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ABSTRACT

Deep Learning is a subset of Artificial Intelligence involves deep neural networks. Despite many

decades of research on high-performance deep neural network accelerators, their massive computa-

tional demand still requires resources, efficient architecture, parallel processing, and high memory

bandwidth for computational acceleration. The implementation of DNNs faces the burden of ex-

cess area requirements due to resource-intensive elements such as multiply-and-accumulate (MAC)

units and activation function (AF). Moreover, Edge-AI applications demand a high throughput

DNN accelerator with more area utilization and high power consumption. In order to design

an area-power efficient DNN accelerator at the cost of insignificant loss in throughput requires

optimization in MAC design, AF, and network complexity for efficient data flow. Further, the

ASIC-based hardware design of DNN faces the challenge of offering functional configurability and

limited chip area.

Addressing the hardware implementation of DNN and targeting the low-power and resource-

constrained applications, this dissertation investigates the low-power and efficient VLSI architec-

ture of DNN accelerators. We explore and optimize the Co-ordinate Rotation Digital Computer

(CORDIC) architecture for the evaluation of MAC and non-linear AF operations. Despite being

area and power-efficient, one of the significant drawbacks of CORDIC-based designs is their low

throughput. Therefore, we propose a performance-centric pipelined architecture for CORDIC-

based MAC and AF. Since pipeline stages come with more hardware resource utilization, we

explore the mutual exclusivity between CORDIC stages and conduct a detailed study of accuracy

variation concerning the number of stages required to achieve high throughput. We have given

different topologies for the CORDIC-based MAC and AF with iterative and pipeline architecture.

The proposed designs can be configured to compute both MAC and AF using the same hardware

that allows for saving enormous hardware resources.

In order to design system-level architecture, we explored two different designs. First, we pro-

pose layer reused architecture. An empirical approach is presented for pipeline MAC to enhance

the performance of the DNN engine, which is modular and easily adaptable for any network config-

uration. Secondly, we proposed DNN with reused hardware-costly AF by multiplexing data using

shift-register. The on-chip quantized log2 based memory addressing with an optimized technique

is used to access input features, weights, and biases. The external memory bandwidth requirement

is reduced and dynamically adjusted for DNNs.

The proposed design’s system parameters and hardware architecture can be configured to

application-specific targets. Iterative architecture is useful for AI-enabled IoT applications with

insignificant throughput loss. Furthermore, pipeline architecture is useful for Edge-AI with high

throughput at the cost of area and power overhead. Further, we worked on a digital solution to

design and implement a deep neural network for ASIC and FPGA platforms; however, DNN has

succeeded in numerous applications, including digital and analog input information. An ADC is

required as an intermediate between the analog input and digital hardware accelerator that enable

the process of the analog information since the design network processes the data in digital format.



Therefore Therefore, the dissertation also addressed the efficient design of a low-power, high-speed

4-Bit Flash ADC is designed to process both analog and digital input. The ADC design effectively

works at a sampling rate of 2.4GS/s and is used in analog-digital interface accelerator. Overall,

proposed designs with lower hardware resources and power consumption are especially important

for increasingly important edge computing solutions.
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Chapter 1

Introduction

1.1 Overview

Artificial Intelligence (AI) has been gaining momentum in recent years. Artificial intelligence

(AI) and machine learning (ML) have transformed the modern world. There has been significant

improvement in this field during the last decade. In recent years, self-driving vehicles, digital

assistants, robotic factory staff, and intelligent cities have proven that intelligent machines are

possible. AI has transformed most industry sectors like retail, manufacturing, finance, healthcare,

and media and continues to invade new territories. Machine learning is a branch of artificial

intelligence that allows systems to learn and develop without explicit programming. Machine

learning is essential in developing computer programs that can access data and learn for themselves.

Like the human brain, machine learning relies on input, such as training data or knowledge graphs,

to understand entities, domains, and their connections. Deep learning can begin once entities have

been defined.

1.1.1 Accelerators for deep learning

Deep learning is a subset of Machine Learning inspired by the human brain and learns from large

amounts of data. Likewise, on how we learn from experience, the Deep Learning algorithm would

complete a task repeatedly, each time squeezing it a little to enhance the result. We refer to ‘deep

learning’ because deep neural networks have numerous layers that promote learning. Many recent

AI applications are built on deep neural networks (DNNs). DNN (known as deep learning) is a

wide branch of AI, science, and technology that aims to create intelligent machines that can attain

human-made goals, according to computer scientist John McCarthy. Figure 1.1 shows how deep

learning links with all artificial intelligence. DNNs can now outperform humans in many of these

domains. DNN’s excellent performance stems from its capacity to extract high-level features from

raw sensory data after statistical training on vast volumes of data in order to efficiently represent

the input space. Further, DNN is a popular choice due to its diverse application and is applied to

various non-linear detection problems, some of which are lane detection, pattern recognition, fault
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Figure 1.1: Deep learning in the context of artificial intelligence [1]

detection, and monitoring in the industry [8, 9]. However, these applications often require a DNN

and real-time processing, requiring high computational power.

Deep learning opens up a need for different platforms like GPU, CPU, ASIC, or FPGA to ac-

celerate the computation of the DNN algorithm. The CPU and GPU-based DNN implementations

are general-purpose platforms with specialized hardware supporting various operations, including

Multiply-Accumulate (MAC) operation. However, the drawback of CPU and GPU is the low

utilization of their resources that, reflects in high power consumption [10]. In comparison, ASIC

and FPGA devices provide fast multiplication operations with minimal resource utilization and

lower power consumption than streaming pixels and learning features [11]. Further, FPGA also

has a specialized hardware structure for MAC operation, but their design is customized to DNN

implementation; thus, they achieve high resource utilization and lower power consumption. At the

same time, ASIC-based hardware accelerators are the fastest and most energy-efficient. However,

they are constrained by their inability to reconfigure neural networks with different features and

the inferred network’s limited size [12].

The convolutional neural networks (CNNs) such as VGG-16 require 138 million weights and

15.5G MACs to process one 224× 224 input image. Whereas over 90% is the MAC operations

in the total computation model. The overall performance for VGG-16 on different hardware accel-

erator have shown in Table 1.1 [13]. Table 1.1 shows the throughput, power budget, and energy

performance for VGG-16 by different hardware accelerator platforms. Here we have shown the

comparison for implementation with GPU, CPU, FPGA, and ASIC. It can be observed that the

throughput performance of the NeuroFlow chip is much higher than the GPU and CPU but takes

more development time and cost. Further, ASIC/FPGA has less power consumption and bet-

ter operation performance per watt. Besides, FPGAs have considerable performance and easily

prototype the DNN in minimum time and cost. The CPU and GPU require significantly less

development time, and very easy to deploy the DNN accelerator at the cost of performance loss.

In order to address the edge-AI devices, the hardware should have high throughput and minimum

energy cost. Therefore such devices require FPGA or ASIC-based solutions for better performance.

The features of hardware for AI accelerators is depending on required performance such as

speed of computation, parallel processing data bandwidth, and reconfigurability. The comparative
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Table 1.1: Hardware Accelerator (CPU, GPU, FPGA, ASIC) performance for Deep neural network.

Performance
CPU (Intel

DuoCore 2.7GHz)

GPU

(GTX480)

mGPU

(GT335m)

NeuroFlow on

Xlinx Virtex 7

NeuroFlow on

IBM 45nm process

Real GOPs 1.1 294 54 147 1164

Power (W) 30 220 30 10 5

GOPs/W 0.04 1.34 1.8 14.7 230

Figure 1.2: Design requirements and performance analysis of AI hardware accelerators [1]

analysis of the hardware types have been reported in Figure 1.2. It can be observed that the

performance parameter for FPGA and ASIC shows better results than CPU and GPU. In a fully

parallel implementation of the Deep Neural Network, each layer needs a distinct memory space for

its weight and bias in order to maximize performance efficiency. The anatomy of a brain neuron is

depicted in Figure 1.3 (a). Neurons are connected to several elements called dendrites and contain

output elements called axons. Neurons receive signals from the dendrites and process them in order

to generate signals in the axons. Activation is the term for these inputs and outputs. Neuron axons

spread out and connect to the dendrites of numerous other neurons. A synapse is a connection

between the axon’s branches and the dendrites. The typical number of synapses in the human

brain is 1014 to 1015. Whereas artificial neurons mimic the behavior of biological neurons as shown

in Figure 1.3 (b).

1.1.2 Neuron Architecutre

The neuron computation entails multiply-and accumulate units (MAC) followed by a nonlinear

mathematical transformation called AF. The single neuron with multiple inputs and weights for

MAC operation followed by a nonlinear transformation is shown in Fig. 1.4. The various forms

(a) Anatomy of a brain neuron [1] (b) Artificial neuron having multi inputs at
multiply-and-accumulate unit followed by activ-
ation function.

Figure 1.3: A biological and an artificial neuron
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Figure 1.4: Single neuron having multi inputs with MAC followed by activation function.

Figure 1.5: Various forms of nonlinear activation function [1]

of nonlinear activation functions have shown in Figure 1.5. Moreover, implementing the AF is

challenging due to its nonlinear nature. Therefore, its accurate design and implementation require

a large number of hardware resources.

In a deep neural network (DNN), each neuron performs two basic functions: sums weighted

input features using MAC and evaluates Activation Function (AF) from calculated sum as shown

in Figure 1.3 (b). In this dissertation, the authors refer to a fully connected feed-forward Artificial

Neural Network (ANN) with multiple layers between the input and output layers as a DNN.

The deep Neural Networks have more (several) layers that contain one hidden layer, multiple

hidden layers, and one output layer followed by the softmax function. As an example, DNN has

demonstrated having a five-layer fully connected neural network (784:256:128:128:10) for MNIST

data classification as depicted in Figure 1.6, and more MACs (within a neuron) are a consequence

that demands more hardware resources for implementation. This problem will be more dominant

when the network processes the high-resolution images that need higher precision computational

elements. Therefore, DNN implementation for mobile or edge devices on resource-constrained

hardware attracts much attention. In previous works, multi-bit precision (8, 16, 32, and 64-bit)

data representation is used for MAC unit arithmetic computation, considering the trade-off between

accuracy and physical performance parameters. Furthermore, the fixed point is preferred over the
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Figure 1.6: Fully connected multi-layer (1-input, 3-hidden, and 1-output) neural network. Each layer
has n-number of neurons that connected to each neuron of next layer

floating-point, maximizing utilization density and throughput. However, it is also preferred when

the resources are limited, and some degree of error is tolerated [14]. Therefore, a neural network

design with 8-bit precision operands is preferable [15] which has also varified in this dissertation and

used for hardware implementations. In this proposed efficient architecture of the DNN accelerator,

we have used signed 8-bit fixed-point arithmetic.

The neuron computation entails multiply-and accumulate units (MAC) followed by a nonlin-

ear mathematical transformation called AF. The area-efficient architecture is made using different

design techniques for MAC unit, AF, and layer architecture [12, 16, 17, 18, 19]. However, The main

bottlenecks of the FPGA implementations are limited hardware resources and limited Program-

mable System (PS)-Programmable Logic (PL) data transmission bandwidth. In order to reduce the

memory bandwidth of the DNN implementations, the weights & bias constants should be stored

as close to the processing element as possible. Further, lesser hardware resources and lower power

consumption are significant for increasingly important edge computing solutions. In this respect,

DNN design should have an efficient architecture with better resource utilization and other per-

formance parameters. Some of the previous works have investigated the efficient architecture for a

MAC unit that can use minimum resources without performance loss [12, 17]. However, network

implementation demands a more efficient design for hardware utilization, power consumption, and

throughput performance.

1.1.3 Deep Neural Network

The Deep neural networks (DNNs) have a hierarchical organization of neurons similar to the

human brain. Deep neural networks (DNN) are computationally expensive for data-intensive

applications that may contain many neurons and several parameters. Typically DNN contains

both convolution layer and fully connected layers. In such a network, each layer successively

produces a higher abstraction of input data called a function map (fmap). It keeps important

but unique information. Modern CNNs can achieve good performance using very deep hierarchies.

In CNN, each convolution layer is composed of multidimensional beliefs. In this calculation, the
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Figure 1.7: convolution and fully connected layers feature

layer input operation consists of two-dimensional input function maps (input map), filters called

a channel as shown in Figure 1.7. Each channel is mixed into a filter bank and another 2D filter,

one for each channel. This set of 2D filters is often referred to as a single 3D filter. At each point,

conviction findings are summarized in each channel. We can also add a one-dimensional offset

to the filter results. The convolution layers work for image feature extraction, whereas for image

classification and probabilistic distribution, a fully connected layer is used, which has neuron to

neuron connection between all neurons, a large number of weights, and data processing involved.

The dimension and FC calculation is shown in Figure 1.7. The overall computation involves mainly

MAC and AF

In recent years, researchers have focused on the efficient hardware implementation of DNNs.

The implementation of DNN is done on GPUs, ASICs, and FPGAs. An area and power-efficient

designs are desirable for tiny FPGAs/hardware implementation [20, 21]. The GPU gives flexibility

in application development and requires much lower design efforts, but the design is area and

power-inefficient. The GPU and CPU use has benefits in process development but inefficiently

use the resources, whereas ASIC and FPGA has complex development process but have good

performance and efficiently use the resources. Each development platform for the DNN accelerator

has its benefits and drawbacks. However, for edge AI applications ASICs are more power-efficient

than the GPUs at the cost of compromising design flexibility. In contrast, FPGAs have a good

trade-off for power efficiency, parallel processing, and reconfigurability. Further, FPGA designs

can easily be transformed into ASIC designs. Hence FPGA is the befitting platform for the DNN

implementation. However, FPGA has lower on-chip memory bandwidth and limited hardware

resources. An efficient method is required to overcome the area-overhead issue. In the last decades,

hardware optimization techniques in DNN design and implementation have been presented by

researchers [22, 23]. The hardware efficient design architectures for DNN have been inspected in

the state-of-the-art [24, 25, 26, 27, 28]. Moreover, hardware efficient design has been made through

reusing the single-layer reuse concept to compute the entire network computation at the cost of

lower throughput [25]. These state-of-the-art works have focused either on the system architecture

or efficient computational design techniques for achieving better physical parameters.

The conventional cloud-based Artificial Intelligence method used today is insufficient to cover

bandwidth, protect data privacy, or support low latency applications due to the increasing demand

for real-time deep learning workloads. Therefore, edge computing technology is required to bring
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AI jobs to the edge (Edge AI). Due to the recent advances in edge AI, customized AI hardware is

required for on-device machine learning inference. Thus, the work presented in this thesis provides

insights related to an efficient implementation of deep neural networks for edge-AI applications.

We worked on configurable architecture for multiple activation functions such as sigmoid, tanh,

and ReLU using the same hardware. At the same time, the design is extended for multiply-

and-accumulate computations. Since due to the iterative nature of computing, algorithm design

comes with low throughput, which is further explored with hardware pipelining in order to enhance

the throughput. The related work and motivation of each work have reported in the individual

Chapters. The system-level fully connected and convolution neural network has been designed,

which used features of enhancing the performance design of multiply-and-accumulate and activation

function computing elements. The system design is also explored for the layer reused and data

multiplexed architecture to make it more efficient for edge computing applications. The research

can be extended to in-memory computing architecture to make more and more performance-

efficient designs. We used targeted hardware for logic implementation, and performance evaluation

process have elaborated in Appendix A. The proposed work focuses on efficient architecture in

terms of area and power overhead without performance loss. The thesis contributes to the DNN

accelerator for FPGA and ASICs have summarized below in Section 1.2.

1.2 Thesis Contributions

The thesis has majorly investigated the CORDIC-based DNN computation by implementing effi-

cient MAC and AFs in the accelerator. In the case of a hardware implementation of a DNN, in-

creasing computational complexity has an unfavorable impact on area and performance. Moreover,

an ASIC design is not adaptable, and any configurability such as flexibility in bit precision, or con-

figurability in the type of activation function such as exponential, sigmoid, hyperbolic tangent

(tanh), comes with additional overhead. Computation with higher bit precision (32-bit or 64-bit)

is also expensive in terms of area and power. Thus, a reduction in hardware complexity (i.e., bit

precision) and faster response without compromising accuracy is highly desirable.

To overcome the above limitations, we propose CORDIC-based designs of processing element

and AFs, which uses the iterative and pipelined CORDIC algorithm. It uses a fixed-point signed

arithmetic computation. The proposed logic has two benefits– Firstly, it is scalable in terms of area

and power as a single block can compute both MAC and AFs. Secondly, it allows configurable

activation function (sigmoid/tanh) and hence has reduced critical path delay and lesser power

dissipation. The design also maximizes hardware reuse, unlike conventional ASIC-based designs,

which use MUX, which leaves out hardware blocks unused. Further, thesis talked about non linear

AFs such as exponential sigmoid and tanh AFs since they have higher values of gradient during

training and higher updates in the weights of the network. Further, Fully connected neural nets and

recurrent neural networks have good performance with sigmoid and tanh due to its less vanishing

gradient problem.
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Thesis major contributions are summarized below-

1. FPGA and ASIC Implementation of Configurable Activation Function using CORDIC

and its Throughput Enhancement.

The multiple AF design is implemented using the CORDIC architecture at the 45nm tech-

nology node. The power-gating technique is explored to reduce static power dissipation to make

ASIC implementation efficient. Further, the design is implemented on FPGA, and Performance

parameters have been evaluated. In the second part, to enhance the throughput of the design,

we have proposed the pipeline architecture. We address this trade-off and propose an enhanced

CORDIC-based hardware design to compute configurable non-linear activation functions at high

throughput for neural network applications. A Pareto study between accuracy and mutually ex-

clusive CORDIC pipeline stages is presented. This study gives an insight on how to define the

number of pipeline stages to be used in CORDIC-based design for non-linear activation function,

as pipeline stages lead to area and power overheads.

Publications

Gopal Raut, Shubham Rai, Santosh Kumar Vishvakarma, and Akash Kumar. “A CORDIC based

Configurable Activation Function for ANN Applications.” In 2020 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), pp. 78-83. IEEE, 2020.

Gopal Raut, Shubham Rai, Ribhu Das, Santosh Kumar Vishvakarma, and Akash Kumar. “Enhan-

cing Performance for a CORDIC-based Configurable Activation Function Implementation” IEEE

Access (Under review)

2. CORDIC-based Configurable Architecture for MAC and AF Implementation

within the Neuron.

In this work, we have proposed a resource-efficient and configurable CORDIC-based design,

RECON, for a neuron. The CORDIC-based design allows configuration, and the same block

can compute both MAC and multiple activation functions. Additionally, our proposed design

can compute both signed and unsigned computations. The proposed architecture is area and

power-efficient compared to the state-of-the-art designs for both MAC and activation function

computation. Using extensive evaluation, we show that our proposed design gives better returns

at higher bit precision as compared to other designs.

Publications

Gopal Raut, Shubham Rai, Santosh Kumar Vishvakarma, and Akash Kumar. “RECON: resource-

efficient CORDIC-based neuron architecture.” IEEE Open Journal of Circuits and Systems 2

(2021): 170-181.
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3. Empirical Evaluations of CORDIC Pipeline Stages for High Throughput MAC and

Implementation of Layer Multiplexed DNN Accelerator.

To enhance the performance of Deep Neural Network (DNN) accelerators, both compute effi-

ciency and operating frequency need to be maximized. Despite being area and power-efficient, one

of the significant drawbacks of CORDIC-based design is its low throughput. This work proposes a

performance-centric pipelined architecture of MAC that mitigates low throughput. We conduct a

detailed Pareto study of accuracy variation at different precision and the required pipeline stages

to achieve high performance. Implementation reports are evaluated and extract performance para-

meters for pipeline architecture. Further, We implemented layer multiplexing in DNN for efficient

usage of resources. The proposed architecture is modular and easily adaptable for any network

configuration. The ANN engine is prototyped using the Xilinx Virtex-7 VC707 FPGA board and

operates at 50MHz.

Publications

Gopal Raut, Jogesh Mukala, Vishal Sharma and Santosh K. Vishvakarma, “Enhancing Perform-

ance for a CORDIC-based Configurable Activation Function Implementation,” Circuits, Systems,

and Signal Processing (CSSP), Springer, (Minor Revision recieved)

Gopal Raut, Saurabh Karkun and Santosh Kumar Vishvakarma,“An Empirical Approach to En-

hance Performance for CORDIC-based Deep Neural Networks.” ACM Transactions on Reconfig-

urable Technology and Systems (TRETS), (Revision Submitted).

4. Data Multiplexed and Hardware Efficient Design of Fully Connected Neural Net-

work Accelerator for Tiny FPGAs.

We presented a novel DNN architecture that reduces the hardware-resource requirements and

on-chip power consumption without losing computational rate. Our architecture has struck a de-

mand of resource overhead in a DNN by exploiting the hardware-reused context. The contribution

of the work is twofold. Firstly, the activation function is designed efficiently for higher accuracy,

and quantized memory elements are stored in BRAM for better utilization and higher throughput.

Secondly, our experimental results demonstrate the reuse of AF by serializing the output of the

array of MAC in each layer. The efficient memory addressing scheme is used to overcome the SoC

throughput limits.

Publications

Gopal Raut, Anton Biasizzo, Narendra Dhakad, Neha Gupta, Gregor Papa, and Santosh Ku-

mar Vishvakarma. “Data multiplexed and hardware reused architecture for deep neural network

accelerator.” Neurocomputing 486 (2022): 147-159.
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5. Application to Analog In-Memory Computing: Configurable Design of Dynamic

Comparator for ADC.

A 4-bit energy-efficient flash ADC is presented at the 180nm CMOS process. A power-efficient,

high-resolution reconfigurable comparator is designed using SCL 180 nm CMOS technology at the

supply voltage of 1.8V. We present a runtime reconfigurable differential amplifier circuit design

for a low-power application that operates at 2.4 GS/s and significantly reduces the active power

in the circuit by using the configurable technique. The proposed architecture is divided into two

steps of algorithm implementation depending on the analog input to the circuit. The power-hungry

preamplifier stage is bypassed in the multistage comparator for the higher input signal (> Vth),

which results in huge power savings and does not require any kind of extra processing blocks.

This reconfigurable technique with the proposed dynamic latch-based comparator gives a very

high-speed conversion with low power consumption; hence, it is very useful in Flash-type ADC

applications.

Publications

Gopal Raut, Ambika Prasad Shah, Vishal Sharma, Gunjan Rajput, and Santosh Kumar Vishvakarma.

“A 2.4-GS/s Power-Efficient, High-Resolution Reconfigurable Dynamic Comparator for ADC Ar-

chitecture.” Circuits, Systems, and Signal Processing 39, no. 9 (2020): 4681-4694.

1.3 Thesis Organization

The remaining portion of this thesis is organized in the following way:

• In Chapter 2, presented the configurable architecture for AF based on the shift-and-add al-

gorithm, collectively known as Co-ordinate Rotation Digital Computer (CORDIC) algorithm.

The proposed versatile, configurable AF is designed using CORDIC architecture and imple-

ments ReLU, tan hyperbolic, and sigmoid AF using the same hardware resources. Further,

presented the performance-centric pipelined design for CORDIC-based AF to mitigate the

issue of low throughput.

• In Chapter 3, we extend the Architecture of Chapter 2 for the exploration of RECON.

Contemporary hardware implementations of artificial neural networks face the burden of ex-

cess area requirement due to resource-intensive elements such as multiplier and non-linear

activation functions. We address the above challenge with the proposed resource-efficient Co-

ordinate Rotation Digital Computer (CORDIC)-based neuron architecture (RECON). It is

configured to compute both multiply-accumulate (MAC) and non-linear activation function

(AF) operations. The CORDIC-based architecture uses linear and trigonometric relation-

ships to realize MAC and AF operations. The proposed design is synthesized and verified at

45nm technology and explores a semi-custom design approach for cadence-virtuoso in order

to extract physical performance parameters.
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• In Chapter 4, we address the enhanced performance technique for MAC throughput optimiza-

tion. We design a MAC unit using Co-ordinate Rotation DIgital Computer (CORDIC)-based

architecture in Chapter 3. Despite being area and power-efficient, one of the significant draw-

backs of CORDIC-based design is its low throughput. This work proposes a performance-

centric pipelined architecture of MAC that mitigates low throughput. We conduct a detailed

Pareto study of accuracy variation at different precision and the required pipeline stages to

achieve high performance.

• The Chapter 5 explores the DNN for AI-enabled IoT applications with minimum power and

area utilization. We propose hardware reused architecture, and an empirical approach is

presented to enhance the performance of the DNN engine. Network implement multiplexed

DNN architecture which shows efficient reuse single neuron’s layer. The proposed architecture

is modular and easily adaptable for any network configuration. The proposed architecture

is scalable for any bit-precision. We conduct a detailed Pareto study of accuracy variation

at CORDIC pipeline stages that explore the impact of design parameters on accuracy and

throughput performance. The DNN is prototyped using the Xilinx Virtex-7 VC707 FPGA

board and operates at 50MHz.

• In Chapter 6, we propose DNN with reused hardware-costly AF by multiplexing data using

shift-register. The on-chip quantized log2 based memory addressing with an optimized tech-

nique is used to access input features, weights, and biases. The external memory bandwidth

requirement is reduced and dynamically adjusted for DNNs. Further, high-throughput and

resource-efficient memory elements for the sigmoid activation function are extracted using

the Taylor series, and its order expansion has been tuned for better test accuracy.

• In Chapter 7, we design 4-bit energy-efficient flash ADC at 180nm CMOS process. In ADC

architecture, we have used the proposed reconfigurable multistage comparator with less power

consumption at the Nyquist rate. The proposed schema with a modified dynamic latch is

efficient at high speed with a higher slew rate. The pre-amplifier stage is optional to use

in the proposed circuit, and it can bypass voltages more than the specified voltage range.

The transmission gate-based thermometer to gray Encoder is designed for power-efficient

bubble-free conversion.

• Finally, the thesis is concluded in Chapter 8. The direction of future research work is also

provided in this chapter.
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Chapter 2

Configurable AF design and

Throughput enhancement via

Pareto analysis

The utility of types of activation functions varies with applications. However, conventional ar-

chitecture does not support the on-chip configurable architecture of the multi-activation function.

This chapter investigates design strategies and optimizations of activation functions (AF) for a

DNN architecture. An efficient ASIC-based hardware design of activation function (AF) in neural

networks faces the challenge of offering functional configurability and limited chip area. Therefore

an area-efficient configurable architecture for an AF is imperative to fully harness the parallel

processing capacity of an ASIC in contrast to a general-purpose processor. To address this, we

propose a configurable AF based on the shift-and-add algorithm, collectively known as the Co-

ordinate Rotation Digital Computer (CORDIC) algorithm. The proposed versatile, configurable

activation function uses CORDIC architecture and implements both tan hyperbolic and sigmoid

functions.

2.1 Introduction to Activation Function

A deep neural network (DNN) is famous for computational models like pattern recognition, pre-

diction, and classification. A DNN implementation has major components: a computational unit,

an activation function (AF), arithmetic precision, data types, and a design platform. Furthermore,

hardware realization of DNNs can be classified into three groups– Application-Specific Integrated

Circuits (ASIC), Digital Signal Processing (DSP), and Field Programmable Gate Arrays (FPGA)

implementations. An ASIC implementation has a performance and area advantage over the other

choices [29]. However, the ASIC design is fixed and can not be modified to accommodate dif-

ferent applications. Additionally, the ASIC implementation of a large deep neural network is
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Figure 2.1: Typical design architecture of single neuron with configurable activation function.

resource-hungry. Hence, realizing high precision multiple activation functions for a neural network

is generally avoided. Furthermore, an efficient design technique for lowering the supply voltage is

essential for power-efficient applications [30, 31].

Hardware implementation of a DNN can exploit the underlying parallelism of the network to

further optimize performance. Efficient VLSI architectures have been proposed, targeting diverse

applications based on DNN [32], [15]. However, from an application point of view, the performance

and accuracy of a neural network primarily depend upon the data precision required [32] [15].

Specifically, in the case of a hardware implementation of neural networks, higher precision generally

comes with the high area and power overheads. This trade-off gets even more complicated when

configurable architectures are required.

While FPGAs offer configurable hardware designs, they often require more chip area as com-

pared to ASICs [33]. From the design point of view, a neural network demands configurable

activation function implementations. It performs various types of non-linear transformation such

as sigmoid, hyperbolic tangent (tanh), exponential is often desirable [34]. The conventional ar-

chitecture of a neuron with multiple activation functions, proposed in [35] is shown in Fig 2.1. It

has some major drawbacks like area overhead by using separate hardware paths (path-A, path-B,

and path-C) for individual activation functions as well as increased data propagation delay (due to

MUX) and power dissipation (static power dissipation) due to the unused hardware. The dedic-

ated hardware for the individual activation function is not the desired choice as only one activation

function is activated at one time. We propose an optimized CORDIC-based architecture to enable

efficient yet configurable computations required in the neural networks to address this trade-off.

2.2 Types of Activation Functions and Design Techniques

In DNN, MAC output is the input for AF’s non-linear transformation function. Due to the non-

linear nature of the AF, it demands more hardware resources for implementation, and resource

utilization increases exponentially for higher precision. In addition, the AF with 16-bit and higher

precision requires more memory elements for PWL implementation. Therefore, it is very costly for

hardware utilization as the number of required memory elements increases exponentially with the

increasing precision. Different types of non-linear transformations are used in the DNN application.
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The type of activation functions is Linear, Sigmoid, Tanh, ReLU, Leaky ReLU, Parameterised

ReLU, Exponential, Linear Unit, Swish, Softmax [36]. However, AF should be differentiable to

compute gradients that can perform back-propagation from output to the input layer weights. An

activation function should be differentiable, non-linear, and easy to handle. There are two types of

activation functions; those are linear activation functions and nonlinear activation functions. We

should select a non-linear activation function. More popularly, nonlinear activation functions are

used, such as Exponential, Sigmoid, Tanh, ReLU, etc. However, other nonlinear functions, such

as Leaky ReLU, SeLU, Softplus, etc., are also used based on the application. We discussed a few

(sigmoid, tanh, ReLU) nonlinear activation functions that have implemented with configurable

architecture. In this chapter, we have implemented Co-ordinate Rotation DIgital Computer

(CORDIC) algorithm based configurable architecture that performs a sigmoid, tanh, and ReLU

activation using the same hardware.

Exploration of hardware implementation of activation functions

Some popular AFs are addressed and elaborated on here, such as sigmoid, Tanh, and ReLU.

Furthermore, those AF uses different mathematical approaches for hardware implementations in

the state-of-the-art as summarized in Table 2.1. One can notice that all these functions are of

different forms of the same function but vary in terms of the requirement of arithmetic operations.

Further, it can use different on-chip memory resources such as Lookup Tables (LUTs), Block RAM

(BRAM), Distributed FPGA memory or external DRAM for local storage of AF parameters. Some

of the implementation methods are summarized below as

1. LUTs based implementation by storing function [37]

2. LUTs based implementation by storing parameters [38]

3. Approximation in calculation into base-2 exploration

4. Coordinate Rotation Digital Computer (CORDIC) algorithm [39, 40]

5. Combinational logic based implementation [41]

An exact calculation of the AF using hardware implementation is complex due to its continuous

and non-linear nature. Therefore, Piece-Wise Linear (PWL) technique is used for these functions’

implementation [37, 23]. Moving from lower precision to higher precision, such as 8-bit, 12-bit,

and 16-bit, the number of quantization states increases exponentially, leading to an exponential

rise in required memory elements. The error contribution due to PWL activation functions at dif-

ferent precision is expressed in [42]. Moreover, the non-linear AF such as sigmoid/tanh cannot be

approximated efficiently using only combinational logic [18]. However, using purely combinational

logic provides low latency with a small area overhead compared to conventional ROM-based ap-

proaches. In [43], an approximation scheme for tanh AF implementation has been proposed using

combinational logic design to explore sigmoid function evaluation further. However, circuit design
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Table 2.1: Computational equations with different representation of activation function for its design
exploration and evaluation

Preliminary Activation Function Implementation
Work Sigmoid Tanh

[41, 44, 45] 1
(1+e−z) 1− 2 Sigmoid(−2z)

[46, 47] 1
(1+e−z)

(e2z−1)
(e2z+1)

[39, 35] 1+tanh(z/2)
2

(ez−e−z)
(ez+e−z)

[10, 18] ez

(1+ez)
sinh(z)
cosh(z)

complexity will increase for higher precision AF implementation. The reuse of hardware resources

with an improved architecture for configurable AF implementation is investigated in [35]. This

technique achieves high utilization of the FPGA and remarkably improves the physical parameters

of FPGA but suffers from low throughput.

In [17], the authors used a single multiplier and adder with iterative accumulation for MAC

computation, and AF has been used in every neuron. In DNN, each layer has many neurons, and

it requires more hardware resources due to parallel architecture and consumes more on-chip power.

Based on the concise review, we address the hardware-efficient and performance-centric solution.

We have designed a signed 8-bit dynamic fixed-point hardware-reused DNN accelerator with insig-

nificant loss in throughput. In addition, we have resized the MAC output that allows efficient use

of AF with lower precision implementation. Further, area-efficient Taylor series expansion is used

for Piece-Wise Linear AF implementation. Finally, we used Block RAM to store pre-calculated

values of sigmoid AF, which is beneficial at higher precision.

2.2.1 CORDIC Modes of Operation

Circular rotation mode of operation

We elaborate the working principle of CORDIC architecture for trigonometric calculations (same

follows for hyperbolic trigonometric) in Appendix A. Here, CORDIC operates in circular mode.

In this case, the scale-factor, K converges. The constants used for circular trajectory in the above

matrix calculation are Kc = 1.6467 and m = 1. The ith iteration with each step to force the

angle to converge to the desired final rotation, uses constants tan−1(2−i) for the trigonometric

calculations as shown in Table 2.3. Moreover, the constant tan−1(2−i) in Table 2.3 is first stored

in the ROM for circular calculations. The calculation is carried out circular mode of operation for

sin(30) and cos(30). From Table 2.2, inputs X0[8:0] and Y0[8:0] are applied as 1/Kc=0.6072 and

0 respectively. Taking a common scaling factor K and CORDIC equations in pseudo rotation for
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circular modes of trajectories are then formulated as:

Xi+1 = Xi − Yi· di· tan αi (2.1a)

Yi+1 = Yi +Xi· di· tan αi (2.1b)

Zi+1 = Zi − di·αi (2.1c)

where, Xi, Yi and Zi are input variables at ith iterations. Further, αi is the rotation angle in

radians at each iteration i ∈ {1, 2, 3, ...n}. Also, αi is represented as Ei considered as memory

element for ith iteration. The linear converge form of Eq. 2.1 is shown in Eq. 2.2. Here, constants

Kc correctness have shown for up to 4 decimal points which requires approximately 13-bit precision

after decimal point. However, we choose quantized values for the Kc based on the fractional bits

in arithmetic precision. Further, for Kc higher bit precision more accurate value considered for the

results evaluation.

Xi+1 = Xi + di·Yi· 2−i (2.2a)

Yi+1 = Yi + di·Xi· 2−i (2.2b)

Zi+1 = Zi − di· tan−1 2−i (2.2c)

Here, di = −1 if zi < 0 and m = 1

We have given the calculation for trigonometric calculations sin(30) and cos(30) and is calculated

in 5 clock cycles using Eq. 2.2; shown grayed out in Table 2.2.

2.2.2 Hyperbolic rotation mode of operation

The CORDIC algorithm in Hyperbolic Rotation Mode can be used to implement the hyperbolic

trigonometric operation. The generalized equations in a hyperbolic mode of operation are shown

in Eq 2.3. In this mode, hyperbolic trigonometric functions sinh and cosh can be evaluated using

hyperbolic coordinates with scaling factor Kh to 0.8281. The CORDIC algorithm set variable

m to -1 and used a division block for the final results. In order to calculate sinh and cosh, the

rotational mode of the CORDIC algorithm is used. The final division by scaling factor can be

eliminated by dividing initial variables, thus setting X0 to 1/Kh, Y0 to 0, and setting the input to

Z0. The rotations are selected such that rotation scaling factors are negative power of 2, i.e. αi =

tanh(2−i). Therefore, from Table 2.4, it is observed that output Xn, Yn and Zn converges as: Xn

to coshZi; Yn to sinhZi; and Zn to zero (Z → 0).
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Table 2.2: The ith iteration (clock) steps to force the angle to converge to the desired final cos & sin in
modified CORDIC architecture in rotation mode.

i di Xi+1 → cos Z Yi+1 → sin Z Zi+1 → 0

Clock Direction 1/Kc=0.6072 0.00 Input = 30.00

0 1 0.6072 0.6072 -15.00

1 -1 0.9108 0.3036 11.56

2 1 0.8349 0.5313 -2.47

3 -1 0.9013 0.4269 4.65

4 1 0.8747 0.4833 1.07

Table 2.3: The constants used in CORDIC calculation at nth iteration that force the input Zin to converge
towards zero

Calculation for nth stage 1 2 3 4

En = tanh-1(2-n) 0.5493110 0.2554210 0.1256610 0.0625810

Binary Conversion 0.10001102 0.01000012 0.00100002 0.00010002

Xi+1 = Xi + di·Yi· 2−i (2.3a)

Yi+1 = Yi + di·Xi· 2−i (2.3b)

Zi+1 = Zi − di· tanh−1 2−i (2.3c)

After nth iterations, it computes sinh(Z) and cosh(Z) that can be used for further exponential

function evaluation using Eq. 2.4 [10] have elaborated in Table 2.2.

Here, the results in Table 2.2 are still a bit far from sin(30)=0.5 or Cos(30)=0.8660. The com-

puted values of 0.4833 and 0.8747 are 0.015 +1/64 away from the real value, i.e., The accuracy is

only valid upto 6 bits. From the CORDIC computation, we have shown sin/cos values representing

8-bit fixed points having 2 bits as an integer. The values are not precisely the actual values. How-

ever, since the neural network is error-resilient, the approximate evaluation also has the desirable

accuracy. Furthermore, by increasing the bit precision, the representation of constants values will

be more precise. Therefore, with higher bit width representation, accuracy will be increased.

f(Z) = exp(Z) = eZ = sinh(Z) + cosh(Z) (2.4)

2.3 Configurable architecture for Multiple Activation Func-

tion using Iterative CORDIC

This work investigates design strategies and optimizations of activation functions (AF) for a DNN

architecture. We employ CORDIC architecture in hyperbolic rotation mode to realize tanh and

sigmoid and ReLU functions. The CORDIC-based architecture requires only a shift-and-add op-
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Table 2.4: Iteration-level calculation shown for activation function using CORDIC in hyperbolic mode

i di Xi+1 → cosh Z Yi+1 → sinh Z Zi+1 → 0

clock for (i+ 1)th Initial Conditions/Inputs

iteration iteration 1/Kh reset Input AF

initial – 1.2075 0.0000 0.78125

1 1 1.2075 0.6037 0.2319

2 1 1.3584 0.9056 -0.0208

3 -1 1.2452 0.7358 0.1022

4 1 1.2911 0.8136 0.0397

5 1 1.3172 0.8554 0.0084

eration, leading to area and power savings with better data precision. The proposed architecture

uses the same hardware resources to realize the sigmoid and tanh function. The major contribution

is summarized in the following points:

• Design of a configurable architecture for multiple activation function using the CORDIC-

based algorithm.

• Optimization of exiting CORDIC-based architecture in terms of area, power, and delay.

• Analyze the impact of technology scaling on circuit’s physical parameters like area and power,

and proposed power-gating approach for additional power savings.

The multiple AF design is realized using the CORDIC architecture at 45nm technology node. The

configurable activation function using CORDIC is designed for low-cost hardware requirements.

The power gating technique is further explored to reduce static power dissipation.

2.3.1 Iterative CORDIC architecture

The CORDIC architecture for all modes of operation is shown in Fig. 2.2. Conventionally for

N-bit precision arithmetic computation required maximum ‘N’ iteration in CORDIC computation.

Here, in Fig. 2.2 we referred n= 0,1,2,.....N. In archtiecture, by setting the CORDIC configuration

parameters in the hyperbolic mode, we evaluate sinh(z) and cosh(z) through which we evaluated

the sigmoid and tanh AF in neural network. The inputs and constants for hyperbolic calcualtions

have discused in Section 8. The propagation delay of a conventional CORDIC is hence the sum of

the delay of MUX, adder/subtractor, barrel-shifter, and feedback resistor blocks are involves in one

CORDIC unit for each micro-rotation. Here, the output of the current iteration will be the input

for the following iteration in the CORDIC architecture, which computes iteratively. As a result,

the result must be saved in the intermediate step for iterative processing. The value is kept in the

intermediary register. We referred to the storage component as a feedback register. The modified

architecture is iterative in nature as it uses only one CORDIC unit for all micro-rotations.
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Figure 2.2: Signed N-bit iterative CORDIC architecture

2.3.2 Configurable activation function

The hyperbolic tangent and sigmoid are generally the most used nonlinear activation functions.

Activation functions like sigmoid or tanh provide a smooth transition between excitation and

inhibition, which improves the neural response [48]. The authors in [49] proposed the direct

computation of a single sigmoid activation function with CORDIC architecture. For negative

values, they implemented it with 2′s complement arithmetic computation. Similarly, the authors

employed approximation of log-sigmoid transfer function with CORDIC algorithm in [47] for e−x for

sigmoid function realization. However, these techniques require multiple stages for AF realization,

which lead to high area overheads and longer critical paths. To overcome the double multipliers

overheads with state-of-the-art, we have systematically investigated the configurable architecture

for both sigmoid and tanh AF design. The proposed architecture for configurable activation

function block design is shown in Figure 2.3 and Figure 2.4. It can be noticed that sigmoid (shown

by green color lines in Figure 2.4) uses the maximum components, leading to the largest critical

path. Here, n-stage Pipeline CORDIC architecture is used with N-bit precision. The CORDIC

module is used in hyperbolic rotation mode for the generation of sinh and cosh functions. The

signed 8-bit precision CORDIC architecture is designed. The most significant bit (MSB) of 1-

bit inputs, Y [8] and Z[8], is used for generating the ‘dn’ signal. The signal ‘dn’ is fed to the

adder/subtractor block that decides whether addition or subtraction has to be done, the signals

are depicted in Figure 2.4.

The generated trigonometric hyperbolic functions is used for producing exponential function as

shown below. The 8-bit CORDIC output is applied to the adder for producing exponential output.

sinh(z) + cosh(z) = ez (2.5)

The CORDIC-based design outputs trigonometric hyperbolic functions – sinh and cosh func-

tions to compute the exponential function as shown in Eq. 2.6a. Once, exp(z) is calculated, it

can be used to compute sigmoid and tanh function as shown in Eq. 2.6b and Eq. 2.6c respect-

ively. Additionally, using a simple MUX-based extension, the proposed architecture can easily be
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configured to realize a rectified linear unit (ReLU) function using Eq. 2.6d. Figure 2.3 shows

the hardware design for computing exponential, sigmoid, tanh and ReLU function using CORDIC.

Whereas, the control signals for AF configuration are elaborated in Table 2.4.

f1(z) = exp(z) = ez = sinh(z) + cosh(z) (2.6a)

f2(z) = tanh(z) =
ez − e−z

ez + e−z
=
sinh(z)

cosh(z)
(2.6b)

f3(z) = sigmoid(z) =
1

1 + e−z
=

ez

1 + ez
(2.6c)

f4(z) = ReLU(z) =

 z, if z ≥ 0

0, if z < 0
(2.6d)

Additionally, in the proposed architecture, the execution of the tanh function does not require

the additional adder block as compared to [50]. However, this unused block can dissipate static

power. Addressing this issue and considering the trade-off between leakage current and speed of

operation, the Power Gating (PG) technique is used to minimize the leakage power and improve

the performance. We have implemented adders with the PG technique used in the proposed

architecture as shown in Fig. 2.3. The select line is used for the power supply connection to the

adder logic block. We used a logic gate with wide-gate size transistors so that the performance is

not compromised. The coarse-grain technique is used in the design for better efficiency, less circuit

complexity, and moderate switching time.

From Eq. 2.6(a), the output of the adder is fed to the division block. The subtraction and

the shift operation are the two basic operations that are used within the divider circuit [51]. The

proposed work further explores the relationship between the tanh and sigmoid using Eq. 2.6(b)

and 2.6 (b), and the design architecture allows to implement of both tanh and sigmoid using the

same RTL design based on the select line. The input from the MAC unit will be directly applied

to the proposed design for the realization of the activation function. This is the key difference
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Table 2.5: The constants used in CORDIC calculation at nth iteration that force the input Zin to converge
towards zero

AF Input Select signal for AF f(Z)

Xin Yin Zin Configure AF select c select af

– – Z ReLU 0 X

K 0 Z Sigmoid 1 0

K 0 Z Tanh 1 1

Table 2.6: Hardware implementation result for configurable activation function

Architecture Resources Utilization On-chip Power (mW ) Critical
Design LUT FF Logic Signal Clock Delay(ns) PDP

Available Res. 17600 35200 – – – – –
CORDIC Arch. 17 22 0.10 0.12 0.09 2.49 0.78
Conf. AF 27 38 0.22 0.28 0.31 3.09 2.23

between the previous approaches and the proposed architecture, leading to significant performance

enhancement.

The configurable archtiecture have implemented on the FPGA and evaluated the performance

parameters , it is implemented on FPGA ZyboXC7z010-board.

2.4 Enhancing Performance of AF using Pipelining

The hardware designs have employed the CORDIC algorithm’s hyperbolic rotation mode to realize

configurable activation functions as discussed in Section 2.3. These designs have lower area and

power overheads than the conventional memory-based designs but suffer from low throughput due

to the inherently iterative nature of the CORDIC algorithm. This section addresses this trade-off

and proposes an enhanced CORDIC-based hardware design to compute configurable non-linear

activation functions at high throughput for neural network applications. The major contributions

of the work are summarized in the following points:

• A Pareto study between accuracy and mutually exclusive CORDIC stages is presented. This

study gives an insight on how to define the number of pipeline stages to be used in CORDIC-

based design for non-linear activation function, as pipeline stages lead to area and power

overheads. Our study shows that using four pipeline stages achieves higher throughput

without compromising accuracy.

• The error cost functions for the AF model are extracted to analyze the impact of approxim-

ation in computation which comes with a reduced number of pipeline stages.

• We analyze and discuss the circuit’s physical parameters like area, power, and critical delay

for extracted Pareto points, evaluate it with the CMOS 45nm technology node and compare

it with the state-of-the-art designs.
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Figure 2.4: N-bit precision, CORDIC-based configurable AF with ‘select c’ and ‘select af’ signals [18].
It can be noticed that sigmoid (shown by green colour lines) uses the maximum components and hence
leads to largest critical path. Here, n-stage Pipeline CORDIC architecture is used with N-bit precision.

2.4.1 Finding Pareto points to enhance hardware performance

If we consider the iterative hardware design (Figure 2.2) for the CORDIC algorithm, we can see

that every iteration is mutually exclusive. Hence, these iterative stages can be pipelined for high

throughput. However, the number of pipeline stages directly impacts the chip area and static

power consumption overhead. Hence, a minimum number of stages must be determined, giving

an achievable accuracy comparable to the maximum. Moreover, this work has evaluated the

performance parameters at different precision. For our experiments, we use four pipeline stages.

In the ReLU mode, our design does not suffer from throughput loss because, unlike CORDIC-based

architecture, the activation is computed in a single cycle. Hence, the pipeline stages are not needed

for ReLU computation.

The proposed design supports fixed-point representations with different precision, datasets, and

neural network sizes. Hence, multiple bit representations such as 8-bit, 12-bit, 16-bit, and 32-bit

can be used. We take an extra bit for the sign bit and only 1 bit for the integer part in all these

representations. For example, in the case of 8-bit precision, we have used a 9-bit number format

representation. In this representation, 1 bit is reserved for the sign, 1 bit for the integer part,

and 7 bits for the fractional part. Symbolically, this is written as ‘fixed 〈8, 7〉’. The CORDIC
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Variable                          n=0 (Initial)                            n=1 (1st  stage)                                

Xn+1 = Xn + dn *Yn * 2-n   X0 = 1.0011010 (Bin) 
    =  1.20312(Dec)              

Yn+1 = Yn + dn *Xn * 2-n 

Zn+1 = Zn – dn * tanh-1(2-n )

  Y0 = 0.0000000 (Bin) 

=  0.000 (Dec)              

  Z0 = 0.1010010  (Bin) 

      =  0.640625 (Dec)              

X1 = 1.0011010 + dn * 0.0000000 0

Y1 = 0.0000000 + dn * 0.1001101 0

Z1 = 0.1010010 - dn * 0.1000110

Y0 right shift by n bits
lost bits= 1.0011010 (Bin) 

= 0.1001101 (Bin)
X0 right shift by n bits

= 0.0001100 (Bin)

Figure 2.5: Dynamic fixed-point data representation and arithmetic calculation for the n = 1 stage.
Similar subsequent calculation used in enhance CORDIC calculations are shown in Table 2.7.

Table 2.7: The calculation for each nth stage in hyperbolic mode. (The Z0 i.e input for AF calculation
is shown for first neuron in the fatten Layer).

n dn Xn+1 → cosh Z Yn+1 → sinh Z Zn+1 → 0

Pipelined (n+ 1)th Initial Conditions/Inputs

stage iteration X0 = 1/K Y0 = reset Z0 = input: 0.64062510

initial — 1.0011010 (set) 0.0000000 (set) 0.1010010 (input)

1 +1 1.0011010 0.1001101 0.0001100

2 +1 1.0101101 0.1110011 – 0.0010101

3 –1 1.0011111 0.1011110 – 0.0000101

4 –1 1.00110102 0.10101012 0.0000011 (≈ 0)

1.20312510 0.66406310

calculation for the single-stage is reported in Figure 2.5. Furthermore, in most cases it is beneficial

to have the same input and output format. This implies ib in = ib out = ib, fb in = fb out = fb

and Nin = Nout = N , where ib represents the integer bits excluding the sign bit, fb represents

the fractional bits and N represents the total number of bits. The experimental results evaluation

merely shows that a 1-bit integer yields the maximum accuracy. The architecture accuracy has

been evaluated for one integer bit in fixed-point representation. However, the integer bits are user-

defined and set for specific requirements. The permissible range for the AFs is considered between

the -8 to +8 and can be achieved in the proposed model by keeping the three integer bits, i.e.,

the number of integer and fractional bits is user-dependent. Therefore, in the case of fixed-point

format final choice must be based on the target application that gives maximum accuracy with

desired precision [14].

The required memory cells for AF implementation increase exponentially with precision. Con-

ventionally, the CORDIC produces 1-bit accuracy at each iteration. However, the overall computa-

tional output accuracy depends on the precision of input numbers. The binary representation and

CORDIC calculations for the four pipeline stages are shown in Table 2.7 Therefore, simply four-bit

precision ROM can’t achieve like four pipeline stages CORDIC computation. Similarly, the LUT-

based approach is not appropriate for higher precision implementation in FPGA implementation

due to the large memory size.
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2.4.2 Timing analysis

Considering Tclock time required for the memory element (LUT) based activation function. In

reference to the Tclock, the timing analysis have explored using Eq. 2.7. Here, TM , TC , Ti and

Tp are the total time required for memory element based AF, CORDIC computation, proposed

iterative CORDIC based AF and pipelined CORDIC based implementation respectivelly. In Eq.

2.9(b), n represents the number of CORDIC iteration.

TM = Tclock (2.7a)

TC = n× Tclock (2.7b)

Ti = TC + TAdd + TDiv (2.7c)

Tp = Tclock + TAdd + TDiv (2.7d)

2.5 Results and Discussion

2.5.1 Accuracy evaluation for mult-bit precision CORDIC-based AF

To validate the compatibility of our proposed architecture in a NN model, we use a CNN model

from TensorFlow [5] for the MNIST and CIFAR-10 datasets using CORDIC-based non-linear

activation function. Accuracies at different bit-precision and different fixed point representations

were evaluated. Inference accuracy comparison for AFs at different bit precision using CORDIC-

based model, piece-wise linear (PWL) model [46] and the TensorFlow implementation [5] is shown

in Table 2.8. The TensorFlow model has three convolutional later followed by two fully connected

layers. As input, a CNN takes tensors of shape (image height, image width, color channels),

ignoring the batch size. The detailed model description has given below Algorithm. CAF is a

CORDIC-based configurable activation function with Sigmoid and Tanh realization.

Algorithm 1: TensorFlow CNN model description

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation=’CAF’, input shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation=’CAF’))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation=’CAF’))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation=’CAF’))
model.add(layers.Dense(10))

Here, we can observe that there is only < 1% accuracy loss using the proposed CORDIC-based

design as compared to the computation using TensorFlow [5] sigmoid and tanh activation functions.
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Table 2.8: Network inference accuracy of CNN with CORDIC based, piece-wise linear AF and TenserFlow
library based AF [5] at different fixed-point bit-precision

Fx-Point Sigmoid tanh

Precision Tensor[5] PWL[46] Proposed Tensor[5] PWL[46] Proposed

Inference Accuracy (%) for Configurable Activation Functions for MNIST Dataset

32-bit 99.14 98.77 98.23 98.95 98.83 98.92

24-bit 99.09 98.73 98.18 98.71 98.68 98.81

16-bit 99.04 98.70 98.16 98.61 98.60 98.79

12-bit 98.96 98.67 97.72 98.46 98.58 98.67

8-bit 98.63 98.52 97.5 97.90 98.44 98.22

Inference Accuracy (%) for Configurable Activation Functions for CIFAR-10 Dataset

32-bit 64.6 62.6 62.2 66.4 66.5 65.1

24-bit 61.8 59.4 58.1 65.4 66.2 64.8

16-bit 57.8 57.7 56.1 63.9 64.8 63.8

12-bit 55.6 54.2 52.2 63.4 64.2 62.8

8-bit 52.6 51.3 49.0 60.9 61.4 60.5

2.5.2 Impact of technology scaling and power-gating

At lower technology node, area and dynamic power savings are observed but there is an increases in

static power dispassion. These savings are due to scaling in technology model which has an impact

on physical parameters such as mobility (µ0) and saturation velocity (Vsat). At lower technology

nodes, static power dissipation is the biggest concern. For the inverter with coarse-grain power

gating circuit, ON current and delay variations with respect to technology scaling is shown in Fig.2.6

(b). Based on simulation results and merit, the power gate size should be large as compared to

its normal size for handling the amount of switching time. We determine the power gate size for

a larger slew rate with a lower response time and the same is used for circuit simulations. Based

on simulation results and merit, the power gate size chosen is 3× larger compared to its standard

length in 45nm technology to maintain good output performance. At 45nm, we used standard

sizes for PMOS and NMOS as 3.3um and 1.5um, respectively. The proposed architecture using

the coarse-grain technique is shown in Fig. 2.6 (a). In addition, the circuit design with lower

power supply is beneficial as it minimizes power dissipation. However, it comes with an increased

propagation delay. The increasing power supply dominates the large leakage current flows which

means there is a trade-off between leakage current and speed of operation. The leakage power

increases with the supply voltage and it exceeds the dynamic power for supply greater than 0.7V

at 45nm technology. Moreover, the relation between the power supply and propagation delay in

the CMOS circuit is given in Eq. 2.8.

Td =
CL·Vdd

(Vdd − Vt)α
(2.8)
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Figure 2.6: (a) Basic cells circuit design using power gating technique and select pin is use to isolate the
circuits from power supply when not in used. (b) Inverter Circuit ON current and Delay variations with
respect to technology scaling.

2.5.3 Performance parameters of iterative CORDIC-based configurable

AF

To evaluate the proposed design architecture, the configurable activation function design is repres-

ented in HDL using Verilog hardware description language. The synthesis results are produced by

Design Compiler-Synopsys. The netlist file extracted from cadence-encounter and generated .cdl

used for RTL digital design extraction into CMOS design using the v2lvs-Mentor Graphics. The

extracted design is simulated in cadence-virtuoso for performance parameter validation at different

process corner, temperature and mismatch. In order to evaluate the impact of process variation

and mismatch (which increases significantly in 65nm and lower CMOS technology), the circuit

is also simulated at all PVT variations. Further, we carry out Monte-Carlo simulation to model

the probability of different outcomes of dynamic power. It helps to calculate random variations

in dynamic power dissipation due to device-mismatch in the characteristics of identically designed

devices, occurring during the manufacturing of ICs.

The CMOS logic based circuit design is extracted in virtuoso-cadence and post-layout circuit

simulation of proposed configurable AF design is carried out for current and voltage variation at

different process corners and supply variation. The parameters calculated at three different FF ,

TT and SS corners are shown in Fig. 2.7 (a). It is observed that the static power is more than a

dynamic power in the fast-fast (FF ) process corner with temperature 85oC. The circuit simulated

at different supply voltages with typical-typical (TT ) process corner and observed variations in

simulation results are shown in Fig. 2.7 (b). We design and use the adder with the power gating

technique in adder block as shown in Fig. 5. We have designed and simulated the circuit designs

from [50, 47] at 45nm process technology. Results and comparison of proposed architecture with

and without power gating and state-of-the-art is shown in Table 2.9.

The proposed architecture is synthesized for different precision to have a fair comparison

between CORDIC based proposed architecture and combinational logic [46] design for sigmoid
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Figure 2.7: Performance parameter variation of proposed architecture for 45nm technology node (a) the
different process corner and temperature at power supply = 0.62V (b) for TT corner with power supply
variation.

Table 2.9: Performance parameter metrics of activation function design using CORDIC architecture for
proposed and state-of-the-art at 45nm TT Process Corner

Sigmoid AF

Design Arch.

Parameters

Rotation

Scaling

[50]

Inverted

Input

[47]

Proposed

without

PG

Proposed

with

PG

Area (µm2) 2983 2735 2145 2280

St. Power (µW ) 176 121.7 96.7 72.94

Dy. Power (µW ) 299.4 209.5 176 176

Delay (ns) - 5.93 4.30 4.71

Precision (bits) 8 8 8 8

function. The synthesis results at 180nm and 45nm technology node are shown in Table 2.9 and

Table 2.10 respectively, for 8-bit, 12-bit and 16-bit precision digital design. The results comparison

shown in tables concludes that CORDIC based architecture is having linear increments in phys-

ical parameters such as area and power with respect to increment in bit precision. However, in

combinational logic design, this increase is exponential. The proposed technique with CORDIC

architecture offers a substantial saving of area over the combinational logic-based design proposed

in [6]. It concludes that CORDIC based architecture is an admirable choice for higher precision

AF implementation. However, the number of clk edges required is more as compared to combin-

ational design. Hence, CORDIC based design is favorable for applications where the energy and

area requirements are less. Hence, they offer an excellent choice for IoT devices where there is a

tight area and power budget.

At lower technology, process and mismatch is also an important issue in terms of power dis-

sipation, stability, and reliability. We have simulated the circuit at 45nm technology node. We

observed area saving as compared to the previous work as shown in Table 2.9. The Monte-Carlo

simulation for dynamic power variation due to process and mismatch is carried out for 1000 samples

for the proposed architecture and the state-of-the-art and shown in Fig. 2.8. The mean dynamic
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Table 2.10: parameter metrics @45nm TT Process Corner for activation function design architecture
using Combinational Logic [6] and CORDIC architecture

Sigmoid Function Combinational Dynamic Leakage Critical Path Required
Bit Precision Area (µm2) Power (µW ) Power (µW ) Delay (ns) No. of Clocks

8 bit Combinational 631.7 33.73 19.12 4.76 1
8 bit CORDIC 307.4 176.60 96.77 4.30 5
12 bit Combinational 4899.5 198.3 110.9 5.10 1
12 bit CORDIC 658.4 252.04 130.3 4.92 5
16 bit Combinational 23408.2 8542.7 3960.00 9.53 1
16 bit CORDIC 782.3 257.4 141.5 5.12 5
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Figure 2.8: 1000 Monte Carlo simulation with process variation and mismatch for mean dynamic power
variation of signed 8-bit activation function.

power and σ deviation of proposed architecture are 180.73µW and 51.7µW respectively. The mean

dynamic power of proposed work is 79% compared to architecture proposed by [47] and 60% com-

pared to [50]. The σ deviation is 51.7µW in power variation for proposed design which is less

compared to the state-of-the-art with a similar approach as it is 66.15µW and 78µW in [47] and

[50] respectively. It shows the proposed architecture is more reliable in terms of power variation

due to process and mismatch.

2.5.4 Enhance performance pipelined CORDIC architecture

We have used the multi-stage CORDIC-based proposed architecture for sigmoid and tanh activ-

ation functions to generate the prediction for both MNIST and CIFAR-10 datasets. We have

obtained the final output for different number of stages of the CORDIC architecture and observed

the accuracy. The observed inference accuracy plot is shown in Figure 2.9. Further, we have

evaluated the physical performance metrics for sigmoid activation function as it makes use of all

the computational blocks shown in Figure 2.4. It is observed that for both MNIST and CIFAR-10

data sets, four pipeline stages are adequate for getting comparable accuracy for 8-bit and higher

bit precisions. An important point to be noted, is that even with two stages, the maximum drop

in accuracy is just 2% in case of MNIST and upto 4% in CIFAR-10. Hence, depending upon the

application accuracy requirement and area (and power) overhead, we can see that a designer can

use variable pipeline stages for activation function calculation.
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Figure 2.9: Inference accuracy for used Tensor CNN model with proposed sigmoid AF that used n-stage
pipeline CORDIC architecture.

Table 2.11: Error Estimation

Sigmoid AF Mean Square Mean Absolute Standard Deviation

Pipeline Stages 4 8 4 8 4 8

8-bit 10.9 × 10−5 1.91 × 10−5 8.59 × 10−3 3.63 × 10−3 0.1398 0.13783

12-bit 8.77 × 10−5 2.63 × 10−6 7.85 × 10−3 2.10 × 10−3 0.1382 0.13768

16-bit 8.75 × 10−5 2.45 × 10−6 7.73 × 10−3 1.91 × 10−3 0.1381 0.13765

2.5.5 Error estimation for AF with # pipeline stages

We took the input range as [-1, 1] for all the CORDIC iteration-precision combinations. Then,

we have divided the input range into an appropriate number of samples based on precision. For

example, for an 8-bit precision, we took evenly spaced 28 samples from the input range. After

choosing the pieces, the sigmoid AF (comes with all hardware components) has been evaluated

for the various values of CORDIC iterations and precisions. Finally, based on the CORDIC and

NumPy (accurate) sigmoid values, we have calculated the different measures of error, such as

Mean Squared Error, Mean Absolute Error and the Standard Deviation. In N-bit precision, one

integer bit and rest fractional bits are considered. The mean square error (MSE) for the proposed

architecture with four and eight pipeline stages have been evaluated, and it is in the order of 10−5.

The Mean Absolute Error (MAE) is in the order of 10−3 and minor variations for the Four and

Eight stage based evaluations. Therefore, it is observed that the Standard Deviation (SD) for the

same is nearly similar, and it persuades to use of four pipeline stages in the arithmetic evaluation of

AF. Further, one can note that by increasing the number of pipeline stages in the proposed model,

the error can be reduced by sacrificing efficient hardware area utilization and Power-Delay-Product

(PDP).

2.5.6 Physical parameters for enhancing performance AF

It can be observed from Table 2.12, that despite higher power consumption as compared to some

of the designs, our proposed pipelined method for 8-bit precision returns the best Energy-Delay-

product (EDP) numbers (up to 3.12× as compared to the previous best [18]) across all the other

CORDIC proposed techniques. This is primarily due to the reduced number of clock cycles and

reduced critical delay per cycle. The overall delay per cycle is 14% less as compared to the AF
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Table 2.12: Performance parameter metrics comparison at 8-bit precision between the proposed and
state-of-the-art CORDIC-based designs @45nm TT Process Corner

Config. AF
Physical
Parameters

Magnitude
Scaled

[50]

Negative
Input
[47]

Iterative
CORDIC

[18]

Pipelined
CORDIC
Proposed

Chip Area (µm2) 541 483 377 794
St. Power (µW ) 176.7 121.7 96.77 198.4
Dy. Power (µW ) 299.5 209.4 189.3 327.2
Delay/Cycle (ns) 6.21 5.93 4.34 3.73
Energy-Delay Product (mW/s) 17,134 11,780 6,264 1,958
# clock cycles 6 6 5 1
Inference Accuracy (%) 98 99 98.8 98.8

design proposed in [18] (shown in Table 2.12). This is due to the lower number of registers

required in our proposed design (shown in Figure 2.2). The reduced number of clock cycles (and

increased throughput) can be ascertained as a direct outcome of pipelining. In our proposed

design, while each output is generated four clock cycles after the input is fed, the delay between

consecutive results is just one clock cycle. This is unlike the design proposed in [18] which used

multiple iterations to compute activation. Considering that the method proposed in [18] takes four

iterations to add an output (which means that output produces after every four cycles) to achieve

similar accuracy, the number of outcomes generated per clock cycle in this work is still 4× that

in the design presented in [18]. Hence, the overall throughput performance of our architecture is

4.65× that of [18].

2.5.7 Performance parameters at different bit precision AF

While in the previous section, we observe that our design shows less delay and better EDP numbers

than the other works on CORDIC-based designs, in this subsection, we demonstrate how our work

scales with higher bit-precisions as compared to the conventional memory-based designs. Higher

bit-precisions have direct impact on the accuracy as can be seen in Table 2.8 where approximately

13% inference accuracy is lost when the bit precision changes from 32-bit to 8-bit for CIFAR-10

datasets. We show, that due to our proposed modifications, we achieve similar (even better for

higher precisions) throughput as compared to the memory-based activation function implementa-

tion. We compare our design with the memory logic-based sigmoid activation function proposed

in[41] and the CORDIC-based design as proposed in [18] for different precision bit-width. The

experimental results are shown in Table 2.13. One of the first things we can observe is that our

design shows a good balance between area and EDP calculation as compared to [41, 18]. We can

also notice, that the memory-based design as proposed in [52, 53, 41, 54] scales poorly with higher

bit-precisions. This is due to the fact, that state-of-the-art designs consist of memory elements

and a selection logic consisting of MUX/DeMUX and hence, have high area and power overheads.
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Table 2.13: Performance parameter matrix for configurable activation function using proposed pipeline
CORDIC based architecture and conventional memory-based implementation @45nm TT Process Corner

Configurable Chip Area Dy. Power St. Power Total Logic Energy-delay
AF Precision (µm2) (µW ) (µW ) Delay(ns) Product

12 bit digital[41] 5220.2 351.7 172.4 8.10 4,245
12 bit CORDIC[18] 658.4 252.0 130.3 20.27 7,749
12 bit Proposed 1439.2 584.1 347.3 3.97 3,697

16 bit Digital [41] 24608.2 8842.7 4230.0 15.04 1.19×105

16 bit CORDIC [18] 782.3 257.4 141.5 25.30 10,092
16 bit Proposed 1669.7 671.3 362.4 4.76 4,920

24 bit Digital[41] – – – – –
24 bit CORDIC [18] 2226.8 820.3 431.6 29.58 37,031
24 bit Proposed 4948.1 2109.0 965.8 5.02 15,431

2.6 Summary

The semi-custom ASIC approach is investigated for CORDIC architecture. The contribution of the

work is two-fold. First, the proposed configurable activation function is able to realize both tanh

and sigmoid AF, using the same VLSI architecture. The simulated and synthesized results prove

that the proposed CORDIC based AF model is the desirable choice in ASIC based high precision

artificial neural network. To draw the quantitative comparison, with different precision perform-

ance parameters were calculated. Secondly, the power gating technique is used for saving static

power dissipation. This model can be used for the different types of activation function by changing

the select signal value, producing multi activation function in neural networks: tanh, sigmoid, etc.

Further, throuput enhancement issue addresed by proposing hte pipeline CORDIC architecutre

that takes only one clock cycle. We conduct a comparative study of the proposed architecture

with other architectures, i.e., iterative CORDIC-based and using memory-based combinational lo-

gic. The proposed configurable architecture for multiple activation functions i.e ReLU , sigmoid,

tanh, exponential is simulated and synthesised at 4 5nm technology to further validate efficiency of

proposed architecture in terms of performance parameters. This allows enabling of CORDIC-based

architecture for higher precision networks without compromising on the throughput.
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Chapter 3

Hardware Efficient and

Configurable Design of Neuron

using CORDIC Architecture

3.1 Introduction

In the case of hardware implementation of an ANN, increasing computational complexity has an

unfavorable impact on area and performance. Moreover, an ASIC design is not adaptable, and any

configurability such as flexibility in bit precision, or configurability in the type of activation function

such as sigmoid, hyperbolic tangent (tanh), comes with additional overhead. Computation with

higher bit precision (32-bit or 64 bit) is also expensive in terms of an area and power [55]. Thus,

a reduction in hardware complexity (i.e bit precision) and faster response without compromising

accuracy is highly desirable [56].

The conventional ASIC-based configurable architecture of neurons with multiply-accumulate

unit and multiple activation functions proposed in [57, 52, 58] is shown in Figure 3.1. Each MAC

unit consists of several multipliers followed by an adder tree. The output of the MAC unit is

then fed to the multiplexer which selectively feeds to a particular activation function depending

upon an application. The architecture shown in Figure 3.1 has some major drawbacks like area

overhead due to array of multipliers and use of separate hardware path (path-A and path-B) for

individual activation function. It also leads to increased data propagation delay (due to the MUX)

and power dissipation (static power dissipation) due to the unused hardware because only one

activation function is activated at a particular time.

An area and power-efficient configurable architecture are desirable at all technology nodes [59].

Keeping this in mind, we propose a Resource Efficient Coordinate Rotation Digital Computer

(CORDIC)-based neuron architecture (RECON) that provides compelling application opportun-

ities and enables efficient yet configurable computations required in a neural networks. It uses a
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Figure 3.1: The neuron architecture having multiply-accumulate unit with parallel multiplier for jth

input and n neurons in the layer followed by multiple activation functions (path-A and path-B)

fixed-point signed arithmetic computation. To overcome the above limitations, we propose RE-

CON which uses CORDIC algorithm. The proposed logic has two benefits– Firstly, it is scalable

in terms of area and power as a single block can compute both MAC and activation function.

Secondly, it allows configurable activation function (sigmoid/tanh) and hence has reduced critical

path delay and lesser power dissipation. The proposed design also maximizes hardware reuse as

unlike conventional ASIC-based designs which uses MUX which leaves out hardware blocks unused.

Contributions

In this chapter, we investigate design strategies and optimizations for RECON which can realize

both MAC and activation function computation. The major contributions are summarized in the

following points:

• We propose a CORDIC-based design of an unsigned/signed computational unit which can

compute both MAC and non-linear activation function.

• We demonstrate how CORDIC is configured within RECON to operate in linear or hyper-

bolic rotation mode to solve arithmetic (for MAC) and trigonometric operations (for AF)

respectively.

• Optimization of the proposed CORDIC-based architecture in terms of area, power, and

delay. We further employ power-gating approach and evaluate it with 45nm technology node

to demonstrate power-savings. We analyze and discuss the impact of technology scaling on

circuit’s physical parameters like area, power and delay.
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Experimental evaluations show that RECON as a MAC unit, has a lower area and power

footprint as compared to the contemporary state-of-the-art designs proposed in [60, 61, 62, 35].

Moreover, our proposed design architecture can support both signed and unsigned number repres-

entations. Similarly, in an activation function configuration, RECON returns the best area and

power numbers as compared to other designs [50, 47].

3.2 State-of-the-art MAC Implementation Techniques

The basic multiply-accumulate (MAC) unit consists of multiplier, adder, and accumulator blocks.

The multiply-accumulate computational unit is shown in Fig. 3.1. The input and output arithmetic

relation in the preceding layer of a neural network is shown below:

alj = f(
∑

ωljNa
l−1
N + blj) (3.1)

where f is the activation function (simoid/tanh) of computational unit k, corresponding to overall

neurons in (l−1)th layer. To formulate this equation in matrix form, we assume a weight matrix ωl

corresponding to layer l. Elements of weight matrix ωl are weights to the inputs of neurons from lth

layer with jth row and N th column. The term, blj is the bias here. Most of the earlier work proposed

a dedicated ASIC design for the MAC unit. In [63, 60] authors designed a MAC unit using a Vedic-

multiplier and register-based accumulator. Such kind of architecture is effective for low precision.

However, it is not scalable as increasing bit-precision for higher accuracy, leads to a substantial

increase in the critical path and the propagation delay. In order to carry out inference for a deep

neural network, the authors in [64, 65, 62] resort to a shift-and-add-based multiplication instead of

bulky multipliers for MAC computation. Though the architecture was area and power-efficient, it

suffered due to low throughput. In [62], the authors proposed calculating one multiplication using

shift and addition operation. The proposed approach requires n-shift left and n − 1 addition for

n-bit precision calculation. However, the design is limited for unsigned number calculation as it

uses left shift operation.

Configurable n-bit (where n can be any value between 1 and 16) precision MAC unit was

proposed using a digital in-memory computing concept [66]. The architecture used an XNOR-based

bit-wise multiplier, a full-adder, and an SRAM cell for computation. The circuit design was efficient

in terms of area and power but throughput was very low as it needs n-clocks for n-bit precision.

Hence, it was not efficient for high-precision architecture. The Wallace Tree multiplier based

MAC design was analyzed in terms of area, delay, and power in [61]. The proposed architecture

was designed using only AND and OR basic gates. However, it leads to an increase in the critical

path and high area utilization. The double MAC design proposed in [67, 57], implements two

multiplication in a single clock cycle but suffers due to high resource utilization.
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Table 3.1: Used adder and subtractor functional similarity in CORDIC design architecture

Components Sum / Difference Cout / Bout

Adder S = X ⊕ Y ⊕ Cin Cout = X ⊕ Y · Cin + XY

Subtractor D = X ⊕ Y ⊕ Bin Bout = X ⊕ Y · Bin + X Y

3.3 CORDIC in Linear Mode of Operation and MAC Com-

putation

The genralized linear convenges CORDIC equation is discussed in Section 3.2 and show below

in Eq. 3.2 for an individual mode of operation. Here mode m ∈ {1, 0,−1} indicates a circular,

linear, and hyperbolic coordinate system, respectively. In this connection, adder/subtractor block

is designed for output calculation using the equations shown in Table 3.1. Here, αi is the memory

constant at each ith iteration which is equal to 2−i, tan−1(2−i) and tanh−1(2−i) for linear, circular

and hyperbolic rotation mode respectively.

Xi+1 = Xi + di·Yi· 2−i (3.2a)

Yi+1 = Yi + di·Xi· 2−i (3.2b)

Zi+1 = Zi − di·αi (3.2c)

In general, the CORDIC algorithm needs n iterations for n significant digits of the fractional

part. For higher precision, higher rate of shifting is required which demands more clock cycles

for maintaining the computation accuracy. The optimized CORDIC architecture for all modes

of operation is shown in Figure 3.2. Further it shows three separate flows for calculation of Xn,

Yn and Zn. Shift registers are used to right-shift Xn and Yn. The sign bit of Zi determines the
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direction signal di. The functionality of the add/sub-block used in CORDIC architecture depends

on the di direction. The direction signal is important as it helps to converge the computation

iteratively. The di represents the rotation direction for ith iteration such that the output at Z

converges to 0.

3.4 Design of Neuron Architecture using CORDIC Algorithm

:RECON

We proposed a design for configurable activation function in Chapter 2. Design implements a

multi-activation function such as tanh, sigmoid and ReLU etc. using the same hardware resources.

Furthermore, design of neural network accelerators requires calculations that involve multiplication,

accumulation. We extend the Chapter 2 design for MAC evaluation. The proposed CORDIC-based

design enables such computation by using pre-computed constants with shift-and-add operation

for fast computation and minimum resources utilization. As compared to a conventional architec-

ture which has dedicated blocks for MAC and activation function calculation, Resource Efficient

Coordinate Rotation Digital Computer (CORDIC)-based neuron architecture (RECON) focuses

on re-utilization of logic architecture (via iteration) for both MAC as well as activation function

calculation. The architecture uses linear and hyperbolic rotation mode for multiply-accumulation

and non-linear activation function calculation respectively. RECON support for both signed and

unsigned computations. The optimized CORDIC architecture with power gating technique is

shown in Figure 3.3. The proposed architecture and its operation are described in the following

subsections.

3.4.1 Multiply-and-Accumulate computation using RECON

The multiply-accumulation computation technique used in this work depends on the shift-and-add

multiplication approach. It has two principal features. Firstly, arithmetic right-shift is used instead

of the left shift operation. This technique allows RECON to support both signed and unsigned

numbers. Secondly, for mathematical computations (such as addition and multiplication) for an

n-bit precision, the iterative convergence using the CORDIC algorithm returns the same accuracy

as one gets using conventional combinational logic.

In this work, we focus on fixed-point number representation for multiply-accumulate compu-

tation, as the floating-point representation (IEEE-754 notation) in MAC has a higher complexity

and power consumption [56]. Moreover, the choice of bit-precision in case of weight/bias constants

is one of the important considerations as it directly impacts the area and power of the hardware

implementation. In order to reach an acceptable precision that gives a good trade-off between area

and accuracy, we have trained the neural network (as shown in Appendix A) for different precision.

We got the best accuracy-area trade-off for 8-bit precision among the possible combinations. We

have used a 9-bit format that reserve 1 bit for the sign, 3 bits for the integer part, and 5 bits for the
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fractional part. Fixed 〈8, 5〉 represents an 8-bit fixed-point number of which five rightmost bits are

fractional. The 8-bit signed fixed-point representation with binary point is shown in Figure 3.4 (a).

The most significant bits (MSB) [7:5] are assigned for the integer part and hence the maximum

multiplication output range of -7.968 to +7.968 is achieved using this representation.

The MAC operation is realized using RECON as shown in Figure 3.3. In linear mode, the

mode variable, m is considered as 0 and Ei is considered as 2−i. The equation 3.2 then translates

the general output as shown below

Xi+1 = Xi (3.3a)

Yi+1 = Yi + di·Xi· 2−i (3.3b)

Zi+1 = Zi − di· 2−i (3.3c)

Here, Yi+1 computes the multiply-accumulate operation when Z0 → 0. The computation is valid

as long as the binary point is allowed to float. We have considered fixed 〈8, 5〉 representation

hence binary point is floated for 5 iterations. This calculation assumes that both Xi (input) and

Zi (weight) are fractions within the range of {−1,+1}. After 5 iterations, Eq. 3.3 translates as

follows:

xn = x0 & zn ∼= 0 whereas,

yn = y0 + x0 ∗ z0

(3.4)

where x0, y0 and z0 represent the input, bias value and corresponding weight respectively. This is

depicted in Figure 3.3. This implementation is similar to the standard shift-and-add multiplication.

From Eq. 3.4, the CORDIC algorithm for multiplication x0 × z0 is derived using a series
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 9-bit field [8:0]

Implied Binary Point

Integer part Fractional part

Sign bit
+22

+21

+20

+2-5

+2-4

+2-3

+2-1
+2-2

(a) Signed Fixed 〈8, 5〉 precision representation used for the calculation

Calculation in Table-II  for each iteration:

for i=0:  Xi = 000.10110 (Bin) 
                 =  0.68750 (Dec)              

Yi  = 000.11100 (Bin)       
 = 0.87500 (Dec) 

&

for i=1:  Xi+1 = Xi

                                                = 000.10110 (Bin)
                                            = 0.68750 (Dec)                

& Yi+1 = Yi + di *Xi * 2-i 

                                   = 000.11100 + di * 000.010110
Xi right shift by one bit

= 0.87500 (Dec)+ (-1)* 0.34375 (Dec)

(lost bit)

= 0.53125 (Dec)

(b) Calculation for ith iteration for multiply-accumulate operation

Figure 3.4: Data representation with binary point and arithmetic calculation

representation for weights shown below:

xj = xjN ∗ ωN = xjN ∗
j∑
i=1

ai ∗ 2−i

=

j∑
i=1

xjN ∗ ai ∗ 2−i =

j∑
i=1

ai ∗ xjN ∗ 2−i

(3.5)

The equation states that xj is composed of a shifted version of input x0 with respect to weight

z0. This implementation is based on the standard shift and add multiplication. The unknown

coefficient ai may be found by driving ω to zero one bit at a time. If the ith bit of input ωN is

non-zero, xi is first right-shifted by i bits and added to the current value of yj . When ω has been

driven to zero all bits have been examined and xj contains the signed product of input vector and

weight. The calculation as shown in Eq. 7.2 is carried out using RECON in linear mode. The sign

bit of Z is used to calculate the value of di. The computation has to perform till Z0 → 0 for exact

calculation that demands high bit precision computation for approaching zero [68]. The inputs

and output of each iteration of a MAC operation is shown in Table 3.2. Calculation for one of the

iteration is shown in Figure 3.4 (b). A single MAC operation, thus takes 5 iterations to compute1

The output at Yi+1[8:0] is the MAC output after 5 iterations which is then used for activation

function calculation. The exact calculation using Eq. 3.4, returns a value of Yn as 0.81054 as

shown in Table 3.2. Since we are using quantization for 8-bits precision, the value returned after

5 iterations is 0.78125. We can see that the value returned is just 3% less than the exact(64-bit

floating-point calculation) results. In order to have an additional saving in static power dissipation,

1Since the binary point is allowed to float for five iteration of right shift, we stop calculating for the value for Y
after five iterations.
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Table 3.2: Iteration-level calculation shown for MAC computation using CORDIC in linear mode for
fixed 〈8, 5〉 representation

i di Xi+1 → X0 Yi+1 → Yi + di ∗ Xi ∗ 2-i Zi+1 → 0

clock di for (i+ 1)th Initial Conditions/Inputs

iteration iteration input data bias weight

initial – 0.68750 0.18750 0.90625

0 +1 0.68750 0.87500 -0.09375

1 -1 0.68750 0.53125 0.40625

2 +1 0.68750 0.68750 0.15625

3 +1 0.68750 0.75000 0.03125

4 +1 0.68750 0.78125 (0.81054) -0.03125

the add/sub and the shift register blocks are power-gated as they are not required for the MAC

calculation (shown in Figure 3.3).

3.4.2 Activation function computation using RECON

The generated MAC output after 5 iterations at Yout is considered as the input for activation

function at Zin through feedback and it is controlled by ctr pin shown in Figure 3.3. In order

to evaluate the sinh(Z) and cosh(Z) using Eq. 3.6 for exponential function evaluation expressed

in Eq. 3.7, we choose m =-1 and Ki=0.8281 as the scaling factors in pseudo rotation which is

compensated by applying (i) 1/Ki=1.2075 at X0[8:0], (ii) Y0[8:0] = 0 and (iii) MAC output as

input at Z0[8:0]. Most significant bits (MSBs), Y [8] and Z[8] are used for generating ‘di’ signal.

The direction, di is chosen in the range ∈ {-1,1} based on the sign of the previous output i.e

current input in the each iteration. The signal ‘di’ is fed to the adder/subtractor block which

decides whether addition or subtraction has to be done. The hyperbolic calculation as shown in

Eq. 3.6, hence, transforms as shown below:

Xi+1 = Xi + di·Yi· 2−i (3.6a)

Yi+1 = Yi + di·Xi· 2−i (3.6b)

Zi+1 = Zi − di· tanh−i(2−i) (3.6c)

The CORDIC module is used in hyperbolic rotation mode for realizing sinh and cosh func-

tions using Eq.3.6.The final desired outputs for hyperbolic calculations (sinh(Z) and cosh(Z)) are

calculated in another 5 clock cycles as we discudded in previous section 3.4.1. After 5 iterations,

Y is again reset at the 6th clock cycle for next evaluation. This gives Xn and Yn as cosh and

sinh functions respectively of the previous evaluation. The sinh and cosh functions are further

used to calculate tanh or sigmoid function as activation function calculation. Zn gives the out-

put of activation function applied to the MAC output of the succeeding neuron which is the final

resultant.
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The generated trigonometric hyperbolic functions are used for producing exponential function

as required from Eq. 3.6 are shown in Eq. 3.7. The 8-bit CORDIC output is applied to the adder

for producing exponential output as shown in Figure 3.5. The realization of the tanh function in

the proposed architecture can be represented in terms of sigmoid function as shown in the below

equations.

ez = sinh(z) + cosh(z) (3.7a)

f1(z) = tanh(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z
(3.7b)

f2(z) = sigmoid(z) =
1

1 + e−z
=

ez

1 + ez
(3.7c)

The proposed work further explores the relationship between tanh and sigmoid functions using

Eq. 3.7. The configuration between sigmoid or tanh activation function is based on the select af

line. The tanh function is realized using the Eq. 3.7. When select af = 1, the CORDIC output is

directly transferred to the divider through the MUX to generate tanh function. The subtraction

and the shift operation are the two basic operations that are used within the divider circuit [51]

for calculating tanh. Additionally, in the proposed architecture, the execution of tanh function

does not require the additional adder block as compared to [50]. However, this unused block can

dissipate static power. Addressing this issue and considering the trade-off between leakage current

and the speed of operation, Power Gating (PG) technique is used to minimize the leakage power

and to improve the performance. We have implemented adders with the PG technique used in the

proposed architecture as shown in Figure 3.5.

The sigmoid function is realized using the Eq. 3.7 when select af = 0. For calculation of

sigmoid, additional adders and dividers are used as given in Eq. 3.7. The select af = 0 is used

to activate the adder logic block for sigmoid calculation. In comparison to [49], which used an

additional step for calculating 2’s complement for calculating negative exponents, our sigmoid

function does not need negative exponents as shown in Eq. 3.7. This gives an additional saving

in terms of area and delay. The output from the MAC unit is then applied as feedback along

with the initialization of the predefined parameters. The overall design allows reconfiguration, and

hence the user can configure the activation function depending upon application requirement. This

is the key difference between the previous approaches and the proposed architecture, leading to

significant performance enhancement.

3.4.3 Neuron computation using RECON

Figure 3.5 shows the complete RECON architecture. Three partitions can be seen depending upon

the configuration. The red encircle represents the CORDIC unit which is used in linear mode for

MAC computation. The blue and green encircle represent the blocks required for tanh and sigmoid

function respectively. It can be noticed that only in the case of sigmoid function calculation, all

blocks are needed. While, RECON provides a configurable design to implement both MAC and
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Figure 3.6: Complete flow for RECON architecture to iteratively compute MAC and AFs

activation function, the proposed design components can also be used independently depending

upon the user requirement.

The overall flow for a neuron is shown in Figure 3.6. In this CORDIC-based architecture,

the select signal is set to 0 to compute the multiply-and-accumulate operation. The power gated

blocks (add/sub and shift register) connected with the select signal, is isolated from the power

supply for saving static power dissipation. When the value of select is 0, m is set to 0 so that the

CORDIC operates in linear mode. The value of the MAC operation is calculated after the five

clock cycle as explained before. This is represented by the count variable in Figure 3.6. The output

after the MAC computation is then fed as a feedback to the same architecture for initialization

to compute the activation function. The generated MAC output at Yn is the input for activation

function at Z0. Here, select af signal is initialized to the type of activation function to be used.

The architecture employs a configurable activation function based on the application requirement.

The output of the activation function is calculated in next five clock i.e count=10. At count=10,

the complete computation of a single MAC followed by activation function is done. At count=10,
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the count register is reset and the final output of a neuron is the input for the next layer neuron.

The complete iterative computation for the neuron architecture is shown in Appendix B.

3.5 Results and Discussion

3.5.1 Experimental setup

To evaluate the proposed design architecture, the neuron unit having a multiply-accumulate unit

and configurable activation function are represented in HDL. The RTL for our RECON archi-

tecture is synthesized and results are produced by Design Compiler-Synopsys [69]. The netlist

file is extracted from cadence-encounter and the generated .cdl is used for RTL digital design

extraction into CMOS design using the mentor graphics-v2lvs [70]. The extracted design is sim-

ulated in cadence-virtuoso [71] for performance-parameter validation at different process corners,

temperature, and mismatch. Following experiments are done to validate our proposed design:

1. The first experiment shows the results for the FPGA prototyping of the proposed design.

2. In the second experiment, we evaluate the effect of power gating technique. We use a logic

gate with wide-gate sized transistors so that the performance is not compromised. The

coarse-grain technique is used in the design for better efficiency, less circuit complexity, and

moderate switching time.

3. In order to evaluate the impact of process variation and mismatch (which increases signific-

antly in 65nm and lower CMOS technology), in the third experiment, the circuit is simulated

at all PVT variations.

4. In the fourth experiment, the proposed design is compared with the state-of-the-art for both

MAC and AF configuration at technology nodes of 45nm.

5. In the last experiment, we carry out Monte-Carlo simulation to model the probability of dif-

ferent outcomes of dynamic power. It helps to calculate random variations in dynamic power

dissipation due to device-mismatch in the characteristics of identically designed devices, oc-

curring during the manufacturing of ICs.

3.5.2 RECON waveform and training accuracy for bit precision selection

In order to show the iterative computation the complete neuron architecture, complete waveform

is shown in Figure 3.7. Here, we have selected the input (Xi), weight (Zi), bias (Yi) for the MAC

computation and Tanh function as an activation function.

In order to finalize the number of digits after the decimal point in fixed-point number repres-

entation, we carry out experiments using different artificial neural networks. Accuracy comparison

at different bit-precision is shown in Table 3.3. It can be seen that their is a very low (≤2%) loss

of accuracy between usage of 8-bit and 32-bit fixed-point computation. This leads to reduction in
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Figure 3.7: Waveform for complete neuron architecture computation with each iteration

memory consumption by factor of 4. Hence, we have taken 8-bit fixed-point with 〈8, 5〉 representa-

tion in computation with fractional for RECON. We have given the inference accuracy for the lower

bit precision as well as higher bit precision. The output accuracy of the network depends on the

application data complexity. Most cases have good accuracy for up to 8-bit precision. Moreover,

complex and large datasets require higher precision. However, for 4-bit and lower-bit precision,

CORDIC-based DNN implementation is not the appropriate choice. However, for higher precision

implementation, using proposed CORDIC-based processing elements and Configurable activation

in the DNN framework saves huge resources.

Table 3.3: Accuracy comparison of different DNN architecture at different fixed-point bit-precision com-
putation for MNIST and CIFAR-10 data-set

Fixed Point Training Accuracy (%)

Data Precision LeNet CaffeNet

Representation MNIST CIFAR-10 ImageNet

32-bit 99.1 81.7 56.9

16-bit 98.7 81.2 56.8

8-bit 98.2 80.7 56.7

4-bit 97.6 79.6 06.0

2-bit 85.9 48.0 00.1

3.5.3 Hardware implementation

In order to validate the proposed design, it is implemented on FPGA ZyboXC7z010-board. We

implement a three layer 4:4:2 fully connected artificial neural network using 8-bit precision (i.e

8-bit weight, bias, input). The single neuron consists of a MAC followed by sigmoid AF design

using the proposed CORDIC based architecture. The post implementation hardware resources

utilization is given in Table 3.4.

3.5.4 Gate sizing

At lower technology nodes, static power dissipation is the biggest concern. In order to implement

power-gating technique, appropriate gate-sizing is an important step. For CMOS-based inverter
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circuit with coarse-grain power gating technique, the ON current and delay variations with respect

to technology scaling is shown in Figure 2.6 (b). We determine the power gate size for a larger

slew rate with a lower response time and the same is used for our RECON circuit simulations. The

add/sub, shift register logic blocks used in Figure 3.3 is designed using the same power getting

technique. These logic blocks are isolated when they are not in use in a specific computation task

such as multiply-accumulation or tanh calculation. We save 30% static power dissipation with

minimal area overhead compared to non power-gated architecture. Based on simulation results

and merit, the power gate size should be around 3× large as compared to its standard size to

maintain similar performance.

3.5.5 RECON in MAC configuration

We compare our RECON architecture in MAC configuration with the state-of-the-art designs [72,

73, 62]. For RECON, the area of the corresponding module performing the MAC is shown in Fig-

ure 3.5. For the sake of comparison, we have implemented the designs proposed in [72, 73, 62] with

8-bit precision at 45nm since they were proposed at different technology node. The post-synthesis

performance parameters are populated in Table 3.5.

It can be observed from the Table 3.5 that our proposed design has the least area as compared

to other proposed designs [73, 72, 62]. While the design in [62] shows the least static and dynamic

power, it requires more number of clock cycles along with a larger delay to compute the results as

compared to our proposed design. Hence, our proposed design shows a lower power-delay-product

(PDP) as compared to the design proposed in [62]. To evaluate the overall hardware overheads, we

adopt a figure of merit, which is characterized by area, latency, and power product (ALP = area ×

latency × power) and is 60% less as compared to the architecture proposed in state-of-the-art [62].

An important point to note here is that while other designs focused primarily on unsigned values,

our proposed design architecture can support both signed and unsigned numbers. It is particularly

relevant considering hardware implementations for neural architecture, as it has a direct impact

on the accuracy. Further In the fully connected neural nets, each neuron has hundreds of MAC

operations which is not feasible to implement physically on the hardware. However, in the case

of lower bit precision, i.e., 2-bit or 4-bit, the parallel MAC units can be deployed but needs to

be sacrificed with the accuracy of the application inference with complex datasets. The proposed

Table 3.4: Hardware implementation result for RECON on FPGA Zybo SoC

Architecture Resources Utilization On-chip Power (mW ) Critical

Design LUT FF Logic Signal Clock Delay(ns) PDP

Available Res. 17600 35200 – – – – –

CORDIC Arch. 17 22 0.10 0.12 0.09 2.49 0.78

Single Neuron 29 41 0.23 0.31 0.28 3.28 2.69

Network 4:4:2 262 318 1.86 2.47 2.12 11.06 71.34
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Table 3.5: Comparison for the proposed design and the state-of-the-art for MAC computation @45nm
TT Process Corner for 8-bit precision

Parameters
Wallace
tree [72]

shift-add
[62]

Vedic
mult. [73]

Proposed
(CORDIC)

Area (µm2) 838 501 1144 307
St. Power (µW ) 3.88 2.86 4.93 4.72
Dy. Power (µW ) 496.34 119.53 484.83 139.19
Delay (ns) 6.54 4.27 7.66 3.62
Power-Delay-Product 3246.06 510.39 3713.79 503.87
No. of Clocks 2 8 2 5
Integer unsigned unsigned signed signed/unsigned

Table 3.6: Comparison for the proposed design and the state-of-the-art CORDIC-based design for sigmoid
activation computation @45nm TT Process Corner for 8-bit precision

Configurable AF
design simulation
Parameters

Magnitude
Scaling

[50]

Negative
Input
[47]

Proposed
without

PG

Proposed
with
PG

Area (µm2) 541 483 377 428
St. Power (µW ) 176.00 121.70 101.74 77.94
Dy. Power (µW ) 299.40 209.50 189.30 189.30
Delay (ns) 6.21 5.93 4.83 5.12
Power-delay-Product 1,859.27 1,242.33 829.10 969.22
No. of Clock 6 6 5 5

MAC unit has a good design implementation for 8-bit and higher precision. Since increasing the

precision of MAC by double, it increases the hardware resources by 4-5 times. In conventional

combinational designs, splitting two 16-bit operations into 8-bit operands requires 4 (not 2) 8x8

multiplications and added circuitry for the addition. Hence, the area for a 16-bit multiplier is also

4-5 times that of an 8-bit multiplier. In contrast, proposed design required very few resources (2

to 2.5 times).

3.5.6 RECON in AF configuration

Just as we have evaluated RECON in MAC configuration, we compare our design in Sigmoid AF

configuration with other works proposed in [50, 47] which employed CORDIC-based architecture

for AF computation at both 45nm. Results and comparison of proposed architecture with and

without power gating and state-of-the-art are shown in Table 3.6. While, it is to be noted that

power gating technique is not applicable for Sigmoid AF calculation, the overheads of using power

gating technique are applicable, as shown in Table 3.6. It can be observed that our design achieves

better numbers for area, power, and delay as compared to other CORDIC based designs [50, 47].

3.5.7 Process variation and mismatch

At lower technology nodes, process variation and mismatch is also an important issue in addition

to power dissipation, stability, and reliability. We have simulated the circuit at 45nm technology

node. The Monte-Carlo simulation for dynamic power variation due to process and mismatch is
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Figure 3.8: 1000 Monte Carlo simulation with process variation and mismatch for mean dynamic power
variation of signed 8-bit activation function.

carried out for 1000 samples for the proposed architecture (with select=0 & select af=0) and the

state-of-the-art the state-of-the-art as shown in Fig. 3.8.. The mean dynamic power and standard

deviation of the proposed architecture are 189.30µW and 58.2µW respectively. The mean dynamic

power of the proposed work is 90% compared to architecture proposed by [55] (shown in green color)

and 63% as proposed by [50] (shown in red color). The standard deviation for power variation in

the case of RECON is 58.2µW which is less compared to 66.15µW [55] (shown in green color) and

78µW [50] (shown in red color) respectively. It shows the proposed architecture is more reliable in

terms of power variation due to process and mismatch.

3.6 Summary

To address hardware resourcess limitations for both MAC and AF, the proposed design, RECON

uses a single CORDIC architecture with a power gating technique for the realization of an indi-

vidual neuron. The proposed a resource-efficient and configurable CORDIC-based design, RECON

for a neuron architecture performs the computation iteratively. The CORDIC-based design allows

configuration and the same block can compute both MAC and multiple activation functions. Ad-

ditionally, our proposed design can also compute both signed and unsigned computations. The

proposed architecture is area and power efficient as compared to the state-of-the-art designs for

both MAC and activation function computation. Using extensive evaluation, we show that our

proposed design gives better returns at higher bit precision as compared to other designs.

The proposed design is synthesized and verified at 45nm technology using cadence-virtuoso for

all physical parameters. Implementation of the signed fixed-point 8-bit MAC using our design,

shows 60% less area, latency, and power product (ALP) and shows improvement by 38% in area,

27% in power dissipation, and 15% in latency with respect to the state-of-the-art MAC design.

Further, Monte-Carlo simulations for process-variations and device-mismatch are performed for

both the proposed model and the state-of-the-art to evaluate expectations of functions of ran-

domness in dynamic power variation. The dynamic power variation for our design shows that

worst-case mean and standard deviations are 189.73µW and 58.7µW respectively which is 63% of

the state-of-the-art.
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Chapter 4

An Empirical Approach to

Enhance the Performance of MAC

Unit using Pipelining

Contemporary DNNs implementation faces the burden of excess area requirement due to resources

intensive Multiply-Accumulate (MAC) unit. Further, in order to enhance the performance of Deep

Neural Network (DNN) accelerators, both compute efficiency and throughput need to be max-

imized. We design a MAC unit using Co-ordinate Rotation DIgital Computer (CORDIC)-based

architecture in Chapter 3. Despite being area and power-efficient, one of the significant drawbacks

of CORDIC-based design is its low throughput. In this chapter, we propose a performance-centric

pipelined architecture of MAC that mitigates low throughput. We conduct a detailed Pareto

study of accuracy variation at different precision and the required pipeline stages to achieve high

performance.

4.1 Introduction to MAC and its Performance Enhancing

Techniques

In DNN, the resources-intensive MAC block has a power-hungry multiplication operation and is

more intensive for higher bit-precision arithmetic. The earlier works have proposed efficient cus-

tomize designs for ASICs and FPGAs. However, state-of-the-art techniques have trade-offs between

physical performance parameters, throughput, and accuracy. In addition, hardware implementa-

tion of the accelerator has the challenge of bandwidth limitation. Therefore, multi-bit precision

(8, 16, 24, or 32-bit) performance parameters have been analyzed for hardware-based acceleration

in [74, 18]. The iterative computation shift-and-add based multiplication method simplified the

logic arithmetic complexity and required less hardware resources [65]. The efficient design of MAC

has been proposed using CORDIC architecture in [18]. However, the iterative CORDIC-based
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computations suffer from lower throughput. Furthermore, it requires an n-bit barrel shifter and

n-1 additions for n-bit precision computation. The Vedic multiplier-based efficient design for MAC

at low precision is presented in [75]. However, the algorithm is not scalable for high-precision

architectures due to its increasing critical path and propagation delay. The modified booths al-

gorithm for multiplication has been investigated to save the resources utilization in [76]. Wallace

tree-based MAC design is implemented and analyzed the physical performance parameters [77]. Its

architecture design is with AND and OR planes which are efficient for lower precision. However,

with increasing bit precision, such architecture gets more and more complex.

An approximate multiplier in MAC computation reduces the circuit delay and on-chip power

consumption [78]. The error-resilient applications favor approximate computation. An approxim-

ate partial product accumulation tree has been presented in [79]. Furthermore, the inaccurate logic

compressors in the multiplier also show promising results for hardware implementation [80]. As a

result, there is an improvement in power and energy efficiency. The weight sharing scheme reduces

the MAC computational complexity and constant storage capacity [81]. A high-performance array

multiplier with reversible logic structure has been investigated that increases the throughput per-

formance [82]. However, these improvement techniques do not have generality for multi-precision

signed/unsigned computation.

The area, power, and throughput trade-off are addressed in this article by evaluating an

enhanced performance CORDIC-based MAC unit for the DNN accelerators. We used pipeline

CORDIC stages to address the throughput issue. The pipeline stages come with an area overhead,

and the case is managed by evaluating the necessary pipeline stages. We have considered various

pipeline stages of the CORDIC-based design to understand the trade-off between accuracy and the

number of pipeline stages required as an individual iteration are mutually exclusive. Further, we

have evaluated performance accuracy at different arithmetic precision. Compared with 16-bit pre-

cision, 8-bit precision computation shows significant performance and saves 4× memory bandwidth

at the cost of insignificant accuracy loss. Further, the Pareto study for evaluating the required

number of stages helped us save the area utilization with high throughput performance at the cost

of insignificant accuracy loss. Next, the proposed design is synthesized and discusses the circuit’s

physical parameters like area, power, and critical delay using a 45nm technology node.

4.2 Iterative Architecture Benefits and their Limitations in

MAC

In the last decade, to improve the MAC performance, research has been focused on efficient design

techniques such as [83, 84, 65, 76, 85]. In order to improve the architecture, approximate computing

techniques have been primarily focused, especially in the field of DNNs. The method allows

reducing the area and power consumption by the DNN accelerator at the cost of acceptable accuracy

loss. The on-chip area and power reduction at the expense of throughput have been investigated

using recursive Coordinate Rotation DIgital Computer (CORDIC) based architecture in [18]. The
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recursive CORDIC architecture is used for the MAC implementation, which performs computation

iteratively. CORDIC algorithm uses shift-and-add operation, which needs minimum area and

power. The iterative CORDIC architecture requires N+1 clocks for N-bit precision computation,

whereas each iterative calculation is mutually exclusive. Hence, pipeline architecture can enhance

the throughput performance instead of using iterative architecture in CORDIC.

DNNs have resources intensive architecture due to their heavy computational demands. The

throughput performance of DNN is also the major parameter that comes with parallelism. In the

edge AI and mobile applications, area and power are on a tight budget. Therefore, we have proposed

the efficient design of MAC using CORDIC architecture and enhanced the performance by applying

it to the pipeline. Although MAC has pipeline stages that improve the throughput, it comes up

with area overhead. Moreover, the neural network is an error-resilient where approximation can

introduce. Therefore, we have given a performance-centric analysis to fix the optimum number of

CORDIC pipeline stages to make it area and power efficient. In the evaluation process, we primarily

analyzed the accuracy performance variation concerning different pipeline stages. Through, a

minimum number of required pipeline stages allowed to save a significant area.

The LeNet architecture with the proposed CORDIC-based MAC has been designed. The ac-

curacy has been validated for different pipeline stages. We trained the network until the maximum

accuracy gets achieved, and ≈ 1% accuracy loss is observed compared to the accurate Tensor

libraries for MNIST and CIFAR-10. Further, fully connected NN implemented on Vertex-7 shows

≈ 2× better performance than Xilinx MAC-based computation. Additionally, the design’s phys-

ical parameters are extracted for the 45nm node and compared with previous work. Experimental

results show that area-latency-power (ALP) is 12% better than iterative CORDIC and 21% than

other best of state-of-the-art. Besides, the proposed pipeline architecture design has 5× higher

throughput than iterative architecture.

4.3 Empirical evaluation for enhancing performance of CORDIC-

based MAC.

Pseudo rotation coordinate equations converged to linear CORDIC equations form as shown in

Eq.4.1 [18] and also described in details in previous chapter.

Xn+1 = Xn −m· dn·Yn· 2−n

Yn+1 = Yn + dn·Xn· 2−n

Zn+1 = Zn − dn·En

dn ∈ {−1,+ 1}; n = 0, 1, 2, ......, N

(4.1)

Here, mode m ∈ {1, 0,−1} indicates a circular, linear, and hyperbolic coordinate system, respect-

ively. The dn signal generates from sign(Zn) which give the direction for either addition or subtrac-

tion. Further, En is the memory elements and for different modes is equal to tan−1(2−n), 2−n,
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Figure 4.1: CORDIC-based MAC computation design flow. Two conditions have checked to stop the
computation i.e either Zn+1 ≈ 0 or n ≥ N.

and tanh−1(2−n) for circular, linear and hyperbolic rotation computation mode respectively for

nth iterations.

One can observed from Eq. 4.1 that hardware implementation requires an addition/subtraction,

bit-shift operation and memory elements. In linear mode, set as m ∈ {0} and En is 2−n i.e pre-

calculated memory element at each iteration. The simplified form of Eq. 4.1 for the linear mode of

operation is expressed in Eq 4.2. These Eq. 4.2 perform the MAC computation that is primarily

used in the DNN accelerator. The further discussion addressed the linear mode of operation for

MAC computation.

Xn+1 = Xn

Yn+1 = Yn + dn·Xn· 2−n

Zn+1 = Zn − dn· 2−n

dn ∈ {−1,+ 1}; n = 0, 1, 2, ......, N − 1

(4.2)

4.3.1 Multiply-and-Accumulate arithmetic using CORDIC architechure

The iterative CORDIC-based MAC architecture has been proposed in RECON [18], in which

majorly used multiplexer, shift register, adder/subtractor, and memory constants. However, from

Eq. 4.2 one can be observed that the output at Yn+1 performs the accumulation of Yn and the

shifted version of Xn for nth iteration. The iterative computation has to be performed until the

output at Zn → 0, which means the number of iterations is purely dependent on Zin and the

maximum is N+1, where N is the input bit-precision. In discussion we assume Xin, Yin and Zin
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represent the input, bias value and corresponding weight respectively.

In CORDIC computations, multiplication is performed between the input at Xin and Zin and

thereby accumulating with Yin. In calculation we assumed all Xn, Yn and Zn are fractions with

8-bit dynamic fixed-point representation. For signed 8-bit precision MAC computation, Eq. 4.2

needs to be computed maximum for 9-iterations or until Zn → 0. Therefore, the generic CORDIC

equations in linear mode perform MAC computation, and the final arithmetic operation to be

realized is shown in Eq. 4.3. The CORDIC computation evaluation flowchart in linear mode of

operation is shown in Figure 4.1. It observed that Xn right-shift and add iteratively with itself

until Zn → 0. Finally, computation performs multiplication operation between Xn and Zn.

Xout = Xin & when, Zout → 0

⇒ Yout = Yin + Xin ∗ Zin

(4.3)

The multiplication at Yout i.e (Xin ∗ Zin) have been achieved through addition of input Xin

with shifted version of Xin with shifted version of Xin elaborated below using Eq.4.4. The Eq. 4.4

states that Xj is composed of a shifted version of input Xin with respect to weight Zin. This

implementation is based on the standard right-shift and accumulates technique of multiplication.

The unknown coefficient ai may be found by driving W to zero single bit at a time. If the ith bit

of input WN is non-zero, Xi is first right-shifted by i bits and added to the current value of Yi

in CORDIC architecture. When W has been driven to zero, all bits have been examined, and Xj

(Yn in Eq. 4.2) contains the signed product of input feature Xin and weight Zin. Here, we have

performed a single MAC operation that computes the final desired output and takes ith iterations

due to its iterative computation. This implementation technique is used to the standard shift-and-

add operation in a linear mode of operation. Although each CORDIC iteration produces 1-bit

accuracy, it is important to notice that output accuracy depends on the input feature precision,

i.e., n-bit precision CORDIC produces error around 2−n at Zn → 0. Here, Eq.4.4 have elaborated

how CORIDIC computation achieved the multiplication for Zin and Xin. However there is no Zin,

it is just the Xin shift by bit in each iteration and add with Xin till the Zin goes to zero. Here Zin

approaches zero in Zout computation.

Xj = XjN ∗WN = XjN ∗
j∑
i=1

ai ∗ 2−i

=

j∑
i=1

XjN ∗ ai ∗ 2−i =

j∑
i=1

ai ∗XjN ∗ 2−i

(4.4)
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 b2  b1  b-1 b0  b-2  b-3  b-4  b-5 S

signed fixed-point 9-bit field: Q3.5

Integer part Fractional partMSB LSB

2
2

21 20 2-1 2-5sign

n=3 m=5

(a) Signed fixed-point Q3.5 precision representation used
for the calculation

Variable                          n=0 (1st  stage)                            n=1 (2nd  stage)                                

Xn+1 = Xn  
  X1 = 000.101012

    = 0.6562510            

Yn+1 = Yn + dn *Xn * 2-n 

Zn+1 = Zn – dn * 2-n 

  Y1 = 000.101012 

    = 0.6562510              

  Z1 = 000.000112

    = 0.0937510              

Y2 = 000.101012 + d1 * 000.010102 1

Z2 = 000.000112 – d1 * 000.100002

lost bit= 000.111112/0.9687510

X1 right-shift by n bits

= -000.011012/-0.4062510

  X2 = 000.101012

    = 0.6562510            

(b) Calculation for ith iteration approach in linear mode

Figure 4.2: Data representation with decimal point implication used for arithmetic calculation

4.3.2 Enhance performance MAC with CORDIC pipeline stages

The CORDIC iterative computations are mutually exclusive, i.e., each iteration computations are

independent of each other. Although iterative CORDIC architecture is area and power-efficient, it

requires N+1 clock cycles to evaluate the final output for N-bit precision input. Thus, it is desirable

to use pipeline stages to achieve high throughput at the cost of the area overhead. However, area

and power are the primary concern in edge-AI and mobile applications. Therefore, to enhance the

performance, pipeline CORDIC stages have been designed that improve the MAC performance

at the cost of area and power overhead. Furthermore, Pareto points are evaluated to make it

performance-centric and discussed in a subsequent section. Although n-stage pipeline architecture

requires n× arithmetic computation of iterative architecture, it is relatively small as a multiplexer,

feedback registers, and barrel shifters are not needed in the pipeline design. Therefore area overhead

is relatively small as many hardware components are unused, unlike iterative CORDIC architecture

with a high delay and require more logic resources.

The signed fixed-point Q3.5 arithmetic notation has been used for the design and the imple-

mentation as shown in Figure 4.2 (a). The arithmetic computation for the first CORDIC stage

with a fixed-point arithmetic nation is shown in Figure 4.2 (b). Here, MSB of the fixed-point

computation is a signed bit used for generating dn in Eq. 4.2. The proposed enhanced perform-

ance MAC using pipeline CORDIC architecture shown in Figure 4.3. It is essential to notice that

pipeline architecture is relatively efficient for in area and power as it does not require feedback

registers and multiplexers, unlike iterative architecture [18]. Further, the design has used an n-bit

shift register instead of a barrel shifter. As a result, it generates the desired output at each clock

just after the first N -clock cycles as it takes initially by the pipeline stages. Therefore it gives

n-times higher throughput computation compared to iterative CORDIC architecture implemented

in [18].

The parallel multipliers and adder tree implementation for MAC in neuron computation are

costly and burdensome for ASICs and tiny FPGAs. Although single multiplier followed accumu-

lation architecture is preferred due to the utilization of its minimal resources, it suffers from low

throughput [18]. We have used a single multiplier followed accumulator in the proposed MAC

architecture of w-bit precision as shown in Figure 4.3. In DNN, the current layer output is an

input to the subsequent next layer. Therefore in practice, the same input and output format is

preferred, and that we use implies ib in = ib out = ib, fb in = fb out = fb and win = wout = w,
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Figure 4.3: Proposed performance enhance pipeline CORDIC-based MAC architecture where each MAC
has a single multiplier and adder. The bias constant has to be loaded before computation in the case of
a fully connected DNN accelerator, whereas sum reg will be empty for the first computation in case of
the convolution operation. Further, signed N-bit, n-stage pipeline CORDIC architecture for enhancing
performance MAC unit is depicted.

where ib represents the integer bits excluding the sign bit, fb represents the fractional bits and w

represents the total number of bits at input/output. However, in the case of fixed-point format

final choice must be based on a target application that gives maximum accuracy with desired

precision. The conventional w-bit precision MAC has d2w + ke output bits in which the w-bit

multiplier generates the 2w-bit output bit-width. Whereas CORDIC-based design has the same

input and output precision (w) as shown in Figure 4.3. Due to the accumulation in the MAC, we

have used extra overhead bits, i.e., k=dlog2J(l)e. Where J(l) is the number of inputs to the MAC

unit in the corresponding lth layer of DNN.

The resources-efficient iterative accumulation in MAC has been implemented. It requires j+n

clocks to compute weighted sum, where j is the number of inputs at the MAC computation and n

is the number of pipeline stages in the CORDIC computation. The rounding scheme has been used

at MAC output to resize the output bit size into w-bits (9-bits) using numeric std library package

of VHDL. It allows us to keep the same input and output precision for MAC implementation

with dynamic fixed-point arithmetic representation Q3,5 as shown in Figure 4.3. The proposed

enhanced performance MAC is workable for both convolution layers and fully connected layers.

In fully connected layers, bias has to accumulate in the MAC computation, which is achieved by

loading in the sum register for the first clock of MAC computation. The total clock overhead in the

lth layer is due to the performance Enhance CORDIC MAC architecture (TE) in comparison with

Conventional single clock multiplication evaluated architecture (TC) [86] is express using Eq 6.11

55



where n is the number of CORDIC pipeline stages.

TE(l) = TC(l) + (n− 1) (4.5)

Therefore, the total clock overhead for complete DNN acceleration due to pipelined CORDIC-based

MAC is further dependent on overall layers l = 1, 2, ..., L, available in the DNN accelerator. It

is essential to notice that enhanced performance CORDIC architecture has clock cycles overhead.

Still, the critical delay of the CORDIC-based logic architecture has comparatively very small,

i.e., comparatively, it can operate at a higher frequency and therefore give high throughput. By

applying the property of relative clocks evaluation, the simplified equation for comparable clock

computation of for the DNN having L-layers is expressed using Eq 4.6.

TE =

L∑
l=1

TE(l) =

L∑
l=1

(
TP (l) + n

)
=

L∑
l=1

TP (l) + L · (n− 1)

(4.6)

4.3.3 Pareto analysis for finding bit precision and integer bits in Fixed-

point arithmetic

We have used different bit-precision representations such as 8-bit, 12-bit, 16-bit, and 32-bit for

our experiments. We take an extra bit for the sign bit and 3 bits for the integer part in all these

representations. For example, in the case of 8-bit precision, we have used a 9-bit number format

representation. In this representation, 1 bit is reserved for the sign, 3 bits for the integer part, and 5

bits for the fractional part. Symbolically, this is written as Q3.5. The Q3.5 arithmetic computation

format is used in CORDIC algorithm-based modeled MAC architecture. The benchmark MNIST

dataset and LeNet network have been used for performance evaluations and Pareto studies. For

different arithmetic precision, we have varied the position of the binary point implication, and

observed accuracy variation has shown in Figure 4.4.

Further, one can observe two things. Firstly, higher bit precisions return nearly the same

classification accuracy, which is apparent for the dataset. However, this factor is less pronounced

in simple datasets such as MNIST, where even a 4-bit and the 8-bit fixed-point precision model

returns a comparable accuracy. Secondly, since the graph shows inference accuracy for bits used

for integer parts, up to 2-3 significant digits to the left of the decimal point are sufficient, and more

integer bits don’t really help.

4.3.4 Identification of a number of pipelining stages

Due to the iterative nature of CORDIC architecture, it suffers from low throughput issues. There-

fore throughput is enhanced by implementing CORDIC pipeline stages. Conventionally, performing

the N-bit precision multiplication operation requires N+1 pipeline stages. However, it is challen-
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Figure 4.4: Inference accuracy for used Tensor CNN model with proposed sigmoid AF for different
precision and different positioning of dynamic Fixed-point.
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Figure 4.5: Inference accuracy for used Tensor CNN model with proposed sigmoid AF for different
precision and different number of pipeline stages.

ging to implement the N+1 pipeline stages for 8-bit and higher precision computation. Initially,

we have fixed the dynamic fixed point implication for better performance, i.e., the number of

fractional bits and integer bits are found by the Pareto study, which is Q3.5. We have designed a

CORDIC-based MAC unit for the DNN accelerator. The throughput is enhanced by implementing

the pipeline stages. However, Neural Networks are error-resilient, and approximation in computa-

tion can help to improve the performance. Therefore, we perform the Pareto study between the

number of pipeline stages and validate the accuracy. The study has helped us to fix the minimum

pipeline stage with optimum accuracy.

The pipeline architecture gives high-performance computation at the cost of hardware resources

overhead. Therefore, it needs to be a balance between accuracy and the number of pipeline stages.

In Q3.5, the pipeline architecture gives the highest accuracy. As we see higher the pipeline stages,

more accurate computation performs until Zout → 0. Therefore, we systematically Pareto points

are extracted for the necessary CORDIC pipeline stages. We experimentally observed that for all

8-bit and higher precision, MAC computation with five and higher pipeline stages returns nearly

the same accuracy as shown in Figure 4.5. Therefore, enhanced performance and efficient MAC

have been implemented using five pipeline CORDIC stages. The results have been compared

with the state-of-the-art. For single-input CORDIC calculation using five pipeline stages is shown

in Table 4.1. One can be observed that at 4th and 5th stage results on Zn closely approach to the

zero.
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Table 4.1: Iteration-level calculation shown for MAC computation using CORDIC in linear mode for
fixed Q3.5 representation Processing at each nth stage in pipeline architecture for high-performance MAC
computation.

n dn Xn+1 = Xn Yn+1 = Yn+ dn Xn ∗ 2-n Zn+1 = Zn- dn ∗ 2-n

Pipelined (n+ 1)th Initial Conditions/Inputs

stage iteration Input = 0.6562510 bias = 0.0010 weight = 1.0937510

initial – 000.101012 000.000002 001.000112

0 +1 000.101012 000.101012 000.000112

1 +1 000.101012 000.111112 -000.011012

2 -1 000.101012 000.110102 -000.001012

3 -1 000.101012 000.110002 -000.000012

4 -1 000.101012 000.101112 / 0.718710 000.000012 (≈ 0)

4.4 Results and Discussion

Based on the Pareto points, we have fixed the hardware design parameters for results extraction.

The proposed MAC accuracy is validated on LeNet architecture through software-based evalu-

ation and presented using Verilog hardware description language for assessment and verification

on FPGA. Addressing ASIC design, the RTL for our proposed 8-bit precision MAC architecture

is synthesized, and results are obtained by synopsys-design compiler [69]. The experimental eval-

uation is summarised below.

• Inference accuracy for proposed MAC is evaluated for different fixed-point precision numeric

representations. The accuracy was assessed using MNIST and CIFAR-10 datasets on LeNet

architecture as shown in Table 4.2.

• Through Pareto studies, design parameters for hardware implementation are evaluated. Fur-

ther different errors are estimated. The physical synthesis parameters are also evaluated at

45nm technology node.

• Functional verification have evaluated for fully connected neural network 196:64:32:32:10

using Vivado-Xilinx. Further throughput and performance are observed.

• MAC RTL digital design convert into CMOS design using mentor graphics-v2lvs[70]. The

Monte-Carlo simulation for dynamic power variation due to process variations and mismatch

is carried out using cadence-virtuoso.

• Sake of comparision; Resources utilization and performacne parameters are reported for

LeNET convolutional neural network.

The MAC is a dominant part of the deep neural network that requires more chip area and high

computational power. Further, the multiplier circuit has a sizeable critical delay, and it is increasing

in large scale for high precision arithmetic. For analyzing the proposed MAC performance, results

are extracted at different abstraction levels. We have addressed the enhanced performance MAC
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Table 4.2: Network inference accuracy for CORDIC based enhance performance MAC architecture.

Bit-Precision Inference Accuracy@LeNet (%)

Dynamic MNIST CIFAR-10

Fixed-Point Tensor[18] PipeMAC Tensor[18] PipeMAC

32-bit 99.3 98.7 81.7 81.2

16-bit 98.9 98.5 81.2 79.8

12-bit 98.9 98.1 80.8 79.1

8-bit 98.8 97.9 80.7 78.4

4-bit 97.4 96.2 77.9 77.4

unit using CORDIC architecture which is efficient in physical parameters while compromising with

insignificant accuracy loss. The results evaluation and observations for both ASIC and FPGA are

discussed in the following sections.

4.4.1 Performance metric (error measures) and accuracy validation

The compatibility of the proposed architecture in a DNN model is verified by customizing with

the LeNet model using which inference accuracy is evaluated for different dynamic fixed-point

representations (i.e., 4,8,16,32-bit) for MNIST and CIFAR-10 datasets. It is observed insignificant

accuracy loss (<1.5%) for 32-bit to 8-bit precision. Whereas, in the case of 8-bit precision, one

can save nearly 5× computational cost and 4× memory bandwidth requirement as compared to

32-bit precision. Therefore, the proposed MAC design has been implemented for 8-bit precision

and evaluated for both CNN and FCNN. The inference accuracy comparison for the proposed

MAC and state-of-the-art is shown in Table 4.2. One can observe that the proposed design has

comparative accuracy performance in comparison with the digital computation technique.

The VLSI design should be efficient in terms of physical performance parameters. On the other

hand, DNNs are error-resilient, and learning features can be approximate. Therefore, computation

approximation is one of the choices. Area-efficient design has been investigated by evaluating the

required pipeline CORDIC stages for MAC implementation. The Pareto study shows that five-

stage pipeline architecture is sufficient, and therefore five pipeline stages have been used that reduce

the on-chip area utilization and power consumption. For example, we efficiently evaluated pipeline

stages’ impact on accuracy and fixed minimum pipeline stages, which are five for efficient MAC

implementation. The output calculation is validated with different error metric equations. The

error metric equations calculation for mean square error, mean absolute error, average error, and

standard deviation are given in Table 4.3. The analysis made in Table 4.3 is for the 8-bit precision

CORDIC computation with five pipeline stages. The errors are considered for fixed-point Q3.5

representation with five pipelines CORDIC stages based on MAC computation.
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Table 4.3: Error Estimation.

Performance Metrics (Error Measure)

Error
Metrics

Mean Square
Error (MSE)

Mean Absolute
Error (MAE)

Average Error
(AE)

Standard Deviation
(SD)

Metric
Equation

1
N

∑N
i=1(A− E)2 1

N

∑N
i=1 |(A− E)|

∑N
i=1

|(A−E)|
|E|
N

√
1

N−1

∑N
i=1(A−A′)2

Measured
Value

0.055% 1.82% 5.31% 0.434187

N=samples; A=approx value; E=accurate value; A ’=mean approx value;

4.4.2 Hardware resources utilization and comparison

The physical parameters such as resources utilization, power consumption, and delay analysis have

been evaluated on Virtex-7 FPGA VC707 Evaluation Kit and implemented using Vivado-Xilinx. In

order to compare the proposed architecture with state-of-the-art approaches, we have used a fixed-

point Q3.5 arithmetic representation and evaluation kit for the implementation of all the previous

and proposed architecture. The Verilog HDL is adopted to implement the proposed design. The

extracted post-implementation results on the Virtex-7 FPGA board are shown in Table 4.4.

The performance parameters have been evaluated for various MAC architecture with differ-

ent design techniques such as Vedic multiplier, Wallace tree, Booth algorithm, shift-add, and

CORDIC-based implementation listed in Table 4.4. The proposed design has less hardware utiliz-

ation compared to the state-of-the-art techniques. Besides, the proposed method has a minimum

critical delay, which inherently gives high throughput. Therefore, the proposed enhanced per-

formance MAC has a lower Power-Delay product than the state-of-the-art. In proposed improved

performance MAC having CORDIC computation that used two basic operations n-bit right-shift

and addition and used pre-calculated memory constants in the calculation. The proposed design

with the right-shift function allows performing both sign and unsigned computation, unlike left

shift and add operation [65]. Further, the conventional shift-and-add calculation requires n-clocks

to generate the final desired output for n-bit precision computation.

We have extracted the implementation report for the proposed architecture depicted in Fig-

ure 4.3. We mentioned before, for 8-bit precision, CORDIC-based computation conventionally

required nine pipeline stages. However, more pipeline stages come with an area overhead. There-

fore we have evaluated through a Pareto analysis which shows required pipelining is five stages.

The pipelined architecture requires five clocks for the very first output, and just onward for every

clock, it gives the output as we discussed in Section 4.3. We have shown the results for 8-bit preci-

sion (i.e w=8 ) computation unit. Although iterative CORDIC-based architecture uses a minimum

area and power budget compared to other state-of-the-art designs, it requires five clocks for every

final computation.

The proposed design made area and power efficient by implementing the novel CORDIC-based

approach for MAC implementation. The proposed method reduced the critical delay by imple-

menting pipeline CORDIC stages. As we mentioned, results are extracted for signed fixed-point
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Table 4.4: Resource utilization and performance parameters at ‘fixed-point Q3.5’ for MAC

Resources

Utilization

LUT

(17600)

FF

(35200)

Critical Path

Delay (ns)

Power-delay

Product (pJ)

Vedic [75] 159 245 4.48 6.11

IEEE [86] 130 49 3.98 5.63

Wallace [77] 105 112 2.59 3.29

Booth [76] 83 61 3.08 3.07

Shift-add [65] 75 58 5.44 4.17

CORDIC [18] 23 22 9.06 1.90

Proposed 58 74 1.86 1.01

Table 4.5: Performance parameters for fully connected NN 196:64:32:32:10 at ‘fixed 〈8, 5〉’ with different
MAC unit implementation. Results are produce using Vertex-7 FPGA.

Parameters
Xilinx IP

MAC [86]

Iterative

CORDIC [18]

Proposed pipeline

CORDIC

On-chip Power (W) 2.194 0.67 1.13

Computational Time

(in # clock cycles)
344 1640 360

Throughput (GOPS) 4.650 0.977 4.450

Performance (GOPs/W) 2.11 1.45 3.94

Accuracy (%) 95.41 95.06 95.06

8-bit precision representation. The MAC with pipelined five stages consumes 58 LUTs, whereas

recursive CORDIC architecture utilizes 23 LUTs. The reason for 2.3× resources scaling is we have

not used feedback registers, multiplexer, and barrel shifter, unlike recursive CORDIC architecture.

Therefore, resources utilization has not increased proportionally with pipeline stages. Although

MAC with pipeline CORDIC used 2.3× resources utilization in comparison with [18], it improved

the throughput performance by five times. The critical delay of recursive CORDIC architecture

is reported for five iterations in Table 5.2. Further, the power-delay product has been calcu-

lated to evaluate the overall performance; it is 30% less as compared to iterative CORDIC-based

architecture design in [18] and 20% less as compared to best of the state of the art design.

The performance throughput per watt for the proposed MAC is higher. The proposed design

achieved all the benefits at the cost of insignificant accuracy loss, as we observed for the MNIST

dataset shown in Figure 4.5. Conventional designs consume 344 clock cycles to complete the

computation. In comparison, pipeline CORDIC-based architecture requires four extra clocks in

each layer. Therefore, the proposed CORDIC-based algorithm involves a total of 360 clocks cycles

for final evaluation. However, the proposed MAC-based DNNs can be operated at a higher clock

rate, with nearly half the critical path delay. In these 344 cycles, the proposed DNN design

architecture computes 15,963 Multiplication operations, 15,963 addition operations, and 138 AF

operations, at 50MHz giving about 4.65 GOPs. Based on these values, we can see the proposed

design performs nearly 1.89× better than conventional MAC-based fully connected deep neural

network in terms of Throughput/W.

61



Table 4.6: Resource utilization and performance parameters at ‘fixed 〈8, 5〉’ for MAC

Performance

Parameters

Area

(µm2)

Dy. Power

(µW )

St. Power

(µW )

Delay

(ns)

Clock

cycles

Area-Delay-

Power(ADP)

Vedic [75] 1164 484.8 4.93 7.66 N 6.10×
IEEE [86] 832 495.5 3.81 6.71 N 3.89×
Wallace [77] 838 498.0 3.88 6.44 N 3.79×
Booth [76] 771 146.7 6.56 7.42 N 1.23×
Shift-add [65] 501 119.5 2.86 4.27 8N 2.92×
CORDIC [18] 307 139.2 4.72 3.62 5N 1.13×
Proposed 749 322.7 10.5 2.83 N 1.00×

The performance throughput per watt for the proposed MAC is higher. The proposed design

achieved all the benefits at the cost of insignificant accuracy loss, as we observed for the MNIST

dataset shown in Figure 4.5. Conventional designs consume 344 clock cycles to complete the

computation. In comparison, pipeline CORDIC-based architecture requires four extra clocks in

each layer. Therefore, the proposed CORDIC-based algorithm involves a total of 360 clocks cycles

for final evaluation. However, the proposed MAC-based DNNs can be operated at a higher clock

rate, with nearly half the critical path delay. In these 344 cycles, the proposed DNN design

architecture computes 15,963 Multiplication operations, 15,963 addition operations, and 138 AF

operations, at 50MHz giving about 4.65 GOPs. Based on these values, we can see the proposed

design performs nearly 1.89× better than conventional MAC-based fully connected deep neural

network in terms of Throughput/W.

4.4.3 Physical performance parameters evaluation and comparison for

proposed MAC with state-of-the-art.

The proposed 8-bit MAC architecture’s performance parameters such as area, on-chip power, and

critical logic delay are compared with the various state-of-the-art designs. The proposed archi-

tecture is validated for the ASIC design development process, and physical parameters are eval-

uated and compared with state-of-the-art methods at 45nm technology node. The post-synthesis

parameters are evaluated using Design Vision-Synopsys. The proposed work and state-of-the-art

designs have been synthesized at 45nm technology, and extracted performance parameters are

shown in Table 4.6. In this table, N is the number of input features as discussed in Section 3.2.

In this design, we have used an n-bit shifter instead of a barrel-shifter that further lowers the area

overhead as compared to the iterative architecture [18]. Although shift-and-add method [65] is

having less physical parameters, it needs N -clock cycles for N-bit (8-clocks for 8-bits) precision

computation which diminish the throughput performance and make incompetent in edge comput-

ing application.

The high precision computation in DNN returns better accuracy for more extensive and complex

datasets. The CORDIC-based MAC in DNN implementation is the admirable choice for 8-bit and
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higher precision computation [18]. Whereas, at worst case 8-bit precision, physical parameters

are evaluated as shown in Table 4.6. In this table, N -represents the number of accumulations

performed by MAC, which further depends on the number of inputs features at the input of the

MAC unit. To evaluate the overall chip-cost, we have used figure-of-merit, the area, latency, and

power product (ALP= area × latency × power). The ALP is 12% and 21% less compared to the

iterative CORDIC-based architecture proposed in [18] and other best of state-of-the-art work [65]

respectively. It is essential to notice that iterative CORDIC-based MAC requires 5-clock cycles for

each multiplication, and therefore in each neuron, we need 5n clock cycles for n multiplications

and accumulation.

Consequently, such designs can be helpful where area and power are in a tight budget and

throughput can be compromised. The proposed architecture uses 5-clocks for the first multiplic-

ation due to its pipelined nature, and afterward, it computes each multiplication at every clock

cycle as depicted in Eq. 4.6. Therefore, one can say MAC is useful in the high throughput edge

AI and mobile application.

4.4.4 Process variation and mismatch analysis

Process variation is the device and peripherals characteristics such as length, widths, oxide thick-

ness when the integrated circuits are fabricated. The amount of process variation becomes particu-

larly pronounced at smaller process nodes (below 65nm) as the variation becomes a more significant

percentage of the total length or width of the device and as feature sizes approach the fundamental

dimensions during the lithography masks. Therefore, process variation and device mismatch have

a significant role in circuit physical parameters’ stability and reliability at lower technology. There

is a substantial variation in static current due to process variation and mismatch. Monte-Carlo

simulation calculates the probabilistic distribution of dynamic power variation due to process vari-

ation and device mismatch in the characteristics of similar design devices, which occur during the

manufacturing of IC’s. Power-Delay product at lower technology is more sensitive for naturally

occurring variation at lower technology note. The Monte-Carlo simulation is carried out for 10,000

samples to validate the power variation due to process and mismatch.

The RTL design is extracted into the custom-CMOS circuit design using v2lvs-Mentor Graphics.

The Mont-Carlo simulation is performed in cadence-virtuoso for 2500 samples as shown in Fig-

ure 4.6. The simulation result is extracted at 45nm technology node. The proposed design has

less dynamic power variation and standard deviation. The mean dynamic power and σ deviation

at 45nm node is 319.7uW and 2.45uW .

4.4.5 Design and Implementation of LeNET using CORDIC-based MAC

In order to comare the propsoed archtiecture resources utilization and other performance paramet-

ers with conventional vivado based MAC we have given the comparision table

We can observe that the state-of-the-art MAC based LeNet-5 architecture takes a huge resource-
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Figure 4.6: Dynamic Power consumption by CORDIC based MAC unit having five pipeline stages. The
Monte-Carlo with process variation and mismatch simulation is perform for 2500 samples.

Table 4.7: Hardware utilization of LeNet-5 architectures in FPGA

LeNet-5 LUT(53200) FF(106400) BRAM Power(W)

Network with MAC [7] 35399 19459 40 0.185
Using Iterative CORDIC MAC 9733 17490 15.5 0.180
Using pipeline CORDIC MAC 11855 17063 39 0.181

sas compared to propsoed CORDIC MAC based implementation. Iterative CORDIC MAC-based

LeNet-5 architecture consumes less resources (area) and less power, however it comes with sig-

nificant throughput loss as discussed in Chapter 3. Therefore the design can will be very much

useful for AI-enabled IoT applications. The proposed pipeline MAC-based Lenet-5 architecture

consumes a nominal resource utilization and power with high throughput (5× that of iterative

MAC). The proposed pipeline MAC-based LeNet-5 architecture takes fewer resources and power

than state of art MAC-based LeNet-5 architecture but consumes more resources and more power

when compared with iterative CORDIC MAC-based LeNet-5 architecture. However the design

has hogh throughput and therefore architecture is well suitable for the edge-AI applications. The

observed results for conventional MAC and proposed arhctiecture infered that MAC plays a key

role in hardware implementation of DNN Accelerator.

4.5 Summary

To enhance the performance of Deep Neural Network (DNN) accelerators, both compute efficiency

and operating frequency need to be maximized. Contemporary DNNs implementation faces the

burden of excess area requirement due to resources intensive Multiply-Accumulate (MAC) unit. We

design a MAC unit using Co-ordinate Rotation DIgital Computer (CORDIC)-based architecture.

Despite being area and power-efficient, one of the significant drawbacks of CORDIC-based design

is its low throughput. In this work, we propose a performance-centric pipelined architecture of

MAC that mitigates low throughput. We conduct a detailed Pareto study of accuracy variation at

different precision and the required pipeline stages to achieve high performance. Implementation

reports are evaluated, and using the Vertex-7 FPGA board extracts performance parameters for

DNN. This paper proposes enhancing performance MAC computational elements using a pipelined
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CORDIC-based scheme that takes only one clock cycle and has a minimum critical delay. The

proposed MAC design will compute for both signed and unsigned computations. We conduct a

comparative study of the proposed architecture with the other design technique. A detailed analysis

shows selecting circuit design parameters can adapt to different architectures in the efficient design

of the DNN accelerator. Using extensive evaluation for FPGA and ASIC, we show that our

proposed method gives better returns than previous work.

Further, the MAC design explores for ASIC, and post-synthesis results are extracted at 45nm

technology node. The proposed architecture is scalable for any bit-precision. As a result, the

proposed MAC with 8-bit precision achieves a better performance metric - lower area-delay-

product (ADP) (1.11×) and DNN have enhanced throughput (2.73×) as compared to the recurs-

ive CORDIC-based MAC and nearly 1.89× better than conventional MAC-based fully connected

Neural Network. The proposed performance enhancement technique in system architecture opens

new opportunities for low area and power with enhanced performance design, mainly in the Edge-

AI applications. We will make our project code open-source after acceptance to assist reproducible

results and hardware implementation, i.e., for FPGA and ASIC.
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Chapter 5

Hardware Implementation

Layer-Multiplexed

High-performance DNN

Accelerator

Implementation of deep neural networks (DNN) in real-world problems needs huge hardware re-

sources, high computational power, and more memory bandwidth. The AI-enabled IoT applic-

ations require resource-efficient DNN engines. The requirement of hardware resources for DNN

implementation is proportional to the depth of the neural network. In this chapter, we proposed an

enhanced performance and resource-efficient design architecture for the DNN engine. The design

have implemented on system level proposed layer-multiplexed DNN accelerator. Since proposed

architecture have reused the single layer within DNN comes with throughput limitations, which

overcome by implementing the pipelined MAC design that proposed in Chapter 4.

5.1 Introduction

In DNN, the multiply-accumulate (MAC) unit is the most hardware expensive computational ele-

ment in an any deep neural networks [74]. In addition, it consumes more than 90% computation

time in the DNN accelerators [76]. The issue has been addressed using Coordinate Rotation DIgital

Computer (CORDIC) algorithm [18]. It can perform different arithmetic computations such as tri-

gonometric functions, multiplication, and many, which Jack E. Volder invented in 1959 [87]. Later,

an efficient algorithm for a configurable mode of operations and its applications were expanded by

John Walter in 1971 [88]. Algorithm can be used in hardware design for carrying out arithmetic

operations of a neuron [18]. An efficient novel neuron computational unit has been proposed using

recursive-CORDIC architecture [18]. As compared to the state-of-the-art, CORDIC-based neuron
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architecture outperforms in the area and power reports compared to previous work but suffers from

low throughput due to its recursive architecture [18, 89]. The CORDIC-based architecture inher-

ently uses the concept of the recursive approach, which leads to low throughout performance. The

issue will becomes serious for Layer multiplexed architecture. Conventionally CORDIC requires n

clock cycles to the final results evaluation for n-bit precision computation evaluations.

The state-of-the-art designs have addressed design optimization at different abstraction levels.

An important arithmetic operation multiplication is efficiently computed in the previous work based

on booth’s algorithm, Wallace tree adder, Vedic multiplier, etc., [90, 76, 75, 77]. Besides, designs

have optimized by using techniques such as hardware reused [91], bit-serial computing [92, 93], bit

rounding [94, 84, 95, 96], using CORDIC arithmetic [89, 18] and computational approximation in

error resilient applications [97, 98, 99, 100]. All the state-of-the-art techniques has trade-off in per-

formance parameters. Out of these techniques, recursive CORDIC engine-based implementations

offer an area and power-efficient implementations of MAC unit in DNN [18]. The CORDIC-

based design have many advantages. First, it significantly reduce the area and power utilization.

Secondly, the design have more benefits at higher precision arithmetic due to it computational

simplicity. The numerical accuracy of recursive CORDIC-based MAC is determined by the n-

iterations; the higher the iterations, the better the accuracy, but it dominates the throughput by n

times. Secondly, the hardware design of general CORDIC architecture uses a barrel shifter which

comes with more area overhead and has a high critical delay.

Though the recursive architecture of CORDIC is area and power-efficient, it is not desirable

for high throughput arithmetic computation application e.g DNNs. In order to implement area

and power MAC unit along with high throughput, we have evaluated the required pipeline stages

using the Pareto analysis. Therefore, the pipeline architecture of CORDIC has been used in the to

enhance the throughput at the cost of minimal area overhead. The proposed pipeline MAC based

DNN design returns better performance. Studies also confirm the decimal-point implication for

better accuracy and efficient hardware implementation. The pipeline CORDIC-based MAC has

enhanced the DNN accelerator throughput. Furthermore, to make the efficient hardware design

on tiny FPGAs, we have reused the single layer of a fully connected neural network to implement

any deeper neural network. The proposed dynamically configurable layer-multiplexed DNN ar-

chitecture is efficient interns of both hardware utilization due to resources reused technique and

throughput as pipeline stages has been used in the MAC. The major contributions are summarised

in the following points:

• Enhance Performance: The enhanced performance CORDIC-based MAC is proposed. CORDIC

pipeline stages have been used to improve the performance. Further, the design has used a

1-bit shift element to minimize the critical delay, unlike conventional architecture that uses

a barrel shifter.

• Hardware Implementation: Dynamically reconfigurable and layer-reused DNN accelerator

have implemented. The architecture can be configure on an FPGA with any depth. However,

68



benchmark 196:64:32:32:10 configuration have presented for the evaluation and compar-

ison.

• Pareto Studies: An empirical approach is presented to enhance the system performance that

evaluates the required CORDIC pipeline stage in the Neuron unit. Further, Pareto point

extracted for one between the number of bits used in the integer part and its impact on

accuracy, and second between max norm and optimized # CORDIC stages by applying

their implications for accuracy.

This work implemented DNN 196:64:32:32:10 on Virtex-7 VC707, proposed design validation

results evaluation, and comparison of performance parameters with the state-of-the-art. The net-

work has trained using software implementation, and weights are extracted for the MNIST dataset

to validate the hardware implementation. The proposed enhanced performance MAC-based layer-

reused DNN has achieved 95.06% accuracy where observed 0.35% accuracy loss against architecture

with accurate fully connected DNN [7]. At the cost of insignificant accuracy loss, the proposed

architecture has a better performance than state-of-the-art layer-reused architecture. Against the

fully connected neural network, the proposed design saved 45.81% slice LUTs relatively without

significantly affecting the throughput [101].

5.2 Related Work on DNN Design Techniques and Motiva-

tion

The mobile devices with resource-constrained hardware for DNN deployment are attracting much

attention. Further, the success of AI drives application-specific circuit design for the area and

performance-efficient DNN computation [102]. The FPGA and ASICs have elevated for custom

hardware implementation of DNNs. DNNs compose computation performed for many layers which

comes with the area and power overheads [103], and hence in DNN area and power constraint chal-

lenge increasingly prominent especially in mobile devices and edge-AI applications. An ASIC design

as Tensor processing unit (TPU) [104] has the scope for further improving the performance through

the proposed enhanced performance MAC. In the state-of-the-art, dynamically configurable AS-

IC/FPGA DNN framework have presented such as Eyeriss [105], Gemmini [106], Simba [107] etc.

The proposed performance-centric pipelined MAC has good performance parameters and can de-

ploy for such frameworks; However, pipeline MAC needs a state machine to control.

Primarily MAC unit has a multiplier, adder, and accumulate register as shown in Figure 5.1.

Parallel multipliers and adder trees can be used for high-throughput MAC implementation at the

cost of area and power overhead. Whereas iterative MAC architecture is resources-efficient, but

throughput is sacrificed [108]. The MAC operation have investigated at different abstraction level

such as hardware reused [91], bit-serial computing [92], data quantization for lower precision logic

implementations [94, 84, 95, 96], functional configurability [89, 18] and computational approxima-

tion can be used in error resilient applications [97, 98, 99, 100]. Furthermore, MAC have efficiently
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Figure 5.1: Neuron’s internal computational units having CORDIC-based iterative MAC unit followed
by activation function.

design using booth’s algorithm, Wallace tree adder, Vedic mathematics, etc., [90, 76, 75, 77]. Each

design technique is good for its individual tasks, but not efficient for others i.e circuit designs are

in trade-off for area, power, throughput, and accuracy.

In DNN, limited MAC units on FPGA cause a problem to implement the deeper NN and DSP

blocks become the bottleneck in case the direct hardware mapping on FPGA have required [109].

Therefore, explorations of hardware efficient, such as layer reused, have prompted more attention to

reduce area utilization [110]. However, the throughput loss on layer-reused technique is significant

due to iterative layer by layer computation. Various design techniques have been proposed for

optimization of the performance and physical parameters in DNNs [15, 111]. As DNNs has high

computational demand, custom design architecture are vital for enhancing the performance. The

FPGA is the more efficient choice for the DNN implementation and it has high computational

demand, and custom DNN architectures are vital to enhancing the performance [112] . However,

tiny FPGA has limited resources and memory bandwidth that limits the performance [113].

In the last decade, the DNNs with a higher number of layers were studied in order to improve

the accuracy [114, 101, 26, 39, 115, 19]. Such architectures substantially increase the number of

neurons that increase the number of MAC utilization, which in turn increase the hardware resources

demand, processing time and power consumption. However, hardware-overhead reduction scheme

have used for implementation of high cost computational block such as MAC and AF. Further many

efficient hardware design techniques have presented in the state-of-the-art in [20, 57, 84, 116]. The

DNN development on FPGA takes few months for an expert hardware (HW) designer. Hence,

dynamically configurable design of DNN is feasible to model efficiently.

In this connection, resources-efficient layer-reused DNN have designed but it leads to lower

throughput due to iterative layer-by-layer computation [117, 19]. The iterative CORDIC archi-

tecture is efficient for area and power, and can perform the MAC operation [18]. Though the

design is efficient for area and power, it is suffered from lower throughput due to its iterative
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Figure 5.2: Signed N-bit precision recursive CORDIC architecture that configure to linear, circular and
hyperbolic, where lookup table is Θk = 2−k, tan−1(2−k) & tanh−1(2−k) respectively [18].

architecture i.e, first, design computes the final desired output in nth iteration, which accountable

for n× lower throughput. Second, the hardware design of CORDIC architecture used a barrel

shifter which leads to more hardware resources utilization and increases the computational logic

critical delay. We presented the performance centric CORDIC-based neuron architecture that area

and power-efficient and significantly less critical delay which leads to higher throughput in ANN

engine computation. on the other hand, we have designed a layer-reused system architecture with

pipeline CORDIC based MAC which is efficient for area and power with enhanced performance

on the same platform. In MAC, Pareto points analysis evaluated design parameters for better

performance. Moreover, the proposed design is feasible for both ASIC and FPGA implementation.

5.3 CORDIC Optimization & Hardware Efficient Multiply-

and-Accumulate unit Implementation

The MAC is the key resource-hungry computational element in Neuron and limits the ANN com-

putation throughput. Further, MAC consumes 90% of the overall computational power of the

neural network [118]. The CORDIC computation have used for the MAC implementation as it

gives area and power-efficient architecture, but it suffers from low throughput due to its iterative

nature [18]. This section discuss the performance centric CORDIC-based MAC architecture within

the neuron and state machine have discuss in the following subsection.

5.3.1 Introduction to CORDIC architecture

The CORDIC equation for all mode of trajectory in pseudo rotation computation is converged for

hardware implementation to the following equations:

xk+1 = xk − µ· δk· (yk· 2−k) (5.1a)

yk+1 = yk + δk· (xk· 2−k) (5.1b)

wk+1 = wk − δk·Θk (5.1c)
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Whereas, δk = -1 if wk <0, +1 otherwise. Further mode µ ∈ {0, 1,−1} indicates a linear, circular,

and hyperbolic coordinate system, respectively. Θk is the convergence angle memory constant

at each kth iteration which is equal to 2−k, tan−1(2−k) and tanh−1(2−k) for linear, circular and

hyperbolic rotation mode respectively. It can notice that in linear mode of operation i.e for µ = 0,

the Eq. 5.1 (a) becomes independent on the any variable parameters involved in the iterative

calculation.

The CORDIC calculations in linear mode of operation uses µ = 0. Therefore, the Eq. 5.1 have

been revised as shown in Eq. 5.2. In linear mode of operation the lookup table constants are used to

be Θk=2−k for every kth iterations. The hardware implementation of CORDIC equation in linear

mode of operation adder/subtractor, barrel-shifter, multiplexer and feedback registers are requires

for yk and wk computations. Further, it can be notice from Eq. 5.2, no logic operations performed

at xk in linear mode, whereas yk evaluation requires k-bit barrel shifter in each CORDIC stage to

compute the final desired output. The signal δk represents the rotation direction for kth iteration

decides the addition or subtraction arithmetic computation at y and also for w converges to 0 as

shown in Figure 5.2.

xk+1 = xk − 0· δk· (yk· 2−k) = xk (5.2a)

yk+1 = yk + δk· (xk· 2−k) (5.2b)

wk+1 = wk − δk·Θk (5.2c)

5.3.2 Enhanced performance multiply-and-accumulate unit for high-throughput

applications

We assumes xi is the input feature and wi will be the corresponding weight, whereas yi is the

neurons’ bias constant. The CORDIC Eq. 5.2 for multiplication of x0 and w0 and addition with

bias y0 have realized and elaborated below using Eq. 5.3. The multiplication will be performed

by the CORDIC architecture at the yout is xin × win with bias addition. It is achieved through

addition of shifted version of w0 with input x0 as explained below using Eq.5.3. The Eq. 5.3 states

that xj is composed of a shifted version of input x0 with respect to weight w0. This implementation

is based on the standard right-shift and add based multiplication. The unknown coefficient an may

be found by driving ω to zero one bit at a time. If the nth bit of input ωN is non-zero, xn is first

right-shifted by n bits and added to the current value of yn in CORDIC architecture. When ω

driven to zero, all bits have examined and xj (yn in Eq. 5.2) contains the signed product of input
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Figure 5.3: Hardware optimized n-stage pipeline CORDIC architecture for enhancing multiplication and
bias addition in MAC.

feature (x0) and weight (w0).

xj = xjN ∗ ωN = xjN ∗
j∑

n=1

an ∗ 2−n

=

j∑
n=1

xjN ∗ an ∗ 2−n =

j∑
n=1

an ∗ xjN ∗ 2−n

(5.3)

Conventionally 8-bit precision computation needs to iterate a set of equations until we get

Z=0 or a maximum of 8-iterations [18]. Thus, implementation is efficient for area and power

at the cost of lower throughput. In this work, we have investigated the CORDIC-based MAC

by implementing the pipeline CORDIC stages. However, pipeline architecture comes with more

hardware utilization. This work have proposed performance-centric pipeline CORDIC architecture

as shown in Figure 5.3. The proposed hardware architecture realizes MAC operation at nth stage.

The optimized CORDIC architecture in linear mode have realized using Figure 5.3 with Eq. 6.6.

One can be observed that hardware implementation for Eq 6.6 needs a single bit shift instead

barrel shifter which gave an two benefits i.e lower hardware utilization and minimum delay. The

MAC computation at yk needs a k-bit right shift of input y0. We have k-bit shift achieved by

1-bit shift operation at every iteration, which inherently comes with kth-bit shifted input for kth

iteration.

xn+1 = xn· 2−1 (5.4a)

yn+1 = yn + δn·xn (5.4b)

wn+1 = wn − δn·Θn (5.4c)

The arithmetic computation by the proposed hardware for 1st iteration is shown in Figure 5.4.

The signed dynamic fixed-point arithmetic precision have been used for the implementation and

example calculation. In representation we have used MSB one bit as a signed, two bits for integer,
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Xn+1 = Xn *2-1 
  x0 = 000.101100 (Bin)             

Yn+1 = Yn + dn *Xn
 

wn+1 = wn – dn * 2-n 

  y0 = 000.001100 (Bin) 

 = 0.18750 (Dec)              

  w0 = 000.111010  (Bin) 

  =  0.90625 (Dec)              

x1 = 000.010110 0
            

y1 = 000.001100 + dn * 000.101100

w1 = 000.111010 - dn * 01.0000000
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X0 right shift by 1-bit

= 111111010 (Bin)

Variable                                   Initial                                 1st  stage  (for n=0)                              

;

;

;
 = 0.68750 (Dec)   = 000.010110 (Bin) 

Figure 5.4: Example calculations for first stage in the pipeline architecture for ‘fixed 〈8, 6〉’ and similarly
for subsequent stages shown in Figure5.6

 b1  b0  b-2 b-1  b-3  b-4  b-5  b-6 S

signed fixed-point 9-bit field: [8:0]

Integer part Fractional partMSB LSB

2
1

20 2-1 2-2 2-6sign

m=2 n=6

Figure 5.5: Signed dynamic ‘fixed 〈8, 6〉’ precision representation with binary point used for computation
in multiply-accumulate unit and system architecture

and six bits for the fractional part as shown in Figure 5.5. In further discussion, we have used a

representation scheme is ‘fixed 〈8, 6〉’. In Figure 5.4, we have represented both decimal and it’s

binary computation. The x0 right shift by one bit in first iteration which comes with lost of LSB

of the number. Similarly, in each subsequent stage xi right shift by one bit and lost LSB at each

stage. Whereas, in this architecture yn has not used any shift element, unlike traditional CORDIC

computation used in linear mode.

Though more pipeline stages return better accuracy, it comes with more area and power over-

head. Therefore, it is desirable to find the optimum pipeline stages at which a better performance

parameter and significant accuracy could achieve. The design evaluates the first output after ’n’

clocks, and after that, the delay between consecutive MAC outputs is just one clock cycle. In com-

parison, iterative CORDIC-based MAC used n-clock cycles for every output as discussed in [18].

Therefore, the proposed MAC has n× higher throughput with similar output accuracy in compar-

ison with [18]. However, the proposed design has considerable area overhead targeting the high

throughput application.

5.4 Characterization of CORDIC-based Neuron Engine Ar-

chitecture

The neuron engine mainly presents the Multiply-Accumulate (MAC) computation and Activation

Function (AF) computational units. Furthermore, the size of AF typically depends on the out-

put bit-width of the MAC unit. Primarily compute logic design will have the same input and

output precision, and dynamic fixed-point representation [74]. This implies ib in = ib out = ib,

fb in = fb out = fb and Nin = Nout = N , where ib represents the integer bits excluding the sign

bit, fb represents the fractional bits and N represents the total number of bits. However, arithmetic
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format must be based on target application that gives maximum accuracy with desired precision.

5.4.1 Pareto analysis, evaluation, and characterization for pipeline stages

in MAC within the neuron

From Figure 5.2, it can observe that every iteration in the CORDIC computation is mutually

exclusive. Therefore, pipeline stages of CORDIC have been used in MAC implementation with

minimum output delay, which comes with high throughput performance. It is noticed that we may

achieve significant accuracy and save hardware utilization with limited pipeline stages. Hardware

has a trade-off between the number of pipeline stages and system output accuracy, and hence the

performance-centric design must be determined. Therefore, Pareto points evaluation is essential to

fix the necessary pipeline stages with insignificant accuracy loss within the neuron. Experimentally,

we evaluated the output accuracy for different pipeline stages and observed MAC with more than

five pipeline stages based on DNN accelerator returns with nearly the same accuracy. The MAC

computation with five CORDIC pipeline stages is shown in Figure 5.6. The proposed pipeline

architecture generates the input weighted multiplication for every clock cycle after the initial five

clocks. Furthermore, one can be observed that implementation complexity is very low. The design

is easily scalable for the higher precision arithmetic computational in DNN as it provides a nice

balance between resource utilization and scalability.

The computation has significantly used six fractional bits as discussed in Section 5.3. However,

important to notice that the 8-bit precision for the input feature-map has been used to perform

the arithmetic computation. Furthermore, as mentioned, unlike iterative nature architecture [18],

the proposed design evaluates the output at every clock, which comes with 5× high throughput.

Conventionally, for w-bit, the input precision of MAC has 2w+n bit output precision, whereas n

is the number of overhead bits depending on the accumulation operations within the MAC. Since

the proposed MAC architecture has w-bit input and the same output precision, AF with w-bit

precision is required within the neuron. The AF has a non-linear nature that needs huge hardware

implementation resources; therefore, reduced precision AF implementation has saved significant

resource utilization. Further, calculation conversion and accuracy for four pipeline stages have

been verified for dynamic fixed-point arithmetic.

The architecture accuracy has been evaluated for two integer bits in fixed-point representation.

However, the integer bits are user-defined. However, the number of integer and fractional bits is

user-dependent. Therefore, during the network training, weight should also be limited to a specific

range for better accuracy. Hence Max Norm must be determined as a kernel and bias constraint

during the training process in order to avoid overflow, following the quantization of parameters

into fixed-point notation. Hence, deciding on the # of integer bits is necessary for better system

accuracy in the dynamic fixed-point arithmetic computation. It is observed that 2-integer bits are

sufficient for gaining the maximum accuracy. The permissible range for the weight is bounded

between the -4 to +4.
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Figure 5.6: Computation chart at each pipeline stage for all the possible combination of ± inputs and
weights. Here values are chosen from the set of inputs and respective weights at the first neuron in the
first hidden layer.

The Pareto points have eventuated bit-precision, binary point implications in dynamic fixed-

point representation, and the number of pipeline stages is selected based on the experimental

results. We have designed a DNN using a software platform and performed different experiments

to extract the optimum design parameters. We have used the 8-bit precision to design all internal

computation elements of the neural network. The data format for the 8-bit fixed-point represent-

ation with binary point implication has depicted in Figure 5.5. Regarding design parameters, the

proposed enhanced performance MAC generates the output for every clock just after the five clock

cycles (since we have a five pipeline stage). In continuity, the complete DNN has used the same

input-output data format.

5.4.2 Neuron hardware architecture and dataflow

The enhanced performance MAC design computes the multiplication of input feature and weight

along with bias accumulation using pipeline architecture. The proposed MAC architecture used

in the neuron engine has shown in Figure 5.7. The conventional multiplication has the input

precision’s 2× output bit width. Whereas the proposed design has n-bit input, and output precision

is shown in Figure 5.6. Hence, the proposed technique has saved huge resources in the MAC

implementations and subsequent arithmetic blocks such as the accumulator. The output of the

multiplier gets accumulated for N times, where N is the number of inputs at the MAC unit.

Therefore we have used k overhead bits (k=log2N) during the accumulation to save the overflow

shown in Figure 5.7.

Each neuron in ANN consists of a MAC unit followed by AF, whereas the AF area depends on

the size of the MAC output. Besides, AF such as sigmoid/tanh implementation is challenging for

higher bit precision due to its non-linear nature. We have used ROM-based sigmoid AF’s input and

output ports as 9 bits filed addressing the efficient hardware architecture in this design. Therefore

in Figure 5.7 (a), we have used fixed-point rounding at MAC output to follow the input-output

precision uniformity.

We have used the in-built function call resize in HDL design. The resize function at MAC output

represents the model with ‘fixed 〈8, 6〉’ at the AF input, which reduces AF’s memory size and

simplifies arithmetic hardware. For, high ComputeInit, neuron engine initiate the computation.
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Figure 5.7: Single neuron’s design architecture and state machine used in system architecture.

Once all the MAC operations in a current layer are done, the output from sigmoid activation ROM

is given on output of neuron unit along with ComputeDone signal.

5.4.3 State-machine for controlling neuron engine

We have used pipeline architecture to enhance the performance; however, it requires a control

mechanism for signal acknowledge and valid data flow. Therefore neuron engine has a state machine

that ensures the loading of the pipeline as shown in Figure 5.7 (b). In Idle state, the entire

neuron engine is on standby mode, and all the computation units are in an idle state. The

ComputeInit signal initiates the neural computation units by changing the state to Initial. All

the necessary control and status signals like Index, Count and the registers used in the computation

pipelined proposed MAC and accumulator registers are assigned an appropriate value in this state.

At the subsequent next clock cycle, the state changes to LoadPipeline; wherein the pipeline

in the proposed MAC is loaded. In this state, the proposed MAC is loaded with values, but

the accumulator is disabled. The state is to compensate for the delay in getting output due to

pipelining.

After the pipeline gets loaded, the current state gets changed to MAC1. The accumulator is

turned on, and the pipeline in the proposed MAC is loaded into the local register simultaneously.

The Neuron holds in this state till all the weights and inputs are loaded into the proposed MAC.

When all the weights and inputs for the current layer operation are loaded, the loading of the

pipeline needs to be disabled at the next clock cycle, but the accumulation needs to be kept

enabled. This is handled by MAC2 state. The Neuron remains in this state till the entire pipeline

is unloaded, an event marked by Count equal to zero. After which, the AF is applied in state AF

and the output of the Neuron is provided, then the Neuron is put back in Idle state.

5.5 DNN with Layer Reused Architecture and Throughput

Analysis

The DNN network has many layers that demand more hardware resources. However, tiny FPGAs

required efficient design for implementations in Edge AI applications. The paper has presented
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Table 5.1: Hierarchy of entities and user-defined pre-synthesis constants for compute DNN architecture

Hierarchy Entity Pre-synthesis constants Value (user defined)

1 Layers Layer configuration 196 : 64 : 32 : 32 : 10

2 Max Neurons #Neurons - layer reuse 64

3 AF Number of Layers 5

4 Proposed MAC Width 9

# Types Integer bits 3 (include sign bit)

the hardware reused architecture to address resource-efficient design and implementation. In this

proposed design, we have reused the single layer of a fully connected neural network, which realizes

any desired neural network. This section has elaborated an overview of the performance-centric

layer-multiplexed design system architecture. The proposed RTL design of system architecture

is implementable for FPGA and ASIC. It can be configured to any size of deep neural network.

The complete hardware is written using VHDL-hardware description language. The pre-synthesis

design constants and their value for the DNN design implementation are shown in Table 5.1.

The first column shows the hierarchy of the entities used in the system design. Here, Types.vhd

is a configuration file that contains all the pre-synthesis constants, data types, and other necessary

manual functions. Thus, entity Types.vhd is not considered as a part of the hierarchy as it is

a package. Furthermore, the input design parameters are shown in the last column. We have

enhanced the performance of the neuron unit by implementing the pipelined architecture. The

signed 8-bit precision fixed-point notation used for hardware implementation of the DNN have

shown in Figure 5.5. The dynamic fixed-point notation used in the network is systematically

selected through experimental evaluations. Moreover, by changing the pre-synthesis constants

network user can be modified the DNN configuration, bit width, and fixed-point resolution. The

following subsections describe a key feature of the layer-reused computational unit.

Hardware implementation of deep neural networks has faced the challenges of high resource

utilization and memory bandwidth limits. Therefore, layer-reused architecture has been proposed,

which is very resource-efficient but often has low throughput. Further, MAC has been implemented

with minimum critical delay to enhance the throughput pipeline. In this layer, reused DNN

architecture on-chip register banks have been used to avoid bandwidth limitations. The top-level

system architecture of the DNN design is shown in Figure 5.8 (a). The dotted arrow indicates

control signals for both input and output that ensure the correct functioning of the layer-reused

DNN implementation, and the bold black arrow represents data signals. In addition, an DNNInit

signal is used to initiate the computation, and we also have a clock (clk) and reset (rst) pins that

are assigned to all computational blocks available in the engine. The proposed DNN design has

Input, Weight, and Bias input data pins along with their control signals. The Final Result is the

output data pin, and DNNDone is a valid data pin control signal which gets high when computing

the final desired output.
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5.5.1 DNN block architecture and system overview

The top-level system design is divided into the storage part and computation part. The different

register banks have been used to store the Weights, Biases, and Inputs. The pre-synthesis para-

meters discussed in Table 5.1 that fixed as a DNN system design parameters shown in Figure 5.8

(a). Based on these parameters engine generates the resister banks depth during the synthesis for

the weight and bias constant. These register banks are read by the neuron computation module

available in Neuron multiplexed layer as and when necessary to compute the DNN. These banks

are divided into different sub-banks to decrease placement and routing congestion, as explained in

detail. The specific memory addressing scheme to load the parameter has been addressed in the

below Section 5.6.

The FPGAs and ASICs have elevated for custom hardware implementation of DNNs. DNNs

perform computations for many layers with higher area and power demands due to their parallel

architecture. It generally consists of one input layer, one output layer, and many hidden layers.

Each neuron consists of a MAC computational unit in each layer, followed by an AF. Thus,

in an entirely similar architecture, the layer with N neurons has an N number of MACs and

AFs. Furthermore, the current computing layer’s output in DNN will be the input for the next

subsequent layer, which produces the possibility of reusing the same logic resources in sequential

order. It allowed us to reduce the hardware cost of considerable computational delay. Therefore,

in an address to efficient design, the configurable layer-reused DNN is designed for minimalist

hardware architecture and simplifies data movement between memory compute. We developed an

efficient architecture that gives the required performance within the overall system requirement

(size, weight, power, cost, etc.). Further, DNN hyperparameters vary with different applications

in a fully connected neural network. Hence, architecture should be upgradable regarding the

number of layers in the neural network and the number of neurons in each layer. Furthermore, the

weights/bias addressing should have a viable scheme for memory allocation.
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This work has implemented an efficient design of a layer-reused scheme that can support the

dynamically reconfigurable architecture of DNN. The circuit design parameters are in trade-off

with the depth of the neural network. This work has addressed the trade-off by proposing layer-

reused architecture that can implement any deeper neural network with minimum resources where

we used the single neuron’s layer. The layer-reused DNN internal design architecture and all the

I/O ports along with their signed 8-bit precision ‘Fixed 〈8, 6〉’ as shown in Figure 5.8 (a). In these

representations, we have used a 9-bit number format representation. In this representation, 1 bit

is reserved for the sign, 2 bit for the integer part, and 6 bits for the fractional part. Symbolically,

this is written as ‘fixed 〈8, 6〉’. The DNN system output is a 2D vector as the output class is for

#Output Neurons (10 for MNIST). Moreover, each output is signed ‘fixed 〈8, 6〉’.

Implementing a DNN with fully parallel layers is a very inefficient way of hardware utilization

as each layer’s computations are sequential. We overcome the resource limitation bottleneck by

implementing a single layer that can use any number of times. The neuron-multiplexed layer’s

internal architecture has 64 neurons shown in Figure 5.5 (b). Here, count 64 will be the highest

number of neurons in any hidden layer (user-defined). The weight and bias register banks are

divided into parts to improve performance in place and route. The FPGA suffers from the memory

bandwidth problem, and hence the weights and the bias register banks are broken down and clubbed

along with a neural computation unit called Neuron. The entire network and state machine control

module are designed on programmable logic (PL). The input layer engine has been provided via

an I/O port.

The depth of register banks has been decided according to an algorithm that minimizes the

synthesis of redundant registers. We only assign the number of registers needed for specific Neurons

during computation. As mentioned network configuration, the Neuron 63 to Neuron 54 will be

active during the computation of every layer and therefor needs a total 324 (i.e = 196 + 64 + 32 +

32) weight registers where each register is of 9-bits. Furthermore, the Neuron 31 to Neuron 0 are

only active during the first hidden layer’s computation, and hence it will require only 196 registers

of 9-bit(signed + magnitude) each. Similarly, #weight registers in Neuron 53 to Neuron 32 will

have 292 (i.e = 196 + 64 + 32) weight registers. The bias register banks are also assigned similarly.

The sub-modules MAC and AF within the Neuron are presented with a green color in Fig-

ure 5.8 (b). The proposed performance enhanced, pipelined MAC and ROM-based AF has been

used in the Neuron. In ROM-based AF, the values of the sigmoid function corresponding to the

input are stored. Both input and output of this ROM have signed ‘fixed 〈8, 6〉’ resolution. In

the neuron module, I/O ports have an index, ComputeDone, Currentlayer, ComputeInit as a

status/control signal, and the module is also provided with the pre-synthesis constants. In these

I/O ports, the Index signal represents the count of MAC operation in the current layer compu-

tation, CurrentLayer keeps track of the layer computations done, and ComputeInit indicates the

Neuron to begin calculation of a layer. Further, ComputeDone is the status flag indicating that

computation is completed for the current layer. The input register bank and the control module

for the layered reuse part have a separate blocks in the system.
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To run a layer-reused DNN architecture, it the essential to have a control module divided into

five sub-blocks shown in Figure 5.9. Each block functionally controls a status signal or generates

a control signal based on the status signals. The control module has status signals, which are

LayerDone, DNNDone, CurrentLayer, ComputeInit, Index and ComputeDone; out of which, Index

and ComputeDone are Neuron generated, and the control module generates the rest. The Index is

a status signal that indicates the number of MAC operations done in the current layer, responsible

for telling the Index of input to be supplied for MAC operation. Further, the ComputeDone signal

gives information about the Neuron computation that has been done in the current layer, and

the valid output is ready for further subsequent computation. The ComputeDone of all the neural

computation unit clubbed together in an array is given an alias ComputeDoneArray. These two

signals are used to set the status signal mentioned above. These status signals control the set of

data signals to operate the layer-reused architecture correctly.

5.5.2 Control engine Design for Data & Control Signals

The proposed enhanced performance layer-reused DNN architecture is dynamically configurable.

For example, the generation of register banks for weights and bias constants is dynamically mapped

according to the number of layers and neurons in each layer. Further, layer-reused mechanisms

have performed efficiently that required signal controlling. The controller design architecture for

these operations in the system architecture is shown in Figure 5.9. In this control module, each

control signal has its specific applications. The ComputInit signal is mapped to the individual

Neurons to initiate the layer computation. It is triggered by DNNInit, an external input signal

set by the user to initiate the computation of the DNN’s first hidden layer. This ComputInit

signal is controlled based on internal status signals for the computation of further layers. For the
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first hidden layer computation, all the ComputInit signals will be active because all 64 neurons

are required to calculate the first hidden layer. In the subsequent layer computation, only the 32

Neurons must compute the layer that is made active, i.e., for computation of the second hidden

layer, which is ComputeInit for 32 neurons for Neurons 63 to Neuron 32 is activated, and the

rest are inactive. The scheme can be implicated in any bigger neural network. It helped save

the overall dynamic power, as the pipeline register in the computational unit is disabled in an idle

state. The LayerDone signal is turned on for one clock just after every layer’s computation is done.

The all Neuron units ComputeDone signals will be active during the current layer computation are

connected to an AND gate; therefore, inactive neurons are not considered.

Algorithm 2: HDL code for Input Stream Generation

Notation– M: maximum(Layers, number of layers)
N: number of layers

for i in N–1 downto 0 do
if currentstate1 = compute then

intermediate input to neurons(i) <= intermediate input – (M – 1 – index array(i));
else

(others=>‘0’);
end

end

Algorithm 3: HDL code for Input Multiplexing

Notation– M: maximum(Layers, number of layers)
N: number of layers

if currentstate1 = idle or current layer ¡0 then
intermediate input <= (others => (others =>’0’));

else
if currentstate1 = compute then

if current layer = N–1 then
for i in N–1 downto 0 do

if i >= M – layers(current layer+1) then
intermediate input(i) <= input(i–M+layers(N–1));

else
intermediate input(i) <= (others =>‘0’);

end

end

else
for i in N–1 downto 0 do

if i >= M – N then
if ComputeDonearray(i–M+N)=‘1’ then

intermediate input(i) <= intermediate output(i-M+N);
else

intermediate input(i) <= (others =>‘0’);
end

else
intermediate input(i) <= (others =>‘0’);

end

end

end

end

end

Furthermore, CurrentLayer status signal is also important that keeps track of the layer which

is being computed. In this proposed benchmark design, we need to calculate the four layers, so the

current layer is initialized at three, and after every LayerDone, the current layer count is reduced

by one. After CurrentLayer count reaches zero, the next layer done signal triggers the DNNDone

signal, and the entire computation module is put back into the idle mode. We use input multiplexer
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Algorithm 4: HDL code for Output Multiplexing

Notation– M: maximum(Layers, number of layers)
N: number of layers

process (CurrentState1, current layer)
begin
if currentstate1 = idle then

Outputs <= (others =>(others =>‘0’));;
else

if currentstate1 = compute then
if current layer = –1 then

for i in N–1 downto 0 do
if ComputeDonearray(i) = 1 then

if i > N – layers(0)-1 then
Outputs(i–N+layers(0))<= intermediate output(i);

end

end

end

end

end

end

and output de-multiplexer for muxing the intermediate signals. Input to multiplexer are the

Input Layer and Intermediate Output where output of this multiplexer is Intermediate Input.

The control signals generated through the layer reused control model is shown in Algorithm 2.

The sequential stream of input signals sent to Neurons from the Intermediate Input based on

the Index; a status signal generated by the neurons. The detailed working principle is shown in

Algorithm 3. We have output De-multiplexer is to get the output from the Neurons after the layer

computation is done. The decoder is used for current layer value whether to send Output from

Neurons to Output Layer or Intermediate Output. If the Current Layer count is 0, i.e., the layer

computed is the output layer, then the Output from Neurons is directed to Output Layer. Else,

it is directed to Intermediate Output as shown in Algorithm 4.

5.6 Input Data Loading Scheme and DNN System Pro-

cessing

We mentioned in the previous section that the weight bank is broken into 64 groups and paired

with the corresponding neuron computation unit is illustrated in Figure 5.10 (a). Although self-

explanatory, we need to understand one important thing in this flow: memory addressing for

loading the model’s parameters. It can be observed that the write and read orders are reversed.

The data flow scheme is beneficial for accessing the weights/bias constants with minimum routing

delay. So, LIFO (Last I n F irst Out) scheme have to be followed while loading the weights, and

similarly for bias and input loading. The I/O protocol for loading and reading is followed a standard

synchronous communication protocol with a valid data pin which in design is load param weight

for loading weights. In the case of valid output, we have a data-ready pin which in design is

DNNDone. In the case of input, the value gets loaded at every clock when the valid pin gets high.

For output, we get the output for all ten neurons in parallel when the DNNDone signal gets high that

needs to be stored on the software side. The software flow for DNN accelerator implementation as
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Figure 5.10: DNN engine working flow and order to initialized the loading data

shown in Figure 5.10 (b).

5.7 Experimental Results and Discussion

This section has discussed the hardware performance and implementation results for complete

layer-reused system architecture and enhanced CORDIC engine-based MAC unit performance.

The efficient layer-reused DNN configuration 196 : 64 : 32 : 32 : 10 with enhanced performance

MAC unit is designed using a hardware description language. The accuracy performance of the

proposed design has been validated using Python with the standard TensorFlow computation [5]

for MNIST. Furthermore, we have simulated fixed-point behavior by quantizing all the operations

and activation. Hence, our CORDIC-based python implementation1 is framework-independent and

faithfully replicates the hardware design to evaluate accuracy. The MNIST input image 28 × 28

is resized to 14 × 14 that increased our DNN performance, and the model has trained for signed

8-bit precision fixed-point, i.e., [8:0] arithmetic and noted the inference accuracy. The extracted

weights/bias is used to verify the hardware implementation. The Virtex-7 VC707 FPGA has

targeted DNN implementation and evaluated results. The following experimental evaluation is

performed for design validation and extracted results.

5.7.1 Neurons Pareto Analysis for bit-precision, #integer bits, and pipeline-

stages

In order to evaluate the arithmetic bit precision impact on accuracy for the deep neural network,

we experimentally verified. The accuracy has been calculated for 8-, 12-, and 16-bit precision fixed-

point exact computation arithmetic for MNIST dataset on benchmark network 196 : 64 : 32 : 32 : 10

1get the accuracy-test code
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where observed accuracy is 95.41%, 96.70%, and 96.80% respectively. At the cost of 1.4% accuracy

loss between 8-bit and 16-bit fixed-point arithmetic, we can save the memory bandwidth by a

factor of 2.

As we saw, recursive CORDIC architecture performs the computation iteratively, and every

iteration is mutually exclusive. We leveraged this exclusivity to develop the proposed enhanced

CORDIC-based computational engine (multiply-add-accumulate). The compute iteration in the

CORDIC algorithm is equal to the number of stages in the proposed MAC design. The neural

network is error-resilient and has the scope for computational approximation, i.e., we can limit

the number of iterations at which tolerable accuracy has occurred. The proposed CORDIC-based

neuron engine contains three parameters that need to optimize with hardware architecture and

determine Pareto points against the test accuracy. These constants are the bit precision(bit-

width) of the parameters, the number of bits left of the decimal point, and the number of pipeline

stages by which design will make resource-efficient and performance-enhancing design.

In order to evaluate Pareto points for determining the number of pipeline stages in the MAC

computation, we have used max norm kernel constraint and bias constraint, which bounds the l2

norm of the parameters. We also need to optimize the parameter of this constraint, i.e., Max Norm.

Now, from Figure 5.11 (a) and (b), and 5.12 we can observe that with Max Norm = 5.5 the #integer

bits = 3 , #pipeline stages = 5 and bit-precision of 8-bit fixed-point arithmetic produces 95.06%

accuracy1. Producing a vaguely better accuracy is possible by increasing the number of pipeline

stages in the proposed enhanced MAC. However, the increase in utilization for accuracy is too

significant for the minuscule increase in accuracy after the number of pipeline stages = 5 in the

proposed MAC. Hence, the Pareto points are fixed at Max Norm = 5.5 the #integer bits = 3 ,

#pipeline stages = 5 and bit-precision = 9 (1 sign bit and 8 magnitude bits).

5.7.2 MAC performance evaluation for previously determined Pareto

points and comparison

To enhance the performance of MAC, we optimized the architecture by introducing the pipeline

concept. The number of pipeline stages will directly impact resource utilization. Hence we analyzed

it through the experimental evaluation and the number of pipeline stages, which are five-a pipelined

stage we used for performance parameters evaluation. Based on observed Pareto points, proposed

enhanced performance MAC have been implemented, and results are extracted for comparison with

the state-of-the-art designs. In this experiment, first, we compared the performance parameters

for signed 8-bit precision with the state-of-the-art designs as shown in Table 5.2. In this table,

we reported the resources utilization, circuit critical delay per clock, and Power-Delay-Product

(PDP). In this table, we used to signal and logic power for PDP calculation. It can be observed

that the proposed design has 2.2× lower PDP compared to the best design in the state-of-the-art.

Secondly, we analyzed the impact of bit precision on hardware parameters. We compared our

MAC implementation results with the multiply and accumulation IP from Xilinx [7] shown in
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(a) Analysing the effect of number of integer bits for different
bit-precision, at Max Norm = 5.5 for proposed enhanced MAC.

(b) Accuracy vs number of bits left of decimal point for
8,12,16 bit-precision, and Max Norm = 5.5 for proposed
enhanced MAC

Figure 5.11: Pareto point evaluation for hardware design and implementation of System architecture

Figure 5.12: Analysing the effect of number of pipeline stages on accuracy for different Max Norm for
proposed enhanced MAC.

Table 5.3. Here, we compared the results for different signed dynamic fixed-point representations

where we used 6-, 9-, 13-, and 17-bit, i.e., for the 5-, 8-, 12-, and 16-bit precision, respectively. It

can see that one extra bit is used as a signed bit in the actual computation, as we discussed in

Section 5.4. As the proposed MAC used five pipeline stages, the possible minimum bit precision

is five magnitude bits. It can be observed that the proposed design has very few increments in

resource utilization for higher precision. The rate of increase in FF utilization is almost similar

for both MACs. However, as the proposed MAC is pipelined structure, it has higher utilization of

FF, but the difference increases more or less linearly.

The proposed MAC and Xilinx MAC IP share almost the same latency for every bit of precision.

For 8-bit, our design saved relatively save 65.4% LUT resources utilization, whereas for 12- and

16-bit saved 69.3% and 74.3%. Further, it is also observed that lower Power-Delay-Product (PDP),

which is for 8-bit precision, is 2.51× whereas for 12-bit and 16-bit precision is 2.73× and 5.11×

respectively. The results are concluded that the proposed architecture more benefits from the

higher precision computation.
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Table 5.2: Resource utilization and performance parameters comparison of MAC with state-of-the-art
technique at ‘fixed 〈8, 6〉’ precision

Resources

Utilization

Slice

LUTs

Slice

Registers

Critical Path

Delay (ns)

Power-delay

Product (pJ)

Vedic [75] 159 245 4.48 5.86

IEEE [7] 130 45 3.98 5.01

Wallace [77] 105 112 2.59 3.13

Booth [76] 83 61 3.08 2.77

Shift-add [65] 75 58 5.44 3.97

Acc App [97] 62 59 2.87 2.04

Proposed 54 88 1.52 0.91

Table 5.3: Resource utilization and performance parameters for MAC architecture at ‘fixed 〈8, 6〉’ preci-
sion.

Bit-precision MAC Slice Slice DSP Delay (ns) Power (mW ) PDP

signed Design LUTs Registers Util. Logic Signal Logic Signal Dynamic (pJ)

16-bit
Xilinx IP [7] 369 76 – 2.268 6.783 1.95 1.95 13 117.7

Proposed 95 162 – 0.805 1.319 0.44 0.77 11 23.7

12-bit
Xilinx IP [7] 244 60 0.966 3.485 1.26 1.26 9 40.1

Proposed 75 126 – 0.731 1.108 0.32 0.48 8 14.7

8-bit
Xilinx IP [7] 130 44 – 0.921 2.895 0.66 0.60 6 22.9

Proposed 54 88 – 0.755 0.768 0.24 0.36 6 9.1

5-bit
Xilinx IP [7] 53 28 – 0.813 2.277 0.27 0.21 3 9.37

Proposed 35 58 - 0.713 0.692 0.16 0.20 4 5.62

5.7.3 Hardware parameters evaluation for proposed and state-of-the-art

DNN design techniques

The fully parallel deep neural network has high throughput but has area overhead which is further

accountable for the higher power consumption. In every neuron, the output bit-width of the MAC

unit depends on the number of accumulations in the neuron. Further, MAC output will be the input

for the AF inside the neuron. The resources utilization (memory elements) by the AF has increased

exponentially with the bit precision, i.e., 2N factor, where N is the AF bit-precision. Hence, bit

quantization is immensely required, especially at the MAC unit’s output, making the resource-

efficient design. The implementation results for different design techniques i.e fully parallel [101],

layer-reused [25] and our layer reused with bit-width quantization technique is shown in Table 5.4.

We used Xilinx multiplier and adder IP for the sack of comparison at the architecture level and

observed the physical hardware parameters.

The deep neural network parallel computing demands high memory bandwidth. In contrast,

FPGA suffers from memory bandwidth issues. Therefore, the proposed design has used the on-

chip register banks for weight/bias constants in the proposed architecture. It can be observed from

Figure 5.4 that the proposed design has saved 30% LUTs and 48% FFs relative to the fully parallel

layer architecture in the benchmark network with acceptable throughput loss. Furthermore, as our

layer-reused DNN architecture utilized fewer hardware resources, it has saved the 22.7% on-chip

dynamic power. Further, it can be observed that no quantization at MAC output exceeds the

BRAM utilization (>2K) as it needs 2N memory elements for the AF implementation [25]. The
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Table 5.4: Hardware utilization report for fully parallel and layer-multiplexed architecture with Xilinx
IP [7] based multiply-accumulate unit and our enhance performance MAC

Hardware Parameters
Fully parallel

Archi. [101]

DNN Layer

-Reused [25]

Proposed Layer

-Reused

Resources

Utilization

Slice LUTs 207908 145474 144283

Slice Reg. 306874 156117 155811

Slices - - 61966

BRAM 53 exceed (>2K) 23

On-chip

Power (W)

Logic 0.914 0.241 0.133

Signal 0.956 0.317 0.235

Dynamic 1.933 0.622 0.481

Static 0.261 0.252 0.248

proposed design has utilized only 23 BRAM for the complete system design, where we used a

bit-rounding scheme at the MAC output.

An optimized layer-reused architecture is efficient for area and power but has lower throughput.

Hence, this work investigates and proposes an efficient MAC with a lower area and power utilization.

We implement the CORDIC-based MAC design. However, it suffers from lower throughput, which

enhances in this article using the pipeline stage of the CORDIC engine. Further, this article’s

CORDIC design has been optimized for lower area utilization and critical logic delay. The number

of pipeline stages will increase the computational accuracy but come up with the area overhead.

Hence we have characterized the neuron architecture for different design parameters. As discussed

in Section 5.7.1 and hardware utilization for the proposed model and fully parallel neural network

using Native MAC [7] is shown in Table 5.5. Here we examine the utilization impact of the proposed

MAC in DNN system architecture.

The reported benchmark network we use for the results extraction. It is observed that there

is an almost 42.92% decrease in resource utilization and a 62% reduction in FF utilization. The

improvement in LUT utilization is the overall decreased consumption of LUTs per MAC unit, as

we previously observed. The staggering decrease in FF results from Xilinx Vivado’s internal op-

timization because we are using a 5-stage computation pipeline, so Vivado optimized redundancies

in parameter storage, decreasing FF utilization. However, the accuracy remained almost unaf-

fected (0.35% decrease in accuracy for MNIST classification). The BRAM usage can be explained

using a similar argument that when a native MAC was used, Vivado optimized the design because

of the use of native MAC. When analyzing a neural unit in standalone mode, it is observed that a

single neural unit contains a 512 deep sigmoid ROM. Each AF has 0.5 BRAM utilization which is

entirely used for the activation function. In line with this observation, in the case of design with

proposed MAC where Vivado performed no optimizations, BRAM utilization was 69, exactly half

of the number of neural units.
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Table 5.5: Hardware implementation results for fully connected neural network. The layer-wised resources
utilization compared with Xilinx-IP [7] based DNN design

Number of Neurons Utilization Report for DNN (196:64:32:32:10)

in each layer Design with Native MAC [7] Design with proposed MAC

Resources Slice LUTs Slice Reg Slices BRAM Slice LUTs Slice Reg Slices BRAM

1st hidden layer (64) 153951 235462 - 32 79194 78229 34311 32

2nd hidden layer (32) 29705 40911 - 9 19834 17539 8015 16

3rd hidden layer (32) 18309 21684 - 9 14827 12081 5399 16

Output layer (10) 5717 7018 - 3 4606 4017 1802 5

Total DNN Utilization 207908 306874 - 53 118684 113665 49547 69

Total Utilization (%) 68.48 50.54 - 5.15 39.09 18.72 65.28 6.70

Table 5.6: Hardware implementation report for ‘fixed 〈8, 6〉’ benchmark network with proposed DNN
architecture and state-of-the-art.

Hardware

Parameters

Fully Parallel

DNN

Layer Reused

with Quantization

AF Reused

in layer

Multiplexed

Proposed

% Util. save

Relative

Resources Utilization Report for 6-bit LUT Size

Slice LUTs 207908 144283 208608 112654 45.81

Slice Reg. 306874 155811 308374 113648 62.96

Slices - 61966 - 45439 -

BRAM 53 23 3 32 39.62

Network’s On-chip power utilization report (W)

Logic 0.914 0.256 0.843 0.133 85.44

Signal 0.956 0.585 0.911 0.235 75.41

Dynamic 1.933 1.020 1.792 0.481 72.85

Static 0.261 0.252 0.58 0.248 04.98

5.7.4 Comparison for power estimation, performance evaluation and ac-

curacy of proposed DNN accelerator

This subsection examines the benefits of using the proposed MAC unit with optimization techniques

like layer reuse and bit-rounding. The utilization results after implementation with two techniques

for layers multiplexed designs, one with proposed MAC and another with native MAC [25], are given

in Table 6.5.2. We can observe a 21.91% decrease in LUT utilization for the same reasons as fully

parallel DNN. FF utilization was a 27.04% decrease in FF utilization and a 26.67% improvement

in overall slice utilization. The BRAM usage is observed as 32 (half of 64, i.e., the number of

neural units). The BRAM utilization in the case of native MAC-based design is 23, resulting from

optimization from Vivado. We can now clearly see the benefit of a proposed MAC-based layer-

reused DNN implementation. The layer reused technique reduces resource utilization and has a

few more benefits.

We enhance the throughput of the Layer reused DNN by implementing the pipelined CORDIC

stages in the proposed MAC. Moreover, the total critical delay of the proposed design has almost

2.6× less as compared to Native MAC [7] and 1.8× of the best design from the state-of-the-art,

which implies that the proposed design has achieved 2.6× throughput compared to Native MAC [7].

Table 5.7 shows implementation results in terms of other performance parameters. Firstly, we have
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Table 5.7: On-chip power summary and other performance parameters for DNN implementation with
Xilinx IP MAC and proposed MAC @50MHz clock frequency for ‘Fixed 〈8, 6〉’

Parameter
Fully Connected Architecture Proposed Architecture

Xilinx IP [7] Proposed MAC Xilinx IP [7] Proposed MAC

Power (W)

logic 0.914 0.263 0.256 0.133

Signal 0.956 0.417 0.585 0.235

Dynamic 1.933 0.879 1.020 0.481

Static 0.261 0.254 0.252 0.248

Computation Time

(in #clock cycles)
201 205 344 360

Throughput (GOPS) 4.65 4.45 4.65 4.45

Performance (GOPs/W) 2.41 5.06 9.17 9.25

Accuracy (%) 95.41 95.06 95.41 95.06

power. Note that the power report for Fully Connected DNN with conventional MAC is generated

from synthesis. We can see the benefit of both the Layer reused technique and the proposed MAC

on logic power. We see a 49.43% reduction in logic power by introducing Layer multiplexing in

designs with the proposed MAC. Similarly, in Layer multiplexed architectures, we can see a 15.04%

decrease in logic power by replacing native MAC with proposed MAC in Layer multiplexed design.

Similarly, signal power also shows 43.65% benefit and 13.92% benefit correspondingly. However,

this minor increase in logic power can be attributed to more flops in MAC architecture, which is

compensated by the signal power. This leads to a total dynamic power saving of 45.28% decrease

in dynamic power consumption in Fully Connected vs. Layer multiplexed designs with proposed

MAC and 5.13% benefit in total dynamic power. The static power is more or less the same for all

designs as it is seen to design independently and dependent on the FPGA. The previous results

show that the proposed design is very efficient for area and power. Moreover, the other performance

parameters are also addressed.

The performance parameters of DNN implementation with different technique is shown in

Table 5.7. The parameters are compared for the proposed enhanced MAC-based design and MAC

design using Xilinx multiplication and addition IP [7]. The throughput we calculated by applying

the equal input clock frequency, i.e., at 50MHz, to all the designs. It can be observed that the

proposed enhanced performance pipeline architecture of MAC takes four more clock cycles in a

state-of-the-art layer-multiplexed design. Therefore, 16 clock cycles more than the four Layer

conventional fully connected neural network. It is caused by the additional clock cycles required

to load and unload the pipeline in the proposed MAC unit for every Layer. For Depth of pipeline

= 5, we need four additional clock cycles per Layer, leading to a net of 16 extra clock cycles for

computation. However, the throughput loss is not significant and can easily be justified by reducing

resource utilization. Moreover, for signed 8-bit precision after observing from Table 5.2, the critical

path delay in the DNN implementation with the proposed design architecture can operate at 1.8×

higher frequency compared to the best one in the state-of-the-art.

The performance throughput per watt for the proposed design is higher. The proposed design
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achieved all the benefits at the cost of 0.35% accuracy loss we observed for the MNIST dataset.

Both designs consume 344 clock cycles to complete the computation. In these 344 cycles, the

proposed DNN design architecture computes 15,963 Multiplication operations, 15,963 addition

operations, and 138 AF operations at 50MHz, giving about 4.65 GOPs. Based on these values,

the proposed design performs nearly 1.89× better than a fully connected deep neural network in

terms of Throughput/W.

5.8 Summary

This paper proposes and implements efficient techniques for layer-multiplexed ANN engines for

reduced hardware resources and better performance. The conventional multiplexed technique

sufferers from low throughput, which address by proposing efficient enhanced performance neuron

architecture. The MAC in neurons is implemented using pipeline CORDIC stages which enhance

the throughput, and CORDIC architecture is optimized to make it area-efficient with lesser critical

delay. The ANN engine architecture is written in HDL language, and it is implementable on both

ASIC and FPGA. The user can implement any deeper ANN for object classification by fixing the

user-defined parameters. A detailed analysis has been given for selecting circuit design parameters,

which can adapt to other architecture for the efficient design of the DNN engine.

The proposed performance enhancement technique in system architecture opens new opportun-

ities for low area and power with enhanced performance design, mainly in the Edge-AI applications.

The Virtex-7 FPGA platform is selected to implement the benchmark configuration for MNIST

classification and verify the proposed architecture’s functioning. The experimental evaluation val-

idates that the proposed enhanced performance layer-multiplexed solution will help us gain better

area, power, and throughput performance for future system implementations. After acceptance,

we will make our project code open-source to assist the reproducible results and hardware imple-

mentation, i.e., for ASIC and FPGA.
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Chapter 6

FPGA Implementation of Novel

Data Multiplexed DNN

Accelerator

Despite many decades of research on high-performance Deep Neural Network (DNN) accelerators,

their massive computational demand still requires resource-efficient, optimized, and parallel archi-

tecture for computational acceleration. In Chapter 5, layer reused architecture comes with huge

hardware resources saving at the cost of throughput loss which is further resolved using pipeline

MAC. In this chapter, we have reused the hardware of AF within the layer at the cost of no

throughput loss. In DNN, every neuron has an activation function which takes huge hardware

resources due to its non-linear nature. We propose DNN with reused hardware-costly AF by mul-

tiplexing data using shift-register. The on-chip quantized log2 based memory addressing with an

optimized technique is used to access input features, weights, and biases. This way, the external

memory bandwidth requirement is reduced and dynamically adjusted for DNNs.

6.1 Introduction

The Deep Neural Networks (DNNs) have become a popular algorithm in pattern recognition since

the recent evolution of computer hardware, which fulfilled the high computational power require-

ment of learning algorithms [119, 120]. The main advantage of the DNN over other prediction

techniques is its capability to learn hidden relationships in data with unequal variability [121].

Further, DNN is a popular choice due to its diverse application and is applied to various non-linear

detection problems, some of which are lane detection, pattern recognition, fault detection, and

monitoring in the industry [8, 9]. However, these applications often require a DNN and real-time

processing, which need high computational power.

Deep learning opens up a need for different platforms like GPU, CPU, ASIC, or FPGA to ac-
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Figure 6.1: Fully parallel feed-forward Deep Neural Network architecture

celerate the computation of the DNN algorithm. Here, we refer to a fully connected feed-forward

Artificial Neural Network (ANN) with multiple layers between the input and output layers as a

DNN. The CPU and GPU-based DNN implementations are general-purpose platforms with spe-

cialized hardware supporting various operations, including Multiply-Accumulate (MAC) operation.

However, the drawback of CPU and GPU is the low utilization of their resources that reflects in

high power consumption [10]. In comparison, ASIC and FPGA devices provide fast multiplica-

tion operations with minimal resources utilization and lower power consumption than streaming

pixels and learning features [11]. Further, FPGA also has a specialized hardware structure for

MAC operation, but their design is customized to DNN implementation; thus, they achieve high

resource utilization and lower power consumption. At the same time, ASIC-based hardware accel-

erators are the fastest and most energy-efficient. However, they are constrained by their inability

to reconfigure neural networks with different features and the inferred network’s limited size [12].

Attractive FPGA implementation schemes, focusing on the usage of Xilinx families, are described

in the book edited by Ormandi and Rajapakse [122]. Besides, FPGA has hardware efficiency, re-

sources utilization flexibility, and reconfigurable logic design architecture to optimize performance

for any specific type of application [16].

In DNN, each neuron performs two basic functions: sums weighted input features using MAC

and evaluates Activation Function (AF) from calculated sum as shown in Figure 6.1. DNNs are

computationally expensive for data-intensive applications that may contain many neurons and

several parameters. In a fully parallel implementation of the deep neural network, each layer

needs a distinct memory space for its weight and bias in order to maximize performance efficiency.

Previous works have rarely investigated flexible hardware architecture that scales well with the

size of a neural network without compromising accuracy. The area-efficient architecture is made

using different design techniques for MAC unit, AF, and layer architecture [12, 16, 17, 18, 19].
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Moreover, the implementation of the AF is challenging due to its non-linear nature. Therefore for

its accurate design and implementation it requires a large number of hardware resources. However,

an area-efficient design can be made by configuring many arithmetic operations implementation

such as MAC and AF on the same hardware at the cost of lower throughput [18].

Despite the configurability, the design must scale in terms of hardware due to a profound DNN

realization. Our goal is to develop an area-efficient architecture of a DNN that can reuse the

AF within the DNN to make it suitable for implementation on small FPGAs. Considering the

demands on trade-off in area, power, and speed of the computational block, we propose a data-

multiplexed and hardware-reused DNN architecture with an efficient way of memory mapping.

Further, compute efficient AF is optimized using Taylor series expansion, and we reuse the AF

within each layer by multiplexing and serializing the data-flow using the Parallel-in Serial-out

(PISO) mechanism.

Contribution

The proposed work focuses on efficient architecture in terms of area and power overhead without

performance loss. The contribution of the FPGA based DNN architecture is summarized in the

following three points:

• In order to compute a more popular sigmoid AF, we implement its computation through a

memory element that uses a positive exponential function with Taylor series expansion and

uses BRAM utilization to store the memory element that benefits at higher precision. The

AF model physical parameters are also evaluated at the 45 nm technology node.

• In order to find the Pareto point in the Taylor series order expansion for sigmoid AF, accuracy

is analyzed. Another, accuracy versus bit precision, is analyzed for different AF models.

• The performance-centric, resources-efficient fully connected DNN is presented that reuses AF

by multiplexing the data-flow. The throughput and other physical parameters impact are

analyzed. Further, we presented efficient memory addressing scheme for reading/writing of

weights and biases.

This work confirms that DNN architecture with data multiplexing that reuses hardware re-

sources improves area utilization and decreases energy consumption. Furthermore, the authors

have verified the proposed architecture by implementing the 16:16:10:4 Deep Neural Network on

Zybo xc7z010clg400 and evaluating its performance parameters. The performance validation has

been done using the 16 level thermometer to four binary-level classification applications.

6.2 State-of-the-art Hardware Optimization Techniques

Conventionally a DNN can either be efficient in terms of area/power or accuracy/throughput.

Therefore, research has been done primarily on computational arithmetic blocks such as MAC,

95



AF, and neuron layer interconnection within the network to optimize neural network acceleration

performance. DNNs contain one input layer, multiple hidden layers, and one output layer.

6.2.1 Related work for DNNs implementation and MAC optimization

The mobile devices with resource-constrained hardware for DNN deployment are attracting much

attention. Further, the success of AI drives Application-Specific Integrated Circuit (ASIC) design

for the area and performance-efficient DNN implementation [102]. As a result, the FPGA and

ASICs have elevated for custom hardware implementation of DNNs. DNNs perform computations

for many layers, which come with higher area and power demands [103], and hence the area

and power constraint in DNNs represent an increasingly major challenge, especially in mobile

devices and AI-enabled IoT applications. Significant research has scrutinized the efficient design

architectures at different abstraction layers to enhance the performance of DNNs [123]. An ASIC

design as Tensor Processing Unit (TPU) [104] has been implemented for on-chip acceleration. An

ASIC/FPGA-based DNN framework such as Eyeriss [105], Gemmini [106], Simba [107] have been

proposed in the state of the art. However, the reused hardware resources with no throughput loss

have not been addressed. Therefore, explorations of hardware efficiency, such as hardware reuse,

have prompted more attention to reduce area utilization [110].

The fully connected neural network with reconfigurable nodes within the layer has been de-

signed in [24]. Furthermore, the configurable layer reused DNN is designed for minimalist hardware

architecture and simplifies data movement between memory compute [12]. In [124, 125], authors

have implemented a binarized neural network which drastically cut down the hardware consump-

tion at the cost of insignificant accuracy loss. Consequently, a significant amount of research is

focused on the lower area utilization and power-efficient hardware-based neural networks while

compromised with the throughput and accuracy performance..

DNNs with a higher number of layers have been studied in the last decade to improve DNN ac-

curacy. Many architectures have been proposed in the state-of-the-art FPGA-based neural network

implementations [114, 45, 39, 126]. Such architectures substantially increase the number of neur-

ons that increase the MAC utilization, increasing the hardware resources demand, processing time,

and power consumption. Further, previous works have investigated the efficient architecture for a

MAC unit that can use minimum resources without performance loss [12, 17]. In [127], the authors

overcome this limitation by using dynamic partial reconfiguration to reuse the FPGA resources.

While this technique does improve the resource utilization of the FPGA device, it significantly

increases the delay of the circuit. Another way to cope with this increased resource utilization is

to use approximate computing techniques to implement MAC [128, 129] if some degree of error is

tolerable.

The application-specific reconfigurable DNNs have been implemented in [130]. The number of

neurons in each hidden layer can be configured within the DNN through which on-chip power has

been significantly saved. However, design can further explore hardware reused architecture. An

area-efficient method using layer multiplexing has been addressed in which physical implementa-
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tion of the number of hidden layers is halved [19]. Although network implementation has lower

area utilization, design suffers from lower throughput, halved compared to the fully parallel layer

architecture. The resource-hungry non-linear AF has been reused by implementing the multiplex-

ers between the parallel MAC units and the AF within the layer [91]. This kind of architecture is

efficient for very low precision, and tiny neural networks as multiplexers are hardware costly for

higher precision and increase the complexity in the data-flow, which comes with a higher critical

delay. However, we have presented an efficient hardware design that reuses the AF with an in-

significant throughput performance loss in DNN, and the design technique can be efficient for all

fixed-point arithmetic precision implementation. Furthermore, our design architecture is adequate

in the hardware design of DNN with runtime configurable for many AFs [25].

The high-throughput MAC unit with a fully parallel array of multipliers is shown in Figure 6.2.

Usually, the bit-width of MAC output is the sum of input bits, trained weight bits, and extra

overhead bits to save the overflow bits generated during the accumulation. The performance-

efficient state-of-the-art neuron computational unit having a MAC unit with a parallel multiplier

and adder tree followed by AF is shown in Figure 6.2. However, it is impossible to instantiate

parallel multipliers in MACs for every neuron due to the limited hardware resources. The hardware-

costly multiply and accumulate unit can be shared by the multiple consecutive hidden layers at the

cost of throughput loss [131, 101]. Furthermore, dedicated AF in each neuron is accountable for

area overhead due to its underlying non-linear nature. Primarily MAC unit consists of multiplier

and accumulator block, whereas arithmetic relation between input and output of a nth neuron in

the lth layer is given by Equation (6.1),

aln = f(

J∑
j=1

Wl
n,j · aj

l−1 + bln) (6.1)

where f is the Activation Function (e.g. simoid, tanh, ReLU ), wln,j is the weight of the jth input
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al−1
j , and bln is a bias of the nth neuron. Note that the output of the layer (l− 1)th is the input to

the layer l. Computation of a whole layer formulated in matrix form is given in Equation (6.2).

al = f(Wl · al−1 + bl) (6.2)

The Deep Neural Networks have more (several) layers, and more MACs are a consequence that

demands more hardware resources for implementation. This problem will be more dominant when

the network processes the high-resolution images that need higher precision computational ele-

ments. Therefore, DNN implementation on resource-constrained hardware mobile or edge devices

is attracting much attention. In previous works, multi-bit precision (8, 16, 32, and 64-bit) data

representation is used for MAC unit arithmetic computation, considering the trade-off between

accuracy and physical performance parameters. Furthermore, compared to the floating-point, the

fixed-point is preferred which has maximized utilization density and throughput. However, it also

prefers when the resources are limited, and some degree of error is tolerated [14]. Therefore, a

neural network design with 8-bit precision operands is preferable [18]. In this proposed efficient

architecture of the DNN accelerator, we have used signed 8-bit fixed-point arithmetic precision.

The he non-linear AF such as sigmoid/tanh cannot be approximated efficiently using only

combinational logic [18]. However, using purely combinational logic has the benefits of providing

low latency with small area overhead compared to conventional ROM-based approaches. In [43], an

approximation scheme for tanh AF implementation has been proposed using combinational logic

design to explore sigmoid function evaluation further. However, the complexity of circuit design

will increase for higher precision AF implementation. The reuse of hardware resources with an

improved architecture for configurable AF implementation is investigated in [35]. This technique

achieves high utilization of the FPGA and remarkably improves the physical parameters of FPGA

but suffers from low throughput.

In [17], the authors used a single multiplier and adder with iterative accumulation for MAC

computation, and AF has been used in every neuron. In DNN, each layer has many neurons, and

it requires more hardware resources due to parallel architecture and consumes more on-chip power.

Based on the concise review, we address the hardware-efficient and performance-centric solution.

We have designed a signed 8-bit dynamic fixed-point hardware-reused DNN accelerator with insig-

nificant loss in throughput. In addition, we have resized the MAC output that allows efficient use

of AF with lower precision implementation. Further, area-efficient Taylor series expansion is used

for Piece-Wise Linear AF implementation. Finally, we used Block RAM to store pre-calculated

values of sigmoid AF, which is beneficial at higher precision.

6.2.2 Motivation

The main bottlenecks of the FPGA implementations are limited hardware resources and limited

Programmable System (PS)-Programmable Logic (PL) data transmission bandwidth. In order to

reduce the memory bandwidth of the DNN implementations, the weights and bias constants should
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be stored as close to the processing element as possible. Further, neural network MAC featuring

a single multiplier in each neuron will access the data serially and compute iteratively. The final

weighted sum of neuron’s j-inputs is calculated by MAC unit after jth clocks considering that j

accumulative iterations are required for the final desired output. At the same time, implemented

sigmoid AF at each neuron is unused for j clocks and gets active at (j + 1)th clock. Furthermore,

the parallel AF implementation in each layer takes more hardware resources, and inherently unused

hardware of the AF during MAC accumulation for j clocks comes with static power dissipation.

We address some of these difficulties by developing and implementing an FPGA-based DNN im-

plementation that reuses the AF in particular and is suited for systems where hardware resources

are limited.

The lesser hardware resources and lower power consumption are significant for increasingly

important edge computing solutions. In this respect, we have designed an efficient DNN architec-

ture with better resource utilization and other performance parameters. The proposed hardware

implementation technique uses multiplexed and serialized data path that allows reusing the AF.

We have serialized output of the MAC array within the layer using shift register in each layer

and efficiently reused single AF for excitation. The embedded design approach is divided into two

parts: firstly, a DNN core is designed for proposed hardware-reused architecture with a control

unit for weight/bias access that includes optimized AF. An efficient log2 quantized scheme is used

for serial data access using FIFO. Secondly, an embedded block design is implemented on the Zybo

FPGA board to verify the design and compare physical performance parameters. Additionally, to

address the ASIC DNN implementation, our AF is synthesized at 45 nm technology, and physical

performance parameters are compared with the state of the art.

6.3 System Architecture and FPGA PS-PL Integration

This section explains the methodology for the efficient design and implementation of the DNN

accelerator. The FPGA-based embedded approach is the best option because of its good perform-

ance, fast implementation, energy efficiency, and reconfigurability [23, 132]. In this context, we

have developed an efficient hardware architecture of the DNN that employs the AF reuse technique

that reduces the hardware resource requirements. The proposed system architecture is validated

on a 16-level thermometer to 4-bit binary code converter using four layers 16:16:10:4 DNN with a

configuration of 1-input, 2-hidden, and 1-output layers. In each layer, output values of an array of

MACs are serialized using a shift register (PISO) and iteratively passed through a single AF.

We developed an efficient architecture that gives the required performance within the overall

system requirement (size, weight, power, cost, etc.). The complete embedded architecture with the

DNN hardware accelerator is implemented on the Xilinx Zybo board. The FPGA implementation

was done using Xilinx Vivado HLx and Xilinx SDK for hardware design and data initialization,

respectively. The Advanced eXtensible Interface (AXI) bus is used to connect the custom DNN

core to the controlling CPU. The AXI bus supports DMA data transfer and achieves high data
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banks, used to cache weights/biases, are implemented using programmable logic.

throughput. The hardware implementation is done using VHDL hardware description language,

and the external communication through the Processing System (PS) is developed in ‘C’ for an

embedded architecture.

6.3.1 System overview

This work demonstrates the four-layer neural network on an affordable Xilinx FPGA SoC. Since

BRAM memory has low latency, our architecture uses BRAM memory for the FIFO buffer im-

plementation, for storing weights, and for storing pre-calculated values of the AF. The software

control of the embedded processing system has been implemented using Xilinx SDK. The software

control module is responsible for loading input features and weights into FIFO buffers. The design

of the embedded architecture DNN co-processor is shown in Figure 6.3.

FIFO buffers are efficiently implemented using internal BRAM since it is dual-port memory and

has low latency [133]. The weights that are stored in the BRAM are loaded through FIFO buffers.

The data is serialized before AF, allowing the reuse of AF, and the internal hardware architecture

is customized for the data-flow. The weights are loaded serially into the FIFO buffer and out from

it into the MAC local registers. After processing all layers of the neural network, the output of the

last layer is stored in output FIFO buffers. Thus, the runtime access of weights and biases, i.e.,

loading and accessing them, is efficiently designed. We devised an efficient technique for loading

all necessary weights into FIFO buffers in sequence for all MAC computational elements. It allows

the MACs not to wait to load the weights and access the BRAM, which has already been loaded

in the local registers of the computational element.

The 〈8, 7〉 fixed-point format shown in Figure 6.4 demonstrates the arithmetic computations

used in developed architecture. This 9-bit field representation uses 1-bit as a sign bit, 1-bit for

the integer part, and 7-bits for the fractional part. Symbolically, this is written as a signed ‘Fixed

〈8, 7〉’. Thus, it represents a signed 8-bit fixed-point number of which seven rightmost bits are

fractional. The HDL hardware coded DNN architecture 16:16:10:4 is validated for thermometer
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Figure 6.4: Signed Fixed 〈8, 7〉 precision representation used for the data representation with binary
point and arithmetic calculation

level to binary value conversion using ‘fixed 〈8, 7〉’ representation, and it gives 98.9% accuracy with

insignificant throughput loss to fully parallel architecture.

6.3.2 Memory addressing scheme for reading/writing of weights and

biases

In a fully connected neural network, DNN hyperparameters vary with different applications. Hence,

architecture should be upgradable regarding the number of layers in the neural network and the

number of neurons in each layer. The weights/bias addressing should have a viable scheme for

memory allocation. In fixed dedicated memory allocation in adaptable Deep Neural Networks

such as [134], several memory locations do not correspond to any physical implementation. Hence

it should avoid read or write operation on these unimplemented addresses. Thus an efficient scheme

of memory addressing is required for the weight/bias access. Here, we use FIFO for the temporary

data storage, and BRAM is used for the on-chip storage. An efficient address mapping scheme

for weight/bias memory for each neuron is shown in Figure 6.5. The scheme is derived using the

following labels:

• L is the total number of layers of the DNN model,

• N(l) is the number of neurons or biases in lth layer,

• J(l) is the number of inputs to the lth layer.

Note that the number of neurons in current layer is a number of inputs to the following neuron

as given in Eq 6.3.

J(l + 1) = N(l) (6.3)

The address mapping scheme is illustrated in more detail in Figure 6.5. Figure 6.5(a) gives an

addressing scheme to access the DNN parameters (weights and biases). In this scheme, a parameter

is identified by its layer ID, by its type (weight/bias), by its neuron ID, and in the case of weights

by the corresponding input ID. First dlog2(L)e MSB bits represent the layer ID of the addressed

parameter. The next bit is called a select bit, and it determines the type of the parameter given in

subsequent bits. Select bit=‘1’ denotes that the following bits represents bias address, whereas ‘0’

denotes that the following bits represents the weight address. Bits following the select bit represent

weight or bias RAM address as shown in Figure 6.5(b). The length of the weight or bias address

R addr(l) is the maximum of length of the weight address and the bias address and is given by
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Figure 6.5: Mapping scheme for address bits that requires to address weights and bias for the individual
neurons.

Eq 6.4(a). Whereas the bias address consist only of neuron identifier with length dlog2N(l)e, the

weight address includes also input identifier with the length W addr(l) = dlog2J(l)e. The required

address length including layer ID and parameter type Addr(l) for layer l is given by Eq 6.4(b).

R addr(l) = dlog2N(l)e+ dlog2J(l)e (6.4a)

Addr(l) = dlog2Le + 1 +R addr(l) (6.4b)

Since the required address length varies depending on the layer and since fixed address length

is used in the addressing scheme, the address length Addr is the maximum required address length

over all layers l = 1, 2, ..., L, and is given by Eq 6.5.

R addr = max
l=1,2,...,L

{
dlog2N(l)e+ dlog2J(l)e

}
(6.5a)

Addr = dlog2Le+ 1 +R addr (6.5b)

6.4 Proposed Data Multiplexed Architecture

This section presents the proposed performance-centric hardware-reused DNN implementation.

The proposed architecture reuses the resource-hungry non-linear AF using data multiplexing and

is area and power-efficient, and with minimal performance loss compared to fully parallel imple-

mentation. It was implemented and tested on FPGA; however, the proposed DNN core can also be

efficiently implemented in ASIC. The complete DNN core is written in VHDL-hardware description

language, and it was integrated using block design of Xilinx Vivado Design Suite.

The dynamic 〈8, 7〉 fixed-point arithmetic used in the developed DNN architecture was selec-
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ted through experimental evaluations as a compromise between resource usage, performance, and

accuracy. Compared to the floating-point format, the 〈8, 7〉 fixed-point format comes with two ad-

vantages. Firstly, fixed-point computational units are usually fast and consume minimal hardware

resources and power, i.e., the logic design with fixed-point arithmetic will allow more instantiating

for the given area. Secondly, memory footprint will be reduced, thus allowing larger models in

given memory capacity. In addition, it dramatically increases data parallelism. The following

subsections describe key features of the accelerator design and implementation.

6.4.1 Integrated block design of DNN accelerator

Hardware-based implementations of Deep Neural Networks face the challenges of memory band-

width limits. Therefore, the efficient addressing scheme for dynamic loading of the weights and

the bias constants in the local registers of the MAC unit is required. All FIFO registers used

to store trained weight/bias constants are loaded using the scheme as discussed in Section 6.3.2.

The block design of the embedded architecture is shown in Figure 6.6. Annip 0 block, which is

marked in orange, is proposed DNN core and is connected to PS by three slave and one master AXI

interconnects. The two slave AXI streams are used to access the input features and weight/bias

constants. The third slave interface is an AXI lite interface used by the DNN core control module.

The control module manages data exchange, handshake signals, and other configurable signals.

Ready, DNNInit, and DNNDone are three control signals at the top-level module that control data

exchange, initiate computing, and acknowledge completed calculations to the top-level module.

The Ready signal initiates the loading of the weight/bias into the local registers of the DNN core.

The DNNInit signal triggers the computation once the weight/bias loading is done. The DNNDone

is a control signal which indicates that the computation has finished and the DNN output is ready.

6.4.2 Computation mechanism for each fully connected layer and DNN

IP architecture

In order to initiate the DNN computation, the DNNInit signal become active once the weight and

bias constants are loaded in the local registers of the MAC units. Each layer has the LayerInit

input signal used to initiate the layers computation, whereas LayerDone signal is generated by the

layer which is used to acknowledge that the output of the layer is ready. The top-level DNN Core

has two additional sub-modules which interacts with the control module:

• Weight loading module: Due to the limited number of DMA channels available in Zynq,
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we found a workaround for loading the weight in sequence into corresponding FIFOs by

multiplexing the handshake signals based on the index of the DMA data transfer request,

i.e., neuron’s FIFO that accepts the data is selected based on index of loading DMA request.

• Computational module: It is build from Layer modules which perform calculations for indi-

vidual DNN layers and are daisy-chained by data and handshake signals. Each layer module

is controlled by two handshake signals: LayerInit and LayerDone, first is input signal of the

layer module that initiates layer computation while later is output signal of the layer module

and indicates that the layer computation has finished. Since the computation of subsequent

layer has to start after the computation of current layer has finished the LayerInit signal

of the subsequent layer is connected to the LayerDone signal of the current layer. Similarly

the output of the current layer is connected to the input of the subsequent layer as depicted

in Figure 6.7. The LayerInit signal of the first layer is connected to the top-level DNNInit

control signal, which initiates the DNN computation. On the other hand the LayerDone

signal of the last layer is connected to the top-level DNNDone control signal, which acknow-

ledges the master AXI stream, which is used to access the output of the DNN core as shown

in Figure 6.6, that the DNN computation is finished.

In general DNNs consists of one input layer, one output layer, and many hidden layers. Each

layer may have many parallel neurons. Each neuron consists of a MAC computational unit followed

by an AF. Thus, in a fully parallel architecture the layer with N neurons has an N number of

MACs and AFs. In contrast to the fully parallel architecture, the proposed architecture uses N

number of MAC units and a single AF unit shared through Parallel-In Serial-Out (PISO) unit

placed in between the MACs and AF. The serial output stream of the current layer is the input
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feature i1, i2, . . . ij for the subsequent layer, i.e number of inputs of the next layer is the number

of neurons in the current layer as shown in Figure 6.7. In order to achieve better performance, the

proposed design for each layer has the following key features:

1. FIFO Buffer: Each multiply-accumulate unit has an input buffer and an output buffer to

receive and send the input, weight, and output data in FIFO.

2. Pipeline Accelerator: We use a stream-like data passing mechanism (AXI stream) to transfer

data between the input data and multiply-accumulate unit.

3. Neural Unit: Contains one FIFO and one MAC unit that is used for computation of one

neuron in correspondence with its assigned index.

4. Data Quantization: The AF is implemented for limited precision to address minimum re-

sources utilization. Hence the output of the processing unit is resized into ‘Fixed 〈8, 7〉’.

5. Data Serialize: The output of the array of MAC unit available in the single-layer are serialized

to reused the single AF within the layer.

The proposed DNN core’s timing complexity has been elaborated by determining the number

of clock cycles needed to perform the computation. Let TR and TP represent the number of

clock cycles delay required to compute outputs for proposed AF Reused and fully Parallel DNN

architecture, respectively. The proposed data multiplexed layer architecture computes the MAC

output in j clocks, where j is the number of layer’s input features, and computes the first neuron

output at j + 2 clock cycles while the outputs of the following neurons are computed by one per

clock cycle. One can notice that it is due to the sharing of a single AF in each layer. Whereas in

fully parallel layer architecture, MAC computes outputs for all MAC in j clock cycles and computes

outputs of all neurons in j+ 1 clock cycles. It is important to note that while parallel architecture

computes all outputs at j + 1 clock cycle, the next layer reads them serially one per clock cycle

due to the iterative computational nature of the used MAC unit. This implies that in the case of

hidden layers the data multiplexed architecture introduces the delay of the PISO module, which

is one clock cycle as described in Eq. 6.6.

TR(l) = TMAC(l) + TPISO + TAF = j(l) + 1 + 1 (6.6a)

TP (l) = TMAC(l) + TAF = j(l) + 1 (6.6b)

On the other hand, the output layer does not have the next layer and the serial computation

of the AF unit must be taken into account. Therefore, the computation time of the output layer

of the proposed architecture output requires additional n− 1 clock cycles to compute all outputs.
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The computation time of the output layer for both architectures is given in Eq 6.7.

TR(L) = TMAC(L) + TPISO+ TAF = j(L) + 1 + n(L) (6.7a)

TP (L) = TMAC(L) + TAF = j(L) + 1 (6.7b)

The computation time TR of the whole AF reused DNN architecture is computed by summing

the computational time of the individual layers. The first layer is input layer and does not perform

computations and is omitted from the sum illustrated in Eq. 6.8.

TR =

L−1∑
l=2

TR(l) + TR(L)

=

L−1∑
l=2

(
j(l) + 2)

)
+ j(L) + 1 + n(L)

(6.8)

By applying the property that number of neurons in a layer is equal to the number of inputs in

next the layer (Eq 6.3) the equation can be simplified to Eq. 6.9.

TR =

L−2∑
l=1

n(l) + 2(L− 2) + n(L− 1) + 1 + n(L)

=

L∑
l=1

n(l) + 2L− 3

(6.9)

Similarly, the computation time TP of the fully parallel DNN architecture is

TP =

L−1∑
l=1

n(l) + L− 1 (6.10)

By comparing TR and TP computation time it can easily be seen that the computation time of

the AF Reused DNN architecture is longer by the number of hidden layers h = L− 2 and by the

number of DNN outputs n(L) as given in Eq 6.11. Further, time delay of accelerator output can

be compute by simply multiplying clock time tCLK with the number of clock periods TR evaluated

using Eq 6.9.

TR = TP + h+ n(L) (6.11)

Let us illustrate how the computation time can be determined on the evaluation example of

the 16:16:10:4 feed-forward DNN using proposed DNN architecture. First hidden layer with 16

neurons has j(2) = 16 inputs and its MAC units require 16 clock cycles to compute weighted sum.

The processing of the output of the first neuron requires two additional clock periods: one by PISO

unit and the other for AF unit, hence the output of the first neuron is computed in 18th clock cycle

as given in Eq 6.6a. Second hidden layer has 10 neurons and 16 inputs and can start processing

after 18 clock cycles. By the analogy it requires additional 18 clock cycles thus the output of its
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first neuron is available after 36 clock cycles. The output layer has four neurons and 10 inputs. 10

clock cycles are used for MAC units to compute weighted sum, one clock is used by PISO unit,

however to complete the DNN computation the outputs of all neurons must be determined. Due

to serial AF computation this requires four clock cycles. Thus 15 clock cycles are required for the

output layer. For this example 51 clock cycles are required for DNN computation in this example.

Similarly, 45 clocks (i.e., 17+17+11) are required to compute the output of the fully parallel DNN.

6.4.3 Architecture design and implementation of w-bit precision multiply-

and-accumulate unit

Each neuron has MAC computational unit followed by an AF unit. The MAC unit with parallel

multipliers and adder tree in each neuron are hardware costly and burdensome on tiny FPGAs.

Hence, iterative MAC architecture that uses minimal resources utilization at the cost of throughput

loss [18] is preferred. The resources-efficient iterative MAC unit used in this work is shown in Fig-

ure 6.8. It requires j clocks for the computation of weighted sum, where j is the number of inputs

at the MAC computation. The standard multiplier and adder defined in IEEE library package are

used, and implemented using logic slices (CLBs) on FPGA. Here, we used fixed-point 8-bit preci-

sion ‘Fixed 〈8, 7〉’ arithmetic for input feature and weights/biases i.e, input[8:0], weight[8:0]

and bias[8:0]. The output of the MAC unit is the sum of input bits, weight memory bits, and

overflow bits required for the weighted sum accumulations. Therefor, output of multiplier gets

accumulate using adder with extra overhead bits (k), i.e., k=dlog2 je. We use select b to load

the bias constant that gets added in first multiplication, i.e., at the first clock initiating the MAC

computation. Afterward, it selects the accumulation path using the same select b signal.

The neurons have MAC followed by non-linear transformation over the weighted accumulated

sum, and therefore the precision of an AF depends on the output bit-width of the MAC unit

within the neuron. The MAC used in the proposed design is shown in Figure 6.8. The output of

the MAC unit [2w+k]-bits, whereas practically it is not desirable to keep the [2w+k] bits precision

AF for hardware implementation. Hence, we have resized MAC output into w-bits (9-bits) using

numeric std library package of VHDL. It allows us to keep the same input and output precision

for MAC implementation with dynamic fixed-point arithmetic ‘fixed 〈8, 7〉’ as shown in Figure 6.8.

Besides, in most cases it is beneficial to have the same input and output format that we use and

implies ib in = ib out = ib, fb in = fb out = fb and win = wout = w, where ib represents the integer
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bits excluding the sign bit, fb represents the fractional bits and w represents the total number of

bits at input/output. However, in the case of fixed-point format final choice must be based on a

target application that gives maximum accuracy with desired precision [14].

6.4.4 Design methodology and implementation of activation function

In DNN, MAC output is the input for a non-linear transformation function AF. Due to the non-

linear nature of the AF, it demands more hardware resources for implementation, and resources

utilization increases exponentially for higher precision. In addition, the AF with 16-bit and higher

precision requires more memory elements for PWL implementation, and therefore, it is very costly

for hardware utilization as the number of required memory elements increases exponentially with

the quantization precision at the input of the AF. The sigmoid function is the extended version

of an exponential function, and the exponential function can be evaluated using Taylor series

expansion. For example, the Taylor series expansion for a hyperbolic and exponential function is

shown in Eq. 6.12. Whereas sigmoid AF can be implement using this Taylor series expansions.

The higher order of Taylor series expansions returns better accuracy but comes with high precision

representation. Hence, performance-centric evaluations have been done between the Taylor series

order used in AF evaluation and DNN accuracy. The analysis of the impact of Taylor series order

on inference accuracy is shown in Figure 6.9.

sinh (z) = z +
z3

3!
+
z5

5!
+
z7

7!
+
z9

9!
+ . . . . (6.12a)

cosh (z) = 1 +
z2

2!
+
z4

4!
+
z6

6!
+
z8

8!
+ . . . . (6.12b)

ez = sinh (z) + cosh (z) (6.12c)

An exponential function has been evaluated using the sum of the Taylor series for hyperbolic

sin and cos function, as shown in Eq. 6.12 (c). We have used an optimized sigmoid AF evaluation

technique for both negative and positive inputs. In this work sigmoid function is represented

using positive exponential function as given f(z) for positive and negative inputs. The elaborated

equations for the positive and negative half are shown in Eq. 6.13. The Pareto study between

series expansion order and accuracy shows that accuracy gets saturated after the fifth-order of

series expansion as shown in Figure 6.9. Hence, fifth-order Taylor series expansion has been used

for the memory elements extraction in the ‘Fixed 〈8, 7〉’ representation. Further extracted memory

elements for sigmoid AF are stored in the BRAM for real-time function evaluation. The proposed

approach can easily be extended for tanh AF implementation simply by dividing the sinh and cosh.

However, sigmoid and tanh AF can also be implemented using a different approach [21].

f(z) = sigmoid(z) =


ez

1 + ez
, if z ≥ 0

1

1 + e−z
, otherwise

(6.13)
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Figure 6.9: Inference accuracy for fully connected neural network using sigmoid activation function. The
network 784:256:128:128:10 is trained for MNIST dataset and used sigmoid with different order of Taylor
expansion. The results shown for ’fixed 〈8, 7〉’ precision.

The implemented sigmoid AF design is efficient in terms of physical performance parameters

such as area, power, and delay, where we have used only positive exponential function for sigmoid

AF evaluation. We have analyzed the order representation of Taylor series expansion for sigmoid

AF. The order of Taylor series expansion for AF versus inference accuracy for the proposed scheme

and state of the art is shown in Figure 6.9. The accuracy results are evaluated for the MNIST

dataset on DNN configuration 784:256:256:128:10. The arithmetic representation of the integer

bits and the fractional bit have been presented using the ‘Fixed 〈8, 7〉’ scheme. Here, we trained

the model for 20 epochs and stopped the training if the validation accuracy decreased consecutively

for two epochs. Then we evaluated the trained model on a test set of MNIST and observed the

accuracy. Conventionally these equations computations have shown in Figure 6.9 represent the

same output; however, due to 8-bit fixed-point representation, numbers get quantized at every

math operation involves in AF computations. Thus results show the sigmoid with the proposed

technique has better accuracy compared with equations used in previous works [47, 135].

6.5 Experimental Results and Discussion

We have evaluated the system architecture at different abstraction levels for setting the design

parameter for hardware implementation. Finally, the embedded design of the DNN has been

implemented on hardware. The detailed analysis and evaluation results are given in the following

subsections.

Experimental setup

The system architecture is represented at the RTL level using VHDL language to evaluate the

performance of the proposed design. The RTL for our system architecture is synthesized using

Vivado-Xilinx, and implementation results are produced for Zybo FPGA hardware. Inference

accuracy for sigmoid AF on DNN is evaluated through software evaluation. Further for ASIC

design, synthesis results for an optimized sigmoid AF are extracted using Design Vision- Synopsys.
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Table 6.1: Network inference accuracy of DNN size 784:256:128:128:10 with Piece-Wise Linear (PWL) AF
[46] and TenserFlow library based AF [5] at different bit-precision with dynamic fixed-point representation
@MNIST data-set

Activation Inference accuracy (%) for different AFs

function ReLU Sigmoid tanh

precision Tensor [5] Proposed PWL [46] Tensor [5] PWL [46] Tensor [5]

32-bit 97.51 98.20 97.94 98.30 97.14 98.58

16-bit 96.71 97.63 97.86 97.58 96.90 98.53

8-bit 97.50 97.06 97.58 96.68 95.54 97.93

Following experiments are done to validate our proposed design:

1. The inference accuracy has been evaluated for different precision 8, 16, and 32-bit fixed-

point arithmetic representations of sigmoid AF implementation with different approaches to

finalize the precision selection for hardware implementation.

2. The DNN configuration 784:256:128:128:10 is designed for ‘Fixed 〈8, 7〉’ precision using

QKeras. The Pareto study tuned the Taylor series order expansion for the sigmoid AF im-

plementation, which returns better accuracy and physical performance parameters. MNIST

dataset is used for evaluation and validation of AF. Further ASIC synthesis results for 8-bit

precision are presented at 45 nm technology.

3. The proposed hardware efficient data multiplexed DNN architecture implantation is validated

on the Zybo board for network size 16:16:10:4. Here, we have designed a custom IP for the

proposed architecture and show the implementation results for the FPGA prototyping of the

proposed resources-reused (i.e AF) design architecture.

6.5.1 Accuracy for multi-bit precision and Pareto study for Taylor series

expansion

The QKeras model is used for the training of the DNN as it allows drop-in replacement for the

quantized versions of the conventional Dense and Activation layers. The accuracy has been ob-

served for the MNIST dataset on DNN configuration 784:256:256:128:10 with 8, 16, and 32-bit

precision, as shown in Table 6.1. Furthermore, our sigmoid AF design’s evaluated accuracy using

MNIST dataset has been compared with the accurate AF function of the Tensor library [5] and

Piece-Wise Linear Activation Function [46]. From Table 6.1, it can be observed that there is an

insignificant accuracy loss (≤2%) between 8-bit and 32-bit precision computation. However, 8-bit

precision computation leads to reduce memory computation demand by a factor of 4. Hence we

have chosen the fixed-point 8-bit precision for hardware implementation. We have also evaluated

the optimal position of the decimal point, i.e., one integer bit and the rest fractional bits in the

dynamic fixed-point arithmetic.
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Table 6.2: Resource utilization and performance parameters for 4-layer (16:16:10:4) on xc7z010clg400 at
100MHz

Hardware

Avail. Logic

Resources

DNN with

AF Reused

[91]

DNN with Layer

Multiplexed

[101]

DNN with

Layer Reused

[17]

DNN with Fully

Parallel AF

[24]

Hardware

Reused (AF)

Proposed

% Utilized

Relative

[24]

Slice LUTs (17600) 10439 6733 6127 9968 8858 88.86

Slice FFs (35200) 7573 6018 5904 10638 6219 58.46

BRAM (60) 6.5 9 13.5 11 6.5 59.09

BUFG (32) 8 8 8 8 8 –

On-chip Power (mW ) 158.5 88.12× L 74.04× L 120.46 106.05 88.33

I/O Critical Delay (ns) 11.6 4.07× L 3.28× L 9.23 9.86 -6.82

Throughput (samples/s) T T/L1 T/L1 T T –

1L is the number of layers available in the implemented DNN

6.5.2 Data multiplexed DNN implementation and results comparison

The Xilinx Zybo (xc7z010clg400) FPGA hardware contains 4,400 logic slices; each logic slice in-

cludes four 6-input LUTs and 8-FF. Additionally, it provides 240 KB of BRAM. In order to

evaluate the resources utilization and power consumption, we used Xilinx-Vivado tool. Through

an efficient addressing scheme, local memory registers with weights and bases are loaded. Archi-

tecture has been implemented on Zybo. Furthermore, the DSP blocks have not been used for

logic implementation due to their fixed architecture for higher precision and power consumption

constraint.

We have implemented data multiplexed hardware reused architecture and results are extracted.

For the sake of comparison with state-of-the-art approaches, we used the same design parameters

which are ‘Fixed 〈8, 7〉’ arithmetic, DNN size, and evaluation kit for the implementation of all the

previous and proposed work. We used DNN configuration 16:16:10:4 for the implementation and

results comparison. The hardware architecture has been designed using VHDL and for DNN core

extracted post-implementation results on the Zybo FPGA board are shown in Table 6.2.

In [24], authors have design DNN with fully parallel layers. The network has high throughput

and flexibility to change the number of nodes in the network, allowing us to configure the network

for different applications. However, the design architecture has further scope to make it hardware

efficient using the data multiplexed and AF reused scheme. An efficient hardware design has

been proposed where authors have reused the AF [91]. This work has used a multiplexer between

the parallel MAC units and AF in which MAC address is the input select line for the MUX.

The hardware implementation results show less LUT utilization as authors have reused the AF

through multiplexing shown in Table 6.2. However, techniques are not efficient for a larger size of

a DNN as multiplexer increases the time complexity of the logic architecture, and further bigger

size multiplexer requires more hardware resources. We have addressed this issue and proposed an

efficient AF reused technique using shift register following the Parallel-In Serial-Out’s mechanism.

The proposed technique is efficient for any deep neural network at very insignificant through-

put loss, as we discussed in Section 6.4. For the performance parameter comparison, we have

synthesized the different DNN architectures and proposed DNN core for 16:16:10:4. The imple-

mentation report for DNN core is shown in Table 6.2. The hardware implementation results show
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that our method uses 25% fewer resources and requires 12% less power, without performance loss

compared to the work proposed in [24] at the cost of insignificant delay overhead compared to

parallel architecture in DNN as discussed in Section 6.4. Here, L is the number of layers available

in the DNN. Therefore, L-1 clocks period delay occurs for the first output in comparison with the

fully parallel architecture. However, after the first output, the network computes the output at

every clock, and hence reused architecture has insignificant throughput loss, as we have discussed

in Section 6.4.2. Compared with AF reused architecture design in [91], implementation results

show 17.8% and 21.7% fewer LUT and FF utilization. Further, the proposed design has 17.6%

less critical delay. For the proposed design, the comparison number will be adequate for the bigger

sizes of DNNs.

In order to design resource-efficient architecture, state-of-the-art works have proposed layer-

reused architectures [17, 101]. Though the design is hardware efficient, from Table 6.2, one can

see that layer reused designs have L× lower throughput as compared to fully parallel architecture.

That architecture implementation will be efficient for less resources utilization at the cost of low

throughput. In [101], the author has used the multiplexer for passing the output data of the current

layer to the input of the same layer; using this one can reuse the single layer at any number of

times within the DNN. However, design suffers from low throughput. Moreover, the design has

used parallel AFs within the layer. Therefore, this design has further scope to reduce resources

utilization using the AF reused technique by compromising throughput loss of one clock period

in each layer computation. The resources utilization for fixed parameters is shown in Table 6.2.

It can be observed that [17] has higher BRAM utilization compared the [101]; as no quantization

scheme was used in [17]. However, these designs can adopt the proposed AF reused scheme to

further optimize hardware utilization.

The design’s performance parameters are in the trade-off for area/power and throughput. How-

ever, the proposed design will be the best choice for area/power and throughput-centered applica-

tions where resources and power are on a tight budget, such as Mobile, edge-AI, IoT applications,

etc.

6.5.3 Implementation results and comparison of proposed AF at multi-

bit precision

In an AF, moving from 8-bit to 12-bit and 16-bit, the number of quantization states is equal to

28 = 256, 212 = 4096, and 216 = 65536 which leads to an exponential increase in the memory

elements required. Therefore, we used the pre-calculated memory element for AF implementation

using the Taylor series expansion approach and efficiently stored it in BRAM. Table 6.3 shows

the resource utilization comparison at different precision for our optimized architecture with the

utilization of BRAM and LUT-based approach [42]. Generally, tiny FPGA have limited slice

resources utilization, whereas it can be seen that 16-bit precision sigmoid AF needs 2111 LUTs.

Here, it can be observed that higher precision AF implementation for LUT based approach is not
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Table 6.3: Activation function implementation using LUT based and proposed technique for Zybo
xc7z010clg400

Resources Sigmoid Activation Function Resources Utilization

Utilization 8-bit 12-bit 16-bit

(Available) LUT [44] Proposed LUT [44] Proposed LUT [44] Proposed

LUT 16 1 370 1 2111 20

FF 0 1 0 1 0 5

BRAM 0 0.5 0 1.5 0 32

BUBG 0 1 0 1 0 1

Table 6.4: Performance parameter metrics of 8-bit precision proposed design for sigmoid AF and state-
of-the-art @45nm TT Process Corner

Sigmoid AF
Physical
Parameters

Digital
Implement

[41]

Negative
Input
[47]

Iterative
CORDIC

[18]

Memory
Elements
Proposed

Chip Area (µm2) 846 483 377 671
St. Power (µW ) 27.6 121.7 96.77 21.6
Dy. Power (µW ) 121.3 209.4 189.3 38.2
Delay (ns) 7.41 5.93 4.38 4.86
Energy-Delay Product (EDP) 1105 11,780 6,264 287
No. of Clock 1 6 5 1

the appropriate method. Hence, our design uses BRAM, which is scalable for higher precision, has

better access time, and saves LUTs for other logic computations.

6.5.4 Comparison of AFs physical performance parameters at 45nm

technology node

In order to evaluate the design performance of our optimized AF for ASICs, we have synthes-

ized design for fixed-point 8-bit precision at 45 nm TT Process Corner. The efficiently extracted

memory elements for sigmoid AF have been compared with sigmoid using different design tech-

niques. The RTL for our AF architecture is synthesized, and results are produced by Design

Vision-Synopsys. The physical performance parameters comparison is shown in Table 6.4. Res-

ults show that compared to CORDIC-based AF, we have 4.8× higher throughput at the cost of

1.9× of area overhead. Further, it can be seen that the memory elements-based proposed method

has better physical parameters compared to the digital design technique [41].

6.6 Summary

We presented a novel DNN architecture that reduces the hardware-resource requirements and

on-chip power consumption without the loss in computational rate. Our architecture has struck

a demand of resource overhead in a Deep Neural Network by exploiting the hardware-reused

context. The contribution of the work is two-fold. Firstly, the activation function is designed
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efficiently for higher accuracy, and quantized memory elements are stored in BRAM for better

utilization and higher throughput. Secondly, our experimental results demonstrate reused AF by

serializing the output of the array of MAC in each layer. The efficient memory addressing scheme

is used to overcome the SoC throughput limits. The implementation was verified at 100 MHz for

thermometer level to digital conversion. The performance is validated and compared with previous

work for the MNIST dataset. Besides, the digital design of AF is synthesized at 45 nm technology

node and physical parameters are compared with previous work. The proposed hardware reused

architecture is verified for neural network 16:16:10:4 using 8-bit dynamic fixed-point arithmetic

and implemented on Xilinx Zynq xc7z010clg400 SoC using 100 MHz clock. The implemented

architecture uses 25% less hardware resources and consumes 12% less power without performance

loss, compared to other state-of-the-art implementations. Using extensive evaluation, we show

that our proposed design gives better results as compared to other designs. Thus, the embedded

system design with lower hardware resources and power consumption can significantly benefit edge

computing solutions.
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Chapter 7

Multi-stage Configurable Dynamic

Comparator in ADCs for Analog

In-memory Computing

Applications

In chapter 6 we have used the application with input data as thermometer code (digital format).

However, practically information is in analog form before processing. Therefore, ADC will be

part of the integrated system to enable the accelerator for both analog and digital information

processing. For the design and implementation of a deep neural network for ASIC and FPGA

platforms, we worked on a digital solution. However, DNN has succeeded in numerous applications,

including digital and analog input information. In ASIC integrated system design, an Analog to

Digital Converter (ADC) is required to process the analog information since the design network

processes the data in digital format. In the future, we are working on the ASIC system design

for the DNN accelerator, where ADC is required as an intermediate between the analog input and

digital hardware accelerator. The proposed 4-bit flash ADC supports high-speed data conversion.

In order to represent the integrated system accelerator for both analog and digital applications, an

ADC interface is required. Furthermore, design has scope for In-memory computing applications

since ADC architecture is low power and has efficient physical performance.

Further explore machine learning in multiple applications such as edge computing, the inter-

net of things(IoT) demands more and more power area-efficient computing elements. Therefore,

in-memory computing architecture using SRAM, ReRAM, is evolved. The energy-efficient mero-

morphic application with emerging resistive random access memory(ReRAM) and SRAM crossbar

have excellent potential. However, the max-pooling in CNN is challenging to be implemented in the

analog domain. Hence it needs to be converted into digital. The low bit-level ADC/DAC interface

in crossbar system design has better energy efficiency and high-speed operation to bridge the gap
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between analog to digital interfaces. Furthermore, power-efficient and high-speed analog-to-digital

converters demand high-speed and power-efficient architecture of dynamic comparators with good

performance.

7.1 Flash type ADC with High Throughput Performance

The major drawback with flash type ADC, as the resolution increases, there is exponential growth

in overall cost. The cost in input capacitance, comparator kickback noise, power consumption,

chip area, and complexity in routing the signal. The crossbar-based accelerator system provides

the MAC unit in the analog domain. Hence, bridging the crossbar-based processing unit with

the digital peripherals like ADC & DAC is required. The peripheral circuit and memory access

consume the power of the complete system architecture. In a hybrid structure, two convolution

layers can directly exchange data between output and input buffers, bypassing memory access and

thus increasing energy efficiency. ADC and DAC do the ReRAM crossbar array and peripheral

digital circuit interfacing.

In ReRAM-based CNN, 98% area and power are consumed through ADCs and DACs, even

in the case of small crossbars of size 512*512. A flash-type ADC is the choice for fast operation

and low to medium resolution. Still, the comparator ladder in a flash type associated with several

latches at the output of comparator stages consumes a big chunk of power. The high power

consumption problem associated with the peripherals and reuse scheme [136] is used to adopt the

distinct power budget. Since the weights are defined by the conductance of ReRAM and the input

data is defined by input voltage signals, the ReRAM crossbar will perform the convolution kernels.

The input-output parameter is related to the following Eq. 7.1.

iout,k =

N∑
j=1

gk,j × vin,j (7.1)

where −→v in is the input voltage (denoted by j=1,2,...,N),
−→
i out is the output current denoted

by ( k=1,2,...,M), and gk,j is conductivity of the RRAM device representing the matrix data.

In future technologies, the power consumption of matching-dominated high-speed ADCs will

increase to achieve the same accuracy and speed. A high-speed fash ADC needs 2N−1 comparators

for an N − bits conversion. The conventional technique is not feasible in RRAM based CNN

classifier. The flash-type ADC is very costly in terms of power for higher resolution. Addressing the

problem of high power overhead of peripheral circuit units, especially by ADCs/DACs and memory

accesses, this paper proposes a reconfigurable scheme in comparator stages of ADC to meet low

power budgets. We proposed the reconfigurable comparator-based 4bit flash ADC for crossbar-

based CNN shown in Figure 7.2. The data compression scheme and approximation technique can

in the case of higher resolution computing architecture. The underlying idea is to put the expensive

ADCs/DACs in the spotlight.

Moreover, the cascaded latch interpolation technique can be reduced by one-fourth in the num-
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Figure 7.2: Block architecture of proposed 4-bit flash ADC

ber of first-stage latches for flash ADC. The cascaded latch interpolation is liable to be influenced

by PVT variation, and a dedicated circuit that can shield robust performance is needed [137]; the

resolution depends on the operating link condition in the benchmark circuit [138]. The multi-stage

comparator is based on the cascade structure in a pipelined arrangement of the modified input

offset storage amplifier, and the output offset storage amplifier. The topology maintains a good

input common-mode range and improves speed due to reducing capacitive loads. However, this

technique increases the overall power consumption. The reduced comparator count in the ladder

can be significant for higher resolution to reduce the power consumption for T/H circuit load

capacitance. This work has addressed the issue in the proposed 4-bit flash ADC.

7.2 Design and Implementation of Proposed 4-bit Flash ADC

In on-chip Internet of Things (IoT) applications demanding performance is required to push the

limit for a solution over the power consumption in the analog front-end circuits. However, it needs

system considerations like flexibility in modulation and analog-based solutions in architecture.
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Power consumption is one of the major research areas for digital and analog circuit design. The

solution to the limitations is application-based reconfigurability in the circuit architecture. As

the number of active transistors in a chip increases, the power dissipation also goes on increase

rapidly [139]. The input to the ADC from the ReRAM crossbar array will depend on the weight

of the conductance and the input feature map. An inclusive architecture is required at all levels

of the system design aspect, which means architectures with the logic styles and the underlying

technology. An application like ADCs, especially flash type ADC, is the ideal choice in ADCs for

high-speed applications (GS/s). However, it consumes more power compared to the other ADC

architectures. Since flash-type ADC operates in parallel, the number of comparators increases

exponentially with higher resolution, leading to significant amounts of power consumption and a

large area. Unfortunately, the modern ADCs have a trade-off between power, speed, and accuracy

with low complexity [140]. In very high sampling speed superconductor ADCs utilizing periodic

comparators that reduce hardware complexity [141] [142], it has a perceptive significance for highly

parallel large bandwidth applications.

The ADC circuit differential amplifier is the dominant agent, especially the preamplifier. If

possible to bypass the preamplifier stage, then there is again the scope of power reduction and,

with this motivation proposed, a design of flash ADC with reconfigurable architecture as shown

in Fig. 7.2. The reference is generated using the resistive ladder and thermometer to binary code

conversion using a transmission gate-based thermometer to the binary encoder. The conversion

accuracy depends on the accurate definition of the reference voltages sensed by each comparator and

its offset voltage. The ADC’s differential and integral nonlinearity (INL) characteristics directly

influence because of the offset.

7.3 Multi-stage Configurable Dynamic Comparator for Voltage

Comparision

This chapter discussed the state-of-the-art comparator designs and proposed efficient reconfigur-

able comparator for N -bit flash ADC, which requires 2N -1 comparators along with the resistive

ladder. However, investigation shows that the comparator consumes maximum area and power.

The conventional comparator includes a preamplifier, dynamic latch, and post-amplifier stages.

The observation and cascade stages in the comparator can be bypassed with a reconfigurable tech-

nique. The differential comparator for low power applications is designed using a reconfigurable

technique that bypasses power-hungry active stages in the comparator. However, the static power

consumption by the remaining amplifier stages is still not desirable given the recent low power

demand. The conversion of continuous to discrete-time is realized within the comparator. Apart

from technological advancement, developing new circuit architecture that avoids stacking too many

transistors between the supply rails is preferable for low-voltage, high-speed operation, significantly

if it does not increase circuit complexity.
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Figure 7.3: Amplifier with a current-mirror active load [2].

7.3.1 State-of-the-art comparator design architectures

The circuit with a basic model to derive design conditions for improving the speed and resolution

in clockwise CMOS trans-impedance comparators as shown in Figure 7.3. The analysis gives two

different architectures for dynamic comparators, depending on whether the input sensing node is

capacitive or resistive. The sensing node reports that both different yields ranges of the input

current. The observed input differential comparison range, i.e., the voltage gain of a prototype is

80dB and offset below 10pA. However, a single stage with a minimum number of MOS cannot be

used for the high-speed application. Simulation results show that it can be operated up to 100MHz

and the average power consumption is 160µW . From the above discussions, it is observed that

power dissipation is very high against the operating speed.

The offset in the reference voltage comparison is due to device mismatch. The comparator

circuit directly creates static nonlinearities due to a mismatch in the transfer characteristics of

ADC that reflects in the degradation of the integral nonlinearity (INL) and differential nonlinearity

(DNL). The multistage comparator is based on the cascade structure in a pipelined arrangement

of modified input offset storage amplifier, and the output offset storage amplifier. The topology

maintains a good input common-mode range and improves speed due to reducing capacitive load.

However, this technique increases the overall power consumption. The multistage consist of a

track-and-hold stage and subsequent buffer in the input stage, succeeded by the comparator and

further amplifier & latches.

The TIQ technique uses two cascade inverters for the threshold comparison, as shown in Fig.

7.4. The first stage is an inverter that generates switching voltage internally, and the second stage

acts as a gain booster [143]. For the required reference voltage, the aspect ratio of MOSFETs

(W/L) used in the inverter circuit which can be adjusted and modifies the threshold voltage given

in Eq. 7.2. Likewise, the CMOS-Linear tunable Transconductance Element (LTE) comparator

used additional clock circuitry to control the static power dissipation of the TIQ comparator. The

reference voltages are internally generated by systematically varying the transistor sizing of the

CMOS-LTE comparator [3]. The limitation with all transistor sizes of these elements should be

identical. The mid-point voltage (V m) for the inverter is described as V in = V out1 in the voltage
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Figure 7.4: TIQ comparator design and response for its variable W/L ratio [3].

Figure 7.5: Block level architecture of runtime reconfigurable 3/2-stage differential comparator. The
same VRef pin is applied to both stages of the proposed comparator. Whereas, Vin goes out through
analog switch.

transfer characteristic (VTC) of an inverter and can be expressed as:

Vm =
r(VDD − |VT0,p|) + VT0,n

1 + r
(7.2)

where, r =
√

Kp

Kn
, Kn=µnCox(WL )n & Kp=µpCox(WL )p

The output performance comparison for TIQ-based and CMOS-LTE comparator for±5% power

supply voltage variation claims that with the use of CMOS-LTE comparator power supply variation

problem can be reduced. However, practical implantation of CMOS-LTE circuit comparator design

fabrication will come with a possibility of mismatch, and with this assumption, the comparator’s

threshold point may vary. Hence, such a prototype will not be practical due to its high mismatch

and offset for high resolution.

7.3.2 Proposed configurable dynamic comparator circuit design

This section describes the different block levels of the low-power reconfigurable comparator. The

principal drawback with flash type ADC is as the resolution increases; there is exponential growth

in overall cost. The cost in input capacitance, comparator kickback noise, power consumption,

chip area, and complexity in routing the signal. In flash type ADC, the count in the comparator is

doubled, with resolution increasing by one bit. Moreover, the more active area effect is on the input

capacitance, which is raised eight times. The proposed reconfigurable multi-stage comparator has

stages, namely (i) Preamplifier with bypass switch circuitry, (ii) Modified Dynamic Latch, and (iii)

Post-amplifier, as shown in Fig. 7.5. The trend for 4-bit and above resolution, flash type ADC

need better offset cancellation with a low noise sensitive comparator and high bandwidth. The

3-dB bandwidth for the amplifier can be described as
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Figure 7.6: (a) Preamplifier with controlled analog switch (SW) for threshold detection and bypass the
analog signal (b) MOS architecture of switch with control pin (c) Analog switch output response.

f3dB =
1

2π ×RLoad × CLoad
(7.3)

Where RLoad and CLoad are the resistive and capacitive load for the amplifier, respectively;

moreover, Eq. 7.3 shows with an increase of amplifier bandwidth, the value of RLoad must be

reduced. The preamplifier is often used to relax the effects of comparator input offset voltage for

better matching and metastability, but it increases the total power consumption. In addition, the

parasitic input capacitance by the preamplifier remains a bottleneck for high-speed and low-power

applications.

Addressing the above problems, application-specific users can bypass the preamplifier stage.

To do this, two important design aspects are considered. First is the proposed dynamic latch, and

another is application-dependent reconfigurability using an analog switch. The detailed working

flow-chart of a reconfigurable differential comparator is shown in Fig. 7.1. The following section

gives a detailed description of the reconfigurable comparator.

7.3.3 Configurable design for with and without preamplifier in multi-

stage dynamic comparator

Figure 7.6(a) shows the preamplifier circuit with a controlled analog switch which achieved the

sampling rate of 2.4GS/s. Depending on the input analog signal and user applications, it con-

tains two steps. If input signal Vin ≤ (| Vth |)M6,M7
then preamplifier stage is active in differential

amplifier. The transistors with linear tunable transconductance, M6 and M7 sizes are identical,

and VG1 and VG2 are at fixed switching voltage. However, channel length will decide the switch-

ing potential. The MOS level architecture of the switch to bypass the input signal is shown in

Figure 7.6(b), input is passed through both PMOS and NMOS to the output terminal, and its

switching control by the gate terminal.

The analog switch is used to bypass the input signal, and the concept behind this advancement

is to save the power consumed by the preamplifier stage. If an input signal is greater than Vth of
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(a) (b)

Figure 7.7: (a) Proposed dynamic latch (b) Post-amplifier circuit.

M6 and M7, mask the preamplifier stage and bypass the input analog signal. We have simulated

switch circuits at different process corners for the worst delay and power. The worst-case delay

is calculated for the slow-slow (SS) process corner, and in the worst case, power consumption in

the fast-fast (FF ) corner. However, the switch output response and delay at the worst process

corner (mismatch) are shown in Fig. 7.6(c). The maximum delay generated by the MOS-based

switch at the output for the first pick and a third pick is at the worse corner (SS) is 22ps and 9ps

respectively. Thus, settling time to within 2% is the Ts=4/ζωn where, ζ is damping ratio =1 and

natural frequency ωn, and it gets at 550ps. The observation can ensure the zero switching delay

up to 2.4 GS/s sampling frequency at a worse corner.

7.4 Design Proposed Dynamic Latch and Post-Amplifier

(Buffer)

The behavior of a first-order system having a single dominant pole shows a stable phase mar-

gin without complicated frequency compensation. Self-bias circuit automatically generates bias

voltages to sustain performance over a wide supply voltage range. The circuit is designed and

tested with post-layout simulation for the 1.8V ±10% supply. The three-stage comparator consists

of a preamplifier followed by the proposed dynamic latch and post-amplifier. A proposed dynamic

latch follows the preamplifier with good offset cancellation and driving strength. The proposed

circuit is implemented to differentiate the signals without a preamplifier, which is why configurab-

ility. In order to maintain the stable DC operating point, the transconductance at the input pair

has to increase with equal proportionality. It implies raising current and power consumption. The

differential comparator without a preamplifier will say a two-stage comparator.

The two-stage circuit consists of a proposed dynamic latch followed by post-amplifier and

architecture as shown in Fig. 7.7(a) and 7.7(b), respectively. The proposed dynamic latch design

contributes to the overall gain of a comparator. The proposed dynamic latch has an excellent

driving strength with a high voltage gain. For the analog input Vin > 0.5V , the performance of
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Figure 7.8: Layout for the two-stage comparator: proposed dynamic latch followed by post-amplifier.

the comparator is as good as the three-stage comparator at the given technology node. Using a

two-stages comparator to reduce overall power consumption and lower input offset voltage improves

the gain for better matching. The two-stage comparator circuit layout, which is proposed dynamic

latch followed by post-amplifier, is shown in Figure 7.8 while it has circuit RC delay. The total

propagation delay (tP ) of a differential amplifier depends on the number of stages used, and it is

calculated as:

tP = tLatch + tPreamp (7.4)

tLatch =
CLoad
gm

ln

(
∆V out

∆V in

)
(7.5)

Where ∆V in, ∆V out, CL and gm are the differential input voltage, output voltage, load capacit-

ance, and transconductance of latch respectively.

The overall delay contribution by the differential comparator in real-time performance is shown

in Eq. 7.4. However, we focused in this paper on the latch, and the delay contribution by the latch

is shown in Eq. 7.5. We have designed a dynamic latch with the minimum area and less delay by

considering the delay parameters. The design principle and operation of a proposed differential

latch are operated in the preset and regeneration phase. During the preset/equalization phase,

when the clock is low, M5,M6,M9 & M10 are in cut-off mode and M7 & M8 are in ON state.

The drain of M9 & M10 transistors will charge towards Vdd and M7 & M8 is an equalize the

differential output. Therefore, its output does not change in the equalization phase. When the

clock is low, the output of the latch does not evaluate the input change. The MOS M9 & M10

are majorly responsible for the parasitic capacitance, limiting the bandwidth.

While current starts to flow during the regeneration phase, i.e., the clock is high, the drain of

M5 & M6 starts to discharge. The M5 & M6 are then used to pass the differential voltage from

the input node to the regenerating stage. The cross-coupled transistors start to regenerate the

differential voltage as M5 & M6 can’t claim the output to the ground. Hence the output node

Out+ and Out− is discharged toward the ground. The input and reference voltage is connected to

the M1−M4 in the linear region and acts like voltage-controlled registers. Therefore, as the clock
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Table 7.1: Parameter Specification of the Proposed Dynamic Latch

Process File scl 180nm

Power Supply Vdd = 1.8V, Vss = 0V

(W/L) M1,2,3,4 = (1.5µ/0.180µ)

MOS Sizing (W/L)M5,6 = (1.0µ/0.180µ)

(W/L)M9,10 = (4.5µ/0.180µ)

Reference Voltage Vref = 0 to 1.8V

High = 1.8V; Low = 0V

Clock Signal (CLK) Rise and Fall time = 10ps

Speed = 2.4GHz

Switch (PMOS) (W/L)M7,8 = (1.5µ/0.180µ)

is high, we will get differential cross-coupled pair M1−M4 connecting the input differential signal

to the output terminal. The M9 & M10 are for boosting magnitude towards the rail voltages,

and M11 isolates the ground path when the clock is low i.e. in the preset phase. The coupled

pair M1−M2 and M3−M4 gives the large input impedance. The large area of PMOS, i.e., M9

& M10 taken for the design, gives the low output impedance. The above property of the design

supports an increase in the comparator’s overall voltage gain.

The comparator metastability occurs when very small signals appear at the input of the compar-

ator and close to the comparator decision point, which is reduced using the M7, M8 and M2,M3.

Whereas M2 and M3 MOS support offset compensation and ground path during regeneration.

These MOSFETs support a comparison of the differential signal at the input. The small-signal

(mV) needs low noise sensitivity and high amplification gain, which is difficult to achieve on the

same path. The three-stage comparator has high input impedance and very little variation at the

reference voltage generation point compared to the two-stage comparator. The second stage is the

post-amplifier used to increase the slew rate. Overall, the proposed design increases the gain of

the comparator and minimizes the error specifically, which gives the logic signal (i.e., 0 or 1.8V)

from the output of the decision circuit. The output stage buffer/post-amplifier should accept a

differential input signal and not have slew rate limitations for high-speed performance. The MOS

width-length fixed for design have reported in Table 7.1 The basic architecture of post-amplifier

used for the design is shown in Fig. 7.7(b). The layout for the two-stage comparator in cascade

connection is shown in Fig. 7.8 whereas the post-layout simulated output waveform for a proposed

circuit is shown in Fig. 7.9. The circuit operates at 2.4GS/s with tolerable delay, and the observed

voltage gain is 100dB.

Offset Voltage Compensation

The input offset voltage in the comparator is due to its positive feedback and transient response.

However, it is difficult to analytically predict the effect of offset. The fully configurable dynamic
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Figure 7.9: Post-layout simulation waveform for configurable differential Comparator for two-stage at
clock 2.4GS/s.

comparator with no mismatch reached a balanced state. The time during transient Fig. 7.7

response is Vout+ = Vout− in the preset phase, and the voltage4Vin can be applied to the minimize

the mismatch effect, and this voltage represents the input offset voltage. The mismatch and 4Vin
will affect the bias magnitude of the comparator. In order to calculate offset voltage, a balanced

state need to be found to compensate for mismatch. The mismatch in threshold voltage and current

through M5 & M6 are the dominant factors responsible for the process variation. First we have

consider overall variation due to current factor β=µCoxW/L mismatch in transistor M5 & M6.

However, M2 and M3 MOS is used in cross-manner for the compensation. The comparator to

work at the balanced condition, 4Vin = (VOS)M5M6
which assure the offset compensation. The

mismatch at the input is compensated using coupled transistor M1,2,3,4. The offset voltage for M5

& M6 can be calculated as

(VOS)M5M6
=

(µn+4µM5
)(W5/W3)(Vout+−Vs5−Vtn)2

2µnVs5
− (µn+4µM6

)(W6/W2)(Vout−−Vs6−Vtn)2

2µnVs6

Where Vs5, Vs6 are the source node voltage. 4µ is the respective mobility variation during

mismatch. µ and Vtn are nominal mobility and threshold voltage for NMOS.

7.5 Thermometer to Binary Encoder for Flash ADC

A different approach is used to convert thermometer code into gray or binary code. Bubble error is

the major problem at high-speed conversion by the encoder, as shown in Fig. 7.2. The ROM-based

decoder is proposed[144] which has a two-stage conversion. The ROM decoder-based architecture

has a regular structure that is easy to design. However, more bubble errors are introduced with

increasing conversion speed, and hence more advanced bubble error correction technique is required.

The circuit counts the number of ones in the thermometer code as an encoder called ones-counter,

and it gives complete bubble error suppression [145]. The Wallace tree topology [146] is proposed

in, which uses a tree of full adders (FAs). The Wallace tree-based decoder can use for high-speed

converters but consumes more power.
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Figure 7.10: Implementation of Encoder with Different Technique

We have design a code transmission gate based encoder which takes the run time minimum

delay and dynamic power. The proposed transmission gate based encoder and comparison with

state of the art is shown in Fig. 7.10

7.6 Results and Discussion

Referring to the effectiveness of the Flash-type ADC using the proposed reconfigurable dynamic

comparator, 180nm CMOS technology is used. All the simulations are performed considering 1.8V

of supply voltage at T = 27◦C operating temperature unless specified.

7.6.1 Comparator response and delay analysis of comparator

The proposed prototype can achieve competitive energy efficiency compared with other voltage

domain comparators. The voltage response concerning time is demonstrated in Fig. 7.11 (a),

which refers to the slew rate of a comparator. It helps us identify the maximum input frequency

and amplitude applicable to the amplifier such that the output is not significantly distorted. The

simulation results show the performance of different types of comparators at threshold crossing.

The proposed dynamic latch area for M9 & M10 is more, as shown in Fig. 7.7 gives low output

impedance. The comparator transient response simulation results give a distinct idea of the speed

of the comparator. However, in line with reconfigurability views, the result demonstrates that the

two-stage comparator provides better performance with low power and high resolution. The result

shows that the two-stage comparator has a faster response than the state of the art.

The proposed two-stage comparator is simulated, and measured the delay for the differential

input voltage is shown in Fig.7.11(b). At the same time, it proves that the comparator’s measured

delay decreases with increasing the differential input voltage. Moreover, at a given Vdd supply, the

larger differential voltage at the input provides a smaller comparator delay. The results also con-

cluded that the proposed comparator delay is inversely proportional to the input voltage difference

between the input node and reference node voltages. From the above discussions, we find that a

higher input voltage difference results in a minor output delay and vice versa.

7.6.2 Circuit performance for PVT variation and comparison

The impact of the process, voltage, and temperature (PVT) variations on the circuit performance

are important for stable circuit performance. The effect of PVT variations on the comparator
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(b) Delay variation of proposed comparator with change in input
voltage difference (∆Vin) i.e the reference node voltage and the
input voltage.

Figure 7.11: Timing responce & voltage variation of proposed comparator and comparision with state-
of-the-art.

response time is shown in Fig. 7.12. Fig. The response time of different considered circuits at

the different process corners, which are slow-slow (SS), fast-fast (FF), Slow-Fast (SF), Fast-Slow

(FS), and typical-typical (TT), is shown in Fig. 7.12(a). Results show that the response time of

the proposed 2-stage comparator is less as compared to all other considered circuits for various

process corners. The supply voltage of the design can vary from its fixed ideal value with day-to-

day operation and environmental conditions. Moreover, the supply voltage is responsible for the

saturation current and indirectly responsible for the signal propagation delay. The circuit response

time with supply variation for circuit design is shown in Fig. 7.12 (b), and it observes that the

response time decreases with increasing supply voltage for all the considered comparators.

The result shows that the effect of supply variation on the response time of the proposed 2-stage

comparator is less as compared to all other considered circuits. The response time sensitivity with

supply voltage is less for the proposed 2-stage comparator than for a comparator with active load

and a 3-stage comparator. The temperature variation also affects the circuit performance mostly

as a linear scaling effect at the 180nm silicon process. We have simulated the response behavior

for the proposed circuit with the different operating temperatures at 1.8V supply voltage and TT

process corner, as shown in Fig. 7.12 (c). The result shows that the response time increases

with the increasing operating temperature. The change in response time with temperature for the

proposed 2-stage comparator is less than the CMOS-LTE and 3-stage comparator.
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Figure 7.12: Effect on comparator response time with the PVT variations (a) Response time with process
Variation (b) Responce time with supply variation (c) Response time with temperature variation

7.6.3 Proposed circuit parameters and comparison

Table 7.2 summarizes the differential comparator performance matrics and compares them with

state-of-the-art. The proposed comparator utilizes clock edges to generate voltage differences and

directly latch this difference to the post-amplifier, which enhances the speed of the comparator.

The hysteresis is the two different threshold voltages in the differential comparator observing rising

and falling threshold detection. In a differential comparator for a very slowly varying input, output

switching can be slow. For the calculation of hysteresis, the input signal must exceed the upper

threshold (VH) to transition low or below the lower threshold (VL) to transition high. The power

supply rejection ratio (PSRR) is the ability of a dynamic comparator to maintain its output voltage

as its varying DC power supply. The PSRR is calculated using PSRR = (change in Vdd)/(change in

Vout). The input is driven with a voltage larger than the required and finds the proposed circuit’s

response time and state-of-the-art. The settling time is considered 90% of its saturation value, and

the response time is to reach 100% of its saturation value. However, the response time depends on

the value of the overdriven voltage for a given input amplitude.

Results demonstrate that the sensitivity of the proposed 2-stage comparator is significantly

less compared to other considered comparators. The 0.13µV of sensitivity for the proposed 2-

stage comparator provides less voltage difference to sense. The proposed comparator has 3.09×

less overdrive recovery time than the CMOS-LTE comparator. The proposed 2-stage comparator

also has the latching capability, which provides better performance of the circuit. Table ref

shows the performance comparison of the different comparator circuits is shown in Table 7.3. The

observation shows that the proposed two-stage comparator consumes less power than previous

works, including a three-stage comparator. The power consumption by the proposed design is

83.15µW at 2.4GS/s. The significant amount of power is reduced by bypassing the preamplifier

stage in a cascaded connection using an analog switch that controls the input signal. The proposed

two-stage comparator can operate faster and consume low power while using the reconfigurable

technique; we can use a two-stage comparator and a preamplifier.
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Table 7.2: Performance parameter metrics of differential comparators at 1.8 V Power Supply

Performance Parameter
Comparators

CMOS-LTE [3] with active load [2] 3-Stage 2-Stage

Technology CMOS 180nm 180nm 180nm 180nm

Sensitivity (µV ) @27oC 1000 10 0.1 0.13

Overdrive Recovery Time (pS) 71 175 35 23

PSRR (dB) @100KHz — — -43 -41

Hysteresis (mV ) 15 85 10 15

Latching compatibility No Yes Yes Yes

Table 7.3: Performance comparison of various comparators at 180nm process at 1.8V with ±10% Supply
Variation.

Comparators
Max. Sampling

Frequency ( GS/s)
Average Power
@500MHz (µW )

Voltage Gain
(dB)

CMOS-LTE [3] 1 560 60
Comparator with
Active Load [2]

0.5 172 80

Double-tail
Dynamic Comparator [147]

1.8 160 —

Three-stage
Dynamic Comparator

2.4 554 100

Proposed Reconfigurable
with Two-stage

2.4 83.15 100

7.6.4 Performance summary of 4-bit flash ADC

The total power consumption is 0.95mW at a 1.8V supply. The analog power, including the com-

parators and the sampling network, is 72mW , and the digital, including the encoder, is 0.23mW .

The reference voltage for the comparison is generated using the MOS ladder. The performance

summary of the circuit design is shown in Table. 7.4. The proposed architecture achieves circuits

with low power and high-speed requirement. We have simulated the Flash ADC circuit using three

stages and a Reconfigurable three-stage comparator individually. We have simulated the circuit at

all PVT Variation and the mismatch under worse conditions. The post-layout simulation states

that the proposed design architecture is suited for low-power applications without compromising

the other parameters. We have designed a circuit at 180nm technology as we have the fabrication

support from the foundry.

7.7 Summary

In this Chapter, a power-efficient, configurable dynamic comparator and 4-bit flash type ADC

is designed using SCL 180 nm CMOS technology at the supply voltage of 1.8 V. The proposed

run-time configurable differential amplifier circuit design operates at 2.4GS/s. It significantly

reduces the circuit’s active power by using the configurable technique. The proposed architec-
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Table 7.4: ADC Performance summary

Physical Parameter Value

Technology 180nm

supply Voltage 1.8V

Power Consumption @2.4GHz 0.95mW

Comp. offset Voltage (σos ) 4.8mV

Sampling Rate 2.4 GS/s

Nominal Resolution 4− bits

Nominal LSB Size 112.5mV

ture is divided into two-step algorithm implementation depending on the analog input to the

circuit. Compared with previous state-of-the-art, the proposed architecture results are better and

83.2% power-efficient compared to the three-stage comparator. This reconfigurable technique with

the proposed dynamic latch-based comparator gives very high-speed conversion with low power

consumption; hence it is very useful in flash type ADC. The power-hungry preamplifier stage is

bypassed in the multi-stage comparator for the higher input signal (≥Vth), which results in huge

power saving and does not require any kind of extra processing blocks. The results of the proposed

circuit claim that the use of the reconfigurable technique will have the option of power-saving

mode.

Further, 4-bit flash ADC with a reconfigurable technique in a modified dynamic latch-based

comparator has been designed, which can be used in RRAM-based CNN applications needed

high-speed conversion with low power consumption. ADC effectively works at a sampling rate of

2.4GS/s. The average power consumption for comparator and total ADC architecture is 0.118mW

and 0.95mW , respectively, which is very less compared to other proposed techniques. The design

shows better results in significantly reduced power consumption. Therefore, the proposed technique

can achieve low power consumption without compromising speed compared to the other voltage

domain comparator designs for analog conversion. Therefore, the proposed 2.4GS/s reconfigurable

Flash ADC can be a significant choice where the input peak to peak voltage range is variable.

The applications such as SRAM and RRAM-based Convolutional neural networks with analog

computing techniques.
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Chapter 8

Conclusion and Future Work

The presented DNN architecture reduces the hardware-resource requirements and on-chip power

consumption without losing computational rate. Our architecture has struck a demand of resource

overhead in a Deep Neural Network by exploiting the hardware-reused context. The semi-custom

ASIC and FPGA approach is investigated for design and implementation. The proposed archi-

tectures have struck a demand of resource overhead in a Deep Neural Network by exploiting the

hardware-reused context and novel computational units such as MAC and AF. The proposed

block designs support a power gating technique that saves static power dissipation. The hardware

design parameters such as signed/unsigned, arithmetic computation, bit-precision, and approxim-

ation limit have been extensively evaluated for efficient DNN hardware implementation through

Pareto analysis.

The contribution of the work is twofold. Firstly, a novel MAC unit and nonlinear AF are

designed using CORDIC iterative and pipelined architecture. The CORDIC-based design allows

configuration, and the same block can compute both MAC and multiple activation functions. Ad-

ditionally, the proposed design can compute both signed and unsigned computations. Further,

using extensive evaluation, we show that our proposed design gives better returns at higher bit

precision than the state-of-the-art. The pipeline architecture comes with an area overhead. There-

fore, we explore the mutual exclusivity between CORDIC stages and conduct a detailed study of

accuracy variation concerning # the number of stages required to achieve high throughput that

shows 4 to 5 pipeline CORDIC stages are sufficient for achieving maximum accuracy in MAC and

AF evaluation. Further, the sigmoid AF function design using Taylor series expansion shows bet-

ter results without circuit configurability. The proposed configurable architecture for MAC and

multiple activation functions i.e ReLU , sigmoid, tanh, exponential is simulated and synthesised

at 4 5nm technology to further validate efficiency of proposed architecture in terms of performance

parameters. The proposed design architecture is scalable for any precision. However, it shows

better results for 8-bit and other higher bit-precision implementations.

Secondly, System-level Performance efficient DNN design architecture reported better perform-

ance. The design has explored the hardware-reused techniques within the DNN architecture with
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insignificant throughput loss. The hardware-reused techniques have been investigated at different

abstraction levels in the system. 1. Reused hardware resources to iteratively compute MAC and

AF using the same hardware reported above. 2. The designed fully connected neural network and

reused resources hungry AF within the neural network layer. The presented technique saved huge

hardware resources with no throughput loss. Further, The efficient memory addressing scheme

is used to overcome the SoC throughput limits. Thus, the embedded system design with lower

hardware resources and power consumption can significantly benefit edge computing solutions. 3.

Layer-multiplexed architecture presented that reused single neuron layer for any deeper neural

network. This technique saves huge hardware resources but comes with low throughput. There-

fore, pipeline MAC shows good results for area/power and throughput. In order to verify the

behavior of the proposed architectures, the Xilinx FPGA platform is selected to implement the

benchmark configuration and tested for MNIST classification. Thus, the embedded system design

with lower hardware resources and power consumption can significantly benefit edge computing

solutions. The experimental evaluation validates that the proposed enhanced performance layer-

multiplexed solution will help us gain better area, power, and throughput performance for future

system implementations in ASICs and FPGAs.

The proposed 4-bit flash ADC supports high-speed data conversion. In order to represent the

integrated system accelerator for both analog and digital applications, an ADC interface is required.

Furthermore, design has scope for In-memory computing applications since ADC architecture is low

power and has efficient physical performance. The ADC design effectively works at a sampling rate

of 2.4GS/s and is used in analog-digital interface accelerator. Further, proposed ADC architecture

can be use in analog computing In-memory computing DNN accelerators and the importance of

ADCs in IMC accelerators. The power-efficient design of flash ADC is presented with configurable

power gated dynamic comparator.

Exploring our proposed DNN implementation method with a near-memory computing tech-

nique will be exciting. Besides, this article does not discuss some well-known machine learning

algorithms like recurrent neural network (RNN), Long short-term memory (LSTM), Capsule Neural

Network (CapsNet), etc.; nonetheless, we will explore them in future work. The CORDIC solu-

tion can be explored further for softmax activation function implementation to compute complex

exponential and division operations.

Limitations

We have introduced a DNN framework for low-power, area-efficient, and high throughput applic-

ations. However, there are some limitations since these parameters are counterparts. Therefore, a

future course of action can be used to remove these limitations and further improve the quality of

the proposed work. In this concern, some of the salient points are as follows:

1. In this thesis, we presented Pareto analysis in MAC which comes with arithmetic approx-

imation. Moreover, architecture can further be investigated for data quantization and ap-
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proximation at CORDIC primary computing elements to make it efficient for AI-enabled IoT

applications.

2. This thesis presented the novel MAC architecture for digital design; Moreover, the CORDIC-

based MAC design technique will further investigate in-memory computing.

3. The hardware reused DNN architecture can explore runtime programmable features that can

dynamically configure iterative and pipeline MAC.

Finally, we can conclude that the intended objectives of designing and hardware implementing

DNN accelerator with the functionally configurable processing element and nonlinear activation

function architecture for edge computing applications have been successfully achieved.
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Appendix A

Hardware features and utility

The targeted boards are one is the ZYBO Evaluation kit and another is Virtex-7 VC707 hardware

kit is shown in Figure 8.1. The ZYBO development board has a hard core Zynq processor (PS)

that allows the development of an integrated system with programmable logic(PL). It gives good

features for PS-PL integration. The board has many hardware interfaces such as UART, SPI, and

HDMI. Further, the board has sufficient hardware resources that are required for the hardware

accelerator deployment. The Virtex-7 board is mostly preferable for the PL based acceleration.

The board has huge hardware resources and can deploy a deeper neural net accelerator and apply

parallel processing for high throughput applications. The board has more RAM (4GB) that we

required to store the weights and input features of the DNN accelerator. Furthermore, it has a PCI

express interface for high speed communication with large data width. The SoC do not have the

hardcore processing system, however it can configure with Microblatz soft-core IP and program it

through SDK development kit.

Hardware implementation flow for proposed design

Figure 8.2 shows the FPGA design flow for hardware implementation and varification. At first the

design has been realized and functionally verified using Behavioural Simulation. The simulation

results of Proposed arhctiectures, i.e., MAC AF, fully connected neural network and convolutional

neural network are provided with the flow of FPGA and ASIC implementation flow. The verified

design was synthesized and resource utilization with other perforamcne parameters were reported.

A successfully synthesized proposed architectures have been implemented where planning, placing

and routing of the design Layout were performed. Once the design was implemented, Static Timing

Analysis (STA) has been conducted. Here the max path delay of the comprehended architecture

were documented. Accordingly the maximum frequency of operation is concluded.

Appendix B

Introduction to CORDIC Algorithm and Modes of Operation

The COordinate Rotation DIgital Computer (CORDIC) algorithm realizes various mathematical

functions by rotating a vector. The underlying principle allows solving the trigonometric rela-

tionships involved in plane coordinate rotation and conversion from rectangular to polar coordin-

ates [87]. The CORDIC architecture is configured to operate in three rotation modes – circular,

linear, or hyperbolic rotation. In this connection, a unified algorithm for linear and hyperbolic

CORDIC is an extension of the basic CORDIC algorithm for a circular trajectory as explained in



(a) Zybo xc7zclg400 evalautation board

(b) Virtex7 VC707 SoC

Figure 8.1: FPGA SoCs used for hardware implementation of DNN [4]

136



Design Source File

Design Synthesis 

Behavioural Simulation

Design Implementation
(Planning, Placing and Routing)

FPGA BitStream and Configuration file 
Generation

Functional Verification

Static Time Analysis

Figure 8.2: Design Flow for FPGA based Implementation

[148]. CORDIC algorithm is based on pseudo rotation shown in Figure 8.3, which is a scaled form

of real rotation using variables X, Y, and Z. The pseudo-rotation is the key idea of the CORDIC

circuit for computation and realization of mathematical functions. Based on the operation to be

performed, these variables are initiated where X and Y represent coordinates of pseudo rotation

and Z keeps track of the angle at which the vector is being rotated [18]. The scaling factor, K in

pseudo rotation of vector is a product of Ki, where Ki is cos αi and cosh αi for Circular mode

and Hyperbolic mode, respectively, and the product converges in i number of iterations [10]. The

generalized CORDIC architecture for all modes of operation is shown in Figure 8.4

CORDIC modes of operation and linear equations convergence

The functions (including trigonometric, square root, hyperbolic and its inverse, and other ba-

sic mathematical calculations) can be performed by Rotational and Vectoring mode CORDIC

algorithm in different planar coordinates as represented in Table 8.1. We have worked on the

CORDIC Rotational plane includes circular, linear, and hyperbolic modes. The functional valida-

tion of the designed architecture is done for trigonometric and hyperbolic trigonometric.

In this connection, a unified algorithm for linear and hyperbolic CORDIC is an extension of

the basic CORDIC algorithm for a circular trajectory as explained in [148]. The equations for

hyperbolic coordinate computations includes a rotation matrix and is given in the equation below.X(i+1)

Y(i+1)

 =

cosh αi sinh αi

sinh αi cosh αi

X(i)

Y(i)

 (8.1)
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Figure 8.3: The circular-rotation and pseudo-rotation of a vector of length about an angle with the
origin.
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Figure 8.4: Signed 8-bit precision for the basic CORDIC-based design

Here, (Xi,Yi) are set of coordinate components representing an ith state. In terms of polar co-

ordinates, an angle α is used where the new coordinates (Xi+1,Yi+1) can be easily reached. The

above equations describes a rotation with scaling factor of the plane vector vi to vi+1 at each

iteration. In above equations if we take cosh αi term as common (called as Ki scaling factor)

in CORDIC calculation, the equations for all mode of trajectories are thus formulated in unified

CORDIC algorithm as: X(i+1)

Y(i+1)

 = Ki ·

 1 −m· di· 2−i

di· 2−i 1

X(i)

Y(i)

 (8.2)

where αi = 2−i, tan−1(2−i) or tanh−1(2−i)

Here mode m ∈ {1, 0,−1} indicates a circular, linear, and hyperbolic coordinate system, respect-
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Table 8.1: Generalized CORDIC Algorithm

m Rotational Vector

Circular
1

Xn = Kc(X0cosZ0 − Y0sinZ0)
Yn = Kc(Y0cosZ0 +X0sinZ0)

Zn = 0

Xn = Kc

√
X2

0 + Y 2
0

Yn = 0
Z0+1 = Z0 + tan−1( Y0

X0
)

Linear
0

Xn = X0

Yn = Y0 +X0·Z0

Zn = 0

Xn = X0

Yn = 0
Zn = Z0 + ( Y0

X0
)

Hyperbolic
-1

Xn = Kh(X0coshZ0 − Y0sinhZ0)
Yn = Kh(Y0coshZ0 +X0sinhZ0)

Zn = 0

Xn = Kh

√
X2

0 − Y 2
0

Yn = 0
Zn = Z0 + tanh−1( Y0

X0
)

ively. The di shows the rotation direction for ith iteration. The αi rotation angle in radians for

the each iteration. Ki is scaling factor and it is different for different mode of operations (linear,

circular or hyperbolic).
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