stream processing on demand for lambda

architectures,” in Proc. of 12th European Workshop on Computer Per-

formance Engineering, Computer Performance Engineering, ser. Lecture

Notes in Computer Science, 2015, vol. 9272, pp. 243–257.

[126] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-

reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,

pp. 1626–1629, 2009.

[127] L. George, HBase: the definitive guide. O’Reilly Media, Inc., 2011.

[128] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing,” in Proc. of

9th USENIX Conference on Networked Systems Design and Implementa-

tion. USENIX Association, San Jose, CA, April, 2012, pp. 2–2.

[129] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: cluster computing with working sets.” HotCloud, vol. 10, pp. 10–

10, 2010.

176

BIBLIOGRAPHY

[130] D. Borthakur, “Hdfs architecture guide. hadoop apache

project,” 2008. [Online]. Available: http://hadoop. apache.

org/common/docs/current/hdfs design. pdf

[131] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica, “Mesos: a platform for fine-grained resource

sharing in the data center,” in Proc. of 8th USENIX Conference on

Networked Systems Design and Implementation. USENIX Association,

Boston, MA, March 30-April 1, 2011, pp. 295–308.

[132] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop

yarn: Yet another resource negotiator,” in Proc. of 4th Annual Symposium

on Cloud Computing. ACM, Santa Clara, CA, USA, October, 2013, p. 5.

[133] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon: Reli-

able, memory speed storage for cluster computing frameworks,” in Proc.

of 2014 ACM Symposium on Cloud Computing. ACM, Seattle, WA,

November, 2014, pp. 1–15.

[134] T. White, Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[135] T. Kwok, K. Smith, S. Lozano, and D. Taniar, “Parallel fuzzy c-means

clustering for large data sets,” in Proc. of European Conference on Par-

allel Processing, Euro-Par 2002 Parallel Processing, ser. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2002, pp. 365–374.

[136] J. Beringer and E. Hullermeier, “Fuzzy clustering of parallel data

streams,” Advances in Fuzzy Clustering and Its Application, pp. 333–352,

2007.

[137] Y. Zhang, S. Chen, Q. Wang, and G. Yu, “i2mapreduce: Incremental

mapreduce for mining evolving big data,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 27, no. 7, pp. 1906–1919, 2015.

[138] Y. Zhang, S. Cheen, Q. Wang, and G. Yu, “i2mapreduce: In-

cremental mapreduce for mining evolving big data,” arXiv preprint

arXiv:1501.04854.

[139] N. M. Luscombe, D. Greenbaum, M. Gerstein et al., “What is bioin-

formatics? a proposed definition and overview of the field,” Methods of

Information in Medicine, vol. 40, no. 4, pp. 346–358, 2001.

177

BIBLIOGRAPHY

[140] S. Vipsita and S. K. Rath, “Two-stage approach for protein superfamily

classification,” Computational Biology Journal, vol. 2013, 2013.

[141] C. Wu, G. Whitson, J. McLarty, A. Ermongkonchai, and T. C. Chang,

“Protein classification artificial neural system,” Protein Science, vol. 1,

no. 5, pp. 667–677, 1992.

[142] J. T. L. Wang, Q. Ma, D. Shasha, and C. H. Wu, “New techniques for

extracting features from protein sequences,” IBM Systems Journal, vol. 40,

no. 2, pp. 426–441, 2001.

[143] C. S. Leslie, E. Eskin, and W. S. Noble, “The spectrum kernel: a string

kernel for svm protein classification,” in Proc. of 7th Pacific Symposium

on Biocomputing, vol. 7, no. 7, Lihue, Hawaii, USA, January, 2002, pp.

566–575.

[144] S. Bandyopadhyay, “An efficient technique for superfamily classification of

amino acid sequences: feature extraction, fuzzy clustering and prototype

selection,” Fuzzy Sets and Systems, vol. 152, no. 1, pp. 5–16, 2005.

[145] E. G Mansoori, M. J. Zolghadri, S. D. Katebi, H. Mohabatkar, R. Boost-

ani, and M. H. Sadreddini, “Generating fuzzy rules for protein classifica-

tion,” Iranian Journal of Fuzzy Systems, vol. 5, no. 2, pp. 21–33, 2008.

[146] E. G. Mansoori, M. J. Zolghadri, and S. D. Katebi, “Protein superfam-

ily classification using fuzzy rule-based classifier,” IEEE Transactions on

NanoBioscience, vol. 8, no. 1, pp. 92–99, 2009.

[147] C. Caragea, A. Silvescu, and P. Mitra, “Protein sequence classification

using feature hashing,” Proteome Science, vol. 10, no. 1, p. 1, 2012.

[148] C. Yu, R. L. He, and S. S. T. Yau, “Protein sequence comparison based

on k-string dictionary,” Gene, vol. 529, no. 2, pp. 250–256, 2013.

[149] M. J. Iqbal, I. Faye, B. B. Samir, and A. Md Said, “Efficient feature

selection and classification of protein sequence data in bioinformatics,”

The Scientific World Journal, vol. 2014, 2014.

[150] M. Dayhoff, R. Schwartz, and B. Orcutt, “22 a model of evolutionary

change in proteins,” in Atlas of Protein Sequence and Structure. National

Biomedical Research Foundation Silver Spring, MD, 1978, vol. 5, pp. 345–

352.

178

BIBLIOGRAPHY

[151] M. Sokolova and G. Lapalme, “A systematic analysis of performance mea-

sures for classification tasks,” Information Processing and Management,

vol. 45, no. 4, pp. 427–437, 2009.

[152] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”

Journal of the American Statistical Association, vol. 66, no. 336, pp. 846–

850, 1971.

[153] V. N. Vapnik and V. Vapnik, Statistical learning theory. Wiley New York,

1998, vol. 1.

[154] M. Lichman, “UCI machine learning repository,” 2013. [Online].

Available: http://archive.ics.uci.edu/ml

[155] J. J. Hull, “A database for handwritten text recognition research,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 5,

pp. 550–554, 1994.

[156] G. Frahling and C. Sohler, “Coresets in dynamic geometric data streams,”

in Proc. of Thirty-Seventh Annual ACM Symposium on Theory of Com-

puting. ACM, Hunt Valley, MD, USA, May, 2005, pp. 209–217.

[157] G. Loosli, S. Canu, and L. Bottou, “Training invariant support vector

machines using selective sampling,” Large Scale Kernel Machines, pp. 301–

320, 2007.

[158] A. D. Gordon, “Cluster validation,” in Data science, Classification, and

Related Methods. Springer, 1998, pp. 22–39.

[159] W. Wang and Y. Zhang, “On fuzzy cluster validity indices,” Fuzzy Sets

and Systems, vol. 158, no. 19, pp. 2095–2117, 2007.

[160] J. Xiao, Y. Yan, J. Zhang, and Y. Tang, “A quantum-inspired genetic algo-

rithm for k-means clustering,” Expert Systems with Applications, vol. 37,

no. 7, pp. 4966–4973, 2010.

[161] N. Bharill and A. Tiwari, “Enhanced cluster validity index for the evalua-

tion of optimal number of clusters for fuzzy c-means algorithm,” in Proc.

of 2014 IEEE International Conference on Fuzzy Systems. IEEE, Beijing,

China, July, 2014, pp. 1526–1533.

[162] O. P. Patel, N. Bharill, and A. Tiwari, “A quantum-inspired fuzzy based

evolutionary algorithm for data clustering,” in Proc. of 2015 IEEE Inter-

national Conference on Fuzzy Systems. IEEE, Istanbul, Turkey, August,

2015, pp. 1–8.

179

BIBLIOGRAPHY

[163] M. Duranton, D. Black-Schaffer, K. De Bosschere, and J. Maebe, “The

hipeac vision for advanced computing in horizon 2020,” 2013.

[164] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and

A. H. Byers, “Big data: the next frontier for innovation, competition, and

productivity,” McKinsey Global Institute, Tech. Rep., no. 9341321, pp.

1–137, May 2011.

[165] M. Wang, W. Zhang, W. Ding, D. Dai, H. Zhang, H. Xie, L. Chen, Y. Guo,

and J. Xie, “Parallel clustering algorithm for large-scale biological data

sets,” PloS one, vol. 9, no. 4, p. e91315, 2014.

[166] M. Cao Cueto, “Contribución a las metodoloǵıas de estimación de de-

manda de tráfico de internet mediante la caracterización de perfiles de

usuario,” Ph.D. dissertation, Telecomunicacion, 2015.

[167] V. Schwammle and O. N. Jensen, “A simple and fast method to deter-

mine the parameters for fuzzy c–means cluster analysis,” Bioinformatics,

vol. 26, no. 22, pp. 2841–2848, 2010.

[168] S. Vipsita and S. K. Rath, “Protein superfamily classification using adap-

tive evolutionary radial basis function network,” International Journal of

Computational Intelligence and Applications, vol. 11, no. 04, p. 1250026,

2012.

[169] B. Chaturvedi and N. Patil, “A novel semi-supervised approach for pro-

tein sequence classification,” in Proc. of 2015 IEEE International Advance

Computing Conference. IEEE, Bangalore, India, June, 2015, pp. 1158–

1162.

[170] J. Gubbi, D. T. Lai, M. Palaniswami, and M. Parker, “Protein secondary

structure prediction using support vector machines and a new feature

representation,” International Journal of Computational Intelligence and

Applications, vol. 6, no. 04, pp. 551–567, 2006.

[171] P. A. Devijver and J. Kittler, Pattern recognition: a statistical approach.

Prentice-Hall London, 1982, vol. 761.

[172] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE

Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[173] D. L. Gray and A. N. Michel, “A training algorithm for binary feedforward

neural networks,” IEEE Transactions on Neural Networks, vol. 3, no. 2,

pp. 176–194, 1992.

180

BIBLIOGRAPHY

[174] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The weka data mining software: an update,” ACM SIGKDD

explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[175] M. M. Mano, C. R. Kime, T. Martin et al., Logic and computer design

fundamentals. Prentice Hall, 2008, vol. 3.

[176] R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,

E. Gasteiger, H. Huang, R. Lopez, M. Magrane et al., “Uniprot: the

universal protein knowledgebase,” Nucleic Acids Research, vol. 32, no. 1,

pp. D115–D119, 2004.

[177] M. Tlili and T. M. Hamdani, “Big data clustering validity,” in Soft Com-

puting and Pattern Recognition (SoCPaR), 2014 6th International Con-

ference of. IEEE, 2014, pp. 348–352.

[178] H.-C. Huang, Y.-Y. Chuang, and C.-S. Chen, “Multiple kernel fuzzy clus-

tering,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 120–134,

2012.

[179] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”

Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[180] F. Alimoglu and E. Alpaydin, “Methods of combining multiple classifiers

based on different representations for pen-based handwritten digit recogni-

tion,” in Proc. of Fifth Turkish Artificial Intelligence and Artificial Neural

Networks Symposium. Citeseer, Istanbul, Turkey, June, 1996.

[181] M. Keith, A. Jameson, W. Van Straten, M. Bailes, S. Johnston,

M. Kramer, A. Possenti, S. Bates, N. Bhat, M. Burgay et al., “The high

time resolution universe pulsar survey–i. system configuration and initial

discoveries,” Monthly Notices of the Royal Astronomical Society, vol. 409,

no. 2, pp. 619–627, 2010.

[182] K. Wennerberg, K. L. Rossman, and C. J. Der, “The ras superfamily at a

glance,” J cell Sci, vol. 118, no. 5, pp. 843–846, 2005.

[183] S. N. Vinogradov, D. Hoogewijs, X. Bailly, K. Mizuguchi, S. Dewilde,

L. Moens, and J. R. Vanfleteren, “A model of globin evolution,” Gene,

vol. 398, no. 1, pp. 132–142, 2007.

[184] C. I. Branden et al., Introduction to protein structure. Garland Science,

1999.

181

BIBLIOGRAPHY

[185] S. K. Hanks and T. Hunter, “Protein kinases 6. the eukaryotic protein ki-

nase superfamily: kinase (catalytic) domain structure and classification.”

The FASEB journal, vol. 9, no. 8, pp. 576–596, 1995.

[186] M. A. Wouters, K. Liu, P. Riek, and A. Husain, “A despecialization

step underlying evolution of a family of serine proteases,” Molecular cell,

vol. 12, no. 2, pp. 343–354, 2003.

182

Appendix A

UCI Datasets

The University of California, Irvine (UCI) Machine Learning Repository is a

well-known resource to data scientists [154], As of 2016, it holds over 349 pre-

processed datasets for experimentation and testing of machine learning algo-

rithms. The datasets taken from this repository for the experimentation are

discussed below.

IRIS

The well-known Fishers IRIS dataset is a multivariate dataset for discriminant

analysis [179]. It consists of 150 samples belongs to 3 classes of IRIS flowers

and four features were measured corresponding to each sample. The classes are

IRIS Setosa, IRIS Versicolour and IRIS Virginica. The features are sepal length,

sepal width, petal length, and petal width. The data set contains 50 instances

of each of the three classes.

WINE

These data are the results of a chemical analysis of wines grown in the same

region in Italy but derived from three different cultivators and consists of 178

samples. The analysis determined the quantities of 13 constituents found in

each of the three types of wines.

VEHICLE

This data was originally gathered at the TI in 1986-87 by JP Siebert consists

of 946 samples belongs to four classes. It was partially financed by Barr and

183

Stroud Ltd. The original purpose was to find a method of distinguishing 3D

objects within a 2D image by application of an ensemble of shape feature extrac-

tors to the 2D silhouettes of the objects. Measures of shape features extracted

from example silhouettes of objects to be discriminated were used to generate a

classification rule tree by means of computer induction.

SEED

The dataset comprised of kernels belonging to three different varieties of wheat:

Kama, Rosa and Canadian, 70 elements each, randomly selected for the exper-

iment.

GLASS

The dataset consists of 214 samples, for each sample 10 features are measured.

All the samples are divided into 6 classes. The study of classification of types of

glass was motivated by criminological investigation. At the scene of the crime,

the glass left can be used as evidence, if it is correctly identified.

BUPA

The dataset consist of 345 samples with 6 features are measured for each sample.

The first 5 features are all blood tests which are thought to be sensitive to

liver disorders that might arise from excessive alcohol consumption while the

last attribute includes daily alcohol consumption. Each sample constitutes the

record of a single male individual.

DIABETES

The PIMA INDIAN DIABETES dataset consists of 768 data samples that be-

long to only female patients suffering from diabetes. It has 8 numerical features

per sample. Each sample contains a label which indicates the class of the sam-

ple. The dataset has two classes where the first class is labeled as “negative to

diabetes” and the second one is labeled as “positive to diabetes”.

184

APPENDIX A. UCI DATASETS

Page Blocks Classification

The dataset comprises of 5473 samples comes from 54 distinct documents. Each

observation concerns one block. It consists of 10 numeric features. The problem

consists of classifying all the blocks of the page layout of a document that has

been detected by a segmentation process. This is an essential step in document

analysis in order to separate text from graphics areas. Indeed, the samples in the

dataset are divided into five classes are: text, horizontal line, picture, vertical

line, and graphics.

Pen-Based Recognition of Handwritten Digits

Pendigits is a collection of 10,992 handwritten numerals collected from 44 differ-

ent writers. The handwritten numerals were plotted on an x and y coordinate

grid. The 16 features are 8 (x, y) coordinates from the handwritten numeral.

The coordinates were spatially resampled to be separated by an equal arc-length.

The values are integers ranging from 0 to 100. The dataset was clustered into

ten classes, corresponding to numerals from 0 to 9 [180].

HTRU2

The HTRU2 is a dataset which describes a sample of pulsar candidates collected

during the High Time Resolution Universe Survey (South) [181]. The pulsar is

a type of star, of considerable scientific interest. Candidate must be classified

into pulsar and non-pulsar classes to aid discovery. The dataset consists of total

17898 samples of pulsar candidates out of which it contains 16,259 spurious

examples caused by RFI/noise and 1,639 real pulsar examples. Each candidate

is described by 8 continuous variables and a single class variable.

EEG Eye State

The dataset consists of total 14980 samples, where each sample is represented

by 14 EEG values. All the samples are collected from one continuous EEG

measurement with the Emotiv EEG Neuroheadset. The duration of the mea-

surement was 117 seconds. Each sample is represented by a label or a value

indicating the eye state. The eye state was detected via a camera during the

185

EEG measurement and added later manually to the file after analyzing the video

frames. The label ’1’ indicates the eye-closed state and ’0’ the eye-open state.

186

Appendix B

Validation Methods

In machine learning field, it is common to partition the dataset into two separate

sets: a training set and a testing set. To evaluate the generalizability of our ap-

proach and to compare our work with existing work in literature, we divided the

training and testing data into four different partitions. The reason for dividing

training and testing samples into different partitions is that we want to mea-

sure the quality of our proposed algorithms with different amount of training

samples. The validation methods used for experimentation are discussed below.

50-50 training-testing partition

In standard 50-50 methodology, half of the samples are used for training the

classifier and the rest for testing.

60-40 training-testing partition

In 60-40 training-testing methodology, 60% of the samples are used for training

the classifier and the rest 40% for testing.

70-30 training-testing partition

In 70-30 training-testing methodology, 70% of the samples are used for training

the classifier and the rest 30% for testing.

10-fold cross validation

In 10-fold cross validation technique entire dataset is divided into ten blocks of

approximately equal size. The 90% of data is used to train the model and the

187

rest 10% for testing. This process is repeated 10 times, with a different data

block left out for testing every time.

188

Appendix C

Benchmark Protein Database

The UniProt Knowledgebase is a large resource of protein sequences and associ-

ated detailed annotation [176]. The database contains over 60 million sequences,

of which over half a million sequences have been curated by experts who criti-

cally review experimental and predicted data for each protein. We have created

a benchmark protein database composed of variable length protein sequences

of four superfamilies, i.e., Ras, Globin, Trypsin, and Kinase collected from a

publicly available database, i.e., UniProtKB. The details of these superfamilies

used for the experimentation are discussed below.

Ras superfamily

The Ras superfamily is a protein superfamily of small guanosine triphosphatases

(GTPases) comprises of 154 human members [182]. The Ras superfamily is in-

volved in signal transduction, the regulation of gene expression, cell prolifera-

tion, survival, and differentiation. The Ras oncogene proteins are the founding

members of this family, which is divided into five major branches on the basis

of sequence, structure, and functional similarities. The five major branches are

Ras, Rho, Ran, Rab, and Arf. The Ras family itself is further divided into 6

subfamilies: Ras, Ral, Rit, Rap, Rheb, Rad, and Rit.

Globin superfamily

The globins are a superfamily of heme-containing globular proteins, involved

in binding and/or transporting oxygen. They belong to a very large and well-

studied family that is widely distributed in many organisms [183]. Globins

189

have evolved from a common ancestor and can be divided into three groups:

single-domain globins, and two types of chimeric globins, flavo-haemoglobins

and globin-coupled sensors. Globin superfamily members share a common three-

dimensional fold [184]. This ’globin fold’ typically consists of eight alpha helices.

Since the globin fold contains only helices, it is classified as an all-alpha pro-

tein fold. Although the fold of the globin superfamily is highly evolutionarily

conserved, the sequences that form the fold can have as low as 16% sequence

identity.

Kinase superfamily

The protein kinases are one of the largest superfamilies of homologous proteins

and genes. Within this family, there are now hundreds of different members

whose sequences are known. They are related by virtue of their kinase do-

mains (also known as catalytic domains), which consist of approximately 250-

300 amino acid residues. Although there is a rich diversity of structures, reg-

ulation modes, and substrate specificities among the protein kinases, there are

also common structural features. There are two main subdivisions within the

superfamily: the protein-serine/threonine kinases and the protein-tyrosine ki-

nases [185].

Trypsin superfamily

Trypsin is a serine protease from the PA clan superfamily, found in the digestive

system of many vertebrates, where it hydrolyses proteins. Trypsin is formed in

the small intestine when its proenzyme form, the trypsinogen produced by the

pancreas, is activated. The serine proteinases are by far the best understood of

all classes of enzymes. This is especially true for the serine proteinases of the

trypsin superfamily. The depth knowledge on the trypsin superfamily comes

from the detailed structures of several native mammalian and bacterial enzymes

and of their complexes with molecules representing analogues of the various

intermediate stages of the catalytic pathways [186].

190

Appendix D

Genome Database

To work on a real-life Big Data classification problem, a genome database of

size 80 GB is collected from the Directorate of Soybean Research (DSR), Indore

under Indian Council of Agricultural Research. This database is composed of

proteins of various plant genomes which is used for the analysis. Over twenty-

five sequenced plant genomes protein data were included in this analysis such as

staple grain crops, maize (corn), rice, soybean, and wheat; fiber crops like cotton,

hemp, and flax; fruits and vegetables, including apple, watermelon, tomato,

strawberry, potato, cucumber, grape, and Chinese cabbage; and crops that are

primarily important in developing countries such as the pigeon pea. The details

of the genome database used in the experimental study are discussed below.

2S Albumin

2S albumin storage proteins are becoming of increasing interest in nutritional

and clinical studies as they have been reported as major food allergens in SEED

of many mono- and di-cotyledonous plants. As storage proteins, they are de-

posited in protein bodies of developing SEED and are utilized by the plant as a

source of nutrients during subsequent germination and seedling growth. Recent

findings have demonstrated that 2S albumins can also play a protective role in

plants as defensive weapons against fungal attack. In addition to their physio-

logical role in plants, these small globular proteins are becoming of increasing

interest in nutritional and clinical studies.

191

β-conglycinin

The major storage proteins of soybeans are -conglycinin, or 7S globulins, and

glycinin, or 11S globulins. Soybean protein has long been recognized as a source

of dietary allergens for humans and animals with -conglycinin being the major

allergen. -conglycinin is folded and assembled into trimers in the endoplasmic

reticulum and accumulated into protein storage vacuoles.

Jasmonate O-methyltransferase

Jasmonate O-methyltransferase is an enzyme that catalyzes the chemical re-

action. This enzyme belongs to the family of transferases, specifically those

transferring one-carbon group methyltransferases. This enzyme is also called

jasmonic acid carboxyl methyltransferase.

NBS-LRR

The most common disease resistance genes cloned to date are those belonging

to the NBS-LRR family, named after the domains they typically contain: the

nucleotide binding sites (NBS) and the leucine-rich repeat (LRR). This highly

conserved gene family has structural and functional homology to the mammalian

nucleotide-binding oligomerization domain (NOD)-LRR protein family, which

functions in inflammatory and immune responses.

Cyclophilins

Plant cyclophilins were first identified in 1990 with the isolation of cyclophilin

cDNA sequences from tomato (Lycopersicon esculentum), maize (Zea mays),

and oilseed rape (Brassica napus). Cyclophilins are ubiquitous proteins present

in all subcellular compartments, which are involved in a wide variety of processes

including protein trafficking and maturation, apoptosis, RNA processing and

spliceosome assembly.

Heat shock proteins (HSP)

Heat shock proteins (HSP) are a family of proteins that are produced by cells

in response to exposure to stressful conditions. They were first described in

relation to heat shock,but are now known to also be expressed during other

192

APPENDIX D. GENOME DATABASE

stresses including exposure to cold, UV light, and during wound healing or

tissue remodeling.

Plant ABC Transporters

The ATP binding cassette (ABC) superfamily is a large, ubiquitous and diverse

group of proteins, most of which mediate transport across biological membranes.

ABC transporters have been shown to function not only as ATP-dependent

pumps, but also as ion channels and channel regulators.

The dehydration responsive elements (DREBs)

Plants have evolved intricate mechanisms to respond and adapt to a wide variety

of biotic and abiotic stresses in their environment. DREB family regulatory

genes are involved in many different pathways, including genes related to cold,

drought, high salinity, heavy metals, and abscisic acid (ABA). DREB genes

play an important role in the ABA-independent stress-tolerance pathways that

induce the expression of various stress-responsive genes in plants. ABA is an

important plant hormone that plays a regulatory role in many physiological

processes in plants, such as embryo maturation, seed development, and the

activation of stress-responsive genes.

Arah1

Arah1 is a seed storage protein from Arachis hypogaea (peanuts). It is a heat

stable 7S vicilin-like globulin with a stable trimeric form that comprises 12-16%

of the total protein in peanut extracts. Arah1 is known because sensitization to

it was found in 95% of peanut-allergic patients from North America. In spite

of this high percentage, peanut-allergic patients of European populations have

fewer sensitizations to Ara h 1. No treatment is currently available, avoidance

is the only option for peanut-allergic individuals.

Arah3

Food allergy is a worldwide health problem. It affects approximately 5% of

young children and 3% to 4% of adults in westernized countries. Among them,

peanut is one of the most allergenic. Peanut allergy affects many individuals

193

and its prevalence is increasing rapidly. Arah3 is a seed storage protein and

belongs to the legumin (11S) family. It is recognized by 50% of peanut-allergic

individuals and also functions as a trypsin inhibitor

194

